JP4646066B2 - Vacuum processing equipment - Google Patents

Vacuum processing equipment Download PDF

Info

Publication number
JP4646066B2
JP4646066B2 JP2005158678A JP2005158678A JP4646066B2 JP 4646066 B2 JP4646066 B2 JP 4646066B2 JP 2005158678 A JP2005158678 A JP 2005158678A JP 2005158678 A JP2005158678 A JP 2005158678A JP 4646066 B2 JP4646066 B2 JP 4646066B2
Authority
JP
Japan
Prior art keywords
power
substrate
vacuum processing
processing apparatus
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005158678A
Other languages
Japanese (ja)
Other versions
JP2006336034A (en
Inventor
直之 野沢
浩 曽根
公志 辻山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2005158678A priority Critical patent/JP4646066B2/en
Publication of JP2006336034A publication Critical patent/JP2006336034A/en
Application granted granted Critical
Publication of JP4646066B2 publication Critical patent/JP4646066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明には真空処理装置に係り、特に回転する基板にバイアス電圧を安定して印加することが可能な真空処理装置に関する。   The present invention relates to a vacuum processing apparatus, and more particularly to a vacuum processing apparatus capable of stably applying a bias voltage to a rotating substrate.

例えば、スパッタリングなどにおいて、1つの真空室内に複数のターゲットがあり、基板が各ターゲットに対向する位置に順次移動して成膜を行う真空処理プロセスでは、基板面内の均一性を高めるために基板を回転させながら成膜処理等が行われている。真空処理装置としては、真空室内に基板ホルダを回転軸が真空室の壁を貫通するように配置し、回転軸を磁性流体シールにより気密で回転可能に保持する構成が用いられる。このようにして、真空室内を高真空に維持しながら基板を回転させることができる。   For example, in sputtering or the like, in a vacuum processing process in which there are a plurality of targets in one vacuum chamber and the substrate is sequentially moved to a position facing each target to form a film, the substrate is used to increase the uniformity in the substrate surface. A film forming process or the like is performed while rotating. As the vacuum processing apparatus, a configuration is used in which a substrate holder is disposed in a vacuum chamber so that the rotation shaft penetrates the wall of the vacuum chamber, and the rotation shaft is hermetically and rotatably held by a magnetic fluid seal. In this way, the substrate can be rotated while maintaining a high vacuum in the vacuum chamber.

また、磁気抵抗効果素子等の高機能素子の製造においては、素子の高特性化・高集積化には、真空処理時の基板バイアス印加が有効な方法であり、例えば、成膜時やエッチング時に基板に所定のバイアス電圧を印加して、基板に衝突するイオンのエネルギを制御することにより、膜の高品質化及び微細加工精度の向上を図っている。   In the production of highly functional elements such as magnetoresistive elements, substrate bias application during vacuum processing is an effective method for enhancing the characteristics and integration of elements, for example, during film formation or etching. By applying a predetermined bias voltage to the substrate and controlling the energy of ions that collide with the substrate, the quality of the film is improved and the precision of microfabrication is improved.

基板を回転させながらバイアス電圧を印加する手段を備えた、従来の真空処理装置の一例を図3の模式的断面図に示す。図に示すように、排気装置9を備えた真空室1の内部に基板36を保持した基板ホルダ3を配置する。基板ホルダ3と回転軸を同じくする回転体7は真空室1の底壁を貫通し、磁性流体シール12により回転可能でかつ気密に保持され、真空室内部を高真空に保っている。回転体7は電力導入機構15を介してバイアス用電源17に接続されている。   An example of a conventional vacuum processing apparatus provided with means for applying a bias voltage while rotating the substrate is shown in the schematic cross-sectional view of FIG. As shown in the figure, the substrate holder 3 holding the substrate 36 is disposed inside the vacuum chamber 1 provided with the exhaust device 9. A rotating body 7 having the same rotation axis as that of the substrate holder 3 passes through the bottom wall of the vacuum chamber 1 and can be rotated and hermetically held by a magnetic fluid seal 12 to keep the inside of the vacuum chamber at a high vacuum. The rotating body 7 is connected to a bias power source 17 via a power introduction mechanism 15.

電力導入機構15の詳細を図4(図3のI−I’断面図)を用いて説明する。図に示すように、電力導入機構は、回転体7との摺動部にカーボン電極32を備え、導電性板材33とバネ部材34により、回転体にカーボン電極32を所定の力で押しつけるように構成されている。導電性板材33は配線35を介してバイアス用電源17に接続されている。従って、バイアス用電源17から、例えば高周波電力が供給され、これが配線35,板材33、カーボン電極32を通って回転体7に、さらに基板ホルダ3を経由し、基板36に所定のバイアス電圧が印加される。
特開2002−339064
Details of the power introduction mechanism 15 will be described with reference to FIG. 4 (II ′ sectional view of FIG. 3). As shown in the figure, the power introduction mechanism includes a carbon electrode 32 at a sliding portion with the rotating body 7, and presses the carbon electrode 32 against the rotating body with a predetermined force by the conductive plate 33 and the spring member 34. It is configured. The conductive plate 33 is connected to the bias power source 17 via the wiring 35. Accordingly, for example, high-frequency power is supplied from the bias power source 17, and this applies a predetermined bias voltage to the substrate 36 via the wiring 35, the plate material 33, the carbon electrode 32, and the substrate holder 3. Is done.
JP2002-339064

近年、TMRやMRAM等の磁気抵抗素子、その他の高機能素子では、さらなる高性能化、高集積化を図るべく、膜の均質化、膜厚均一化及び表面粗さ等のより一層の改善が求められているが、このためには、回転する基板ホルダ上に載置された基板への、バイアス電圧のより高精度の制御及び高電力の導入が必要である。しかしながら、上述した従来技術のように、回転している構造体(回転体)の側面から行われるバイアス電力導入機構の場合、曲面である回転体の表面に確実にカーボン電極を接触させるためにはカーボン電極32との接触面積を大きくすることができず、しかも、カーボン電極を回転体に接触させる機構を回転体の側面に配置する必要があり、構造的に複雑なものであった。またカーボン電極の摩擦熱による劣化や摩耗により、基板への電力の供給安定性が問題となってきた。即ち、基板表面でのバイアス電位に偏りが生じて均一かつ均質な成膜を阻害したり、また基板表面でチャージアップが生じて素子としての機能を破壊したり、エッチングではエッチング速度を上げられない等の場合もあった。さらに、カーボン電極は曲面である回転体と接触するため摩耗しやすい構造であり、短い周期での定期交換が必要という問題もあった。   In recent years, magnetoresistive elements such as TMR and MRAM, and other high-performance elements have been further improved in terms of film homogenization, film thickness uniformity, surface roughness, etc., in order to achieve higher performance and higher integration. For this purpose, more accurate control of the bias voltage and introduction of high power are necessary for the substrate placed on the rotating substrate holder. However, in the case of a bias power introduction mechanism that is performed from the side surface of a rotating structure (rotating body) as in the prior art described above, in order to ensure that the carbon electrode is in contact with the surface of the rotating body that is a curved surface. The contact area with the carbon electrode 32 cannot be increased, and a mechanism for bringing the carbon electrode into contact with the rotating body needs to be disposed on the side surface of the rotating body, which is structurally complicated. In addition, the stability of power supply to the substrate has become a problem due to deterioration and wear of the carbon electrode due to frictional heat. In other words, the bias potential on the substrate surface is biased to prevent uniform and uniform film formation, or charge up occurs on the substrate surface, destroying the device function, and etching cannot increase the etching rate. In some cases, etc. Furthermore, since the carbon electrode is in contact with a rotating body that is a curved surface, the carbon electrode has a structure that is easily worn, and there is a problem that periodic replacement in a short cycle is necessary.

以上の事情は、スパッタリング等の成膜処理に限らずドライエッチング等の処理においても同様であるが、この場合はより大きな電流が流れることから、電力の供給はさらに不安定になる。   The above situation is the same not only in the film formation process such as sputtering but also in the process such as dry etching. In this case, since a larger current flows, the power supply becomes more unstable.

かかる状況において、本発明は新規な構造の電力導入機構を開発し、摺動部を介して電力を安定して供給できる真空処理装置を提供することを目的とする。また、長寿命の電力導入機構を備えた真空処理装置を提供することを目的とする。   Under such circumstances, an object of the present invention is to develop a power introduction mechanism having a novel structure, and to provide a vacuum processing apparatus capable of stably supplying power via a sliding portion. It is another object of the present invention to provide a vacuum processing apparatus having a long-life power introduction mechanism.

本発明の真空処理装置は、真空室の内部に回転可能に設けられた基板ホルダと、該基板ホルダと回転軸を同じくする回転体の外周に設けられた、該回転体の回転機構と、電力導入用電源から前記回転体を介して前記基板ホルダに電力を導入する電力導入機構と、を備えた真空処理装置であって、前記電力導入機構は、前記回転体外周に取り付けられた第1の環状部材と、前記電力導入用電源と接続され、端面が前記第1の環状部材の端面と摺動するように配置された第2の環状部材とを備え、かつ、前記第1の環状部材と前記第2の環状部材との間に、冷媒を供給する構成としたことを特徴とする。
The vacuum processing apparatus of the present invention includes a substrate holder rotatably provided in a vacuum chamber, a rotating mechanism of the rotating body provided on the outer periphery of the rotating body having the same rotation axis as the substrate holder, and electric power. A vacuum processing apparatus that introduces power from an introduction power source to the substrate holder via the rotating body, wherein the power introducing mechanism is attached to the outer periphery of the rotating body. An annular member; and a second annular member connected to the power introduction power source and disposed so that an end surface thereof slides with an end surface of the first annular member; and the first annular member; A refrigerant is supplied between the second annular member and the second annular member .

このように、位置的に上位にある環状部材の底面が下位にあるものの上面に接触して縦方向に2つの環状部材の端面(環状部材の上面若しくは底面)間で摺動させる構成とすることにより、従来のカーボン電極に比べ接触面積を大幅に増大させることができ、かつ、単純な構造であり、長期にわたり接触面積は変動しにくいことから、大きな電力であっても基板ホルダへの安定した供給が可能となる。   Thus, it is set as the structure which contacts the upper surface of what has the bottom face of the annular member in the upper position, and slides between the end surfaces (the upper surface or the bottom face of the annular member) of the two annular members in the vertical direction. Compared to conventional carbon electrodes, the contact area can be greatly increased, and the structure is simple and the contact area is less likely to fluctuate over a long period of time. Supply becomes possible.

さらに、前記第1の導電性環状部材と前記第2の導電性環状部材との間に、冷媒を供給するのが好ましく、冷媒により摺動部の摩擦熱は吸収されて環状部材の温度上昇(例えば、抵抗値変化)を防止し、より一層安定した電力供給が可能となり、さらに冷媒(例えば水)により、環状部材間の潤滑性を向上させることも可能である。Furthermore, it is preferable to supply a refrigerant between the first conductive annular member and the second conductive annular member, and the frictional heat of the sliding portion is absorbed by the refrigerant, and the temperature of the annular member increases ( For example, resistance value change) can be prevented, and more stable power supply can be achieved. Further, the lubricity between the annular members can be improved by a refrigerant (for example, water).
また、前記冷媒は、基板冷却用の冷媒とするのが好ましい。このように摩擦熱の除去に基板温度制御用の冷媒を兼用することにより、装置全体のコンパクト化を図ることができる。The refrigerant is preferably a substrate cooling refrigerant. Thus, by using the refrigerant for controlling the substrate temperature also for removing the frictional heat, the entire apparatus can be made compact.

前記第1及び第2の環状部材の少なくとも互いに摺動する端面は、硬質材料で構成するのが好ましく、例えばタングステンカーバイトやクロムを用いることにより、摺動による摩耗が抑えられ、長期にわたり変化の少ない電力供給が可能となる。At least the end surfaces of the first and second annular members that slide relative to each other are preferably made of a hard material. For example, by using tungsten carbide or chrome, wear due to sliding can be suppressed, and the end surfaces can change over a long period of time. Less power can be supplied.


前記電力導入用電源には、高周波電原、直流電源及びパルス電源等を用いることができるが、特に基板へのバイアス電圧の印加には高周波電源が好適に用いられ、基板のバイアス電圧及びその均一性をを高精度に制御することができる。   As the power introduction power source, a high frequency power source, a DC power source, a pulse power source, or the like can be used. In particular, a high frequency power source is preferably used for applying a bias voltage to the substrate. Can be controlled with high accuracy.

上述したように、基板ホルダと一体にある回転体への電力導入を互いに摺動する環状部材を介して行う構成としたことから、両者の接触面積を十分に大きくすることが可能となり、基板ホルダへの電力の安定供給が可能となる。従って、種々の高機能素子に適したスパッタ装置、エッチング装置、その他の真空処理装置を構築することが可能となる。さらには、冷媒により摺動による摩擦熱を効果的に除去する構成とすることから、摺動部材の劣化や抵抗値変化を防止し長期間にわたり安定した電力供給が可能となる。また、基板へのバイアス電圧印加に限らず、より大電流の供給等の用途への応用も可能となる。   As described above, since the power is introduced into the rotating body integral with the substrate holder through the annular members that slide with each other, it is possible to sufficiently increase the contact area between the two. It is possible to stably supply power to Therefore, it is possible to construct a sputtering apparatus, an etching apparatus, and other vacuum processing apparatuses suitable for various high-functional elements. Further, since the frictional heat due to sliding is effectively removed by the refrigerant, the sliding member is prevented from being deteriorated and the resistance value is changed, and stable power supply is possible over a long period of time. Further, the present invention is not limited to the application of a bias voltage to the substrate, but can be applied to uses such as supplying a larger current.

以下に、本発明の実施の形態を図面に基づき説明する。
図1は、本発明の真空処理装置の一例を示すスパッタ装置の模式的断面図である。真空処理装置は、図に示すように、真空室1内にターゲット2と基板36を載置した基板ホルダ3が対向して配置され、真空室1はバルブ8を介して排気装置9に連結されている。ターゲット2は整合器10を介して例えば直流電源11に連結されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a sputtering apparatus showing an example of the vacuum processing apparatus of the present invention. In the vacuum processing apparatus, as shown in the figure, a substrate holder 3 on which a target 2 and a substrate 36 are placed is placed in a vacuum chamber 1 so as to face each other, and the vacuum chamber 1 is connected to an exhaust device 9 via a valve 8. ing. The target 2 is connected to, for example, a DC power source 11 through the matching unit 10.

一方、回転体7は真空室1の底壁を貫通し、真空シール部材(例えば、磁性流体シール)12により真空室内部の気密が保たれている。真空シール部材12の下方には、回転体7に取り付けられた磁石とその外周周辺に配置された電磁石との相互作用により回転体7の回転制御を行う回転用ダイレクトドライブモータ14が配置されている。さらに、回転体7の回転数及び方位を検出するエンコーダ13が配置される。基板ホルダ3は、基板電極4と電極支持部材6間に絶縁部材5が配置された構造を有し、基板電極4は、電力導入棒20、電力導入機構15及び整合器18を介して電力導入用の高周波電源(例えば、13.56MHz)17に接続されている。   On the other hand, the rotating body 7 penetrates the bottom wall of the vacuum chamber 1, and the vacuum chamber member 12 (for example, a magnetic fluid seal) 12 keeps the air tightness inside the vacuum chamber. Below the vacuum seal member 12, a direct drive motor 14 for rotation that controls the rotation of the rotating body 7 by the interaction between a magnet attached to the rotating body 7 and an electromagnet disposed around the outer periphery thereof is disposed. . Furthermore, an encoder 13 for detecting the rotational speed and direction of the rotating body 7 is arranged. The substrate holder 3 has a structure in which an insulating member 5 is disposed between the substrate electrode 4 and the electrode support member 6, and the substrate electrode 4 introduces power via a power introduction rod 20, a power introduction mechanism 15 and a matching unit 18. The high frequency power source (for example, 13.56 MHz) 17 is connected.

電力導入機構15には、基板冷却用冷媒の供給ポート及び排出ポートが設けられ、それぞれ回転体7の供給路19及び排出路21を介して基板ホルダの流体路23と連通し、恒温槽16と基板ホルダの流体路23間で、所定温度に調節された流体が循環して基板36を所定温度に制御する構成となっている。   The power introduction mechanism 15 is provided with a supply port and a discharge port for the substrate cooling refrigerant, and communicates with the fluid path 23 of the substrate holder via the supply path 19 and the discharge path 21 of the rotating body 7, respectively. A fluid adjusted to a predetermined temperature circulates between the fluid paths 23 of the substrate holder to control the substrate 36 to the predetermined temperature.

次に、電力導入機構15を図2に示した拡大模式図を参照してより詳細に説明する。
電力導入機構15は、回転体7に取り付けられた第1の環状部材30と、該環状部材30の端面と接触して配置された第2の環状部材31とから構成され、本実施例では、2組の第1及び第2の環状部材が配置された構成となっている。ここで、第1及び第2の環状部材としては、例えば、外径58mm、内径48mmのSUS製リングの表面にタングステンカーバイトを被覆した部材が用いられる。従って、高周波電力は、高周波電源17から金属製の外枠部材(例えばSUS製)24を通って第2の環状部材31、31’、さらには第1の環状部材30,30’へと供給され、さらに電力導入棒20を通って基板電極4へと供給される。ここで、電力導入機構15上部の回転体7外周部は、絶縁体22により電極導入棒20と絶縁され、接地されている。
Next, the power introduction mechanism 15 will be described in more detail with reference to the enlarged schematic diagram shown in FIG.
The power introduction mechanism 15 includes a first annular member 30 attached to the rotating body 7 and a second annular member 31 disposed in contact with the end face of the annular member 30. In this embodiment, Two sets of first and second annular members are arranged. Here, as the first and second annular members, for example, members in which tungsten carbide is coated on the surface of a SUS ring having an outer diameter of 58 mm and an inner diameter of 48 mm are used. Accordingly, the high frequency power is supplied from the high frequency power source 17 through the metal outer frame member (for example, made of SUS) 24 to the second annular members 31, 31 ′, and further to the first annular members 30, 30 ′. Further, the electric power is supplied to the substrate electrode 4 through the electric power introduction rod 20. Here, the outer periphery of the rotating body 7 above the power introduction mechanism 15 is insulated from the electrode introduction rod 20 by the insulator 22 and grounded.

また、外枠部材24には、冷媒供給ポート25及び排出ポート27並びにこれらにそれぞれ連通する環状の流体路26,27が設けられており、回転体7が回転しても、供給路19及び排出路21は常にそれぞれ冷媒供給ポート25及び排出ポート27と連通する構成となっている。さらに、外枠部材24には、第1の環状部材30、30’及び第2の環状部材31、31’の接触部にも冷媒が送られる構成とし、両者の間を漏れ出た冷媒を排出するためのドレイン29,29’が設けられている。   In addition, the outer frame member 24 is provided with a refrigerant supply port 25 and a discharge port 27 and annular fluid passages 26 and 27 respectively communicating with the refrigerant supply port 25 and the discharge port 27. The passage 21 is configured to always communicate with the refrigerant supply port 25 and the discharge port 27, respectively. Further, the outer frame member 24 is configured such that the refrigerant is also sent to the contact portions of the first annular members 30, 30 ′ and the second annular members 31, 31 ′, and the refrigerant leaking between the two is discharged. Drains 29 and 29 'are provided.

このようにして、バイアス用の高周波電力は、大きな接触面積を有する環状部材30及び31、30’及び31’を介して供給される。また、環状部材間の摩擦熱が冷媒により効果的に除去されるため、安定した高周波電力の供給を継続して行うことができる。   In this way, the high frequency power for bias is supplied via the annular members 30 and 31, 30 'and 31' having a large contact area. Further, since the frictional heat between the annular members is effectively removed by the refrigerant, stable high-frequency power can be continuously supplied.

なお、第1及び第2の環状部材としては、タングステンカーバイト、硬質クロム等の耐摩耗性があり、かつ冷媒に対する耐食性を備えた導電性材料が好適に用いられるが、例えば、上述したようにSUS等の金属・合金を用いてその少なくとも摺動部をこれらの硬質材料で被覆する構成としてもよい。また、第1及び第2の環状部材としては異なる材質であっても良い。   In addition, as the first and second annular members, conductive materials having wear resistance such as tungsten carbide and hard chromium and having corrosion resistance against the refrigerant are preferably used. For example, as described above, It is good also as a structure which coat | covers at least the sliding part with these hard materials using metals and alloys, such as SUS. Further, different materials may be used for the first and second annular members.

次に、図1のスパッタ装置を用いた薄膜形成方法を説明する。基板36を基板ホルダ3上に載置した後、真空室1内部を排気装置9で高真空に排気する。続いて、ガス供給機構(不図示)から所定流量のArガスを導入しバルブ8を調節して真空室内部を所定の圧力に設定する。このとき、回転用ダイレクトドライブモータ14を駆動して回転体7を回転させ、基板36を所定の回転数(例えば100rpm)に制御する。また、恒温槽16をONして所定温度に設定した冷却水を基板ホルダ3との間で循環し、基板36を所定の温度に調節する。   Next, a thin film forming method using the sputtering apparatus of FIG. 1 will be described. After placing the substrate 36 on the substrate holder 3, the inside of the vacuum chamber 1 is evacuated to high vacuum by the exhaust device 9. Subsequently, Ar gas at a predetermined flow rate is introduced from a gas supply mechanism (not shown) and the valve 8 is adjusted to set the inside of the vacuum chamber to a predetermined pressure. At this time, the rotary direct drive motor 14 is driven to rotate the rotating body 7, and the substrate 36 is controlled to a predetermined rotational speed (for example, 100 rpm). Moreover, the constant temperature bath 16 is turned on and the cooling water set to a predetermined temperature is circulated between the substrate holder 3 and the substrate 36 is adjusted to a predetermined temperature.

直流電源11から高周波電力をターゲット2に供給してプラズマを発生させるとともに、バイアス用高周波電源(13.56MHz)17からバイアス電力を電力導入機構15に供給し、基板上に成膜を開始する。このようにして、バイアス用の高周波電力は電力導入機構15及び電力導入棒20を介して基板電極4に供給されて、基板全面に均一に所望のバイアス電圧が印加される。即ち、基板に衝突するイオンのエネルギを要求される膜質に適した値に設定した状態で、基板上に薄膜が形成されるため、高品質で、しかも均質かつ表面粗さのきわめて小さな薄膜が形成される。また、電力導入機構15の摺動部はタングステンカーバイトとし、かつ冷媒を供給したことから、摺動熱による電気的変化が防止され、又摩耗しにくいため、長期間にわたり再現性のある薄膜形成を行うことができる。
なお、上記バイアス用電源としては、高周波電源に限らず、直流電源等を用いることもできる。
A high frequency power is supplied from the DC power source 11 to the target 2 to generate plasma, and a bias power is supplied from the bias high frequency power source (13.56 MHz) 17 to the power introduction mechanism 15 to start film formation on the substrate. In this way, the high frequency power for bias is supplied to the substrate electrode 4 via the power introducing mechanism 15 and the power introducing rod 20, and a desired bias voltage is uniformly applied to the entire surface of the substrate. In other words, a thin film is formed on the substrate with the energy of ions colliding with the substrate set to a value suitable for the required film quality, so a thin film with high quality and uniform surface roughness is formed. Is done. Further, since the sliding portion of the power introduction mechanism 15 is made of tungsten carbide and supplied with a refrigerant, an electrical change due to sliding heat is prevented and it is difficult to wear. It can be performed.
The bias power source is not limited to a high frequency power source, and a DC power source or the like can also be used.

図2の構成例では、第1及び第2の環状部材の2組を配置する構成としたが、1組又は3組以上としても良いことは言うまでもない。また、第1及び第2の環状部材の組み合わせについても、1対1に限定するものではなく、第1の環状部の上下の端面に摺動するように第2の環状部材を配置することも、又はその逆の構成も可能である。さらに、第1の環状部材は回転体と一体に形成しても良いことは言うまでもない。また、環状部材と基板の冷媒を兼用する構成としたが、別々に冷媒を供給する構成としても良い。
以上は、ドライエッチングの場合も同様であり、また、本発明は回転体へのバイアス電圧の印加に限らず、他の電力導入の用途(例えば回転体内部の静電吸着電源への電力導入等)又は基板ホルダのチャージアップ防止等に用いることも可能である。
In the configuration example of FIG. 2, two sets of the first and second annular members are arranged. Needless to say, one set or three or more sets may be used. Further, the combination of the first and second annular members is not limited to one-to-one, and the second annular member may be disposed so as to slide on the upper and lower end faces of the first annular portion. Or vice versa. Furthermore, it goes without saying that the first annular member may be formed integrally with the rotating body. Moreover, although it was set as the structure which combines the annular member and the refrigerant | coolant of a board | substrate, it is good also as a structure which supplies a refrigerant | coolant separately.
The above is the same in the case of dry etching, and the present invention is not limited to the application of a bias voltage to the rotating body, but is used for other purposes of power introduction (for example, power introduction to an electrostatic adsorption power source inside the rotating body) ) Or prevention of charge up of the substrate holder.

本発明の真空処理装置の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the vacuum processing apparatus of this invention. 図1の電流導入機構の拡大図である。It is an enlarged view of the electric current introduction mechanism of FIG. 従来の真空処理装置を示す模式的断面図である。It is typical sectional drawing which shows the conventional vacuum processing apparatus. 図3の電流導入機構の拡大図である。FIG. 4 is an enlarged view of the current introduction mechanism of FIG. 3.

符号の説明Explanation of symbols

1 真空室、
2 ターゲット、
3 基板ホルダ、
4 基板電極、
5 絶縁部材、
6 電極支持部材、
7 回転体、
8 バルブ、
9 排気装置、
10 整合器、
11 直流電源、
12 真空シール部材、
13 エンコーダ、
14 回転用ダイレクトドライブモータ、
15 電力導入機構、
16 恒温槽、
17 バイアス用高周波電源
18 整合器、
19 供給路、
20 電力導入棒、
21 排出路、
22 絶縁部材、
23 基板ホルダの流体路、
24 外枠部材、
25 冷媒供給ポート、
26,28 環状の流体路、
27 排出ポート、
29,29’ ドレイン、
30 第1の導電性環状部材、
31 第2の導電性環状部、
32 カーボン電極、
33 導電性板材、
34 バネ部材、
35 配線、
36 基板、
37 シール材、
38,38’ ベアリング。

1 vacuum chamber,
2 targets,
3 Substrate holder,
4 substrate electrodes,
5 Insulating material,
6 electrode support members,
7 Rotating body,
8 valves,
9 exhaust system,
10 matcher,
11 DC power supply,
12 Vacuum seal member,
13 Encoder,
14 Direct drive motor for rotation,
15 Electricity introduction mechanism,
16 constant temperature bath,
17 Bias high frequency power supply 18 Matching unit,
19 Supply path,
20 Electricity introduction rod,
21 discharge channel,
22 insulation members,
23 Fluid path of substrate holder,
24 outer frame member,
25 refrigerant supply port,
26, 28 Annular fluid path,
27 discharge port,
29, 29 'drain,
30 first conductive annular member,
31 second conductive annular portion,
32 carbon electrodes,
33 conductive plate material,
34 Spring member,
35 Wiring,
36 substrates,
37 Sealing material,
38,38 'bearing.

Claims (6)

真空室の内部に回転可能に設けられた基板ホルダと、該基板ホルダと回転軸を同じくする回転体の外周に設けられた、該回転体の回転機構と、電力導入用電源から前記回転体を介して前記基板ホルダに電力を導入する電力導入機構と、を備えた真空処理装置であって、
前記電力導入機構は、前記回転体外周に取り付けられた第1の環状部材と、前記電力導入用電源と接続され、端面が前記第1の環状部材の端面と摺動するように配置された第2の環状部材とを備え、かつ、前記第1の環状部材と前記第2の環状部材との間に、冷媒を供給する構成としたことを特徴とする真空処理装置。
A substrate holder provided rotatably inside the vacuum chamber, a rotating mechanism of the rotating body provided on the outer periphery of the rotating body having the same rotation axis as the substrate holder, and the rotating body from a power introduction power source. A vacuum processing apparatus provided with a power introduction mechanism for introducing power into the substrate holder via,
The power introduction mechanism is connected to the first annular member attached to the outer periphery of the rotating body and the power introduction power source, and is arranged so that the end surface slides with the end surface of the first annular member. A vacuum processing apparatus comprising: two annular members; and a refrigerant is supplied between the first annular member and the second annular member .
前記第1の環状部材及び前記第2の環状部材の少なくとも互いに摺動する端面は、硬質材料で構成したことを特徴とする請求項1記載の真空処理装置。   The vacuum processing apparatus according to claim 1, wherein at least end surfaces of the first annular member and the second annular member that slide with each other are made of a hard material. 前記硬質材料は、タングステンカーバイト又は硬質クロムであることを特徴とする請求項2記載の真空処理装置。 The vacuum processing apparatus according to claim 2, wherein the hard material is tungsten carbide or hard chrome. 前記冷媒は、基板を冷却するためのものであることを特徴とする請求項1〜3のいずれか1項に記載の真空処理装置。 The refrigerant, vacuum processing apparatus according to any one of claims 1 to 3, characterized in that for cooling the substrate. 前記電力導入機構は、基板に所定のバイアス電圧を印加することを特徴とする請求項1〜のいずれか1項に記載の真空処理装置。 The power supply mechanism, the vacuum processing apparatus according to any one of claims 1 to 4, characterized in that a predetermined bias voltage is applied to the substrate. 前記電力導入用電源は、高周波電原であることを特徴とする請求項1〜のいずれか1項に記載の真空処理装置。
The power lead for power supply, vacuum processing apparatus according to any one of claims 1 to 5, characterized in that a high frequency DenHara.
JP2005158678A 2005-05-31 2005-05-31 Vacuum processing equipment Active JP4646066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005158678A JP4646066B2 (en) 2005-05-31 2005-05-31 Vacuum processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005158678A JP4646066B2 (en) 2005-05-31 2005-05-31 Vacuum processing equipment

Publications (2)

Publication Number Publication Date
JP2006336034A JP2006336034A (en) 2006-12-14
JP4646066B2 true JP4646066B2 (en) 2011-03-09

Family

ID=37556848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158678A Active JP4646066B2 (en) 2005-05-31 2005-05-31 Vacuum processing equipment

Country Status (1)

Country Link
JP (1) JP4646066B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4875190B2 (en) 2009-08-31 2012-02-15 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
JP2015057504A (en) * 2011-12-12 2015-03-26 キヤノンアネルバ株式会社 Processing unit
JP7288834B2 (en) * 2019-10-07 2023-06-08 キヤノントッキ株式会社 Film forming apparatus, film forming method, and electronic device manufacturing method
JP7304261B2 (en) * 2019-10-07 2023-07-06 キヤノントッキ株式会社 Film forming apparatus, film forming method, and electronic device manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379764A (en) * 1989-08-23 1991-04-04 Ulvac Japan Ltd Ion plating device for long-sized material
JPH09205760A (en) * 1995-12-30 1997-08-05 Robert Bosch Gmbh Carbon brush for motor
JP2664483B2 (en) * 1989-06-29 1997-10-15 株式会社神戸製鋼所 Vacuum deposition equipment
JP2000336479A (en) * 1999-05-27 2000-12-05 Sony Corp Roll device, and vacuum film deposition system
JP2005082837A (en) * 2003-09-05 2005-03-31 Shin Meiwa Ind Co Ltd Vacuum film deposition method and apparatus, and filter manufactured by using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664483B2 (en) * 1989-06-29 1997-10-15 株式会社神戸製鋼所 Vacuum deposition equipment
JPH0379764A (en) * 1989-08-23 1991-04-04 Ulvac Japan Ltd Ion plating device for long-sized material
JPH09205760A (en) * 1995-12-30 1997-08-05 Robert Bosch Gmbh Carbon brush for motor
JP2000336479A (en) * 1999-05-27 2000-12-05 Sony Corp Roll device, and vacuum film deposition system
JP2005082837A (en) * 2003-09-05 2005-03-31 Shin Meiwa Ind Co Ltd Vacuum film deposition method and apparatus, and filter manufactured by using the same

Also Published As

Publication number Publication date
JP2006336034A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
EP1928019B1 (en) Power supply apparatus and deposition method using the power supply apparatus
US7520965B2 (en) Magnetron sputtering apparatus and method for depositing a coating using same
US20060081559A1 (en) Plasma processing apparatus and plasma processing method
JP2020021952A (en) Mounting table structure
JP5004931B2 (en) Sputtering source, sputtering apparatus, and sputtering method
US5944968A (en) Sputtering apparatus
JP4646066B2 (en) Vacuum processing equipment
JP4660241B2 (en) Sputtering equipment
TW201627517A (en) Apparatus for PVD dielectric deposition
US10510514B2 (en) Gas supply mechanism and semiconductor manufacturing apparatus
JP2005350751A (en) Sputtering apparatus and method, and program for controlling sputtering
CN109576665B (en) Ion source, coating device and coating method
US6231726B1 (en) Plasma processing apparatus
CN101736297A (en) Rotatable sputtering cathode device for film coating
WO2019130471A1 (en) Film-forming method and film-forming device
JP7326036B2 (en) Cathode unit for magnetron sputtering equipment
US7625472B2 (en) Plasma-assisted sputter deposition system
JP4246546B2 (en) Sputtering source, sputtering apparatus, and sputtering method
JP2005232554A (en) Sputtering system
JP2009299191A (en) Plasma-assisted sputter film-forming apparatus
JP2006037127A (en) Sputter electrode structure
WO2022244443A1 (en) Cathode unit for magnetron sputtering device, and magnetron sputtering device
JP2005054251A (en) Sputtering method
JP4135173B2 (en) Plasma processing apparatus and plasma processing method
CN112639160A (en) Sputtering apparatus and film forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090806

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250