JP4647292B2 - Counter electrode of dye-sensitized solar cell and dye-sensitized solar cell using the same - Google Patents

Counter electrode of dye-sensitized solar cell and dye-sensitized solar cell using the same Download PDF

Info

Publication number
JP4647292B2
JP4647292B2 JP2004340120A JP2004340120A JP4647292B2 JP 4647292 B2 JP4647292 B2 JP 4647292B2 JP 2004340120 A JP2004340120 A JP 2004340120A JP 2004340120 A JP2004340120 A JP 2004340120A JP 4647292 B2 JP4647292 B2 JP 4647292B2
Authority
JP
Japan
Prior art keywords
dye
transparent conductive
solar cell
sensitized solar
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004340120A
Other languages
Japanese (ja)
Other versions
JP2006155907A (en
Inventor
玲 西尾
耕司 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin DuPont Films Japan Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2004340120A priority Critical patent/JP4647292B2/en
Publication of JP2006155907A publication Critical patent/JP2006155907A/en
Application granted granted Critical
Publication of JP4647292B2 publication Critical patent/JP4647292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は色素増感型太陽電池の対極およびこれを用いた色素増感型太陽電池に関する。   The present invention relates to a counter electrode of a dye-sensitized solar cell and a dye-sensitized solar cell using the same.

色素増感型太陽電池は、色素増感半導体微粒子を用いた光電変換素子が提案されて以来(「ネイチャー(Nature)」 第353巻、第737〜740ページ、(1991年))、シリコン系太陽電池に替る新たな太陽電池として注目されている。シリコン系太陽電池と比較すると製造時の低コスト化が可能であり、注目されている。   The dye-sensitized solar cell has been proposed since a photoelectric conversion element using dye-sensitized semiconductor fine particles was proposed (“Nature”, Vol. 353, pages 737-740, (1991)). It is attracting attention as a new solar battery that replaces batteries. Compared to silicon-based solar cells, it is possible to reduce the manufacturing cost, and is attracting attention.

色素増感型太陽電池の多くは、ガラス上の透明導電層に多孔酸化チタン膜を積層し、表面に増感色素で吸着させることによって得られる作用電極と、電解質、対極を備える。現在知られている色素増感型太陽電池に使用される対極は、その多くがITOガラスなどの透明導電性材料に白金を坦持させたものである。しかし、白金は貴金属であり高価であることから、より安価な導電性高分子を用い、これをガラス基板に設けられた透明導電層のうえに担持させることが検討されている。
Chemistry Letters 2002 1060-1061
Most dye-sensitized solar cells include a working electrode obtained by laminating a porous titanium oxide film on a transparent conductive layer on glass and adsorbing the surface with a sensitizing dye, an electrolyte, and a counter electrode. Most of the counter electrodes used in dye-sensitized solar cells that are known at present are made by carrying platinum on a transparent conductive material such as ITO glass. However, since platinum is a noble metal and expensive, it has been studied to use a cheaper conductive polymer and to carry it on a transparent conductive layer provided on a glass substrate.
Chemistry Letters 2002 1060-1061

従来の技術において、色素増感型太陽電池の対極に導電性高分子を用いる際には、導電性高分子の分散液もしくはそのモノマーの分散液を、ガラス基材上の透明導電層のうえに塗布し、乾燥もしくは重合させる方法がとられていた。しかし、導電性高分子やそのモノマーは溶解性が低く極性の高い溶媒を用いる必要があり、基材への濡れ性が悪く、均一に塗布するためにはスピンコートといった限られた塗布方法が必要であった。。さらに太陽電池に組み立てた際、電解質を溶液として用いた場合において、透明導電層からの剥離を抑制するために十分な接着性が必要とされる。
また基材としてガラスを用いた場合、耐衝撃性が低く、太陽電池としたときの耐衝撃性も低いものであった。
In a conventional technique, when a conductive polymer is used as a counter electrode of a dye-sensitized solar cell, a conductive polymer dispersion or a monomer dispersion thereof is placed on a transparent conductive layer on a glass substrate. The method of applying, drying or polymerizing was taken. However, it is necessary to use a highly polar solvent with low solubility for the conductive polymer and its monomers, and the wettability to the base material is poor, so a limited coating method such as spin coating is required for uniform coating. Met. . Furthermore, when the electrolyte is used as a solution when assembled into a solar cell, sufficient adhesiveness is required to suppress peeling from the transparent conductive layer.
Moreover, when glass was used as the substrate, the impact resistance was low, and the impact resistance when a solar cell was obtained was also low.

本発明は、かかる従来技術の問題を解決することを課題とする。すなわち本発明の目的は、耐衝撃性が高く、なおかつ濡れ性の悪い基材と十分に高い接着強度で接着した導電性高分子からなる、色素増感型太陽電池の対極およびこれを用いた耐衝撃性の高い色素増感型太陽電池を提供することにある。   An object of the present invention is to solve the problems of the prior art. That is, the object of the present invention is to provide a counter electrode for a dye-sensitized solar cell, which is composed of a conductive polymer bonded with a substrate having high impact resistance and poor wettability with sufficiently high adhesive strength, and resistance resistance using the same. The object is to provide a dye-sensitized solar cell with high impact.

すなわち本発明は、プラスチックフィルム、そのうえに設けられた透明導電層、および透明導電層のうえに設けられた導電性高分子層からなり、該透明導電層の表面エネルギーが40〜72mN/mであり、かつ該導電性高分子層が最外層である、色素増感型太陽電池の対極およびその製造方法であり、また、この色素増感型太陽電池の対極を用いた色素増感型太陽電池である。 That is, the present invention provides a plastic film, a transparent conductive layer provided thereon, and Ri Do a conductive polymer layer provided on top of the transparent conductive layer, the surface energy of the transparent conductive layer is located at 40~72mN / m And a dye-sensitized solar cell counter electrode , wherein the conductive polymer layer is the outermost layer, and a method for producing the counter electrode, and a dye-sensitized solar cell using the counter electrode of the dye-sensitized solar cell. is there.

本発明によれば、耐衝撃性が高く、基材と十分に高い接着強度で接着した、色素増感型太陽電池用対極を提供することにある。   According to the present invention, there is provided a counter electrode for a dye-sensitized solar cell that has high impact resistance and is bonded to a substrate with sufficiently high adhesive strength.

以下、本発明を詳細に説明する。
[プラスチックフィルム]
本発明におけるプラスチックフィルムはプラスチックから構成される。プラスチックとしては、ポリエステル、ポリカーボネート、非晶質オレフィン、ポリエーテル、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリメタクリレート、ポリスチレン、アクリル、ポリアミド、ポリアリレート、ポリスルホン酸、ポリエーテルスルホン、ポリアリーレンスルフィド、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、ジアリルフタレート、ポリウレタン、ケイ素樹脂、フッ素樹脂、ポリイミド、ポリエーテルイミド、ポリアミドイミドを例示することができる。就中、ポリエステルが好ましい。
Hereinafter, the present invention will be described in detail.
[Plastic film]
The plastic film in the present invention is made of plastic. Plastics include polyester, polycarbonate, amorphous olefin, polyether, polyether ether ketone, polyphenylene ether, polymethacrylate, polystyrene, acrylic, polyamide, polyarylate, polysulfonic acid, polyethersulfone, polyarylene sulfide, phenol resin, Examples include urea resin, melamine resin, epoxy resin, diallyl phthalate, polyurethane, silicon resin, fluororesin, polyimide, polyetherimide, and polyamideimide. Of these, polyester is preferred.

ポリエステルとしては、芳香族ポリエステルを用い、ポリエチレンナフタレンジカルボキシレート、ポリエチレンテレフタレートを例示することができる。就中ポリエチレンナフタレンジカルボキシレートが好ましい。   As polyester, aromatic polyester is used, and polyethylene naphthalene dicarboxylate and polyethylene terephthalate can be exemplified. In particular, polyethylene naphthalene dicarboxylate is preferred.

本発明におけるプラスチックフィルムの厚みは、好ましくは10〜500μm、さらに好ましくは20〜400μm、特に好ましくは50〜300μmである。10μm未満であるとハンドリングが困難となりその後の太陽電池組み立て工程に支障をきたすため好ましくない。500μmより厚いと色素増感型太陽電池の柔軟性が落ちるため好ましくない。
プラスチックとしてポリエステルを用いる場合には、ポリエステルは延伸されたフィルム、特に二軸延伸されたフィルムとして用いることが、機械的強度の観点から好ましい。
The thickness of the plastic film in the present invention is preferably 10 to 500 μm, more preferably 20 to 400 μm, and particularly preferably 50 to 300 μm. If the thickness is less than 10 μm, handling becomes difficult and the subsequent solar cell assembly process is hindered. A thickness of more than 500 μm is not preferable because the flexibility of the dye-sensitized solar cell is lowered.
When polyester is used as the plastic, it is preferable to use the polyester as a stretched film, particularly a biaxially stretched film from the viewpoint of mechanical strength.

[易接着層]
プラスチックフィルムのうえには透明導電層が設けられるが、プラスチックフィルムと透明導電層との密着性を向上させるために、プラスチックフィルムと透明導電層の間に易接着層を設けてもよい。易接着層を設ける場合、その厚みは、好ましくは10〜200nm、さらに好ましくは20〜150nmである。易接着層の厚みが10nm未満であると密着性を向上させる効果が乏しく好ましくなく、200nmを超えると易接着層の凝集破壊が発生しやすくなり密着性が低下することがあり好ましくない。
[Easily adhesive layer]
A transparent conductive layer is provided on the plastic film, but an easy-adhesion layer may be provided between the plastic film and the transparent conductive layer in order to improve the adhesion between the plastic film and the transparent conductive layer. When providing an easily bonding layer, the thickness becomes like this. Preferably it is 10-200 nm, More preferably, it is 20-150 nm. If the thickness of the easy-adhesion layer is less than 10 nm, the effect of improving the adhesion is poor, which is not preferable. If the thickness exceeds 200 nm, the easy-adhesion layer tends to cause cohesive failure and the adhesion may be lowered.

易接着層は、プラスチックフィルムが形成された後に設けてもよく、プラスチックフィルムの製造過程で塗工により設けてもよい。プラスチックフィルムの製造過程で塗工により設けることが好ましく、特に、プラスチックフィルムが延伸されて製造される場合には、プラスチックフィルムの製造工程において延伸および熱固定の工程が完了する前に塗布することが好ましい。   The easy adhesion layer may be provided after the plastic film is formed, or may be provided by coating during the production process of the plastic film. It is preferably provided by coating during the production process of the plastic film. In particular, when the plastic film is produced by being drawn, it may be applied before the drawing and heat setting steps are completed in the production process of the plastic film. preferable.

ここで、結晶配向が完了する前のプラスチックフィルムとは、未延伸フィルム、未延伸フィルムを縦方向または横方向の何れか一方に配向せしめた一軸配向フィルム、さらには縦方向および横方向の二方向に低倍率延伸配向せしめたもの(最終的に縦方向また横方向に再延伸せしめて配向結晶化を完了せしめる前の二軸延伸フィルム)を包含する。   Here, the plastic film before crystal orientation is completed is an unstretched film, a uniaxially oriented film in which the unstretched film is oriented in either the longitudinal direction or the transverse direction, and further in two directions, the longitudinal direction and the transverse direction. And a film that has been stretched and oriented at a low magnification (a biaxially stretched film before it is finally re-stretched in the machine direction or the transverse direction to complete oriented crystallization).

易接着層の構成材としては、プラスチックフィルムと透明導電層の双方に優れた接着性を示す構成材であることが好ましく、具体的には、ポリエステル樹脂、アクリル樹脂、ウレタンアクリル樹脂、シリコンアクリル樹脂、メラミン樹脂、ポリシロキサン樹脂が例示できる。これらの樹脂は単独で用いてもよく、2種以上を例えば混合物として用いてもよい。   The constituent material of the easy-adhesion layer is preferably a constituent material that exhibits excellent adhesion to both the plastic film and the transparent conductive layer. Specifically, polyester resin, acrylic resin, urethane acrylic resin, silicon acrylic resin And melamine resin and polysiloxane resin. These resins may be used alone, or two or more kinds thereof may be used as a mixture, for example.

[ハードコート層]
さらに、プラスチックフィルムと透明導電層との密着性、特に密着の耐久性を向上させるために、易接着層と透明導電層との間にハードコート層を設けてもよい。
ハードコート層は、易接着層を設けたプラスチックフィルム上に塗工する方法で設けることが好ましい。ハードコート層は、易接層および透明導電層の双方に優れた密着性を示す材料で構成されることが好ましく、熱硬化性やエネルギー線硬化性樹脂が工業的な生産性の観点から、アクリル樹脂、ウレタン樹脂、シリコン樹脂、エポキシ樹脂といった樹脂成分や、これらとアルミナ、シリカ、マイカといった無機粒子の混合物が好ましい。ハードコート層の厚みは、好ましくは0.01〜20μm、さらに好ましくは1〜10μmである。
[Hard coat layer]
Furthermore, a hard coat layer may be provided between the easy-adhesion layer and the transparent conductive layer in order to improve the adhesion between the plastic film and the transparent conductive layer, particularly the durability of the adhesion.
The hard coat layer is preferably provided by a method of coating on a plastic film provided with an easy adhesion layer. The hard coat layer is preferably composed of a material that exhibits excellent adhesion to both the easy-contact layer and the transparent conductive layer. From the viewpoint of industrial productivity, thermosetting and energy ray curable resins are acrylic. A resin component such as resin, urethane resin, silicon resin, and epoxy resin, and a mixture of these with inorganic particles such as alumina, silica, and mica are preferable. The thickness of the hard coat layer is preferably 0.01 to 20 μm, more preferably 1 to 10 μm.

[透明導電層]
本発明において、透明導電層は、導電性の金属酸化物を用いて形成する。例えば、フッ素ドープ酸化スズ、インジウム−スズ複合酸化物(ITO)、インジウム−亜鉛複合酸化物、金属の薄膜(例えば白金、金、銀、銅、アルミニウムなど)、炭素材料を例示することができる。透明導電層は1種を用いてもよく、2種以上を用いて積層したり、複合化させてもよい。就中、ITOおよびインジウム−亜鉛複合酸化物は、光線透過率が高く低抵抗であるため特に好ましい。
[Transparent conductive layer]
In the present invention, the transparent conductive layer is formed using a conductive metal oxide. Examples thereof include fluorine-doped tin oxide, indium-tin composite oxide (ITO), indium-zinc composite oxide, metal thin films (eg, platinum, gold, silver, copper, aluminum, etc.), and carbon materials. One type of transparent conductive layer may be used, or two or more types may be laminated or combined. In particular, ITO and indium-zinc composite oxide are particularly preferable because of high light transmittance and low resistance.

透明導電層の表面抵抗は、好ましくは100Ω/□以下、さらに好ましくは40Ω/□以下である。100Ω/□を超えると太陽電池の内部抵抗が上がり、十分に電流が流れないため好ましくない。
透明導電層の厚みは好ましくは100〜500nmである。これより薄いと十分に表面抵抗値を低くすることができず、厚いと透明導電層がわれやすくなり、好ましくない。
The surface resistance of the transparent conductive layer is preferably 100Ω / □ or less, more preferably 40Ω / □ or less. Exceeding 100Ω / □ is not preferable because the internal resistance of the solar cell increases and current does not sufficiently flow.
The thickness of the transparent conductive layer is preferably 100 to 500 nm. If it is thinner than this, the surface resistance value cannot be lowered sufficiently, and if it is thick, the transparent conductive layer is easily broken, which is not preferable.

透明導電層の表面エネルギーは、好ましくは40〜72mN/mである。表面エネルギーが40mN/m未満であると、導電性高分子およびモノマーの分散液を塗布することが困難となり好ましくなく、表面エネルギーが72mN/mを超えると、表面エネルギーを必要なレベルでフィルムに付与する工程で透明導電層表面が破壊される可能性があり好ましくない。   The surface energy of the transparent conductive layer is preferably 40 to 72 mN / m. When the surface energy is less than 40 mN / m, it becomes difficult to apply a dispersion of conductive polymer and monomer, and when the surface energy exceeds 72 mN / m, the surface energy is applied to the film at a necessary level. This is not preferable because the surface of the transparent conductive layer may be destroyed in the step of performing.

上記の表面エネルギーを達成するための手段としては、例えば(1)透明導電性薄膜を酸性もしくはアルカリ性溶液で表面を活性化する方法、(2)紫外線や電子線を薄膜表面に照射して活性化する方法、(3)コロナ処理やプラズマ処理を施して表面を活性化する方法、を適用することができる。この中でコロナ処理やプラズマ処理、特にプラズマ処理を施して表面を活性化する方法は、高い表面エネルギーが得られるため特に好ましい。   Means for achieving the above surface energy include, for example, (1) a method of activating the surface of a transparent conductive thin film with an acidic or alkaline solution, and (2) activation by irradiating the surface of the thin film with ultraviolet rays or an electron beam. And (3) a method of activating the surface by performing corona treatment or plasma treatment can be applied. Among these, a method of activating the surface by performing corona treatment or plasma treatment, particularly plasma treatment, is particularly preferable because high surface energy can be obtained.

[導電性高分子層]
本発明における導電性高分子としては、ポリチオエフェン、ポリピロールおよびポリアニリンを例示することができる。
ポリチオフェンとしては、下記式に示すものを用いることができる。なお、ポリチオフェンは、共重合体でもよく、混合体でもよい。
[Conductive polymer layer]
Examples of the conductive polymer in the present invention include polythioephene, polypyrrole and polyaniline.
As the polythiophene, those represented by the following formula can be used. Polythiophene may be a copolymer or a mixture.

Figure 0004647292
[式中、R、Rはそれぞれ同一であっても異なっていてもよく、水素原子、炭素数が1〜12の置換されていてもよいアルキル基、および炭素数が1〜6の置換されていてもよいアルコキシ基からなる群から選択されるいずれかを示す。またRとRが分子鎖で連結していても良い。]
Figure 0004647292
[Wherein R 1 and R 2 may be the same or different from each other, a hydrogen atom, an optionally substituted alkyl group having 1 to 12 carbon atoms, and a substitution having 1 to 6 carbon atoms. Any one selected from the group consisting of optionally substituted alkoxy groups is shown. R 1 and R 2 may be linked by a molecular chain. ]

また、ポリピロールとしては下記式に示すものを用いることができる。なお、ポリピロールは、共重合体でもよく、混合体でもよい。   Moreover, what is shown to a following formula can be used as a polypyrrole. Polypyrrole may be a copolymer or a mixture.

Figure 0004647292
[式中、R、Rはそれぞれ同一であっても異なっていてもよく、水素原子、炭素数が1〜12の置換されていてもよいアルキル基、および炭素数が1〜6の置換されていてもよいアルコキシ基からなる群から選択されるいずれかを示す。]
Figure 0004647292
[Wherein R 3 and R 4 may be the same or different from each other, a hydrogen atom, an optionally substituted alkyl group having 1 to 12 carbon atoms, and a substitution having 1 to 6 carbon atoms. Any one selected from the group consisting of optionally substituted alkoxy groups is shown. ]

導電層高分子層を形成するには、1)導電性高分子を含む分散液をプラスチックフィルム上の透明導電層に塗布し溶媒を除去する方法、2)導電性高分子のモノマーおよび重合触媒を含む分散液を、プラスチックフィルム上の透明導電層に塗布した後に重合を進め、最終的に溶媒を除去する方法を例示することができる。   In order to form a conductive polymer layer, 1) a method of applying a dispersion containing a conductive polymer to a transparent conductive layer on a plastic film and removing the solvent, 2) a monomer of the conductive polymer and a polymerization catalyst An example is a method in which the dispersion is applied to a transparent conductive layer on a plastic film, and then polymerization is advanced to finally remove the solvent.

1)、2)の溶媒としては、上記導電性高分子およびモノマーまた重合触媒等を十分に分散し、さらにプラスチックフィルムを溶解、侵食しない溶媒であればよい。例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、2−ブタノール、t−ブタノール、エチレングリコール、ジエチレングリコールといったプロトン系溶媒、アセトニトリル、プロピロニトリル、3−メトキシプロピロニトリル、ブチロニトリルといったニトリル系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、ヘキサメチルホスホルアミド、1,3−ジメチルイミダゾリジノン、テトラメチルウレア、1,3−ジピロピルイミダゾリジノン、Nーメチルカプロラクタム、ジメチルスルホキシド、ジメチルスルホン、テトラメチルスルホンといった非プロトン性極性溶媒、塩化メチレン、クロロホルム、テトラクロロエタン、といったハロゲン溶媒、テトラヒドロフランを用いることができる。これらの溶媒は、単独で用いてもよく、また混合物として用いてもよい。   The solvent of 1) and 2) may be any solvent that sufficiently disperses the conductive polymer and monomer, the polymerization catalyst, and the like, and that does not dissolve or attack the plastic film. For example, proton solvents such as water, methanol, ethanol, propanol, isopropanol, butanol, 2-butanol, t-butanol, ethylene glycol, diethylene glycol, nitrile solvents such as acetonitrile, propironitrile, 3-methoxypropironitrile, butyronitrile, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoramide, 1,3-dimethylimidazolidinone, tetramethylurea, 1,3-dipyropyrimidazolidinone, N --Aprotic polar solvents such as methyl caprolactam, dimethyl sulfoxide, dimethyl sulfone and tetramethyl sulfone; halogen solvents such as methylene chloride, chloroform and tetrachloroethane; Rahidorofuran can be used. These solvents may be used alone or as a mixture.

2)における重合触媒としては、塩化鉄や有機スルホン酸鉄およびこれらの水和物を例示することができる。触媒の添加量は十分に反応を進めるだけの量があれば良いが、例えばモノマーに対し0.1〜5倍モル量、好ましくは0.5〜3倍モルである。0.1倍未満であると反応が十分に進行しないため好ましくなく、5倍を超えると大過剰であり工業的に好ましくない。   Examples of the polymerization catalyst in 2) include iron chloride, iron organic sulfonate, and hydrates thereof. The catalyst may be added in an amount sufficient to allow the reaction to proceed sufficiently. For example, the amount is 0.1 to 5 times, preferably 0.5 to 3 times the amount of the monomer. If it is less than 0.1 times, the reaction does not proceed sufficiently. This is not preferable, and if it exceeds 5 times, it is excessively large and not industrially preferable.

2)において造膜性を向上させるため、重合制御剤を添加してもよい。重合制御剤としては、例えばイミダゾール、芳香族オキシスルホン酸を例示することができる。重合制御剤の添加量は造膜性をたかめつつ十分に重合反応を進めるだけの量があれば良く、この観点からモノマーに対し例えば9倍モル以下、好ましくは5倍モル以下である。9倍モルを超えると、重合反応が十分進行せず好ましくない。   In order to improve the film-forming property in 2), a polymerization controller may be added. Examples of the polymerization control agent include imidazole and aromatic oxysulfonic acid. The polymerization controller may be added in an amount sufficient to allow the polymerization reaction to proceed sufficiently while increasing the film-forming property. From this viewpoint, it is, for example, 9 times mol or less, preferably 5 times mol or less with respect to the monomer. If it exceeds 9 moles, the polymerization reaction does not proceed sufficiently, which is not preferable.

1)において必要に応じて分散性向上のために分散剤を用いてもよい。分散剤としては、スルホン酸系化合物もしくは重合体を例示することができる。
添加量としては導電性高分子の繰り返し単位数あたり0.01〜5倍モル、好ましくは0.5〜3倍モルである。0.01倍モル未満であると分散性は十分に改善されず、5倍モルを超えると内部抵抗があがり、導電性高分子としての機能を発揮できないため好ましくない。
In 1), a dispersant may be used as necessary to improve dispersibility. Examples of the dispersant include sulfonic acid compounds or polymers.
The addition amount is 0.01 to 5 times mol, preferably 0.5 to 3 times mol per the number of repeating units of the conductive polymer. If the amount is less than 0.01 moles, the dispersibility is not sufficiently improved, and if it exceeds 5 moles, the internal resistance is increased and the function as a conductive polymer cannot be exhibited.

さらに、1)および2)において得られる導電性高分子膜の剥離を抑える目的でバインダーを添加してもよい。バインダーとしては、例えばアクリル樹脂、ウレタン樹脂、シリコン樹脂、エポキシ樹脂を用いることができる。これらの樹脂成分は、樹脂成分のみで用いてもよいが、これらとアルミナ、シリカ、マイカといった無機粒子との混合物として用いることもできる。   Furthermore, you may add a binder in order to suppress peeling of the conductive polymer film obtained in 1) and 2). As the binder, for example, an acrylic resin, a urethane resin, a silicon resin, or an epoxy resin can be used. These resin components may be used alone, but can also be used as a mixture of these and inorganic particles such as alumina, silica, and mica.

添加するバインダーの量は、導電性高分子に対し好ましくは5倍重量以下である。5倍重量を超えて添加すると、内部抵抗があがり、導電性高分子としての機能を発揮できないため好ましくない。   The amount of the binder to be added is preferably 5 times or less by weight based on the conductive polymer. Addition exceeding 5 times the weight is not preferable because the internal resistance increases and the function as the conductive polymer cannot be exhibited.

これら1)および2)の場合、分散液に含まれる導電性高分子およびそのモノマーの重量含有率は、例えば0.01〜50重量%、好ましくは0.05〜40重量%、さらに好ましくは0.1〜30重量%である。0.01重量%未満であると十分な膜厚が取れないため、太陽電池に用いた際電子の移動が十分行われず好ましくない。50重量%を超えると、分散液の粘度が上がり均一に塗布することができず好ましくない。   In the case of these 1) and 2), the weight content of the conductive polymer and its monomer contained in the dispersion is, for example, 0.01 to 50% by weight, preferably 0.05 to 40% by weight, more preferably 0. .1 to 30% by weight. If the amount is less than 0.01% by weight, a sufficient film thickness cannot be obtained. Therefore, when used in a solar cell, electrons are not sufficiently transferred, which is not preferable. If it exceeds 50% by weight, the viscosity of the dispersion is increased, and uniform application cannot be achieved.

上記1)の導電性高分子の分散液および2)のモノマー分散液の透明導電層上への塗布は、スピンコート、キャスト法、スプレーコート、ディップコート、ロールコート、ビードコートといった公知の塗布方法により行うことができる。   The above-mentioned dispersion of the conductive polymer of 1) and the dispersion of the monomer of 2) are applied onto the transparent conductive layer by known coating methods such as spin coating, casting, spray coating, dip coating, roll coating, and bead coating. Can be performed.

塗布後、加熱、必要があれば減圧することで溶媒を除去することで目的とする導電性高分子膜を形成することができる。この際の温度は、1)の場合溶媒が揮発する温度以上であり、2)の場合重合が進行し溶媒が揮発する温度で以上であり、さらにプラスチックフィルムが変形する温度以下である。   After the application, the target conductive polymer film can be formed by removing the solvent by heating and, if necessary, reducing the pressure. The temperature at this time is equal to or higher than the temperature at which the solvent volatilizes in the case of 1), and is equal to or higher than the temperature at which the polymerization proceeds and the solvent volatilizes in the case of 2).

上記2)の場合、重合後に過剰の重合触媒を取り除くことが好ましい。除去方法としては洗浄が挙げられる。洗浄時の溶媒としては重合触媒を溶解しなおかつ導電性高分子を溶解しないものであればよい。好ましくは水、メタノール、エタノール、イソプロパノールを用いる。また、洗浄後は乾燥することが好ましい。乾燥温度はプラスチックフィルムおよび導電性高分子が劣化しない温度未満であればよい。   In the case of 2), it is preferable to remove excess polymerization catalyst after polymerization. An example of the removal method is washing. The solvent for washing may be any solvent that dissolves the polymerization catalyst and does not dissolve the conductive polymer. Preferably, water, methanol, ethanol and isopropanol are used. Moreover, it is preferable to dry after washing. The drying temperature may be lower than the temperature at which the plastic film and the conductive polymer are not deteriorated.

こうして得られた導電性高分子層の厚みは、好ましくは0.1〜500nm、好ましくは1〜200nmである。0.1nm未満であると目的とする電子の受け渡しが不十分となるため好ましくない。500nmを超えると、フィルムの剥離等が問題となるため好ましくない。   The thickness of the conductive polymer layer thus obtained is preferably 0.1 to 500 nm, preferably 1 to 200 nm. If it is less than 0.1 nm, it is not preferable because the intended delivery of electrons becomes insufficient. If it exceeds 500 nm, peeling of the film or the like becomes a problem, which is not preferable.

[色素増感型太陽電池の作成]
本発明の電極を用いて色素増感型太陽電池を作成するには、公知の方法を用いることができる。具体的には例えば下記の方法で作成することができる。
[Creation of dye-sensitized solar cell]
In order to produce a dye-sensitized solar cell using the electrode of the present invention, a known method can be used. Specifically, for example, it can be created by the following method.

(1)多孔質半導体の作成
プラスチックフィルムのうえに透明導電層を形成し、そのうえに多孔質半導体層を形成する。多孔質半導体層の形成は、水、アルコールといった溶媒に分散された酸化チタン結晶微粒子の分散液を、電極の透明導電層のうえにスピンコート、キャスト法、スプレーコート、ディップコート、ロールコート、ビードコートといった公知方法により塗布し、溶媒を除去することにより行うことができる。
(1) Creation of porous semiconductor A transparent conductive layer is formed on a plastic film, and a porous semiconductor layer is formed thereon. The porous semiconductor layer is formed by applying a dispersion of titanium oxide crystal fine particles dispersed in a solvent such as water or alcohol on the transparent conductive layer of the electrode by spin coating, casting, spray coating, dip coating, roll coating, or beading. It can apply by apply | coating by well-known methods, such as a coating, and removing a solvent.

また、多孔質半導体層の形成には、電着によって粒子の薄膜を担持する方法を用いてもよい。すなわち、半導体微粒子を適当な低伝導度の溶媒、例えば純水、アルコールやアセトニトリル、THFなどの極性有機溶媒、ヘキサン、クロロホルムなどの非極性有機溶媒、あるいはこれらの混合溶媒に添加し、凝集のないよう均一に分散し、電着すべき導電性樹脂シート電極と対極とを一定の間隔で平行に対向させ、この間隙に上記の分散液を注入し、両電極間に直流電圧を印加する。分散液の濃度と電極間隔を選択することにより、基板電極に一定かつ均一な厚みの電着膜である多孔質半導体層を形成することができる。   In addition, for forming the porous semiconductor layer, a method of supporting a thin film of particles by electrodeposition may be used. That is, the semiconductor fine particles are added to an appropriate low-conductivity solvent such as pure water, polar organic solvents such as alcohol, acetonitrile and THF, nonpolar organic solvents such as hexane and chloroform, or a mixed solvent thereof, so that there is no aggregation. The conductive resin sheet electrode to be electrodeposited and the counter electrode are made to face each other in parallel at a constant interval, the dispersion liquid is injected into the gap, and a DC voltage is applied between the electrodes. By selecting the concentration of the dispersion and the electrode spacing, a porous semiconductor layer that is an electrodeposition film having a constant and uniform thickness can be formed on the substrate electrode.

塗設した多孔質半導体層に対し、半導体粒子同士の電子的接触の強化と、支持体との密着性の向上のために、さらに高温処理をしてもよい。また、半導体粒子に対して該粒子が強く吸収する紫外光などを照射する、マイクロ波を照射して微粒子層を加熱する、半導体粒子のアモルファス成分を添加することにより微粒子の間の物理的接合を強める、といった処理を行ってもよい。   The coated porous semiconductor layer may be further subjected to a high temperature treatment in order to enhance the electronic contact between the semiconductor particles and improve the adhesion to the support. In addition, the semiconductor particles are irradiated with ultraviolet light or the like that the particles strongly absorb, the microwave layer is irradiated to heat the fine particle layer, and the amorphous component of the semiconductor particles is added to form a physical bond between the fine particles. Processing such as strengthening may be performed.

(2)作用電極の作成
上記(1)で作成した多孔質半導体層に色素を吸着させる。色素としては、可視光領域および赤外光領域の光を吸収する特性を有する色素、例えば、ルテニウムビピリジン系錯体(ルテニウム錯体)に代表される有機金属錯体色素、シアニン系色素、クマリン系色素、キサンテン系色素、ポルフィリン系色素を用いることができる。これらをアルコールやトルエンなどの溶媒に溶解させて色素溶液を作成し、多孔質半導体層を浸漬するか、多孔質半導体層に噴霧または塗布する。
(2) Production of working electrode A dye is adsorbed to the porous semiconductor layer produced in (1) above. Examples of the dye include a dye having a characteristic of absorbing light in the visible light region and the infrared light region, for example, an organometallic complex dye represented by a ruthenium bipyridine complex (ruthenium complex), a cyanine dye, a coumarin dye, and a xanthene. System dyes and porphyrin dyes can be used. These are dissolved in a solvent such as alcohol or toluene to prepare a dye solution, and the porous semiconductor layer is immersed, or sprayed or applied to the porous semiconductor layer.

(3)シール
上記(2)で作成した作用電極と、本発明の対極とを、熱圧着性のポリエチレンフィルム製フレーム型スペーサー(厚さ20μm)を挟んで重ね合わせ、スペーサー部を加熱し、両電極を圧着する。さらに、そのエッジ部をエポキシ樹脂接着剤でシールする。
シートのコーナー部にあらかじめ設けた電解液注入用の小孔を通して、ヨウ化リチウムとヨウ素(モル比3:2)ならびにスペーサーとして平均粒径20μmのナイロンビーズを3重量%含む電解質水溶液を注入する。内部の脱気を十分に行い、最終的に小孔をエポキシ樹脂接着剤で封じる。
(3) Seal The working electrode prepared in (2) above and the counter electrode of the present invention are overlapped with a thermocompressible polyethylene film frame spacer (thickness 20 μm) sandwiched between them, and the spacer portion is heated. Crimp the electrode. Further, the edge portion is sealed with an epoxy resin adhesive.
Through a small hole for electrolyte injection provided in advance in the corner of the sheet, an aqueous electrolyte solution containing lithium iodide and iodine (molar ratio 3: 2) and 3% by weight of nylon beads having an average particle diameter of 20 μm as a spacer is injected. Thoroughly deaerate the inside and finally seal the small holes with an epoxy resin adhesive.

次に、実施例により本発明をさらに詳細に説明する。なお、例中の各特性値は、下記の方法により測定した。
(1)フィルム厚み
マイクロメーター(アンリツ(株)製のK−402B型)を用いて、フィルムの連続製膜方向および幅方向に各々10cm間隔で測定を行い、全部で300ヶ所のフィルム厚みを測定した。得られた300ヶ所のフィルム厚みの平均値を算出してフィルム厚みとした。
Next, the present invention will be described in more detail with reference to examples. In addition, each characteristic value in an example was measured with the following method.
(1) Film thickness Using a micrometer (K-402B type manufactured by Anritsu Co., Ltd.), the film thickness is measured at 10 cm intervals in the continuous film-forming direction and the width direction of the film, and the film thickness is measured at a total of 300 locations. did. The average value of the film thicknesses of the obtained 300 locations was calculated and used as the film thickness.

(2)表面抵抗値
4探針式表面抵抗率測定装置(三菱化学(株)製、ロレスタGP)を用いて任意の5点を測定し、その平均値を代表値として用いた。
(2) Surface resistance value Any five points were measured using a 4-probe type surface resistivity measuring device (Made by Mitsubishi Chemical Corporation, Loresta GP), and the average value was used as a representative value.

(3)表面エネルギー
表面エネルギーが既知である水、およびヨウ化メテレンの透明導電性薄膜に対する接触角:θw、θyを接触角計(協和界面科学社製「CA−X型」)を使用し、25℃、50%RHの条件で測定した。これらの測定値を用い、以下の様にして透明導電性薄膜の表面エネルギーγsを算出した。
透明導電性薄膜の表面エネルギーγsは、分散性成分γsdと極性成分γspとの和である。即ち、
γs=γsd+γsp (式1)
また、Youngの式より、
γs=γsw+γw・cosθw (式2)
γs=γsy+γy・cosθy (式3)
ここで、γswは透明導電性薄膜と水との間に働く張力、γswは透明導電性薄膜とヨウ化メチレンとの間に働く張力、γwは水の表面エネルギー、γyはヨウ化メチレンの表面エネルギーである。
また、Fowkesの式より、
γsw=γs+γw−2×(γsd・γwd1/2−2×(γsp・γwp1/2 (式4)
γsy=γs+γy−2×(γsd・γyd1/2−2×(γsp・γyp1/2 (式5)
である。ここで、γwdは水の表面エネルギーの分散性成分、γwpは水の表面エネルギーの極性成分、γydはヨウ化メテレンの表面エネルギーの分散性成分、γypはヨウ化メチレンの表面エネルギーの極性成分である。
(3) Surface energy Contact angle: θw, θy of water having a known surface energy and methylene iodide to the transparent conductive thin film using a contact angle meter (“CA-X type” manufactured by Kyowa Interface Science Co., Ltd.) It measured on 25 degreeC and 50% RH conditions. Using these measured values, the surface energy γs of the transparent conductive thin film was calculated as follows.
The surface energy γs of the transparent conductive thin film is the sum of the dispersive component γsd and the polar component γsp. That is,
γs = γsd + γsp (Formula 1)
From the Young equation,
γs = γsw + γw · cos θw (Formula 2)
γs = γsy + γy · cos θy (Formula 3)
Here, γsw is the tension acting between the transparent conductive thin film and water, γsw is the tension acting between the transparent conductive thin film and methylene iodide, γw is the surface energy of water, and γy is the surface energy of methylene iodide. It is.
From the Fowkes equation,
γ sw = γ s + γ w −2 × (γ sd · γ wd ) 1/2 −2 × (γ sp · γ wp ) 1/2 (Formula 4)
γ sy = γ s + γ y −2 × (γ sd · γ yd ) 1/2 −2 × (γ sp · γ yp ) 1/2 (Formula 5)
It is. Where γ wd is the dispersive component of the surface energy of water, γ wp is the polar component of the surface energy of water, γ yd is the dispersive component of the surface energy of methyl iodide, and γ yp is the surface energy of methylene iodide. It is a polar component.

式1〜5の連立方程式を解くことにより、透明導電性薄膜の表層張力γs=γsd+γspを算出できる。この時、水の表面エネルギー(γw):72.8mN/m、よう化メチレンの表面エネルギー(γy):50.5mN/m、水の表面エネルギーの分散性成分(γwd):21.8mN/m、水の表面エネルギーの極性成分(γwp):51.0mN/m、ヨウ化メチレンの表面エネルギーの分散性成分(γyd):49.5mN/m、ヨウ化メテレンの表面エネルギーの極性成分(γyp):1.3mN/mを用いた。 By solving the simultaneous equations of Equations 1 to 5, the surface tension γ s = γ sd + γ sp of the transparent conductive thin film can be calculated. At this time, the surface energy of water (γ w ): 72.8 mN / m, the surface energy of methylene iodide (γ y ): 50.5 mN / m, the dispersive component of the surface energy of water (γ wd ): 21. 8 mN / m, polar component of surface energy of water (γ wp ): 51.0 mN / m, dispersive component of surface energy of methylene iodide (γ y d): 49.5 mN / m, surface energy of methylene iodide Polar component (γ yp ): 1.3 mN / m was used.

(4)I−V特性(光電流−電圧特性)
15mm大の色素増感型太陽電池を形成し、下記の方法で光発電効率を算出した。ぺクセルテクノロジーズ社製ソーラーシュミレーター(PEC-L10)を用い入射光強度が100mW/cmの模擬太陽光を、気温25℃、湿度50%の雰囲気で測定した。電流電圧測定装置(PECK 2400)を用いて、システムに印加するDC電圧を10mV/secの定速でスキャンし、素子の出力する光電流を計測することにより、光電流−電圧特性を測定し、光発電効率を算出した。
(4) IV characteristics (photocurrent-voltage characteristics)
A 15 mm 2 large dye-sensitized solar cell was formed, and the photovoltaic power generation efficiency was calculated by the following method. Using a solar simulator (PEC-L10) manufactured by Pexel Technologies, simulated sunlight with an incident light intensity of 100 mW / cm 2 was measured in an atmosphere at a temperature of 25 ° C. and a humidity of 50%. Using a current-voltage measuring device (PECK 2400), the DC voltage applied to the system is scanned at a constant speed of 10 mV / sec, and the photocurrent output from the device is measured to measure the photocurrent-voltage characteristics. Photovoltaic efficiency was calculated.

[実施例1]
<易接着層の組成物(塗剤A)の作成>
2,6−ナフタレンジカルボン酸ジメチル66部、イソフタル酸ジメチル47部、5−ナトリウムスルホイソフタル酸ジメチル8部、エチレングリコール54部、ジエチレングリコール62部を反応器に仕込み、これにテトラブトキシチタン0.05部を添加して窒素雰囲気下で温度を230℃にコントロールして加熱し、生成するメタノールを留去させてエステル交換反応を行った。次いで反応系の温度を徐々に255℃まで上昇させ系内を1mmHgの減圧にして重縮合反応を行い、ポリエステルを得た。このポリエステル25部をテトラヒドロフラン75部に溶解させ、得られた溶液に10000回転/分の高速攪拌下で水75部を滴下して乳白色の分散体を得、次いでこの分散体を20mmHgの減圧下で蒸留し、テトラヒドロフランを留去し、固形分が25重量%のポリエステルの水分散体を得た。
[Example 1]
<Creation of easy-adhesion layer composition (Coating A)>
A reactor was charged with 66 parts of dimethyl 2,6-naphthalenedicarboxylate, 47 parts of dimethyl isophthalate, 8 parts of dimethyl 5-sodium sulfoisophthalate, 54 parts of ethylene glycol, and 62 parts of diethylene glycol, and 0.05 parts of tetrabutoxy titanium. Was added and heated under a nitrogen atmosphere while controlling the temperature at 230 ° C., and the produced methanol was distilled off to conduct a transesterification reaction. Subsequently, the temperature of the reaction system was gradually raised to 255 ° C., and the pressure inside the system was reduced to 1 mmHg to carry out a polycondensation reaction to obtain a polyester. 25 parts of this polyester was dissolved in 75 parts of tetrahydrofuran, and 75 parts of water was dropped into the resulting solution under high-speed stirring at 10,000 rpm to obtain a milky white dispersion. Then, this dispersion was subjected to a reduced pressure of 20 mmHg. Distillation was performed, and tetrahydrofuran was distilled off to obtain an aqueous dispersion of polyester having a solid content of 25% by weight.

次に、四つ口フラスコに、界面活性剤としてラウリルスルホン酸ナトリウム3部、およびイオン交換水181部を仕込んで窒素気流中で60℃まで昇温させ、次いで重合開始剤として過硫酸アンモニウム0.5部、亜硝酸水素ナトリウム0.2部を添加し、更にモノマー類である、メタクリル酸メチル30.1部、2−イソプロペニル−2−オキサゾリン21.9部、ポリエチレンオキシド(n=10)メタクリル酸39.4部、アクリルアミド8.6部の混合物を3時間にわたり、液温が60〜70℃になるよう調整しながら滴下した。滴下終了後も同温度範囲に2時間保持しつつ、攪拌下に反応を継続させ、次いで冷却して固形分が35%重量のアクリルの水分散体を得た。   Next, 3 parts of sodium lauryl sulfonate as a surfactant and 181 parts of ion-exchanged water are charged into a four-necked flask and the temperature is raised to 60 ° C. in a nitrogen stream. Part, 0.2 part of sodium hydrogen nitrite is added, and further monomers 30.1 parts of methyl methacrylate, 21.9 parts of 2-isopropenyl-2-oxazoline, polyethylene oxide (n = 10) methacrylic acid A mixture of 39.4 parts and 8.6 parts of acrylamide was added dropwise over 3 hours while adjusting the liquid temperature to 60 to 70 ° C. After the completion of dropping, the reaction was continued with stirring while maintaining the same temperature range for 2 hours, and then cooled to obtain an acrylic aqueous dispersion having a solid content of 35% by weight.

一方で、シリカフィラー(平均粒径:100nm)(日産化学株式会社製 商品名スノーテックスZL)を0.2重量%、濡れ剤として、ポリオキシエチレン(n=7)ラウリルエーテル(三洋化成株式会社製 商品名ナロアクティーN−70)の0.3重量%添加した水溶液を作成した。
上記のポリエステルの水分散体8重量部、アクリルの水分散体7重量部と水溶液85重量部を混合して、塗剤Aを作成した。
On the other hand, 0.2% by weight of silica filler (average particle size: 100 nm) (trade name Snowtex ZL manufactured by Nissan Chemical Co., Ltd.), polyoxyethylene (n = 7) lauryl ether (Sanyo Chemical Co., Ltd.) as a wetting agent An aqueous solution containing 0.3% by weight of the trade name NAROACTY N-70) was prepared.
A coating agent A was prepared by mixing 8 parts by weight of the polyester aqueous dispersion, 7 parts by weight of the acrylic water dispersion and 85 parts by weight of the aqueous solution.

<プラスチックフィルムの作成>
固有粘度が0.63で、実質的に粒子を含有しないポリエチレン−2,6−ナフタレンジカルボキシレートのペレットを170℃で6時間乾燥後、押出機ホッパーに供給し、溶融温度305℃で溶融し、平均目開きが17μmのステンレス鋼細線フィルターで濾過し、3mmのスリット状ダイを通して表面温度60℃の回転冷却ドラム上で押出し、急冷して未延伸フィルムを得た。このようにして得られた未延伸フィルムを120℃にて予熱し、さらに低速、高速のロール間で15mm上方より850℃のIRヒーターにて加熱して縦方向に3.1倍に延伸した。この縦延伸後のフィルムの片面に上記の塗剤Aを乾燥後の塗膜厚みが0.25μmになるようにロールコーターで塗工し易接層を形成した。
<Creation of plastic film>
Polyethylene-2,6-naphthalene dicarboxylate pellets having an intrinsic viscosity of 0.63 and containing substantially no particles are dried at 170 ° C. for 6 hours, then fed to an extruder hopper, and melted at a melting temperature of 305 ° C. Then, it was filtered through a stainless steel fine wire filter having an average opening of 17 μm, extruded through a 3 mm slit die on a rotary cooling drum having a surface temperature of 60 ° C., and rapidly cooled to obtain an unstretched film. The unstretched film thus obtained was preheated at 120 ° C., and further heated by an IR heater at 850 ° C. from above 15 mm between low-speed and high-speed rolls and stretched 3.1 times in the longitudinal direction. The easy-coating layer was formed by applying the coating agent A on one side of the film after the longitudinal stretching with a roll coater so that the coating thickness after drying was 0.25 μm.

続いてテンターに供給し、140℃にて横方向に.3.3倍に延伸した。得られた二軸配向フィルムを245℃の温度で5秒間熱固定し、固有粘度が0.58dl/g、厚み125μmのフィルムとし、その後、このフィルムを懸垂状態で、弛緩率0.7%、温度205℃で熱弛緩させて、プラスチックフィルムとした。このプラスチックフィルムの易接層側に、UV硬化性ハードコート剤(JSR製 デソライトR7501)を厚さ約5μmになるよう塗布し、UV硬化させてハードコート層を形成した。   Subsequently, it was supplied to the tenter and laterally at 140 ° C. 3. Stretched 3 times. The obtained biaxially oriented film was heat-fixed at a temperature of 245 ° C. for 5 seconds to form a film having an intrinsic viscosity of 0.58 dl / g and a thickness of 125 μm. It was heat relaxed at a temperature of 205 ° C. to obtain a plastic film. A UV curable hard coat agent (Desolite R7501 from JSR) was applied to the easy-contact layer side of the plastic film so as to have a thickness of about 5 μm, and UV cured to form a hard coat layer.

<透明導電層形成>
ハードコート層が形成された面のうえに、ITOターゲット(錫濃度は二酸化錫換算で10重量%)を用いた直流マグネトロンスパッタリング法により、膜厚400nmのITOからなる透明導電層を形成した。透明導電層のスパッタリング法による形成は、プラズマの放電前にチャンバー内を5×10−4Paまで排気した後、チャンバー内にアルゴンと酸素の混合ガス(酸素濃度は0.5体積%)を導入して圧力を0.3Paとし、ITOターゲットに1000W印加して行った。透明導電層の表面抵抗値は15Ω/□であり、表面エネルギーは30.0mN/mであった。
<Transparent conductive layer formation>
On the surface on which the hard coat layer was formed, a transparent conductive layer made of ITO having a thickness of 400 nm was formed by a direct current magnetron sputtering method using an ITO target (tin concentration is 10% by weight in terms of tin dioxide). The transparent conductive layer is formed by sputtering, after the inside of the chamber is evacuated to 5 × 10 −4 Pa before plasma discharge, and then a mixed gas of argon and oxygen (oxygen concentration is 0.5% by volume) is introduced into the chamber. Then, the pressure was set to 0.3 Pa, and 1000 W was applied to the ITO target. The surface resistance value of the transparent conductive layer was 15Ω / □, and the surface energy was 30.0 mN / m.

次いで、常圧プラズマ表面処理装置(積水化学工業製AP−T03−L)を用いて、窒素気流下(60L/分)、1m/分にて、透明導電層表面にプラズマ処理を施し、透明導電層を有するプラスチックフィルムを得た。透明導電層の表面抵抗値は16Ω/□、表面エネルギーは70.5mN/mであった。   Next, using a normal pressure plasma surface treatment apparatus (AP-T03-L manufactured by Sekisui Chemical Co., Ltd.), the surface of the transparent conductive layer is subjected to plasma treatment at 1 m / min under a nitrogen stream (60 L / min), and transparent A plastic film having a layer was obtained. The surface resistance value of the transparent conductive layer was 16Ω / □, and the surface energy was 70.5 mN / m.

<対極の形成>
分散剤としてポリスチレンスルホン酸を用いたポリエチレンジオキシチオフェン(以下「PEDOT−PSS」という)の水分散液であるアグファ製S-300に、イソプロパノールを添加し、PEDOT−PSSを1重量%含有する分散液とした。乾燥厚みが50nmになるようにメイヤバーを用いてこのPEDOT−PSS分散液を、上記透明導電層を有するプラスチックフィルムの透明導電層のうえに塗布し、110℃で1分乾燥することで対極を形成した。PEDOT−PSS分散液は均一に塗布することが可能であった。
<Formation of counter electrode>
Dispersion containing 1% by weight of PEDOT-PSS by adding isopropanol to S-300 manufactured by Agfa, which is an aqueous dispersion of polyethylene dioxythiophene (hereinafter referred to as “PEDOT-PSS”) using polystyrene sulfonic acid as a dispersant. Liquid. The PEDOT-PSS dispersion is applied onto the transparent conductive layer of the plastic film having the transparent conductive layer using a Mayer bar so that the dry thickness is 50 nm, and the counter electrode is formed by drying at 110 ° C. for 1 minute. did. The PEDOT-PSS dispersion could be applied uniformly.

<作用電極の形成>
ぺクセルテクノロジーズ社製の酸化チタン分散液PECC01をよく攪拌したのち、100μmのドクターブレードを用い、上記透明導電層を有するプラスチックフィルムの透明導電層のうえに塗布し、その後大気中150℃で5分乾燥することで多孔質半導体層を形成し、これを、ルテニウム錯体(Ru535bisTBA、Solaronix製)の300μMエタノール溶液中に24時間浸漬し、表面にルテニウム錯体を吸着させることで作用電極を作成した。
<Formation of working electrode>
After thoroughly stirring the titanium oxide dispersion PECC01 manufactured by Pexel Technologies, it was applied onto the transparent conductive layer of the plastic film having the transparent conductive layer using a 100 μm doctor blade, and then at 150 ° C. in the atmosphere for 5 minutes. The porous semiconductor layer was formed by drying, and this was immersed in a 300 μM ethanol solution of ruthenium complex (Ru535bisTBA, manufactured by Solaronix) for 24 hours, and the working electrode was prepared by adsorbing the ruthenium complex on the surface.

<色素増感型太陽電池の作成>
上記の対極と作用電極とを、熱圧着性のポリエチレンフィルム製フレーム型スペーサー(厚さ20μm)を介して重ね合わせ、スペーサー部を120℃に加熱し、両電極を圧着する。さらに、そのエッジ部をエポキシ樹脂接着剤でシールする。電解質溶液(0.5Mのヨウ化リチウムと0.05Mのヨウ素と0.5Mのtert−ブチルピリジン、平均粒径20μmのナイロンビーズ3重量%を含む3−メトキシプロピオニトリル溶液)を注入した後、エポキシ系接着剤でシールした。
<Creation of dye-sensitized solar cell>
The counter electrode and the working electrode are overlapped via a thermocompression-bondable polyethylene film frame spacer (thickness 20 μm), the spacer portion is heated to 120 ° C., and both electrodes are pressure-bonded. Further, the edge portion is sealed with an epoxy resin adhesive. After injecting an electrolyte solution (3-methoxypropionitrile solution containing 0.5% lithium iodide, 0.05M iodine, 0.5M tert-butylpyridine, 3% by weight of nylon beads having an average particle size of 20 μm) And sealed with an epoxy adhesive.

完成した色素増感型太陽電池のI−V特性の測定(有効面積25mm)を行った結果、開放電圧、短絡電流密度、曲線因子はそれぞれ、0.70V、6.2mA/cm、0.30であり、その結果、光発電効率は1.4%であった。 As a result of measuring the IV characteristics of the completed dye-sensitized solar cell (effective area 25 mm 2 ), the open circuit voltage, short circuit current density, and fill factor were 0.70 V, 6.2 mA / cm 2 , 0, respectively. As a result, the photovoltaic power generation efficiency was 1.4%.

[実施例2]
実施例1と同様に、プラスチックフィルムを作成し、ハードコート、透明導電層、多孔質半導体層を形成した。対極を作成する際に、PEDOT−PSSの乾燥時の厚みが100nmになるようにメイヤーバーを変えた以外は、実施例1と同様とし色素増感型太陽電池を作成した。完成した色素増感型太陽電池のI−V特性の測定(有効面積25mm)を行った結果、開放電圧、短絡電流密度、曲線因子はそれぞれ、0.70V、7.5mA/cm、0.32であり、その結果、光発電効率は1.6%であった。
[Example 2]
Similar to Example 1, a plastic film was prepared, and a hard coat, a transparent conductive layer, and a porous semiconductor layer were formed. A dye-sensitized solar cell was prepared in the same manner as in Example 1 except that the Meyer bar was changed so that the thickness when PEDOT-PSS was dried was 100 nm when the counter electrode was prepared. As a result of measuring the IV characteristics (effective area 25 mm 2 ) of the completed dye-sensitized solar cell, the open circuit voltage, short circuit current density, and fill factor were 0.70 V, 7.5 mA / cm 2 , 0, respectively. As a result, the photovoltaic power generation efficiency was 1.6%.

[比較例1]
実施例1と同様に、プラスチックフィルムを作成し、ハードコートを作成した。透明導電層を形成する際にスパッタ処理を行わなかったこと以外は、実施例1と同様の方法でPEDOT−PSSを透明導電層に塗布した。結果PEDOT−PSS分散液は透明導電層上で凝集し均一に塗布することができなかった。
[Comparative Example 1]
As in Example 1, a plastic film was prepared and a hard coat was prepared. PEDOT-PSS was applied to the transparent conductive layer in the same manner as in Example 1 except that the sputtering process was not performed when forming the transparent conductive layer. Results The PEDOT-PSS dispersion liquid aggregated on the transparent conductive layer and could not be applied uniformly.

本発明は、色素増感型太陽電池の対極として好適に利用することができる。   The present invention can be suitably used as a counter electrode of a dye-sensitized solar cell.

Claims (3)

プラスチックフィルム、そのうえに設けられた透明導電層、および透明導電層のうえに設けられた導電性高分子層からなり、該透明導電層の表面エネルギーが40〜72mN/mであり、かつ該導電性高分子層が最外層である、色素増感型太陽電池の対極。 Plastic film, a transparent conductive layer provided thereon, and Ri Do a conductive polymer layer provided on top of the transparent conductive layer, the surface energy of the transparent conductive layer is 40~72mN / m, and the conductive The counter electrode of the dye-sensitized solar cell , in which the polymer layer is the outermost layer . 請求項1記載の色素増感型太陽電池の対極を用いた色素増感型太陽電池。 A dye-sensitized solar cell using the counter electrode of the dye-sensitized solar cell according to claim 1 . プラスチックフィルム、そのうえに設けられた透明導電層、および透明導電層のうえに設けられた導電性高分子層からなり、該導電性高分子層が最外層である色素増感型太陽電池の対極の製造方法であって、該透明導電層の表面を活性化する処理を行い、該透明導電層の表面エネルギーを40〜72mN/mとし、該透明導電層のうえに導電性高分子層を塗布により設けることを特徴とする色素増感型太陽電池の対極の製造方法。Production of counter electrode of dye-sensitized solar cell comprising plastic film, transparent conductive layer provided thereon, and conductive polymer layer provided on transparent conductive layer, wherein the conductive polymer layer is the outermost layer A method of activating the surface of the transparent conductive layer, setting the surface energy of the transparent conductive layer to 40 to 72 mN / m, and providing a conductive polymer layer on the transparent conductive layer by coating A method for producing a counter electrode of a dye-sensitized solar cell, characterized in that:
JP2004340120A 2004-11-25 2004-11-25 Counter electrode of dye-sensitized solar cell and dye-sensitized solar cell using the same Active JP4647292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004340120A JP4647292B2 (en) 2004-11-25 2004-11-25 Counter electrode of dye-sensitized solar cell and dye-sensitized solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004340120A JP4647292B2 (en) 2004-11-25 2004-11-25 Counter electrode of dye-sensitized solar cell and dye-sensitized solar cell using the same

Publications (2)

Publication Number Publication Date
JP2006155907A JP2006155907A (en) 2006-06-15
JP4647292B2 true JP4647292B2 (en) 2011-03-09

Family

ID=36633963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340120A Active JP4647292B2 (en) 2004-11-25 2004-11-25 Counter electrode of dye-sensitized solar cell and dye-sensitized solar cell using the same

Country Status (1)

Country Link
JP (1) JP4647292B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008305115B2 (en) 2007-09-26 2011-12-08 Dai-Ichi Kogyo Seiyaku Co., Ltd. Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
WO2009144972A1 (en) * 2008-05-29 2009-12-03 株式会社村田製作所 Sheet-type vibrating body and acoustic equipment
JP5099223B2 (en) 2008-05-29 2012-12-19 株式会社村田製作所 Piezoelectric speaker, speaker device, and tactile feedback device
WO2010095652A1 (en) * 2009-02-17 2010-08-26 綜研化学株式会社 Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition
US9034211B2 (en) 2009-02-17 2015-05-19 Soken & Chemical & Engineering Co., Ltd. Composite conductive polymer composition, method of manufacturing the same, solution containing the composition, use of the composition
JP5435437B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 COMPOSITE CONDUCTIVE POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLUTION CONTAINING THE COMPOSITION, AND USE OF THE COMPOSITION
WO2010095651A1 (en) * 2009-02-17 2010-08-26 綜研化学株式会社 Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition
WO2010095650A1 (en) * 2009-02-17 2010-08-26 綜研化学株式会社 Complex conductive polymer composition, manufacturing method thereof, solution containing said composition, and applications for said composition
KR101156585B1 (en) 2009-11-03 2012-06-20 국립대학법인 울산과학기술대학교 산학협력단 Dye-sensitized sollar cell and its fabrication method
CN101923958B (en) * 2010-09-08 2011-12-28 天津大学 Method for preparing energy storage electrode of dye-sensitized solar battery
KR101193969B1 (en) 2011-02-22 2012-10-24 한양대학교 산학협력단 Fabrication method of counter electrode for dye-sensitized solar cells using polypyrrole nanoparticles and counter electrode for dye-sensitized solar cells fabricated by the method
CN103050289B (en) * 2013-01-18 2015-12-23 中国海洋大学 Two-sided DSSC of polyaniline transparent counter electrode base and its preparation method and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319130A (en) * 2003-04-11 2004-11-11 Sony Corp Manufacturing method of photoelectric transfer device, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of semiconductor particulate layer and laminate structure
JP2004319131A (en) * 2003-04-11 2004-11-11 Sony Corp Manufacturing method of photoelectric transfer element, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of metal membrane and laminate structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319130A (en) * 2003-04-11 2004-11-11 Sony Corp Manufacturing method of photoelectric transfer device, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of semiconductor particulate layer and laminate structure
JP2004319131A (en) * 2003-04-11 2004-11-11 Sony Corp Manufacturing method of photoelectric transfer element, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of metal membrane and laminate structure

Also Published As

Publication number Publication date
JP2006155907A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
Hashmi et al. Review of materials and manufacturing options for large area flexible dye solar cells
JP4600284B2 (en) Transparent conductive laminate, manufacturing method thereof, and device using transparent conductive laminate
TWI390743B (en) Pigment for a dye-sensitized solar cell, an electrode for a dye-sensitized solar cell, and a method of manufacturing the same
US20030192585A1 (en) Photovoltaic cells incorporating rigid substrates
US20030192583A1 (en) Ultrasonic slitting of photovoltaic cells and modules
JP4647292B2 (en) Counter electrode of dye-sensitized solar cell and dye-sensitized solar cell using the same
JP4660252B2 (en) Dye-sensitized solar cell laminated film and dye-sensitized solar cell electrode using the same
US8039735B2 (en) Laminated film for dye-sensitized solar cell and electrode for dye-sensitized solar cell, and process for their production
US20230104362A1 (en) Dye sensitized photovoltaic cells
WO2008007448A1 (en) Dye-sensitized solar cell, and electrode and laminated film therefor
JP5154743B2 (en) Counter electrode of dye-sensitized solar cell and dye-sensitized solar cell using the same
JP4710251B2 (en) Method for producing metal oxide film
JP4456894B2 (en) Dye-sensitized solar cell laminated film and dye-sensitized solar cell electrode using the same
JP5015467B2 (en) Counter electrode of dye-sensitized solar cell and dye-sensitized solar cell
JP4456883B2 (en) Dye-sensitized solar cell laminate film and dye-sensitized solar cell electrode using the same
JP2007149600A (en) Laminated film for dye-sensitized solar cell and electrode for dye-sensitized solar cell using it
JP2007018951A (en) Electrode for dye-sensitized solar cell
JP5031997B2 (en) Electrode for dye-sensitized solar cell and method for producing the same
JP5059289B2 (en) Dye-sensitized solar cell laminate, dye-sensitized solar cell electrode, and method for producing the same
JP2011040288A (en) Method of manufacturing semiconductor film, the semiconductor film, and dye-sensitized solar cell
JP2005251605A (en) Dye-sensitized solar cell, module, and manufacturing method of dye-sensitized solar cell
WO2018181393A1 (en) Laminate and manufacturing method of organic solar battery
JP4922568B2 (en) Dye-sensitized solar cell electrode
TWI833810B (en) Dye-sensitized photovoltaic cells
JP4456933B2 (en) Method for producing dye-sensitized solar cell electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4647292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250