JP4645420B2 - Heat receiver and cooling device provided with the same - Google Patents

Heat receiver and cooling device provided with the same Download PDF

Info

Publication number
JP4645420B2
JP4645420B2 JP2005332378A JP2005332378A JP4645420B2 JP 4645420 B2 JP4645420 B2 JP 4645420B2 JP 2005332378 A JP2005332378 A JP 2005332378A JP 2005332378 A JP2005332378 A JP 2005332378A JP 4645420 B2 JP4645420 B2 JP 4645420B2
Authority
JP
Japan
Prior art keywords
heat
fin
liquid refrigerant
receiving plate
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005332378A
Other languages
Japanese (ja)
Other versions
JP2007142068A (en
Inventor
利彦 松田
伸之 後藤
哲也 阿南
俊明 菊井
士郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005332378A priority Critical patent/JP4645420B2/en
Publication of JP2007142068A publication Critical patent/JP2007142068A/en
Application granted granted Critical
Publication of JP4645420B2 publication Critical patent/JP4645420B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)

Description

本発明は、パーソナルコンピュータ等に使われるマイクロプロセッシングユニット(以下、MPUと称する)等の発熱する半導体素子、またはその他の発熱部を有する電子部品などの発熱電子部品を液体冷媒の循環による冷却に用いられる受熱器と、その受熱器を備えた冷却装置に関するものである。   The present invention uses a heat-generating electronic component such as a semiconductor element that generates heat such as a microprocessing unit (hereinafter referred to as MPU) used in a personal computer or the like, or an electronic component having other heat-generating parts, for cooling by circulation of a liquid refrigerant. The present invention relates to a heat receiver and a cooling device including the heat receiver.

最近のコンピュータなどの電子機器におけるデータ処理の高速化の動きはきわめて急速であり、MPUなどの発熱電子部品のクロック周波数は以前と比較して格段に大きなものになってきているので、その発熱量が増大している。このため、各発熱電子部品が動作温度範囲を越えてしまい、その結果電子部品の誤動作や熱破壊を招くことが少なからず発生している。   The speed of data processing in recent electronic devices such as computers is very rapid, and the clock frequency of heat-generating electronic components such as MPU has become much larger than before, so the amount of heat generated Has increased. For this reason, each heat generating electronic component exceeds the operating temperature range, and as a result, malfunctions and thermal destruction of the electronic components often occur.

従って、その電子機器内に実装された各発熱電子部品を動作温度範囲内に保つことは、それらの各発熱電子部品を正常に動作させることとなり、その結果、その電子機器を安定して操作できるようにするための重要な課題となってきている。   Therefore, keeping each heat generating electronic component mounted in the electronic device within the operating temperature range causes the heat generating electronic component to operate normally, and as a result, the electronic device can be stably operated. It has become an important issue to do so.

従来のように発熱電子部品の放熱方法として複数の放熱フィンから構成されたヒートシンクを発熱電子部品に直接接触させて自然放熱する方法だけでなく、そのヒートシンクをファン装置で送風冷却する方法、受熱部からヒートパイプを用いて放熱部に熱接続したヒートシンクモジュールにおいてその放熱部をファン送風により強制的に送風冷却する方法、あるいは、液体冷媒をポンプにより強制的に液循環させ受熱部から放熱部へ熱輸送を行なった液冷却方式による冷却装置などが必要不可欠になっており、今後さらにそれら冷却装置の冷却能力の向上と併せて小型軽量化も必要とされている。   As a conventional heat dissipation method for heat-generating electronic components, not only a heat sink composed of a plurality of heat-dissipating fins is brought into direct contact with the heat-generating electronic components for natural heat dissipation, but also a method in which the heat sink is blown and cooled by a fan device, In a heat sink module thermally connected to the heat radiating part using a heat pipe, the heat radiating part is forcibly blown and cooled by fan air blowing, or liquid refrigerant is forced to circulate by a pump and heat is transferred from the heat receiving part to the heat radiating part. Cooling devices using a liquid cooling system that has been transported have become indispensable, and in the future, in addition to improvements in the cooling capacity of these cooling devices, it is also necessary to reduce the size and weight.

そこで、半導体素子の小型化及び高集積化に対応した受熱器として、例えば(特許文献1)に記載されたように、より液体冷媒の流路内の圧力損失を低減しながらコンパクト化を実現できる受熱器が提案されている。   Therefore, as described in (Patent Document 1), for example, as described in (Patent Document 1), as a heat receiver corresponding to miniaturization and high integration of a semiconductor element, it is possible to realize compactness while reducing pressure loss in the flow path of the liquid refrigerant. A heat receiver has been proposed.

図10(a)は(特許文献1)に記載の受熱器の分解斜視図、(b)はその外観斜視図、(c)はそのA−A断面の部分拡大断面図を示しており、例えば、一辺が約15mmの方形の基板101の一の主面101aに複数の溝102を化学エッチング等の公知の手法により形成することにより、例えば、幅が50μm程度で、深さが300μm程度に設定されており、各溝102は、ほぼ均等ピッチで略平行に形成されている。ここで、基板101の周縁部は残し、フィン107の頂面は、例えば図10(c)に示すように、この周縁部よりも高さが低くなっている。   10 (a) is an exploded perspective view of the heat receiver described in (Patent Document 1), FIG. 10 (b) is an external perspective view thereof, and FIG. 10 (c) is a partially enlarged sectional view of the AA cross section. By forming a plurality of grooves 102 on one main surface 101a of a rectangular substrate 101 having a side of about 15 mm by a known method such as chemical etching, for example, the width is set to about 50 μm and the depth is set to about 300 μm. The grooves 102 are formed substantially in parallel at substantially equal pitches. Here, the peripheral portion of the substrate 101 is left, and the top surface of the fin 107 is lower than the peripheral portion as shown in FIG. 10C, for example.

また、基板101の一方の主面101a上には、その全面を覆うようにカバープレート103が張り合わされており、このカバープレート103には、貫通孔104,105が形成されている。これらの貫通孔104、105には接続カバー(図示せず)が取り付けされ、それぞれ冷媒供給口、冷媒排出口として、異なる冷媒流路(図示せず)に接続される。   A cover plate 103 is attached to one main surface 101 a of the substrate 101 so as to cover the entire surface, and through holes 104 and 105 are formed in the cover plate 103. A connection cover (not shown) is attached to these through holes 104 and 105, and connected to different refrigerant flow paths (not shown) as a refrigerant supply port and a refrigerant discharge port, respectively.

そして、冷媒供給源(図示せず)から一の冷媒流路に供給された冷媒は、一の冷媒流路から一方の貫通孔104に送り込まれ、基板101とカバープレート103との間の領域を経て、他方の貫通孔105から他の冷媒流路に送り出される。これにより、液体冷媒がこの受熱器100の内部に設けられた液体冷媒の流路内をスムーズに流れるようになり、十分な冷却効果が発揮されるようになるため、基板101の他の主面101b上に設けられた冷却対象である半導体素子106が冷却され破壊される心配もなくなり信頼性が向上する。   Then, the refrigerant supplied from the refrigerant supply source (not shown) to the one refrigerant flow path is sent to the one through hole 104 from the one refrigerant flow path, and the region between the substrate 101 and the cover plate 103 is passed through. Then, it is sent out from the other through hole 105 to another refrigerant flow path. As a result, the liquid refrigerant flows smoothly in the flow path of the liquid refrigerant provided in the heat receiver 100, and a sufficient cooling effect is exhibited. There is no concern that the semiconductor element 106 to be cooled provided on 101b is cooled and destroyed, and the reliability is improved.

一方、回路基板上に実装された1個乃至複数個の半導体素子を冷却するための別の冷却装置の受熱構造としては、例えば(特許文献2)のように、熱伝導性の気体が封入された空間部を備えた受熱構造も提案されている。   On the other hand, as a heat receiving structure of another cooling device for cooling one or more semiconductor elements mounted on a circuit board, for example, a thermally conductive gas is enclosed as in (Patent Document 2). A heat receiving structure provided with an open space has also been proposed.

図11(a)は(特許文献2)に記載の冷却装置の断面図、(b)はその部分拡大断面図を示しており、冷却装置110は、回路基板111上に実装された複数の半導体素子112を取り囲むように回路基板111を被覆するキャップ113と、キャップ113と回路基板111との間に形成され熱伝導性の気体が封入された空間部114に半導体素子112と対向して配置された熱的ブリッジ素子115とキャップ113の上面に取り付けられた水冷ジャケット116とにより構成されている。   11A is a cross-sectional view of the cooling device described in (Patent Document 2), and FIG. 11B is a partially enlarged cross-sectional view of the cooling device 110. The cooling device 110 includes a plurality of semiconductors mounted on the circuit board 111. A cap 113 covering the circuit board 111 so as to surround the element 112, and a space 114 formed between the cap 113 and the circuit board 111 and filled with a heat conductive gas is disposed to face the semiconductor element 112. The thermal bridge element 115 and the water cooling jacket 116 attached to the upper surface of the cap 113 are included.

ここで、熱的ブリッジ素子115は、第1のフィン117及び第2のフィン118を備えており、これらのフィン117、118は、ベース部119、120と、これらのベース部119、120にそれぞれ一体的に形成された櫛歯状の複数のフィン部121、122とから構成されている。   Here, the thermal bridge element 115 includes a first fin 117 and a second fin 118, and the fins 117 and 118 are provided on the base portions 119 and 120 and the base portions 119 and 120, respectively. It is composed of a plurality of comb-shaped fin portions 121 and 122 formed integrally.

これらのフィン部121、122は交互に嵌合されており、各フィン部121、122の嵌合部分は、精密に制御された微小間隙をもって嵌合されている。   The fin portions 121 and 122 are alternately fitted, and the fitting portions of the fin portions 121 and 122 are fitted with a minute gap that is precisely controlled.

第1及び第2のフィン117,118の中間部に形成された凹部123、124には、ベース部119、120に作用点をもつ弾性部材の一例たる圧縮ばね125が収容されており、この圧縮ばね125によって、第1のフィン117のベース部119の接触面119aはキャップ113に、第2のフィン118のベース部120の接触面120aは半導体素子112にそれぞれに適正な接触圧力で当接するように付勢されている。   A compression spring 125, which is an example of an elastic member having an action point on the base portions 119, 120, is accommodated in the recesses 123, 124 formed in the intermediate portions of the first and second fins 117, 118. The contact surface 119a of the base portion 119 of the first fin 117 is brought into contact with the cap 113 and the contact surface 120a of the base portion 120 of the second fin 118 is brought into contact with the semiconductor element 112 with an appropriate contact pressure. Is being energized.

半導体素子112の発熱は、極めて薄い熱伝導性の気体層126を介して、第2のフィン118のベース部120に伝えられ、このベース部120を横方向に拡がって伝熱面積を拡大した後、フィン部122に伝えられ、気体層126を介して第1のフィン117のフィン部121、ベース部119に伝えられ、さらに気体層126を介してキャップ113に伝えられ、最終的に水冷ジャケット116の内部を流れる液体冷媒により除去される。   The heat generated in the semiconductor element 112 is transmitted to the base portion 120 of the second fin 118 via the extremely thin heat conductive gas layer 126, and after the base portion 120 is expanded in the lateral direction, the heat transfer area is expanded. , To the fin portion 122, to the fin portion 121 of the first fin 117 and the base portion 119 through the gas layer 126, to the cap 113 through the gas layer 126, and finally to the water cooling jacket 116. It is removed by the liquid refrigerant flowing in the interior.

ベース部119、120の各接触面119a、120a及びキャップ113のベース部119との接触面113aは、極めて平滑に仕上げられており、接触熱抵抗は十分小さな値に抑えられており、伝熱効果は高い。   The contact surfaces 119a and 120a of the base portions 119 and 120 and the contact surface 113a of the cap 113 with the base portion 119 are finished to be extremely smooth, and the contact thermal resistance is suppressed to a sufficiently small value. Is expensive.

また、フィン部121、122の嵌合部分は、精密に圧縮ばねにより制御された微小間隔をもって嵌合されているので、半導体素子112のわずかな傾きに追従して第2のフィン118が傾いても、第1のフィン117によってその動きが拘束されることはない。   In addition, since the fitting portions of the fin portions 121 and 122 are fitted with a minute interval precisely controlled by a compression spring, the second fin 118 tilts following the slight tilt of the semiconductor element 112. However, the movement of the first fin 117 is not restricted.

従って、第2のフィン118のベース部120は、半導体素子112の背面と常に良好な平面接触状態が保持され伝熱効率が高くなる。また、半導体素子112が傾いても、第1及び第2のフィン117,118が互いに接触することが少なく安定した熱抵抗値が得られるような構造となっている。
特開平6−326226号公報(第6頁、図1(a)、(b)、図2(a)) 特開昭61−231744号公報(第5頁、図1)
Accordingly, the base portion 120 of the second fin 118 is always kept in a good plane contact state with the back surface of the semiconductor element 112, and the heat transfer efficiency is increased. Further, even when the semiconductor element 112 is inclined, the first and second fins 117 and 118 are not in contact with each other, and a stable thermal resistance value is obtained.
JP-A-6-326226 (Page 6, FIGS. 1 (a), (b), FIG. 2 (a)) JP 61-231744 (5th page, FIG. 1)

しかしながら、前述した(特許文献1)の受熱器100では、受熱器100そのものを小型化、薄型化してコンパクトにすることは比較的容易であるが、フィン107が単純にほぼ均等ピッチで略平行に形成されているので、一方の貫通孔104から送り込まれ他方の貫通孔105から送り出されるまでの間、基板101とカバープレート103との間の流路を流れる液体冷媒は、最も高温になると予想される半導体素子106との接触領域である基板101の中央領域においては、液体冷媒がフィン107と略平行に流れる層流領域となるため、フィン107と液体冷媒の間で効率的かつ十分な熱交換が行われず発熱量の大きな発熱体に対応する場合には十分な冷却性能が得られないという課題があった。   However, in the heat receiver 100 of the above-described (Patent Document 1), it is relatively easy to make the heat receiver 100 small, thin, and compact, but the fins 107 are simply substantially parallel at substantially equal pitches. Therefore, the liquid refrigerant flowing through the flow path between the substrate 101 and the cover plate 103 is expected to be the hottest until it is fed from one through hole 104 and sent from the other through hole 105. In the central region of the substrate 101, which is a contact region with the semiconductor element 106, the liquid refrigerant becomes a laminar flow region in which the liquid refrigerant flows substantially in parallel with the fins 107. However, there is a problem that sufficient cooling performance cannot be obtained in the case of dealing with a heating element having a large calorific value.

一方では、このような受熱器100を備えた冷却装置を搭載する電子機器の薄型軽量化などに伴い当然その受熱器100をさらに小型化する必要もあり、限られた受熱器内の空間を流れる液体冷媒とフィン107間の接触面積を大きくするため平板状のフィン107のピッチを狭めていくのと相反して液体冷媒の流路が小さくなるので、その分、圧力損失が増大し循環する液体冷媒の流量が減少してしまい冷却性能が低下するという課題もあった。   On the other hand, it is necessary to further reduce the size of the heat receiver 100 with the reduction in thickness and weight of an electronic device on which the cooling device including the heat receiver 100 is mounted, and it flows in a limited space in the heat receiver. Since the flow path of the liquid refrigerant is reduced in contrast to the narrowing of the pitch of the plate-like fins 107 in order to increase the contact area between the liquid refrigerant and the fins 107, the pressure loss increases accordingly, and the circulating liquid There was also a problem that the cooling performance was lowered due to a decrease in the flow rate of the refrigerant.

また、フィン107での放熱面積を大きくするため基板101に微細な幅の溝102を形成するために化学エッチング等の公知の手法が用いられているが、例えば、一般的な化学エッチングであれば、金属材料の表面に感光性のあるレジストを形成するレジスト形成工程、ホトマスクを用いた露光(焼き付け)工程、フィンを形成する部分に対応するレジストのみを残して他のレジストを除去する現像工程、そして基板101が銅又は銅合金の金属材料の場合には、塩化第二鉄の溶液を吹き付けたエッチング工程、最後にはレジスト除去工程と幾多もの工程があり製造方法が複雑となってしまうのでダイカスト成型などに比較すると極めて量産性に劣るという課題もあった。   Further, in order to increase the heat radiation area at the fin 107, a known technique such as chemical etching is used to form the groove 102 having a fine width on the substrate 101. A resist forming process for forming a photosensitive resist on the surface of the metal material, an exposure (baking) process using a photomask, and a developing process for removing other resists leaving only the resist corresponding to the portion where the fin is formed, When the substrate 101 is made of copper or a copper alloy metal material, there are a number of processes including an etching process in which a solution of ferric chloride is sprayed, and finally a resist removing process. There was also a problem that it was extremely inferior in mass productivity as compared with molding.

さらに、(特許文献2)の冷却装置110の受熱構造では、構造が複雑であるばかりでなく、半導体素子112から水冷ジャケット116の内部を流れる液体冷媒までの熱伝達経路が比較的長く、しかも回路基板111を被覆するキャップ113内には非常に大きな熱抵抗を有する気体層が数箇所に存在し、空気より熱伝導率の大きい気体、例えば水素やヘリウムであっても銅やアルミニウムなどの熱電性のよい金属材料に比較するとその熱伝導率は極めて小さいものであり、さらにはキャップ113と水冷ジャケット116のそれぞれの熱抵抗とその間にも境界層の熱抵抗が存在するので、それら全ての熱抵抗が加わる結果、全体として熱抵抗は非常に大きいものとなり、特に発熱量の大きな発熱体に対応する場合には十分な冷却性能が得られないという課題があった。   Furthermore, in the heat receiving structure of the cooling device 110 of (Patent Document 2), not only the structure is complicated, but also the heat transfer path from the semiconductor element 112 to the liquid refrigerant flowing inside the water cooling jacket 116 is relatively long, and the circuit There are several gas layers having a very large thermal resistance in the cap 113 covering the substrate 111, and even a gas having a higher thermal conductivity than air, such as hydrogen or helium, is thermoelectric such as copper or aluminum. Compared with a good metal material, its thermal conductivity is extremely small, and furthermore, since there is a thermal resistance of each of the cap 113 and the water cooling jacket 116 and a boundary layer, there is a thermal resistance of all of them. As a result, the thermal resistance as a whole becomes very large, and sufficient cooling performance is obtained especially when dealing with heating elements that generate large amounts of heat. There is a problem that is not.

本発明は、このような従来の課題を解決するものであり、受熱器の構造を改良し、液体冷媒との熱交換を促進して、少ない液体冷媒の流量でも容易に冷却性能を向上でき、しかも簡素な構造で小型化への対応も容易な受熱器を提供することを目的とする。   The present invention solves such a conventional problem, improves the structure of the heat receiver, promotes heat exchange with the liquid refrigerant, can easily improve the cooling performance even with a small liquid refrigerant flow rate, In addition, it is an object of the present invention to provide a heat receiver that has a simple structure and can easily cope with downsizing.

上記目的を達成するために、本発明に係わる受熱器は、一対の液輸送路を接続して内部に液体冷媒を流す受熱器であって、一方の面には発熱体と熱接続する受熱面を設けその裏側の面には伝熱用の第1のフィンを立設した受熱板と、第1のフィンを収容するように受熱板と組み合わされたケーシングと、受熱板とケーシングとの間に挟装され、受熱板との間で伝熱室を形成するとともにケーシングとの間では羽根車を収容するポンプ室を形成し、中央部に貫通穴を有する隔壁部材と、を備え、伝熱室に流入した液体冷媒には、第1のフィンの熱を伝達し、その伝熱室から隔壁部材の貫通穴を通過してポンプ室に流入した液体冷媒には、ポンプ室に収容された羽根車の回転運動により推進力を与え、隔壁部材の受熱板に対向する面から受熱板の方向へ第2のフィンを立設し、液体冷媒の流れを制御することを主要な特徴としている。   In order to achieve the above object, a heat receiver according to the present invention is a heat receiver that connects a pair of liquid transport paths and allows liquid refrigerant to flow therein, and has one surface that is thermally connected to a heating element. Between the heat receiving plate and the casing, a heat receiving plate in which the first fin for heat transfer is erected on the back surface, a casing combined with the heat receiving plate so as to accommodate the first fin, and A heat transfer chamber formed between the casing and the heat receiving plate, and a pump chamber for accommodating the impeller between the casing and the partition wall member having a through hole in the center. The heat of the first fin is transferred to the liquid refrigerant that has flowed into the pump, and the impeller contained in the pump chamber is transferred to the liquid refrigerant that has passed through the through hole of the partition wall member from the heat transfer chamber and flowed into the pump chamber. Propulsive force is applied by the rotational movement of the partition plate, and the heat receiving plate Erected a second fin to direction, it is mainly characterized in that to control the flow of liquid coolant.

本発明の受熱器によれば、液体冷媒との熱交換を促進して、少ない液体冷媒の流量でも容易に冷却性能を向上でき、しかも簡素な構造で小型化への対応も容易にできるという効果を奏する。   According to the heat receiver of the present invention, the heat exchange with the liquid refrigerant can be promoted, the cooling performance can be easily improved even with a small liquid refrigerant flow rate, and the size reduction can be easily achieved with a simple structure. Play.

本発明の請求項1記載の発明によれば、一対の液輸送路を接続して内部に液体冷媒を流す受熱器であって、一方の面には発熱体と熱接続する受熱面を設けその裏側の面には伝熱用の第1のフィンを立設した受熱板と、第1のフィンを収容するように受熱板と組み合わされたケーシングと、受熱板とケーシングとの間に挟装され、受熱板との間で伝熱室を形成するとともにケーシングとの間では羽根車を収容するポンプ室を形成し、中央部に貫通穴を有する隔壁部材と、を備え、伝熱室に流入した液体冷媒には、第1のフィンの熱を伝達し、その伝熱室から隔壁部材の貫通穴を通過してポンプ室に流入した液体冷媒には、ポンプ室に収容された羽根車の回転運動により推進力を与え、隔壁部材の受熱板に対向する面から受熱板の方向へ液体冷媒の流れを制御する第2のフィンを立設したので、まず発熱体が熱接続され最も温度の高くなる受熱面の裏側の面に液体冷媒への熱伝達の機能を有する複数の伝熱用の第1のフィンが立設されていることで、発熱体からその第1のフィンまでの熱伝導経路は短くなり熱抵抗が小さくなり、伝熱室においてより効率的に発熱体の熱を第1のフィンの隙間の流路を流れる液体冷媒に熱伝達することができる。   According to the first aspect of the present invention, there is provided a heat receiver that connects a pair of liquid transport paths and allows a liquid refrigerant to flow inside, wherein a heat receiving surface that is thermally connected to a heating element is provided on one surface thereof. A heat receiving plate having the first fin for heat transfer standing on the back surface, a casing combined with the heat receiving plate so as to accommodate the first fin, and the heat receiving plate and the casing are sandwiched between the heat receiving plate and the casing. A heat transfer chamber is formed between the heat receiving plate and a pump chamber that houses the impeller between the heat receiving plate and a partition member having a through hole in the center, and flows into the heat transfer chamber The heat of the first fin is transmitted to the liquid refrigerant, and the rotational movement of the impeller accommodated in the pump chamber is transferred to the liquid refrigerant that has passed through the through hole of the partition wall member from the heat transfer chamber and flowed into the pump chamber. The liquid refrigerant is applied from the surface of the partition wall member facing the heat receiving plate toward the heat receiving plate. Since the second fin for controlling the flow is erected, first, a plurality of heat transfer firsts having a function of transferring heat to the liquid refrigerant on the back surface of the heat receiving surface where the heating element is thermally connected and the temperature is highest. Since the one fin is erected, the heat conduction path from the heating element to the first fin is shortened and the thermal resistance is reduced, and the heat of the heating element is more efficiently transferred in the heat transfer chamber. Heat can be transferred to the liquid refrigerant flowing through the flow path between the fins.

しかも、隔壁部材の受熱板に対向する面から受熱板の方向へ液体冷媒の流れを制御する第2のフィンが立設されているので、その第2のフィンが伝熱用の第1のフィンの隙間の流路を流れる液体冷媒の流れ方向を制御し、液体冷媒との熱交換を促進して、少ない液体冷媒の流量でも容易に冷却性能を向上できるだけでなく、簡素な構造で小型化への対応も容易にできる。   And since the 2nd fin which controls the flow of a liquid refrigerant is standingly arranged from the surface facing a heat receiving plate of a partition member to the direction of a heat receiving plate, the 2nd fin is the 1st fin for heat transfer The flow direction of the liquid refrigerant flowing through the gap in the gap is controlled, heat exchange with the liquid refrigerant is promoted, and the cooling performance can be easily improved even with a small liquid refrigerant flow rate. Can be easily handled.

また、アルミニウム合金、銅合金、亜鉛合金などを用い比較的量産性に優れたダイカスト成型により受熱板に第1のフィンを立設しようとした場合、成型用金型の耐久性やフィンの欠けやワレのない安定した品質の成型性を得るためには、その第1のフィンの板厚と相互に隣接する第1のフィン間の隙間は少なくとも0.8〜1.0mm程度の寸法を確保して立設しなくてはならず、液体冷媒との接触面積を増大するためのそれ以上の狭ピッチ化は、化学エッチング等の製造方法が複雑で量産性に劣る他の手法を必要とする。   In addition, when trying to erect the first fin on the heat receiving plate by die casting with relatively high productivity using aluminum alloy, copper alloy, zinc alloy, etc., the durability of the mold for molding, In order to obtain stable quality moldability without cracks, the thickness of the first fin and the gap between the first fins adjacent to each other should be at least about 0.8 to 1.0 mm. In order to increase the contact area with the liquid refrigerant, further narrowing the pitch requires another method that is complicated in manufacturing method such as chemical etching and inferior in mass productivity.

しかし、このように液体冷媒の流れを適宜制御する第2のフィンを組み合わせた簡素な構造の受熱器としたことにより、実質的に液体冷媒との接触面積を増大するのと等価の熱伝達効果が得られるので、受熱器の量産性が向上し安価な製造も可能となる。   However, a heat transfer effect equivalent to substantially increasing the contact area with the liquid refrigerant by using the heat receiver having a simple structure in which the second fin for appropriately controlling the flow of the liquid refrigerant is combined. Therefore, mass production of the heat receiver is improved, and inexpensive manufacturing is possible.

さらには、受熱器内にポンプ室が設けられ液体冷媒を循環させるポンプ機能も有しているので、この受熱器を備えた冷却装置では、その液循環路内に別体のポンプを必要せず、冷却装置全体の小型化がより一層容易となる。   Further, since the pump chamber is provided in the heat receiver and has a pump function for circulating the liquid refrigerant, the cooling device provided with the heat receiver does not require a separate pump in the liquid circulation path. In addition, the size of the entire cooling device can be further reduced.

本発明の請求項2記載の発明によれば、第1のフィンを液体冷媒の流れ方向に沿った板状の外形形状とし、第2のフィンを液体冷媒の流れ方向に沿った板状の外形形状とし、第1のフィンは、液体冷媒の流れ方向と直交する方向に複数並べられ、相互に隣接する第1のフィンの隙間に、第2のフィンを入り込ませたので、相互に隣接する伝熱用の第1のフィン間の隙間の流路に第2のフィンが介在し、伝熱用の第1のフィンの表面に近接した領域へ連続的に液体冷媒が流れるように制御され、液体冷媒がより効率的に第1のフィンの表面と接触し実質的に液体冷媒との単位流量当たりの接触面積を増大するのと等価の熱伝達効果が得られることとなり、少ない液体冷媒の流量でも冷却性能を向上でき、小型化への対応も容易となる。   According to the second aspect of the present invention, the first fin has a plate-like outer shape along the flow direction of the liquid refrigerant, and the second fin has a plate-like outer shape along the flow direction of the liquid refrigerant. The plurality of first fins are arranged in a direction orthogonal to the flow direction of the liquid refrigerant, and the second fins are inserted into the gaps between the first fins adjacent to each other. The second fin is interposed in the flow path of the gap between the first fins for heat, and the liquid refrigerant is controlled so as to continuously flow to a region close to the surface of the first fin for heat transfer. A heat transfer effect equivalent to that when the refrigerant contacts the surface of the first fin more efficiently and substantially increases the contact area per unit flow rate with the liquid refrigerant can be obtained. Cooling performance can be improved and it is easy to cope with downsizing.

本発明の請求項記載の発明によれば、第1のフィンを受熱板のベース面から離れるに従って漸次薄板化するような段差を有する外形形状とし、第2のフィンを受熱板のベース面に近づくに従って漸次薄板化するような段差を有する外形形状としたので、液体冷媒への熱伝達の機能を有する第1のフィンを、段差を有する外形形状としたことによりその表面積を増大でき、しかもその外形形状に沿って同じく段差を有する第2のフィンが介在するので、第1のフィンの表面に近接した領域へ連続的に液体冷媒が流れるように制御され、単位流量当たりの実質的な接触面積を増大することにもなるので、少ない液体冷媒の流量でも冷却性能を向上でき、小型化への対応もより容易となる。 According to invention of Claim 3 of this invention, it is set as the external shape which has a level | step difference which makes a 1st fin gradually thin as it leaves | separates from the base surface of a heat receiving plate, and a 2nd fin is made into the base surface of a heat receiving plate. Since the outer shape has a step that gradually becomes thinner as it approaches, the surface area can be increased by forming the first fin having a function of transferring heat to the liquid refrigerant into the outer shape having a step, and Since the second fin having the same step along the outer shape is interposed, it is controlled so that the liquid refrigerant continuously flows to a region close to the surface of the first fin, and the substantial contact area per unit flow rate Therefore, the cooling performance can be improved even with a small flow rate of the liquid refrigerant, and it becomes easier to cope with downsizing.

また、第2のフィンの頂面と受熱板のベース面との距離を、相互に隣接する第1のフィンと第2のフィンとの隙間の距離の150%以下となるように近接させた場合には、液体冷媒を伝熱用の第1のフィンの表面に近接した領域へ連続的に液体冷媒が流れるように制御できる作用に加えて、発熱体との熱伝達経路が短く比較的温度が高い受熱板のベース面にもより効率的に接触させることができ、実質的に液体冷媒との単位流量当たりの接触面積を増大するのと等価の熱伝達効果が得られことにもなるので、少ない液体冷媒の流量でも冷却性能を向上でき、小型化への対応もより容易となる。   Also, when the distance between the top surface of the second fin and the base surface of the heat receiving plate is close to 150% or less of the distance between the first fin and the second fin adjacent to each other In addition to the effect that the liquid refrigerant can be controlled so that the liquid refrigerant flows continuously to a region close to the surface of the first fin for heat transfer, the heat transfer path with the heating element is short and the temperature is relatively low. Since it is possible to contact the base surface of the high heat receiving plate more efficiently, and a heat transfer effect equivalent to substantially increasing the contact area per unit flow rate with the liquid refrigerant can be obtained. Cooling performance can be improved even with a small flow rate of liquid refrigerant, and it becomes easier to cope with downsizing.

さらに、第2のフィンの頂面を受熱板のベース面に接触させた場合には、発熱体との熱伝達経路が短く比較的温度が高い受熱板のベース面から第2のフィンへの直接的な熱伝導が得られるので、前述したように第1のフィンの表面に近接した領域へ連続的に液体冷媒が流れるように制御できる作用に加えて、第2のフィンも液体冷媒への熱伝達の機能を有することとなり、単位流量当たりの実質的な接触面積が増大することになるので、少ない液体冷媒の流量でも冷却性能を向上でき、小型化への対応もより容易となる。   Further, when the top surface of the second fin is brought into contact with the base surface of the heat receiving plate, the heat transfer path with the heating element is short and the temperature of the heat receiving plate is relatively high. As described above, in addition to the action that can be controlled so that the liquid refrigerant continuously flows to the region close to the surface of the first fin as described above, the second fin also heats the liquid refrigerant. Since it has a transmission function and the substantial contact area per unit flow rate increases, the cooling performance can be improved even with a small flow rate of liquid refrigerant, and it is easier to cope with downsizing.

本発明の請求項記載の発明によれば、第1のフィンを液体冷媒の流れ方向に沿った板状の外形形状とし、第2のフィンを円柱状の外形形状としたので、液体冷媒への熱伝達の機能を有する伝熱用の第1のフィンは、液体冷媒の流れ方向に沿って十分な接触面積を確保でき、併せて円柱状の外形形状を有する第2のフィンは、流路抵抗を大きく増やすことなく流れ方向を強制的に横方向に変化させその流れ方向の下流側に微小な乱流を発生しやすい外形形状なので、より大きな撹拌作用が得られ、第1のフィンと液体冷媒との熱交換を促進でき冷却性能を向上できる。 According to the invention of claim 4 of the present invention, the first fin has a plate-like outer shape along the flow direction of the liquid refrigerant, and the second fin has a cylindrical outer shape. The first fin for heat transfer having the function of heat transfer can secure a sufficient contact area along the flow direction of the liquid refrigerant, and the second fin having a cylindrical outer shape is a flow path. The outer shape is such that the flow direction is forcibly changed in the horizontal direction without increasing the resistance and a small turbulent flow is likely to be generated downstream in the flow direction, so that a larger stirring action can be obtained, and the first fin and liquid Heat exchange with the refrigerant can be promoted and the cooling performance can be improved.

特に、液体冷媒への熱伝達の機能を有する第1のフィンの表面の近くには、比較的に伝熱量が小さい層流領域の流れが存在するので、第2のフィンによる乱流効果により、実質的に液体冷媒との単位流量当たりの接触面積を増大するのと等価の熱伝達効果が得られることとなり、少ない液体冷媒の流量でも冷却性能を向上できる。   In particular, since there is a laminar flow region with a relatively small amount of heat transfer near the surface of the first fin having a function of heat transfer to the liquid refrigerant, the turbulent flow effect by the second fin A heat transfer effect equivalent to substantially increasing the contact area per unit flow rate with the liquid refrigerant is obtained, and the cooling performance can be improved even with a small flow rate of the liquid refrigerant.

本発明の請求項記載の発明によれば、第1のフィンを液体冷媒の流れ方向に沿って複数立設し、液体冷媒の流れ方向と直交する方向において相互に隣接する第1のフィンの隙間の上流側に、第2のフィンを立設したので、伝熱用の第1のフィンが長さの短い板状の外形形状なので、その表面に近くに存在する比較的に伝熱量が小さい層流領域がさらに液体冷媒の流れが停滞する剥離領域に移行するのを抑制しながら、加えて第2のフィンの乱流効果がより効果的に働き、その第1のフィンと接触する液体冷媒の流速が遅い場合や液体冷媒の流量が少ない受熱器でも効率的に冷却性能を向上できるので、小型化への対応もより容易となる。 According to the invention described in claim 5 of the present invention, a plurality of first fins are erected along the flow direction of the liquid refrigerant, and the first fins adjacent to each other in the direction orthogonal to the flow direction of the liquid refrigerant. Since the second fin is erected on the upstream side of the gap, since the first fin for heat transfer is a plate-like outer shape with a short length, the amount of heat transfer existing near the surface is relatively small. While suppressing the laminar flow region from further shifting to the separation region where the flow of the liquid refrigerant stagnate, in addition, the turbulent flow effect of the second fin works more effectively, and the liquid refrigerant in contact with the first fin Since the cooling performance can be improved efficiently even when the flow velocity of the heat sink is slow or a heat receiver with a low flow rate of the liquid refrigerant, it is easier to cope with downsizing.

本発明の請求項記載の発明によれば、第2のフィンの構成であって、液体冷媒の流れ方向と直交する方向に並べた板状の外形形状のフィン群と液体冷媒の流れる方向と直交する方向に並べた円柱状の外形形状のフィン群とを構成し、その異なる外形形状のフィン群を、液体冷媒の流れる方向に沿って相互に隣接させたので、微小な乱流を強制的に発生させる作用を有する円柱状の外形形状のフィン群と第1のフィンの表面に近接した領域に連続的に液体冷媒が流れるように制御する作用を有する板状の外形形状のフィン群が液体冷媒の流れる方向に沿って相互に隣接するように立設されて、それぞれの作用の相乗効果が得られ、より液体冷媒との熱交換を促進できる。 According to invention of Claim 6 of this invention, it is a structure of a 2nd fin, Comprising: The fin group of the plate-shaped external shape arranged in the direction orthogonal to the flow direction of a liquid refrigerant, and the direction through which a liquid refrigerant flows The cylindrical outer fin group arranged in the orthogonal direction is configured, and the fin groups with different outer shapes are adjacent to each other along the flow direction of the liquid refrigerant. A cylindrical outer fin group having an action to be generated in a plate and an outer fin group having a plate shape having an action of controlling the liquid refrigerant to flow continuously in an area close to the surface of the first fin. It is erected so as to be adjacent to each other along the direction in which the refrigerant flows, so that a synergistic effect of the respective actions can be obtained, and heat exchange with the liquid refrigerant can be further promoted.

しかも、ケーシングの内壁から受熱板の方向へ液体冷媒の流れを制御する第2のフィンが立設されているので、その第2のフィンが伝熱用の第1のフィンの隙間の流路を流れる液体冷媒の流れ方向を制御し、液体冷媒との熱交換を促進して、少ない液体冷媒の流量でも容易に冷却性能を向上できるだけでなく、簡素な構造で小型化への対応も容易にできる。   In addition, since the second fin for controlling the flow of the liquid refrigerant from the inner wall of the casing toward the heat receiving plate is erected, the second fin passes through the flow path of the gap between the first fins for heat transfer. By controlling the flow direction of the flowing liquid refrigerant and promoting heat exchange with the liquid refrigerant, not only can the cooling performance be improved easily even with a small liquid refrigerant flow rate, but also a simple structure can easily cope with downsizing. .

また、アルミニウム合金、銅合金、亜鉛合金などを用い比較的量産性に優れたダイカスト成型により受熱板に第1のフィンを立設しようとした場合、成型用金型の耐久性やフィンの欠けやワレのない安定した品質の成型性を得るためには、その第1のフィンの板厚と相互に隣接する第1のフィン間の隙間は少なくとも0.8〜1.0mm程度の寸法を確保して立設しなくてはならず、液体冷媒との接触面積を増大するためのそれ以上の狭ピッチ化は、化学エッチング等の製造方法が複雑で量産性に劣る他の手法を必要とする。   In addition, when trying to erect the first fin on the heat receiving plate by die casting with relatively high productivity using aluminum alloy, copper alloy, zinc alloy, etc., the durability of the mold for molding, In order to obtain stable quality moldability without cracks, the thickness of the first fin and the gap between the first fins adjacent to each other should be at least about 0.8 to 1.0 mm. In order to increase the contact area with the liquid refrigerant, further narrowing the pitch requires another method that is complicated in manufacturing method such as chemical etching and inferior in mass productivity.

しかし、このように液体冷媒の流れを適宜制御する第2のフィンを組み合わせた簡素な構造の受熱器としたことにより、実質的に液体冷媒との接触面積を増大するのと等価の熱伝達効果が得られるので、受熱器の量産性が向上し安価な製造も可能となる。   However, a heat transfer effect equivalent to substantially increasing the contact area with the liquid refrigerant by using the heat receiver having a simple structure in which the second fin for appropriately controlling the flow of the liquid refrigerant is combined. Therefore, mass production of the heat receiver is improved, and inexpensive manufacturing is possible.

本発明の請求項記載の発明によれば、請求項1からいずれか1項に記載の受熱器を備えたことにより、その受熱器が液体冷媒との熱交換を促進して、少ない液体冷媒の流量でも容易に冷却性能を向上でき、しかも簡素な構造で小型化への対応も容易にできるという効果を有しているので、冷却装置としての冷却性能が向上し、比較的発熱量の大きな発熱体への対応や小型軽量化への対応も容易となる。 According to the seventh aspect of the present invention, since the heat receiver according to any one of the first to sixth aspects is provided, the heat receiver promotes heat exchange with the liquid refrigerant, thereby reducing the amount of liquid. Cooling performance can be easily improved even with the flow rate of the refrigerant, and it has the effect of being able to easily cope with downsizing with a simple structure, so the cooling performance as a cooling device is improved, and a relatively large amount of heat is generated. It becomes easy to deal with large heating elements and miniaturization and weight reduction.

以下、本発明の実施の形態について図面を用いて説明する。なお、各図面において、受熱面側を下方、ケーシング側を上方として説明した。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, the heat receiving surface side is described as the lower side and the casing side as the upper side.

(実施の形態1)
図1〜図5において、図1は本発明の実施の形態1における受熱器の一部切り欠き斜視図で、図2は図1のA−A矢視断面図で、図3(a)は隔壁部材の上方からの斜視図で、図3(b)は隔壁部材の下方からの斜視図で、図3(c)は受熱板の上方からの斜視図で、図4は図2のB−B矢視断面図で、図5(a)は本発明の実施の形態1における受熱器1の主要部の断面図、(b)はその変形例を示した断面図、(c)はその変形例を示した断面図である。
(Embodiment 1)
1 to 5, FIG. 1 is a partially cutaway perspective view of a heat receiver in Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. FIG. 3B is a perspective view from below of the partition member, FIG. 3C is a perspective view from above of the heat receiving plate, and FIG. FIG. 5A is a cross-sectional view taken along the arrow B, FIG. 5A is a cross-sectional view of the main part of the heat receiver 1 according to Embodiment 1 of the present invention, FIG. It is sectional drawing which showed the example.

まず、図1を用いて遠心ポンプを備えた受熱器1の主要な構成について説明するが、受熱板2、第1のフィン2a、隔壁部材3、第2のフィン3b、及びケーシング4を除く他の構成部材については後述するのでそれらを省略して図示した。   First, the main configuration of the heat receiver 1 including the centrifugal pump will be described with reference to FIG. 1 except for the heat receiving plate 2, the first fin 2a, the partition member 3, the second fin 3b, and the casing 4. Since these constituent members will be described later, they are not shown.

略円柱形状の外形を有する受熱器1の底部は、半導体素子などの発熱体(図示せず)と接触し後述する受熱面を介して良好な熱接続を得られるように銅、銅合金、アルミニウム、アルミニウム合金等の熱伝導性の良好な金属材料により製作された受熱板2で構成されている。   The bottom of the heat receiver 1 having a substantially cylindrical outer shape is in contact with a heating element (not shown) such as a semiconductor element so that a good thermal connection can be obtained through a heat receiving surface described later. The heat receiving plate 2 is made of a metal material having good thermal conductivity such as an aluminum alloy.

そして、その平坦な円板形状の受熱板2の上面の略中央に少し窪んだ矩形の凹部2dが形成されており、その凹部2dの内面に液体冷媒の流れ方向に沿った板状の外形形状の第1のフィン2aが複数立設されている。   Then, a rectangular recess 2d that is slightly depressed is formed in the approximate center of the upper surface of the flat disk-shaped heat receiving plate 2, and a plate-like outer shape along the flow direction of the liquid refrigerant is formed on the inner surface of the recess 2d. A plurality of first fins 2a are erected.

ここで、その第1のフィン2aは伝熱用であって、液体冷媒の流れ方向と直交する方向に均等ピッチで略平行となるように複数並べられている。   Here, the first fins 2a are for heat transfer, and a plurality of the first fins 2a are arranged so as to be substantially parallel with a uniform pitch in a direction orthogonal to the flow direction of the liquid refrigerant.

また、その第1のフィン2aを収容するように、ポリフェニレンサルファイド(PPS)、ポリフェニレンエーテル(PPE)等の樹脂成型で製作されたケーシング4が、その受熱板2と組み合わされており、そのケーシング4と受熱板2との空間の一部が受熱器1の内部を流れる液体冷媒の流路を構成している。   Further, a casing 4 made of resin molding such as polyphenylene sulfide (PPS) or polyphenylene ether (PPE) so as to accommodate the first fin 2a is combined with the heat receiving plate 2, and the casing 4 A part of the space between the heat receiving plate 2 and the heat receiving plate 2 constitutes a flow path of the liquid refrigerant flowing inside the heat receiving device 1.

また、詳細に後述するが隔壁部材3は、受熱板2とケーシング4との間に挟装され受熱板2との間で後述する伝熱室5を形成するとともにケーシング4との間では羽根車(図示せず)を収容し、その羽根車の回転運動による遠心方向の推進力を利用して液体冷媒を循環駆動するポンプ室6を形成している。   Further, as will be described in detail later, the partition wall member 3 is sandwiched between the heat receiving plate 2 and the casing 4 to form a heat transfer chamber 5 described later between the heat receiving plate 2 and the impeller between the casing 4. (Not shown) is accommodated, and a pump chamber 6 is formed that circulates and drives the liquid refrigerant by using a centrifugal propulsive force generated by the rotational movement of the impeller.

一方、ケーシング4の側壁には、図示しない冷却装置の一対の液輸送路を接続する吸込口4aと吐出口4bが設けられており、吸込口4aから矢印で示したように流入した液体冷媒は、受熱器1の内部を伝熱室5からポンプ室6の方向へ流れながら第1のフィン2aとの熱交換を行った後に吐出口4bより矢印で示したように受熱器1の外部へ流出する。   On the other hand, the side wall of the casing 4 is provided with a suction port 4a and a discharge port 4b that connect a pair of liquid transport paths of a cooling device (not shown), and the liquid refrigerant that has flowed in from the suction port 4a as indicated by an arrow is After the heat exchange with the first fin 2a while flowing in the direction from the heat transfer chamber 5 to the pump chamber 6 through the inside of the heat receiver 1, it flows out of the heat receiver 1 from the discharge port 4b as indicated by an arrow. To do.

次に、図2は図1のA−A矢視断面図であるが、この図を用いて遠心ポンプを備えた受熱器1の内部構造について詳細に説明する。   Next, FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, and the internal structure of the heat receiver 1 having a centrifugal pump will be described in detail with reference to FIG.

図2において、前述したように、隔壁部材3は受熱板2とケーシング4との間に挟装され受熱板2との間で吸込伝熱室5a、周回伝熱室5b、及びその間を連通する流路5cなどにより構成される伝熱室5を形成するとともに、ケーシング4との間では羽根車7を収容するポンプ室6を形成している。   In FIG. 2, as described above, the partition member 3 is sandwiched between the heat receiving plate 2 and the casing 4, and communicates with the heat receiving plate 2 between the suction heat transfer chamber 5 a, the circulating heat transfer chamber 5 b, and the space therebetween. While forming the heat transfer chamber 5 comprised by the flow path 5c etc., the pump chamber 6 which accommodates the impeller 7 between the casings 4 is formed.

ここで、遠心ポンプを構成する羽根車7は受熱器1の略中心部に軸支され、オープン型の羽根7aが羽根車7の表面に略放射状に複数個立設され、マグネットロータ8が羽根車7の内周側の側面に設けられている。ここで、羽根車7はマグネットロータ8と別体で構成してもよいが、マグネットロータ8となる部分に着磁させた一体型の羽根車7とするのが好適である。   Here, the impeller 7 constituting the centrifugal pump is pivotally supported at a substantially central portion of the heat receiver 1, a plurality of open-type blades 7a are erected on the surface of the impeller 7 in a substantially radial manner, and the magnet rotor 8 is a blade. It is provided on the inner peripheral side surface of the car 7. Here, the impeller 7 may be configured separately from the magnet rotor 8, but it is preferable that the impeller 7 be an integrated impeller 7 that is magnetized in a portion that becomes the magnet rotor 8.

この羽根車7が液体冷媒内で回転すると、羽根7aの外周側における液体冷媒の圧力は、羽根車7の入口(図2のKで示した中央の部分)における液体冷媒の圧力より高くなり、またその羽根車7の入口の圧力は小孔7bによって連通した羽根車7の裏側圧力と略同一であるから、液体冷媒は羽根車7の裏面を通り、その小孔7bを抜けて入口側へ少量還流する。これにより小孔7bがない場合と比較して羽根車7へのスラスト力が軽減され羽根車7の回転がよりスムーズになる。   When the impeller 7 rotates in the liquid refrigerant, the pressure of the liquid refrigerant on the outer peripheral side of the blade 7a becomes higher than the pressure of the liquid refrigerant at the inlet of the impeller 7 (the central portion indicated by K in FIG. 2). Further, since the pressure at the inlet of the impeller 7 is substantially the same as the back side pressure of the impeller 7 communicated by the small hole 7b, the liquid refrigerant passes through the back surface of the impeller 7 and passes through the small hole 7b to the inlet side. Reflux for a small amount. Thereby, compared with the case where there is no small hole 7b, the thrust force to the impeller 7 is reduced, and the rotation of the impeller 7 becomes smoother.

なお、この受熱器1に内蔵された遠心ポンプは小型で、一般の遠心ポンプに対して数十分の一、若しくは数百分の一以下の大きさであり、一例としてその諸元を示すと、厚さ3mm〜50mm、半径方向代表寸法10mm〜100mm、回転数は1000rpm〜8000rpm、ヘッド0.5m〜10m程度のポンプである。   The centrifugal pump built in the heat receiver 1 is small and has a size that is several tenths or one hundredth of that of a general centrifugal pump. The pump has a thickness of 3 mm to 50 mm, a representative dimension in the radial direction of 10 mm to 100 mm, a rotation speed of 1000 rpm to 8000 rpm, and a head of about 0.5 m to 10 m.

次に、マグネットロータ8の内周側にはステータ9が設けられ、磁界を発生させるコイル10がステータ9に巻かれ、回路基板11にはコイル10に電流を流す電気回路が実装されている。   Next, a stator 9 is provided on the inner peripheral side of the magnet rotor 8, a coil 10 for generating a magnetic field is wound around the stator 9, and an electric circuit for passing a current through the coil 10 is mounted on the circuit board 11.

ここで、ステータ9は渦電流損失を少なくするため珪素鋼板を複数枚積層して構成されることが望ましく、コイル10としては絶縁皮膜のついた銅線が適しており、コイル10の線径と巻数は使用される電源電圧、線積率を鑑み最適化される。   Here, the stator 9 is preferably formed by laminating a plurality of silicon steel plates in order to reduce eddy current loss, and a copper wire with an insulating film is suitable as the coil 10. The number of turns is optimized in view of the power supply voltage used and the line factor.

そして、図示していないが、回路基板11の上には、マグネットロータ8の回転位置を検出するホール素子、電流方向切り替え用のトランジスタやダイオードが実装されている。   Although not shown, a Hall element for detecting the rotational position of the magnet rotor 8, a current direction switching transistor and a diode are mounted on the circuit board 11.

また、ケーシング4は、羽根車7を収容すると同時に羽根車7により遠心方向の推進力を与えられた液体冷媒をその側面に接続された吐出口4bの方向へ導き、また吸込口4aもケーシング4の側面のほぼ同じ方向に接続されている。   The casing 4 accommodates the impeller 7 and at the same time guides the liquid refrigerant, which is given a thrust in the centrifugal direction by the impeller 7, to the discharge port 4 b connected to the side surface thereof, and the suction port 4 a is also the casing 4. Connected in almost the same direction on the side of the.

また、そのケーシング4は受熱板2の外周部に形成された鍔部2bと当接しながら組み合わされ、その内部の空間であるポンプ室6などの所定の空間の一部が液体冷媒の流路を構成する。そして、そのポンプ室6ではオープン型の羽根7aの回転運動により推進力を与えられた液体冷媒が吐出口4bへと導かれる。   Further, the casing 4 is combined with the flange 2b formed on the outer peripheral portion of the heat receiving plate 2 in contact with each other, and a part of a predetermined space such as the pump chamber 6 which is the internal space passes through the flow path of the liquid refrigerant. Constitute. In the pump chamber 6, the liquid refrigerant to which the propulsive force is given by the rotational movement of the open type blade 7 a is guided to the discharge port 4 b.

さらに、ケーシング4はその形状が複雑であり、加えてある程度の耐熱性が要求されることから、ポリフェニレンサルファイド(PPS)、ポリフェニレンエーテル(PPE)等の樹脂成型での製作がより好適である。   Furthermore, since the casing 4 has a complicated shape and requires a certain degree of heat resistance, it is more suitable to manufacture by resin molding such as polyphenylene sulfide (PPS) and polyphenylene ether (PPE).

反面、ケーシング4を金属材料で製作することは、ステータ9等の磁気回路が発生する磁束変動により渦電流損失を発生させるので好ましくない。   On the other hand, it is not preferable to manufacture the casing 4 from a metal material because eddy current loss occurs due to magnetic flux fluctuations generated by a magnetic circuit such as the stator 9.

一方、受熱板2は、熱伝導性グリース等(図示せず)を介し2点鎖線で示した半導体素子などの発熱体12と直接的に接触するので、その表面はなるべく平面度を高くし、大きな熱伝導率で放熱性のよい銅、銅合金、アルミニウム、アルミニウム合金等の金属材料を用いて、ダイカスト成型などの鋳造、鍛造、機械加工やこれらの組み合わせの加工方法により製作される。   On the other hand, the heat receiving plate 2 is in direct contact with a heating element 12 such as a semiconductor element indicated by a two-dot chain line through a heat conductive grease or the like (not shown), so that its surface is made as flat as possible, Using metal materials such as copper, copper alloy, aluminum, aluminum alloy and the like having high heat conductivity and good heat dissipation, it is manufactured by casting, forging, machining, or a combination of these, such as die casting.

また、この受熱板2には、熱伝導性のよい金属材料を用いているので、その剛性が高まり、仮に強い応力でケーシング4を発熱体12の方向へ押圧しても、その応力による受熱板2の変形を抑えることができ、発熱体12と受熱面2cの間に隙間ができることを防ぐことができる。   Further, since the heat receiving plate 2 is made of a metal material having good thermal conductivity, its rigidity is increased. Even if the casing 4 is pressed toward the heating element 12 with a strong stress, the heat receiving plate due to the stress is used. 2 can be suppressed, and a gap can be prevented from being formed between the heating element 12 and the heat receiving surface 2c.

そしてその強い力で受熱面2cを発熱体12に押圧できれば、発熱体12と受熱面2cの間に塗布されている熱伝導性グリース(図示せず)を薄く伸ばすことができ、これによって熱伝導性グリースでの熱抵抗を小さくすることができ、製品の振動・衝撃落下時の部品外れを予防することができる。   If the heat receiving surface 2c can be pressed against the heat generating body 12 with the strong force, a heat conductive grease (not shown) applied between the heat generating body 12 and the heat receiving surface 2c can be thinly extended, thereby heat conduction. The thermal resistance of the functional grease can be reduced, and the parts can be prevented from coming off when the product is subjected to vibration or shock.

ここで、受熱板2の下部には2点鎖線で示した半導体素子などの発熱体12との接触面である受熱面2cが設けられ、その反対側の面である上面の略中央に少し窪んだ矩形の凹部2dが形成されており、その凹部2dの内面に液体冷媒の流れ方向に沿った板状の外形形状の第1のフィン2aが複数立設されている。   Here, a heat receiving surface 2c which is a contact surface with a heating element 12 such as a semiconductor element indicated by a two-dot chain line is provided at the lower part of the heat receiving plate 2, and is slightly depressed in the approximate center of the upper surface which is the opposite surface. A rectangular recess 2d is formed, and a plurality of first fins 2a having a plate-like outer shape along the flow direction of the liquid refrigerant are erected on the inner surface of the recess 2d.

また、その第1のフィン2aは伝熱用であって、液体冷媒の流れ方向と直交する方向に均等ピッチで略平行となるように複数並べられているので、その第1のフィン2aはその隙間の流路5cを流れる液体冷媒と接触しながら熱交換し、発熱体12から受け取った熱を効率的に液体冷媒に伝える働きを行なっている。   The first fins 2a are for heat transfer, and a plurality of the first fins 2a are arranged so as to be substantially parallel with a uniform pitch in a direction orthogonal to the flow direction of the liquid refrigerant. Heat exchange is performed while contacting the liquid refrigerant flowing through the gap flow path 5c, and the heat received from the heating element 12 is efficiently transmitted to the liquid refrigerant.

この平坦な円板形状の受熱板2は、受熱面2cより受熱した熱をその裏側の面に形成された伝熱用の第1のフィン2aに伝熱し易い簡素な構造となっており、その第1のフィン2aは、ケーシング4に収容され受熱板2に対して略垂直に立設されているので、受熱面2cから第1のフィン2aまでの伝熱経路を最短距離に設定できる。   This flat disk-shaped heat receiving plate 2 has a simple structure that easily transfers the heat received from the heat receiving surface 2c to the first heat transfer fins 2a formed on the back surface thereof. Since the first fin 2a is accommodated in the casing 4 and is erected substantially perpendicular to the heat receiving plate 2, the heat transfer path from the heat receiving surface 2c to the first fin 2a can be set to the shortest distance.

つまり、伝熱経路が短いということは、受熱面2cと第1のフィン2aとの間の熱抵抗が小さいことを意味し、第1のフィン2aの表面温度を受熱面2cと接触した発熱体12の表面温度により近づけることができるので、液体冷媒と接触しながらその広範囲に対して効率的に熱交換が行なわれ冷却性能が向上する。   That is, the short heat transfer path means that the thermal resistance between the heat receiving surface 2c and the first fin 2a is small, and the heating element in which the surface temperature of the first fin 2a is in contact with the heat receiving surface 2c. Since the temperature can be made closer to the surface temperature of 12, the heat exchange is efficiently performed over a wide range while contacting the liquid refrigerant, and the cooling performance is improved.

この第1のフィン2aは、液体冷媒の流れ方向に沿った板状の外形形状で、液体冷媒の流れ方向と直交する方向に複数並べられていて、液体冷媒と接触する表面積を容易に増加させることができる上に、この第1のフィン2aの間の隙間の流路5cを流れる液体冷媒に対して大きな流路抵抗となることを抑制しているので、小さな圧力損失となり十分な流量を確保することができる。   The first fins 2a have a plate-like outer shape along the flow direction of the liquid refrigerant, and are arranged in a direction orthogonal to the flow direction of the liquid refrigerant, so that the surface area in contact with the liquid refrigerant is easily increased. In addition, since the flow resistance of the liquid refrigerant flowing through the flow path 5c in the gap between the first fins 2a is suppressed, a small pressure loss is ensured and a sufficient flow rate is secured. can do.

さらに、受熱板2に対向する隔壁部材3の皿形状の隔壁板3aの底面から受熱板2の方向へ液体冷媒の流れを制御する第2のフィン3bが立設されており、この第2のフィン3bも液体冷媒の流れ方向に沿った板状の外形形状であり、しかも相互に隣接する第1のフィン2aの隙間に、その第2のフィン3bが入り込んでいるので、第1のフィン2a間の隙間の流路5cにその第2のフィン3bが介在するようになっている。   Furthermore, the 2nd fin 3b which controls the flow of a liquid refrigerant from the bottom face of the plate-shaped partition plate 3a of the partition member 3 facing the heat receiving plate 2 toward the heat receiving plate 2 is provided upright. The fin 3b also has a plate-like outer shape along the flow direction of the liquid refrigerant, and since the second fin 3b enters the gap between the first fins 2a adjacent to each other, the first fin 2a The second fin 3b is interposed in the flow path 5c between the gaps.

その第2のフィン3bは、第1のフィン2aの表面に近接した領域へ連続的に液体冷媒が流れるように制御しているので、液体冷媒をより効率的に第1のフィン2aの表面と接触させることができ、実質的に液体冷媒との単位流量当たりの接触面積を増大するのと等価の熱伝達効果が得られることとなり、少ない液体冷媒の流量でも冷却性能を向上でき、小型化への対応も容易となる。   The second fin 3b is controlled so that the liquid refrigerant continuously flows to a region close to the surface of the first fin 2a, so that the liquid refrigerant is more efficiently connected to the surface of the first fin 2a. Heat transfer effect equivalent to increasing the contact area per unit flow rate with the liquid refrigerant can be obtained, and the cooling performance can be improved even with a small flow rate of the liquid refrigerant. It becomes easy to deal with.

また、第1のフィン2aと第2のフィン3bはそれぞれ吸込伝熱室5aから周回伝熱室5bの方向、つまり液体冷媒が流れる方向へ沿ってそれぞれが略平行となるように直線状に延設されており、しかも吸込口4aと連通した吸込伝熱室5aを経由して第1のフィン2aの延設方向に液体冷媒を供給し、第1のフィン2aや第2のフィン3bで挟まれた隙間の流路5cに対してそれぞれ均一的な流量の液体冷媒が送り込まれている。   Further, the first fin 2a and the second fin 3b extend linearly so as to be substantially parallel to each other from the suction heat transfer chamber 5a to the circumferential heat transfer chamber 5b, that is, the direction in which the liquid refrigerant flows. The liquid refrigerant is supplied in the extending direction of the first fin 2a through the suction heat transfer chamber 5a that is provided and communicated with the suction port 4a, and is sandwiched between the first fin 2a and the second fin 3b. The liquid refrigerant having a uniform flow rate is sent to the flow path 5c in the gap.

従って、簡素な構造にも拘わらず液体冷媒の滞留も少なく流路5c内に液体冷媒を安定して流すことができ、冷却性能を向上することができる。   Therefore, despite the simple structure, the liquid refrigerant stays little and the liquid refrigerant can flow stably in the flow path 5c, and the cooling performance can be improved.

一方、吸込口4aから矢印で示したように流入した液体冷媒は、隔壁部材3の側面に形成された吸込連通口3eを通って、吸込伝熱室5aを経由し、複数の第1のフィン2aと熱交換しながらその隙間の流路5cを流れ周回伝熱室5bへ流れ込み、隔壁部材3の円筒壁3cにぶつかりながら進行方向に対して左右の2方向に分流され、この周回伝熱室5bで後続の液体冷媒と混ざり合いながら、最終的には隔壁部材3のやや周回伝熱室5b側に形成された貫通穴3dを通過してポンプ室6に送り出される。   On the other hand, the liquid refrigerant that has flowed in from the suction port 4a as shown by the arrow passes through the suction communication port 3e formed on the side surface of the partition wall member 3 and then passes through the suction heat transfer chamber 5a, so that the plurality of first fins While exchanging heat with 2a, it flows through the flow path 5c in the gap into the circulating heat transfer chamber 5b, and is divided into two directions on the left and right of the traveling direction while colliding with the cylindrical wall 3c of the partition wall member 3, and this circulating heat transfer chamber While being mixed with the subsequent liquid refrigerant at 5 b, finally, it passes through the through hole 3 d formed on the side of the circumferential heat transfer chamber 5 b of the partition wall member 3 and is sent out to the pump chamber 6.

ここで、貫通穴3dの下方の領域には、第2のフィン3bが介在しないので、その領域の流路抵抗が減り、液体冷媒が直接的にも流路5cから隔壁部材3の皿形状の隔壁板3aの底面に半月形状に開口された貫通穴3dを通過してポンプ室6側に容易に送り出される構造となっている。   Here, since the second fin 3b is not interposed in the region below the through hole 3d, the flow resistance of the region is reduced, and the liquid refrigerant directly forms the dish-shaped partition wall member 3 from the flow channel 5c. The structure is such that it passes through a through-hole 3d opened in a half-moon shape on the bottom surface of the partition plate 3a and is easily sent out to the pump chamber 6 side.

つまり、このような簡素な構造により、液体冷媒が前述したように受熱板2の中央部に流入し、最終的に隔壁部材3の貫通穴3dを通過してポンプ室6側に送り出されるまでの間、発熱体12より受熱した熱が伝熱され高温になった伝熱用の第1のフィン2aの表面と羽根車7の回転運動により液循環駆動された液体冷媒とが接触するので、液体冷媒は効率よく第1のフィン2aと熱交換を行なうことができる。   That is, with such a simple structure, the liquid refrigerant flows into the central portion of the heat receiving plate 2 as described above, and finally passes through the through hole 3d of the partition wall member 3 until it is sent out to the pump chamber 6 side. Since the heat received from the heating element 12 is transferred to the surface of the first fin 2a for heat transfer and the liquid refrigerant driven to circulate by the rotational movement of the impeller 7 is in contact with the liquid. The refrigerant can efficiently exchange heat with the first fins 2a.

そして、その第1のフィン2aは板状の外形形状であり液体冷媒の流れる方向に沿って略平行となるように吸込伝熱室5aから周回伝熱室5bの方向へ直線状に延設されているので、流路抵抗が小さくしかも液体冷媒との接触面積を格段に増やせ、熱交換効率を高めている。   The first fin 2a has a plate-like outer shape, and extends linearly from the suction heat transfer chamber 5a to the circumferential heat transfer chamber 5b so as to be substantially parallel to the direction in which the liquid refrigerant flows. As a result, the flow resistance is small and the contact area with the liquid refrigerant can be significantly increased to increase the heat exchange efficiency.

ここで、受熱器1の構成についてさらに図2を用いて説明すると、ケーシング4の中心に耐食性の高いステンレス等の材質で製作されたシャフト13がインサート成形により一体的に固定され、そのシャフト13が羽根車7を回転自在に軸支している。   Here, the structure of the heat receiver 1 will be further described with reference to FIG. 2. A shaft 13 made of a material such as stainless steel having high corrosion resistance is integrally fixed to the center of the casing 4 by insert molding. The impeller 7 is rotatably supported.

また、前述した皿形状の隔壁板3aを有する隔壁部材3は、ケーシング4と嵌合してポンプ室6を形成し、そのケーシング4と受熱板2の鍔部2bとの間に挟装されたOリング等のシール部材14は、ケーシング4と受熱板2の間から液体冷媒が漏れるのを防止し、周回伝熱室5bは隔壁部材3と受熱板2との間に形成された閉路となっている。   Further, the partition member 3 having the above-described dish-shaped partition plate 3 a is fitted with the casing 4 to form the pump chamber 6, and is sandwiched between the casing 4 and the flange portion 2 b of the heat receiving plate 2. The sealing member 14 such as an O-ring prevents liquid refrigerant from leaking between the casing 4 and the heat receiving plate 2, and the circulating heat transfer chamber 5 b is a closed circuit formed between the partition wall member 3 and the heat receiving plate 2. ing.

この隔壁部材3についても、ケーシング4と同様に形状が複雑であり、耐熱性が要求されることから、ポリフェニレンサルファイド(PPS)、ポリフェニレンエーテル(PPE)等の樹脂成型での製作が好適である。   The partition member 3 is also complicated in shape like the casing 4 and is required to have heat resistance. Therefore, the partition member 3 is preferably manufactured by resin molding such as polyphenylene sulfide (PPS) or polyphenylene ether (PPE).

以上説明した受熱器1を組み立てるときは、まず、隔壁部材3を受熱板2に装着した後に、ケーシング4とインサート成形により一体的に固定されたシャフト13に羽根車7を挿入する。次いで、ケーシング4に受熱板2を嵌合し、ねじ等(図示せず)を用いて固定する。   When assembling the heat receiver 1 described above, first, the partition member 3 is mounted on the heat receiving plate 2 and then the impeller 7 is inserted into the shaft 13 integrally fixed with the casing 4 by insert molding. Next, the heat receiving plate 2 is fitted into the casing 4 and fixed using screws or the like (not shown).

一方、別工程でステータ9にコイル10を巻回し、さらに羽根車7を回転駆動する電子部品を実装した回路基板11をステータ9に取り付けておく。この組み立て体をケーシング4のくぼみの中に挿入した後、充填剤(図示せず)を流し込み、その後恒温槽等を用いてその充填剤を硬化させる。   On the other hand, the coil 10 is wound around the stator 9 in a separate process, and the circuit board 11 on which electronic components for rotating the impeller 7 are mounted is attached to the stator 9. After this assembly is inserted into the recess of the casing 4, a filler (not shown) is poured, and then the filler is cured using a thermostatic bath or the like.

充填剤を使用する理由は回路基板11に実装された電子部品の放熱のためと、万が一に液体冷媒が漏れた場合でも回路基板11に直接触れないようにし信頼性を向上するためであり、そのような充填剤としてはウレタン系やエポキシ系のポッティング剤が好ましい。   The reason for using the filler is to dissipate the electronic components mounted on the circuit board 11 and to improve reliability by preventing direct contact with the circuit board 11 even if liquid refrigerant leaks. Such a filler is preferably a urethane-based or epoxy-based potting agent.

次にこの受熱器1に備えられた遠心ポンプの作用について説明する。   Next, the operation of the centrifugal pump provided in the heat receiver 1 will be described.

まず、回路基板11を動作させ、ステータ9に交番磁界を発生させると、この交番磁界によりマグネットロータ8と一体化された羽根車7が回転し、液体冷媒に運動量を与え中央部が負圧となる。   First, when the circuit board 11 is operated and an alternating magnetic field is generated in the stator 9, the impeller 7 integrated with the magnet rotor 8 is rotated by the alternating magnetic field, giving momentum to the liquid refrigerant and causing the central portion to have a negative pressure. Become.

これにより、液体冷媒は吸込口4aから流入して吸込連通口3eを通り、受熱板2と隔壁部材3で挟まれた空間である吸込伝熱室5aに流入する。そして、流入した液体冷媒は発熱体12の真上に位置し熱伝導により高温になった第1のフィン2aの熱を効率的に奪う。   Thereby, the liquid refrigerant flows in from the suction port 4 a, passes through the suction communication port 3 e, and flows into the suction heat transfer chamber 5 a that is a space sandwiched between the heat receiving plate 2 and the partition wall member 3. The inflowing liquid refrigerant is located directly above the heating element 12 and efficiently takes away the heat of the first fins 2a that has become high temperature due to heat conduction.

その後、液体冷媒はその第1のフィン2aに沿って流れた後、その流出側端部に達し、周回伝熱室5bの中で隔壁部材3の円筒壁3cにぶつかりながら進行方向に対して左右の2方向に分流される。そして分流された液体冷媒は、それぞれ周回伝熱室5bで後続の液体冷媒と混ざり合いながら周回し、羽根車7の入口(図2のKで示した中央の部分)が負圧であるため再び第1のフィン2aの中心方向に吸引され、隔壁部材3の皿形状の隔壁板3aの底面のやや周回伝熱室5b側に半月形状に開口された貫通穴3dを通過してポンプ室6へ送り出される。   After that, the liquid refrigerant flows along the first fin 2a, reaches the outflow side end portion thereof, and strikes the cylindrical wall 3c of the partition wall member 3 in the circulating heat transfer chamber 5b, and moves to the left and right with respect to the traveling direction. Are divided in two directions. The diverted liquid refrigerant circulates in the circulating heat transfer chamber 5b while being mixed with the subsequent liquid refrigerant, and again because the inlet of the impeller 7 (the central portion indicated by K in FIG. 2) has a negative pressure. Suctioned in the center direction of the first fin 2a, passes through the through-hole 3d opened in a half-moon shape on the slightly circulating heat transfer chamber 5b side of the bottom surface of the dish-shaped partition plate 3a of the partition member 3, and enters the pump chamber 6. Sent out.

そして、ポンプ室6に送り出された液体冷媒は、最終的に羽根車7の回転運動により遠心方向の推進力が与えられてポンプ室6の外周部へと導かれ、後述する吐出連通口3fを通って、矢印で示したように吐出口4bから流出される。   The liquid refrigerant sent to the pump chamber 6 is finally given a centrifugal propulsive force by the rotational movement of the impeller 7 and guided to the outer peripheral portion of the pump chamber 6, and the discharge communication port 3 f to be described later is passed through. As shown by the arrow, it flows out from the discharge port 4b.

ここで、図3(a)〜(c)を用いて、前述した内容と一部重複するが、液体冷媒の流れ方を補足して説明する。   Here, using FIGS. 3A to 3C, although partially overlapping with the above-described contents, the flow of the liquid refrigerant will be supplementarily described.

図3(a)は、隔壁部材3の上方からの斜視図で、図3(b)は、その隔壁部材3の下方からの斜視図で、図3(c)は、受熱板2の上方からの斜視図である。   3A is a perspective view of the partition wall member 3 from above, FIG. 3B is a perspective view of the partition wall member 3 from below, and FIG. 3C is a view of the heat receiving plate 2 from above. FIG.

隔壁部材3の側面には、矩形に開口した吸込連通口3eが形成され、図2で示した吸込口4aから流入した液体冷媒はその吸込連通口3eを通って、受熱板2と隔壁部材3との間で形成される吸込伝熱室5a(図2参照)へ液体冷媒が流れるようになっている。   A rectangular suction opening 3e is formed on the side surface of the partition member 3, and the liquid refrigerant flowing in from the suction port 4a shown in FIG. 2 passes through the suction connection port 3e to pass through the heat receiving plate 2 and the partition member 3. The liquid refrigerant flows into a suction heat transfer chamber 5a (see FIG. 2) formed between the two.

ここで、平坦な円板形状の受熱板2の上面の略中央に少し窪んだ矩形の凹部2dが形成されており、その凹部2dの内面に板状の外形形状の第1のフィン2aが複数立設されている。   Here, a rectangular recess 2d that is slightly depressed is formed in the approximate center of the upper surface of the flat disk-shaped heat receiving plate 2, and a plurality of first fins 2a having a plate-like outer shape are formed on the inner surface of the recess 2d. It is erected.

吸込伝熱室5aに流れ込んだ液体冷媒は、その伝熱用の第1のフィン2aや液体冷媒の流れを制御する第2のフィン3bで挟まれた隙間の流路5c(図2参照)を流れながら熱交換を行った後に、隔壁部材3の円筒壁3cにぶつかって進行方向に対して左右の2方向に分流される。   The liquid refrigerant that has flowed into the suction heat transfer chamber 5a passes through the flow path 5c (see FIG. 2) between the first fin 2a for heat transfer and the second fin 3b that controls the flow of the liquid refrigerant. After exchanging heat while flowing, it collides with the cylindrical wall 3c of the partition wall member 3 and is divided into two directions left and right with respect to the traveling direction.

そして、後続の液体冷媒と混ざり合いながら、隔壁部材3の隔壁板3aの底面の周回伝熱室5b側に開口された半月形状の貫通穴3dを通過してポンプ室6(図2参照)に送り出されるようになっている。   Then, while mixing with the subsequent liquid refrigerant, it passes through the half-moon-shaped through hole 3d opened on the side of the circumferential heat transfer chamber 5b on the bottom surface of the partition plate 3a of the partition member 3, and enters the pump chamber 6 (see FIG. 2). It is to be sent out.

また、貫通穴3dの下方の領域には、第2のフィン3bが介在しないので、その領域の流路抵抗が減り、液体冷媒が直接的にも流路5cから貫通穴3dを通過してポンプ室6側に容易に送り出される構造となっている。   Further, since the second fin 3b is not interposed in the region below the through hole 3d, the flow resistance of the region is reduced, and the liquid refrigerant directly passes through the through hole 3d from the flow channel 5c and is pumped. It is structured to be easily sent out to the chamber 6 side.

さらに、ポンプ室6に送り出された液体冷媒は、最終的に羽根車7(図2参照)の回転運動により遠心方向の推進力となる運動量を与えられてポンプ室6の外周部へと導かれ、吐出連通口3fを通って、吐出口4b(図2参照)から受熱器1の外へ流出する。   Furthermore, the liquid refrigerant sent out to the pump chamber 6 is finally given a momentum which becomes a propulsive force in the centrifugal direction by the rotational motion of the impeller 7 (see FIG. 2), and is guided to the outer peripheral portion of the pump chamber 6. Then, it flows out of the heat receiver 1 from the discharge port 4b (see FIG. 2) through the discharge communication port 3f.

以上の説明のように、実施の形態1の遠心ポンプを備えた受熱器1は、受熱した熱を受熱板2や第1のフィン2aの表面より液体冷媒に伝える機能に加えて、ケーシング4と受熱板2との間の所定位置に隔壁部材3を設けて羽根車7を回転運動させるポンプ機能を有しているので、この受熱器1を備えた冷却装置では、液体冷媒の循環駆動用の別体のポンプを必要としないため、装置全体の小型化を容易に実現することができる。   As described above, the heat receiver 1 including the centrifugal pump according to the first embodiment has the function of transmitting the received heat to the liquid refrigerant from the surfaces of the heat receiving plate 2 and the first fin 2a, and the casing 4 Since the partition member 3 is provided at a predetermined position between the heat receiving plate 2 and has a pump function of rotating the impeller 7, the cooling device including the heat receiver 1 is used for circulation driving of liquid refrigerant. Since a separate pump is not required, the entire apparatus can be easily downsized.

次に、図4は図2のB−B矢視断面図であるが、この図を用いて、本発明の主要部である第1のフィン2aと第2のフィン3bについて詳細に説明する。   Next, FIG. 4 is a cross-sectional view taken along the line BB in FIG. 2, and the first fin 2a and the second fin 3b, which are the main parts of the present invention, will be described in detail with reference to FIG.

なお、図2や図3の説明と重複する内容については、説明を一部省略する。   In addition, about the content which overlaps with description of FIG.2 and FIG.3, description is partially abbreviate | omitted.

まず、図4で示したように、平坦な円板形状の受熱板2の上面の略中央に少し窪んだ矩形の凹部2dが形成されており、その凹部2dの内面に複数の第1のフィン2aが液体冷媒の流れる方向に沿って略平行に均等ピッチで立設されている。   First, as shown in FIG. 4, a rectangular recess 2d that is slightly depressed is formed in the approximate center of the upper surface of the flat disk-shaped heat receiving plate 2, and a plurality of first fins are formed on the inner surface of the recess 2d. 2a is erected at an equal pitch substantially parallel to the flowing direction of the liquid refrigerant.

しかも、この第1のフィン2aは、アルミニウム合金、銅合金、亜鉛合金などの熱伝導性の良好な金属材料が用いられて受熱板2とダイカスト成型により一体的に形成されているので、発熱体12が熱接続され最も温度の高くなる受熱面2cの裏側の面と接触する液体冷媒への熱伝達の機能を有する。   Moreover, since the first fin 2a is formed integrally with the heat receiving plate 2 by die casting using a metal material having good thermal conductivity such as an aluminum alloy, a copper alloy, or a zinc alloy, the heating element 12 has a function of transferring heat to the liquid refrigerant in contact with the surface on the back side of the heat receiving surface 2c, which is thermally connected and has the highest temperature.

そしてこの第1のフィン2aは、受熱面2cの裏側の面である凹部2dのベース面2eに対して垂直に立設され、液体冷媒の流れ方向に沿った板状の外形形状で、相互に隣接する第1のフィン2aの隙間に流路5cが形成されているので、その流路5cを流れる液体冷媒と接触しながら、発熱体12から受け取った熱を効率的に液体冷媒に伝える働きを行なっている。   The first fins 2a are erected vertically with respect to the base surface 2e of the recess 2d, which is the surface on the back side of the heat receiving surface 2c, and have a plate-like outer shape along the flow direction of the liquid refrigerant. Since the flow path 5c is formed in the gap between the adjacent first fins 2a, the heat received from the heating element 12 is efficiently transferred to the liquid refrigerant while in contact with the liquid refrigerant flowing through the flow path 5c. Is doing.

この第1のフィン2aは、液体冷媒の流れ方向に沿った板状の外形形状であるので、液体冷媒と接触する表面積を容易に増加させることができる上に、この第1のフィン2a間の隙間の流路5cを流れる液体冷媒に対して大きな流路抵抗となることを抑制しているので、圧力損失も小さく十分な流量を確保することができる。   Since the first fin 2a has a plate-like outer shape along the flow direction of the liquid refrigerant, it is possible to easily increase the surface area in contact with the liquid refrigerant, and between the first fins 2a. Since a large flow resistance against the liquid refrigerant flowing through the gap flow path 5c is suppressed, the pressure loss is small and a sufficient flow rate can be secured.

さらに、隔壁部材3の受熱板2に対向する面から受熱板2の方向へ第2のフィン3bが立設されており、この第2のフィン3bも液体冷媒の流れ方向に沿った板状の外形形状であり、相互に隣接する第1のフィン2a間の隙間にその第2のフィン3bが入り込んでいる。   Furthermore, the 2nd fin 3b is standingly arranged in the direction of the heat receiving plate 2 from the surface facing the heat receiving plate 2 of the partition member 3, and this 2nd fin 3b is also plate-shaped along the flow direction of a liquid refrigerant. The second fin 3b is inserted into the gap between the first fins 2a adjacent to each other in the outer shape.

そして、その第2のフィン3bの頂面3gとベース面2eとの距離が、相互に隣接する第1のフィン2aと第2のフィン3bとの隙間の距離の150%以下となるまで入り込んでいるので、伝熱用の第1のフィン2aの表面に近接した領域へ連続的に液体冷媒が流れるように制御され、液体冷媒がより効率的に第1のフィン2aの表面と接触し実質的に液体冷媒との単位流量当たりの接触面積を増大するのと等価の熱伝達効果が得られることとなり、少ない液体冷媒の流量でも冷却性能を向上でき、小型化への対応も容易となる。   Then, it enters until the distance between the top surface 3g of the second fin 3b and the base surface 2e becomes 150% or less of the distance between the first fin 2a and the second fin 3b adjacent to each other. Therefore, the liquid refrigerant is controlled so as to continuously flow to a region close to the surface of the first fin 2a for heat transfer, and the liquid refrigerant contacts the surface of the first fin 2a more effectively. In addition, a heat transfer effect equivalent to increasing the contact area per unit flow rate with the liquid refrigerant can be obtained, the cooling performance can be improved even with a small flow rate of the liquid refrigerant, and it is easy to cope with downsizing.

また、第1のフィン2aと第2のフィン3bはそれぞれ吸込伝熱室5aから周回伝熱室5bへの方向、つまり液体冷媒の流れる方向へ沿って相互に隣接し略平行となるように直線状に延設されているので、吸込口4aと連通した吸込伝熱室5aを経由して第1のフィン2aの延設方向に液体冷媒を供給し、第1のフィン2aや第2のフィン3bで挟まれた隙間の流路5cに対してそれぞれ均一的な流量の液体冷媒が送り込まれ、簡素な構造にも拘わらず液体冷媒の滞留も少なく流路5c内に液体冷媒を安定して流すことができ、冷却性能を向上することができる。   Further, the first fin 2a and the second fin 3b are linearly adjacent to and substantially parallel to each other along the direction from the suction heat transfer chamber 5a to the circulating heat transfer chamber 5b, that is, the direction in which the liquid refrigerant flows. Since the liquid refrigerant is supplied in the extending direction of the first fin 2a via the suction heat transfer chamber 5a communicating with the suction port 4a, the first fin 2a and the second fin The liquid refrigerant having a uniform flow rate is fed into the flow path 5c between the gaps 3b, and the liquid refrigerant stays little in the flow path 5c in spite of its simple structure. And cooling performance can be improved.

次に、図5(a)の本発明の実施の形態1における受熱器1の主要部の断面図と、図5(b)、(c)のその変形例を示した断面図を用いて、第2のフィン3bの変形例について説明する。   Next, using the cross-sectional view of the main part of the heat receiver 1 according to Embodiment 1 of the present invention in FIG. 5 (a) and the cross-sectional views showing the modifications of FIGS. 5 (b) and (c), A modification of the second fin 3b will be described.

図5(a)に示したように、第1のフィン2a間の隙間の流路5cに第2のフィン3bが入り込み、第1のフィン2aの表面に近接した領域へ連続的に液体冷媒が流れるように制御することに加え、その第2のフィン3bの頂面3gとベース面2eとの距離が、相互に隣接する第1のフィン2aと第2のフィン3bとの隙間の距離の150%以下となるまで入り込んでいるので、液体冷媒を第1のフィン2aの表面だけでなく発熱体12(図示せず)との熱伝達経路が短く比較的温度が高い受熱板2のベース面2eにもより効率的に接触させることができ、液体冷媒がより効率的に第1のフィン2aの表面と受熱板2のベース面2eとに接触し実質的に液体冷媒との単位流量当たりの接触面積を増大するのと等価の熱伝達効果が得られることとなり、少ない液体冷媒の流量でも冷却性能を向上でき、小型化への対応もより容易となる。   As shown in FIG. 5 (a), the second fin 3b enters the flow path 5c in the gap between the first fins 2a, and the liquid refrigerant continuously flows into a region close to the surface of the first fin 2a. In addition to controlling to flow, the distance between the top surface 3g of the second fin 3b and the base surface 2e is 150, which is the distance of the gap between the first fin 2a and the second fin 3b adjacent to each other. %, The liquid refrigerant is not only on the surface of the first fin 2a but also has a short heat transfer path with the heating element 12 (not shown) and the base surface 2e of the heat receiving plate 2 having a relatively high temperature. In addition, the liquid refrigerant can contact the surface of the first fin 2a and the base surface 2e of the heat receiving plate 2 more effectively and substantially contact with the liquid refrigerant per unit flow rate. A heat transfer effect equivalent to increasing the area can be obtained. It also can improve the cooling performance with less liquid refrigerant flow rate, corresponding also becomes easier for miniaturization.

また、図5(b)に示したように、第2のフィン3bの頂面3gが受熱板2のベース面2eに接触している場合には、受熱面2cとの熱伝達経路が短く比較的温度が高い受熱板2のベース面2eから第2のフィン3bへの直接的な熱伝導が得られるので、前述したように第1のフィン2aの表面に近接した領域の流路5cへ連続的に液体冷媒を流れるように制御できる作用に加えて、第2のフィン3bも液体冷媒への熱伝達の機能を有することとなり、単位流量当たりの実質的な接触面積を増大することになるので、少ない液体冷媒の流量でも冷却性能を向上でき、小型化への対応もより容易となる。   In addition, as shown in FIG. 5B, when the top surface 3g of the second fin 3b is in contact with the base surface 2e of the heat receiving plate 2, the heat transfer path with the heat receiving surface 2c is short. Since direct heat conduction from the base surface 2e of the heat receiving plate 2 having a high target temperature to the second fin 3b can be obtained, as described above, the continuous flow to the channel 5c in the region close to the surface of the first fin 2a. In addition to the action that can be controlled to flow through the liquid refrigerant, the second fin 3b also has a function of heat transfer to the liquid refrigerant, which increases the substantial contact area per unit flow rate. Therefore, the cooling performance can be improved even with a small flow rate of the liquid refrigerant, and it becomes easier to cope with downsizing.

なお、この場合においては、隔壁部材3の材質は樹脂製ではなく、受熱板2の材料と同じくアルミニウム合金、銅合金、亜鉛合金等の熱伝導性の良好な金属材料を用いたダイカスト成型により製作するのがより好ましい。   In this case, the material of the partition member 3 is not made of resin, but is manufactured by die casting using a metal material having good thermal conductivity such as an aluminum alloy, a copper alloy, or a zinc alloy as the material of the heat receiving plate 2. More preferably.

さらに、図5(c)に示したように、第1のフィン2aを受熱板2のベース面2eから離れるに従って漸次薄板化するような段差2fを有した外形形状とし、第2のフィン3bを受熱板2のベース面2eに近づくに従って漸次薄板化するような段差3hを有した外形形状としているので、液体冷媒への熱伝達の機能を有する伝熱用の第1のフィン2aの表面積をより増大でき、しかもその外形形状に沿って同じく段差3hを有した第2のフィン3bが介在するので、第1のフィン2aの表面に近接した領域に液体冷媒の流れを制御することができ、単位流量当たりの実質的な接触面積を増大することにもなるので、少ない液体冷媒の流量でも冷却性能を向上でき、小型化への対応もより容易となる。   Further, as shown in FIG. 5 (c), the first fin 2a has an outer shape having a step 2f that gradually becomes thinner as it moves away from the base surface 2e of the heat receiving plate 2, and the second fin 3b is Since the outer shape has a step 3h that gradually becomes thinner as it approaches the base surface 2e of the heat receiving plate 2, the surface area of the first fin 2a for heat transfer having a function of heat transfer to the liquid refrigerant is further increased. Further, since the second fin 3b having the same step 3h is interposed along the outer shape thereof, the flow of the liquid refrigerant can be controlled in a region close to the surface of the first fin 2a. Since the substantial contact area per flow rate is also increased, the cooling performance can be improved even with a small flow rate of the liquid refrigerant, and the reduction in size is facilitated.

また、第2のフィン3bの頂面3gが受熱板2のベース面2eに近接しているので、液体冷媒を第1のフィン2aの段差2fを有する表面だけでなく受熱面2cとの熱伝達経路が短く熱伝導により比較的温度の高い受熱板2のベース面2eにもより効率的に接触させることができ、液体冷媒がより効率的に第1のフィン2aの表面と受熱板2のベース面2eとに接触し実質的に液体冷媒との単位流量当たりの接触面積を増大するのと等価の熱伝達効果が得られることとなり、少ない液体冷媒の流量でも冷却性能を向上でき、小型化への対応もより容易となる。   Further, since the top surface 3g of the second fin 3b is close to the base surface 2e of the heat receiving plate 2, the liquid refrigerant is not only transferred to the surface having the step 2f of the first fin 2a but also to the heat receiving surface 2c. The path can be made to contact the base surface 2e of the heat receiving plate 2 having a short path and a relatively high temperature by heat conduction, and the liquid refrigerant can more efficiently contact the surface of the first fin 2a and the base of the heat receiving plate 2. A heat transfer effect equivalent to increasing the contact area per unit flow rate with the liquid refrigerant in contact with the surface 2e can be obtained, and the cooling performance can be improved even with a small flow rate of the liquid refrigerant. It becomes easier to deal with.

なお、図5(c)で示した第2のフィン3bは、ベース面2eから頂面3gへの立設方向に対して2段の段差3hを有する外形形状としたが、それ以上の段数や逆に1段に設定しても構わないのは言うまでもない。   The second fin 3b shown in FIG. 5 (c) has an outer shape having two steps 3h in the standing direction from the base surface 2e to the top surface 3g. Needless to say, it may be set to one level.

図6〜図8において、図6は本発明の参考例を説明する受熱器1の一部切り欠き斜視図で、図7(a)は図6のC−C矢視断面図で、図7(b)は図7(a)のD−D矢視断面図で、図8(a)は図7(b)のE−E矢視断面図、(b)はその変形例を示したE−E矢視断面図、(c)はその変形例を示したE−E矢視断面図である。 6 to 8, FIG. 6 is a partially cutaway perspective view of the heat receiver 1 for explaining a reference example of the present invention, FIG. 7A is a cross-sectional view taken along the line CC in FIG. 7B is a cross-sectional view taken along the arrow D-D in FIG. 7A, FIG. 8A is a cross-sectional view taken along the line E-E in FIG. 7B, and FIG. -E arrow sectional drawing, (c) is the EE arrow sectional drawing which showed the modification.

まず、図6を用いて、本発明の参考例を説明する受熱器1の主要な構成について説明するが、実施の形態1において説明したものと同様のものについては同一の符号を付けて重複する説明についてはその一部を省略する。 First, the main configuration of the heat receiver 1 that describes the reference example of the present invention will be described with reference to FIG. 6, but the same components as those described in Embodiment 1 are denoted by the same reference numerals and overlapped. A part of the description is omitted.

略直方体の外形を有する受熱器1の底面は、半導体素子などの発熱体(図示せず)と接触し後述する受熱面2cを介して良好な熱接続を得られるように銅、銅合金、アルミニウム、アルミニウム合金等の熱伝導性の良好な金属材料により製作された矩形形状の受熱板2で構成されている。   The bottom surface of the heat receiver 1 having a substantially rectangular parallelepiped shape is in contact with a heating element (not shown) such as a semiconductor element so that a good thermal connection can be obtained via a heat receiving surface 2c described later. The rectangular heat receiving plate 2 is made of a metal material having good thermal conductivity such as an aluminum alloy.

そして、その平坦な矩形形状の受熱板2の上面の略中央に少し窪んだ矩形の凹部2dが形成されており、その凹部2dの内面に液体冷媒の流れ方向に沿った板状の外形形状の第1のフィン2aが複数立設されている。   A rectangular recess 2d that is slightly depressed is formed in the approximate center of the upper surface of the flat rectangular heat receiving plate 2, and a plate-like outer shape along the flow direction of the liquid refrigerant is formed on the inner surface of the recess 2d. A plurality of first fins 2a are provided upright.

ここで、その第1のフィン2aは伝熱用であって、液体冷媒の流れ方向と直交する方向に均等ピッチで略平行となるように複数並べられている。   Here, the first fins 2a are for heat transfer, and a plurality of the first fins 2a are arranged so as to be substantially parallel with a uniform pitch in a direction orthogonal to the flow direction of the liquid refrigerant.

また、その第1のフィン2aを収容するように、同じく銅、銅合金、アルミニウム、アルミニウム合金等の熱伝導性の良好な金属材料により製作されたケーシング15が、その受熱板2と組み合わされており、そのケーシング15と受熱板2との空間の一部が受熱器1の内部を流れる液体冷媒の流路を構成している。   In addition, a casing 15 made of a metal material having a good thermal conductivity such as copper, copper alloy, aluminum, aluminum alloy or the like so as to accommodate the first fin 2a is combined with the heat receiving plate 2. In addition, a part of the space between the casing 15 and the heat receiving plate 2 constitutes a flow path of the liquid refrigerant that flows inside the heat receiver 1.

つまり、ケーシング15と受熱板2との間で吸込伝熱室16a、周回伝熱室16b、及びその間を連通する流路5cなどにより構成される伝熱室16が形成されている。   That is, the heat transfer chamber 16 including the suction heat transfer chamber 16a, the circulating heat transfer chamber 16b, and the flow path 5c communicating between the casing 15 and the heat receiving plate 2 is formed.

一方、ケーシング15の両側の側壁には、図示しない冷却装置の一対の液輸送路を接続する吸込口15aと吐出口15bがそれぞれ設けられており、吸込口15aから矢印で示したように流入した液体冷媒は、吸込伝熱室16aを経由し、複数の第1のフィン2aと熱交換しながらその隙間の流路5cを流れ、周回伝熱室16bへ流れ込み、この周回伝熱室16bで後続の液体冷媒と混ざり合いながら、最終的には吐出口15bから矢印で示したように受熱器1の外部へ流出する。   On the other hand, a suction port 15a and a discharge port 15b that connect a pair of liquid transport paths of a cooling device (not shown) are provided on both side walls of the casing 15, respectively, and flowed in from the suction port 15a as indicated by arrows. The liquid refrigerant passes through the suction heat transfer chamber 16a, flows through the flow path 5c in the gap while exchanging heat with the plurality of first fins 2a, flows into the circulating heat transfer chamber 16b, and continues in the circulating heat transfer chamber 16b. Finally, it flows out of the heat receiver 1 from the discharge port 15b as shown by the arrow while being mixed with the liquid refrigerant.

ここで、複数の第1のフィン2aは吸込伝熱室16aから周回伝熱室16bの方向へ略平行となるように直線状に延設されており、しかも吸込口15aと連通した吸込伝熱室16aを経由して第1のフィン2aの延設方向に液体冷媒を供給し、第1のフィン2aと略平行で且つ複数の第1のフィン2aの隙間で形成される流路5cに対して均一的な流量の液体冷媒を送り込んでいるので、簡素な構造にも拘わらず液体冷媒の滞留も少なく流路5c内に液体冷媒を安定して流すことができ、冷却性能を向上することができる。   Here, the plurality of first fins 2a are linearly extended so as to be substantially parallel to the direction of the circulating heat transfer chamber 16b from the suction heat transfer chamber 16a, and the suction heat transfer communicated with the suction port 15a. The liquid refrigerant is supplied in the extending direction of the first fin 2a via the chamber 16a, and the flow path 5c is formed in the gap between the plurality of first fins 2a substantially parallel to the first fin 2a. Since the liquid refrigerant is fed at a uniform flow rate, the liquid refrigerant can be stably flowed into the flow path 5c despite the simple structure, and the cooling performance can be improved. it can.

また、ケーシング15の内壁から受熱板2の方向へ液体冷媒の流れ方向に沿って複数の円柱状の外形形状の第2のフィン15cが立設されており、相互に隣接する第1のフィン2aの隙間に、その第2のフィン15cが入り込んでいる。   Further, a plurality of cylindrical second fins 15c are erected from the inner wall of the casing 15 in the direction of the heat receiving plate 2 along the flow direction of the liquid refrigerant, and the first fins 2a adjacent to each other. The second fin 15c enters the gap.

また、その第2のフィン15cは、第1のフィン2aに沿って流れる液体冷媒の流れ方向を強制的に横方向に変化させるように円柱状の外形形状であり、液体冷媒への熱伝達の機能を有する第1のフィン2aの表面に近くに存在する比較的に伝熱量が小さい層流領域の流れが第2のフィン15cにより強制的に横方向に変化させられ、その流れ方向の下流側に微小な乱流が発生することにより撹拌作用が容易に得られ第1のフィン2aと液体冷媒との熱交換を促進でき冷却性能を向上できる。   Further, the second fin 15c has a cylindrical outer shape so as to forcibly change the flow direction of the liquid refrigerant flowing along the first fin 2a to the lateral direction, and the heat transfer to the liquid refrigerant. The flow in the laminar flow region present near the surface of the first fin 2a having a function and having a relatively small heat transfer amount is forcibly changed in the lateral direction by the second fin 15c, and is downstream of the flow direction. When a minute turbulent flow is generated in this, a stirring action can be easily obtained, heat exchange between the first fin 2a and the liquid refrigerant can be promoted, and cooling performance can be improved.

一方、図7(a)、(b)で示されるように第1のフィン2aは、平坦な長方形の板状の受熱板2の上面の略中央の凹部2dのベース面2e対して垂直に立設され、液体冷媒の流れ方向に沿った板状の外形形状で、第1のフィン2a間の隙間に流路5cが形成されているので、その流路5cを流れる液体と接触しながら、受熱面2cから受け取った熱を効率的に液体冷媒に伝える働きを行なっている。   On the other hand, as shown in FIGS. 7 (a) and 7 (b), the first fin 2a stands vertically with respect to the base surface 2e of the concave portion 2d at substantially the center of the upper surface of the flat rectangular plate-shaped heat receiving plate 2. Since the flow path 5c is formed in the gap between the first fins 2a with a plate-like outer shape that is provided along the flow direction of the liquid refrigerant, it receives heat while contacting the liquid flowing through the flow path 5c. The heat received from the surface 2c is efficiently transmitted to the liquid refrigerant.

この第1のフィン2aは、液体冷媒の流れ方向に沿った板状の外形形状で、液体冷媒の流れ方向と直交する方向に均等ピッチで略平行となるように複数並べられていて、液体冷媒と接触する表面積を容易に増加させることができる上に、この第1のフィン2a間の隙間の流路5cを流れる液体冷媒に対して大きな流路抵抗となることを抑制しているので、小さな圧力損失となり十分な流量を確保することができる。   The first fins 2a have a plate-like outer shape along the flow direction of the liquid refrigerant, and a plurality of the first fins 2a are arranged so as to be substantially parallel with a uniform pitch in a direction orthogonal to the flow direction of the liquid refrigerant. The surface area in contact with the first fin 2a can be easily increased, and a large flow resistance against the liquid refrigerant flowing through the flow path 5c in the gap between the first fins 2a is suppressed. It becomes pressure loss and a sufficient flow rate can be secured.

さらに、ケーシング15の内壁から受熱板2の方向へ液体冷媒の流れ方向に沿って複数の円柱状の外形形状の第2のフィン15cが立設されており、第1のフィン2aに沿って流れる液体冷媒の流れ方向をその第2のフィン15cにより強制的に横方向に変化させるように円柱状の外形形状であり、液体冷媒への熱伝達の機能を有する第1のフィン2aの表面に近くに存在する比較的に伝熱量が小さい層流領域の流れが第2のフィン15cにより強制的に横方向に変化させられ、その流れ方向の下流側に微小な乱流が発生することにより撹拌作用が容易に得られ第1のフィン2aと液体冷媒との熱交換を促進でき冷却性能を向上できる。   Furthermore, a plurality of cylindrical second fins 15c are erected along the flow direction of the liquid refrigerant from the inner wall of the casing 15 toward the heat receiving plate 2 and flow along the first fins 2a. It has a cylindrical outer shape so as to forcibly change the flow direction of the liquid refrigerant laterally by the second fins 15c, and is close to the surface of the first fin 2a having a function of transferring heat to the liquid refrigerant. The flow in the laminar flow region having a relatively small amount of heat transfer is forced to be laterally changed by the second fins 15c, and a minute turbulent flow is generated on the downstream side in the flow direction. Is easily obtained, heat exchange between the first fin 2a and the liquid refrigerant can be promoted, and the cooling performance can be improved.

また、第1のフィン2aを板状の外形形状としたことにより、液体冷媒への熱伝達の機能を有する第1のフィン2aは液体冷媒の流れ方向に沿って十分な接触面積を確保でき、併せて円柱状の外形形状の第2のフィン15cは、流路抵抗を大きく増やすことなく流れ方向を横方向に変化させその流れ方向の下流側に乱流領域を発生しやすい外形形状なので、より大きな撹拌作用が得られ第1のフィン2aと液体冷媒との熱交換を促進でき冷却性能を向上できる。   In addition, since the first fin 2a has a plate-like outer shape, the first fin 2a having a function of heat transfer to the liquid refrigerant can ensure a sufficient contact area along the flow direction of the liquid refrigerant, In addition, the cylindrical outer shape of the second fin 15c is an outer shape that easily changes the flow direction to the lateral direction without greatly increasing the flow path resistance and easily generates a turbulent flow region downstream of the flow direction. A large stirring action is obtained, heat exchange between the first fin 2a and the liquid refrigerant can be promoted, and the cooling performance can be improved.

図8(a)は、図7(b)のE−E矢視断面図で、板状の外形形状を有する複数の第1のフィン2aの隙間の流路5cを流れる液体冷媒が、ほぼ均等なピッチで立設された円柱状の外形形状を有する第2のフィン15cにより矢印で示したように横方向に変化させられると、そこで微小な乱流が発生し、撹拌作用が容易に得られるので、第1のフィン2aと液体冷媒との熱交換を促進でき冷却性能を向上できる。   FIG. 8A is a cross-sectional view taken along the line E-E in FIG. 7B, and the liquid refrigerant flowing through the flow paths 5c in the gaps between the plurality of first fins 2a having a plate-like outer shape is substantially uniform. When the second fin 15c having a cylindrical outer shape standing upright with a pitch is changed in the lateral direction as shown by the arrow, a minute turbulent flow is generated there and the stirring action can be easily obtained. Therefore, heat exchange between the first fin 2a and the liquid refrigerant can be promoted, and the cooling performance can be improved.

図8(b)は、図8(a)の第1のフィン2gと第2のフィン15cの位置関係に関する変形例である。 8 (b) is a modification to the positional relationship of the first fin 2g and the second fin 15c in FIG. 8 (a).

ここで、やや短めで板状の外形形状の第1のフィン2gを液体冷媒の流れ方向に沿って複数立設し、液体冷媒の流れ方向と直交する方向において相互に隣接する第1のフィン2gの隙間の上流側に、円柱状の外形形状を有する第2のフィン15cを立設したことにより、第1のフィン2gの長さがやや短いので、その表面に近くに存在する比較的に伝熱量が小さい層流領域がさらに液体冷媒の流れが停滞してしまう剥離領域に移行するのを抑制するとともに、効果的に第2のフィン15cが乱流領域を発生する効果があり、液体冷媒への熱伝達の機能を有する第1のフィン2gと接触する液体冷媒の流速が遅い場合や液体冷媒の流量が少ない受熱器でも効率的に冷却性能を向上できるので、小型化への対応も容易となる。   Here, a plurality of first fins 2g each having a slightly shorter plate-like outer shape are provided in the flow direction of the liquid refrigerant, and are adjacent to each other in a direction orthogonal to the flow direction of the liquid refrigerant. Since the second fin 15c having a cylindrical outer shape is erected on the upstream side of the gap of the first fin 2g, the length of the first fin 2g is slightly short, so that the first fin 2g is relatively close to the surface. The laminar flow region with a small amount of heat is further suppressed from moving to the separation region where the flow of the liquid refrigerant stagnate, and the second fins 15c effectively generate a turbulent flow region. The cooling performance can be improved efficiently even when the flow rate of the liquid refrigerant in contact with the first fin 2g having the heat transfer function is low or the heat receiver with a low flow rate of the liquid refrigerant can be easily reduced. Become.

また、図8(c)は図8(a)の第1のフィン2aと第2のフィン15c、15dの位置関係に関する別の変形例である。 Further, FIG. 8 (c) is another variation on the first fin 2a and the second fin 15c, 15d positional relationship of FIG. 8 (a).

ここで、第2のフィン15c、15dの構成であって、液体冷媒の流れ方向と直交する方向に並べた板状の外形形状のフィン群と液体冷媒の流れる方向と直交する方向に並べた円柱状の外形形状のフィン群とを構成し、その異なる外形形状のフィン群を、液体冷媒の流れる方向に沿って相互に隣接させたことにより、第1のフィン2aの表面に近接した領域へ連続的に液体冷媒が流れるように制御できる作用を有する板状の外形形状のフィン群と微小な乱流を強制的に発生させる作用を有する円柱状の外形形状のフィン群とが液体冷媒の流れる方向に沿って相互に隣接されているので、それぞれの作用の相乗効果が得られ、より液体冷媒との熱交換を促進できる。   Here, the configuration of the second fins 15c and 15d is a group of fins having a plate-like outer shape arranged in a direction orthogonal to the flow direction of the liquid refrigerant and a circle arranged in a direction orthogonal to the flow direction of the liquid refrigerant. A fin group having a columnar outer shape is formed, and the fin groups having different outer shapes are adjacent to each other along the direction in which the liquid refrigerant flows, so that the region close to the surface of the first fin 2a is continuous. Direction in which the liquid refrigerant flows through the plate-like outer fin group having an action that can be controlled so that the liquid refrigerant flows in a continuous manner and the cylindrical outer fin group having an action for forcibly generating a minute turbulent flow Therefore, a synergistic effect of the respective actions can be obtained, and heat exchange with the liquid refrigerant can be further promoted.

なお、以上の説明において、第1のフィン2a、2gや第2のフィン3b、15c、15dの高さ、長さ、大きさ、数、位置関係、ピッチなどは、実施の形態に限定されるものではなく、受熱器1の構造や冷却効果などを考慮して適宜選定すればよく、それらのフィン形状についても板状や円柱状の外形形状が好ましいが、同等の作用、効果を有するものであれば、他の形状でも構わない。 In the above description, the height, length, size, number, positional relationship, pitch, and the like of the first fins 2a, 2g and the second fins 3b, 15c, 15d are limited to the first embodiment. However, the fins may be appropriately selected in consideration of the structure of the heat receiver 1 and the cooling effect, and the fin shape is preferably a plate shape or a cylindrical outer shape, but has the same function and effect. Any other shape may be used.

また、第1のフィン2a、2gや第2のフィン3b、15c、15dが板状の外形形状の場合は、実施の形態のように直線状に延設される平板状である必要はなく、湾曲や屈曲するような板状の外形形状でもよい。 Further, when the first fins 2a, 2g and the second fins 3b, 15c, 15d have a plate-like outer shape, it is not necessary to have a flat plate shape extending linearly as in the first embodiment. Alternatively, a plate-like outer shape that is curved or bent may be used.

さらに、それらの製作方法についてもダイカスト成型以外の方法、例えば、別体で作成したフィンを受熱板2やケーシング15にろう付けや溶接などにより接合したり、あるいは、鍛造、粉末冶金、押し出し成型、ワイヤーカット、放電加工などにより成形したりしても構わない。   Further, as for the production method thereof, a method other than die casting, for example, a fin prepared separately is joined to the heat receiving plate 2 or the casing 15 by brazing or welding, or forging, powder metallurgy, extrusion molding, It may be formed by wire cutting, electric discharge machining, or the like.

(実施の形態
図9は、本発明の実施の形態における冷却装置をノートPCに実装した全体構成図である。
(Embodiment 2 )
FIG. 9 is an overall configuration diagram in which the cooling device according to Embodiment 2 of the present invention is mounted on a notebook PC.

ここで、電子機器であるノートPCの筐体17の内部には冷却装置が搭載され、そのノートPCのキーボード18の下に、MPU等の発熱体12と接触して受熱する実施の形態1に記述した遠心ポンプを備えた受熱器1が実装されている。発熱体12は基板19に実装され、ノートPCのディスプレイの背面(裏側)には発熱体12から受熱した液体冷媒の熱を外部に放熱する放熱器20が配置されており、一対の液輸送路21の両端には受熱器1と放熱器20のそれぞれと接続されていて、その閉路中を液体冷媒が循環している。   In the first embodiment, a cooling device is mounted inside a casing 17 of a notebook PC that is an electronic device, and receives heat by contacting a heating element 12 such as an MPU under a keyboard 18 of the notebook PC. The heat receiver 1 with the described centrifugal pump is mounted. The heating element 12 is mounted on the substrate 19, and a radiator 20 that dissipates the heat of the liquid refrigerant received from the heating element 12 to the outside is disposed on the back surface (back side) of the notebook PC display, and a pair of liquid transport paths Both ends of 21 are connected to each of the heat receiver 1 and the radiator 20, and the liquid refrigerant circulates in the closed circuit.

なお、この液体冷媒としては、エチレングリコール水溶液やプロピレングリコール水溶液等の不凍液が適当であり、受熱板2の材料として銅や銅合金等を使用するため、防食添加剤を添加するのが望ましい。   As the liquid refrigerant, an antifreeze solution such as an ethylene glycol aqueous solution or a propylene glycol aqueous solution is appropriate, and since copper, copper alloy, or the like is used as the material of the heat receiving plate 2, it is desirable to add an anticorrosive additive.

一方、放熱器20は、熱伝導率が大きく放熱性のよい材料、例えば銅、銅合金、アルミニウム、アツミニウム合金等の薄板材で構成され、その内部に液体冷媒の流路とリザーブタンクなどが形成され、一対の液輸送路21は、配管レイアウトの自由度を確保するために、フレキシブルでガス透過性の少ないゴム、例えばブチルゴム、フッ素ゴムなどのゴムチューブで構成されている。   On the other hand, the radiator 20 is made of a thin plate material such as copper, copper alloy, aluminum, or ashmium alloy, which has a high thermal conductivity and good heat dissipation, and a liquid refrigerant flow path, a reserve tank, and the like are formed therein. The pair of liquid transport paths 21 is composed of a rubber tube such as a flexible rubber having a low gas permeability, for example, butyl rubber, fluorine rubber, etc., in order to ensure flexibility in piping layout.

また、放熱器20に強制的に空気を当てて冷却効果を向上する目的でファン装置を別に設けてもよい。   Further, a fan device may be separately provided for the purpose of improving the cooling effect by forcibly applying air to the radiator 20.

そして、この冷却装置の受熱器1は実施の形態1で説明したように、一対の液輸送路21を接続して内部に液体冷媒を流す受熱器であって、一方の面には発熱体12と熱接続する受熱面2cを設けその裏側の面には伝熱用の第1のフィン2aを立設した受熱板2と、その第1のフィン2aを収容するように受熱板2と組み合わされたケーシング4と、受熱板2とケーシング4との間に挟装され、受熱板2との間で伝熱室5を形成するとともにケーシング4との間では羽根車7を収容するポンプ室6を形成し、中央部に貫通穴3dを有する隔壁部材3と、を備え、伝熱室5に流入した液体冷媒には、第1のフィン2aの熱を伝達し、その伝熱室5から隔壁部材3の貫通穴3dを通過してポンプ室6に流入した液体冷媒には、ポンプ室6に収容された羽根車7の回転運動により推進力を与え、隔壁部材3の受熱板2に対向する面から受熱板2の方向へ液体冷媒の流れを制御する第2のフィン3bが立設されている。   As described in the first embodiment, the heat receiver 1 of this cooling device is a heat receiver that connects the pair of liquid transport paths 21 and allows the liquid refrigerant to flow inside, and has a heating element 12 on one surface. A heat receiving surface 2c that is thermally connected to the heat receiving plate 2 is provided, and a heat receiving plate 2 in which the first fins 2a for heat transfer are erected on the back surface, and the heat receiving plate 2 so as to accommodate the first fin 2a. A pump chamber 6 sandwiched between the casing 4 and the heat receiving plate 2 and the casing 4 to form a heat transfer chamber 5 between the heat receiving plate 2 and accommodate the impeller 7 between the casing 4 and the casing 4. And a partition member 3 having a through hole 3d at the center, and the liquid refrigerant flowing into the heat transfer chamber 5 is transferred to the heat of the first fin 2a, and the partition member is transferred from the heat transfer chamber 5 to the liquid refrigerant. The liquid refrigerant that has flowed into the pump chamber 6 through the 3 through holes 3 d is accommodated in the pump chamber 6. Gives propulsion by rotation movement of the impeller 7, a second fin 3b for controlling the flow of liquid coolant are erected from the surface facing the heat receiving plate 2 of the partition member 3 in the direction of the heat-receiving plate 2.

従って、この冷却装置は、このような受熱器1を備えたことにより、その受熱器1が液体冷媒との熱交換を促進して、少ない液体冷媒の流量でも容易に冷却性能を向上でき、しかも簡素な構造で小型化への対応も容易にできるという効果を有しているので、冷却装置としての冷却性能が向上し、比較的発熱量の大きな発熱体への対応や小型軽量化への対応も容易となる。   Therefore, since this cooling device includes such a heat receiver 1, the heat receiver 1 promotes heat exchange with the liquid refrigerant, and can easily improve the cooling performance even with a small liquid refrigerant flow rate. Since it has the effect of being able to easily cope with downsizing with a simple structure, the cooling performance as a cooling device is improved, and it is compatible with heating elements with relatively large heat generation and downsizing and weight reduction Is also easier.

しかも、実施の形態の受熱器1は、ポンプ機能も併せて有しているので、液循環路内に別体のポンプを必要せず、ノートPCの筐体17全体の小型軽量化を容易に実現することができる。 In addition, since the heat receiver 1 of the second embodiment also has a pump function, a separate pump is not necessary in the liquid circulation path, and the entire casing 17 of the notebook PC can be easily reduced in size and weight. Can be realized.

本発明は、電子機器に搭載された発熱体を液体冷媒の循環により冷却する冷却装置に適用することができる。   The present invention can be applied to a cooling device that cools a heating element mounted on an electronic device by circulation of a liquid refrigerant.

本発明の実施の形態1における受熱器の一部切り欠き斜視図The partially cutaway perspective view of the heat receiver in Embodiment 1 of the present invention 図1のA−A矢視断面図AA arrow sectional view of FIG. (a)隔壁部材の上方からの斜視図、(b)隔壁部材の下方からの斜視図、(c)受熱板の上方からの斜視図(A) Perspective view from above of partition member, (b) Perspective view from below of partition member, (c) Perspective view from above of heat receiving plate 図2のB−B矢視断面図BB arrow sectional view of FIG. (a)本発明の実施の形態1における受熱器1の主要部の断面図、(b)その変形例を示した断面図、(c)その変形例を示した断面図(A) Cross-sectional view of main part of heat receiver 1 according to Embodiment 1 of the present invention, (b) Cross-sectional view showing its modification, (c) Cross-sectional view showing its modification 本発明の参考例を説明する受熱器の一部切り欠き斜視図Partially cutaway perspective view of a heat receiver for explaining a reference example of the present invention (a)図6のC−C矢視断面図、(b)図7(a)のD−D矢視断面図(A) CC arrow sectional drawing of FIG. 6, (b) DD arrow sectional drawing of FIG. 7 (a). (a)図7(b)のE−E矢視断面図、(b)その変形例を示したE−E矢視断面図、(c)その変形例を示したE−E矢視断面図(A) EE arrow sectional view of FIG.7 (b), (b) EE arrow sectional drawing which showed the modification, (c) EE arrow sectional drawing which showed the modification. 本発明の実施の形態における冷却装置をノートPCに実装した全体構成図Overall configuration diagram in which a cooling device according to Embodiment 2 of the present invention is mounted on a notebook PC (a)(特許文献1)に記載の受熱器の分解斜視図、(b)その外観斜視図、(c)そのA−A断面の部分拡大断面図(A) An exploded perspective view of the heat receiver described in (Patent Document 1), (b) an external perspective view thereof, and (c) a partially enlarged sectional view of the AA cross section. (a)(特許文献2)に記載の冷却装置の断面図、(b)その部分拡大断面図(A) Sectional view of the cooling device described in (Patent Document 2), (b) Partial enlarged sectional view

符号の説明Explanation of symbols

1 受熱器
2 受熱板
2a 第1のフィン
2b 鍔部
2c 受熱面
2d 凹部
2e ベース面
2f 段差
2g 第1のフィン
3 隔壁部材
3a 隔壁板
3b 第2のフィン
3c 円筒壁
3d 貫通穴
3e 吸込連通口
3f 吐出連通口
3g 頂面
3h 段差
4 ケーシング
4a 吸込口
4b 吐出口
5 伝熱室
5a 吸込伝熱室
5b 周回伝熱室
5c 流路
6 ポンプ室
7 羽根車
7a 羽根
7b 小孔
8 マグネットロータ
9 ステータ
10 コイル
11 回路基板
12 発熱体
13 シャフト
14 シール部材
15 ケーシング
15a 吸込口
15b 吐出口
15c 第2のフィン
15d 第2のフィン
16 伝熱室
16a 吸込伝熱室
16b 周回伝熱室
17 筐体
18 キーボード
19 基板
20 放熱器
21 液輸送路
K 羽根車の入口
DESCRIPTION OF SYMBOLS 1 Heat receiver 2 Heat receiving plate 2a 1st fin 2b Eaves part 2c Heat receiving surface 2d Recessed part 2e Base surface 2f Step 2g 1st fin 3 Partition member 3a Partition plate 3b 2nd fin 3c Cylindrical wall 3d Through-hole 3e Suction communication port 3f Discharge communication port 3g Top surface 3h Step 4 Casing 4a Suction port 4b Discharge port 5 Heat transfer chamber 5a Suction heat transfer chamber 5b Circulating heat transfer chamber 5c Flow path 6 Pump chamber 7 Impeller 7a Blade 7b Small hole 8 Magnet rotor 9 Stator DESCRIPTION OF SYMBOLS 10 Coil 11 Circuit board 12 Heating body 13 Shaft 14 Seal member 15 Casing 15a Suction port 15b Discharge port 15c 2nd fin 15d 2nd fin 16 Heat transfer chamber 16a Suction heat transfer chamber 16b Circumferential heat transfer chamber 17 Case 18 Keyboard 19 Substrate 20 Radiator 21 Liquid transport path K Impeller entrance

Claims (7)

一対の液輸送路を接続して内部に液体冷媒を流す受熱器であって、一方の面には発熱体と熱接続する受熱面を設けその裏側の面には伝熱用の第1のフィンを立設した受熱板と、前記第1のフィンを収容するように前記受熱板と組み合わされたケーシングと、前記受熱板と前記ケーシングとの間に挟装され、前記受熱板との間で伝熱室を形成するとともに前記ケーシングとの間では羽根車を収容するポンプ室を形成し、中央部に貫通穴を有する隔壁部材と、を備え、前記伝熱室に流入した液体冷媒には、前記第1のフィンの熱を伝達し、その伝熱室から前記隔壁部材の前記貫通穴を通過して前記ポンプ室に流入した液体冷媒には、前記ポンプ室に収容された羽根車の回転運動により推進力を与え、前記隔壁部材の前記受熱板に対向する面から前記受熱板の方向へ液体冷媒の流れを制御する第2のフィンを立設することを特徴とする受熱器。 A heat receiver that connects a pair of liquid transport paths and allows a liquid refrigerant to flow therein, wherein a heat receiving surface that is thermally connected to a heating element is provided on one surface, and a first fin for heat transfer is provided on the back surface thereof A heat receiving plate erected, a casing combined with the heat receiving plate so as to accommodate the first fin, and the heat receiving plate and the casing, and are interposed between the heat receiving plate and the heat receiving plate. Forming a heat chamber and a pump chamber for accommodating an impeller between the casing and a partition member having a through hole in the center, and the liquid refrigerant flowing into the heat transfer chamber The liquid refrigerant that has transferred the heat of the first fin and passed through the through hole of the partition member from the heat transfer chamber and flowed into the pump chamber is caused by the rotational movement of the impeller housed in the pump chamber. Providing a propulsive force, front from the surface of the partition member facing the heat receiving plate Heat receiver, characterized in that the erected second fin for controlling the flow of liquid coolant toward the heat receiving plate. 前記第1のフィンを液体冷媒の流れ方向に沿った板状の外形形状とし、前記第2のフィンを液体冷媒の流れ方向に沿った板状の外形形状とし、前記第1のフィンは、液体冷媒の流れ方向と直交する方向に複数並べられ、相互に隣接する前記第1のフィンの隙間に、前記第2のフィンを入り込ませることを特徴とする請求項1記載の受熱器。 The first fin has a plate-like outer shape along the flow direction of the liquid refrigerant, the second fin has a plate-like outer shape along the flow direction of the liquid refrigerant, and the first fin is a liquid 2. The heat receiver according to claim 1, wherein a plurality of the second fins are inserted into a gap between the first fins that are arranged in a direction orthogonal to the flow direction of the refrigerant and are adjacent to each other. 前記第1のフィンを前記受熱板のベース面から離れるに従って漸次薄板化するような段差を有する外形形状とし、前記第2のフィンを前記受熱板のベース面に近づくに従って漸次薄板化するような段差を有する外形形状とすることを特徴とする請求項2記載の受熱器。 The first fin has an outer shape having a step that gradually thins as it moves away from the base surface of the heat receiving plate, and the step that gradually thins the second fin as it approaches the base surface of the heat receiving plate. The heat receiver according to claim 2, wherein the heat receiver has an outer shape having a shape. 前記第1のフィンを液体冷媒の流れ方向に沿った板状の外形形状とし、前記第2のフィンを円柱状の外形形状とすることを特徴とする請求項2記載の受熱器。 The heat receiver according to claim 2, wherein the first fin has a plate-like outer shape along a flow direction of the liquid refrigerant, and the second fin has a cylindrical outer shape. 前記第1のフィンを液体冷媒の流れ方向に沿って複数立設し、液体冷媒の流れ方向と直交する方向において相互に隣接する前記第1のフィンの隙間の上流側に、前記第2のフィンを立設することを特徴とする請求項4記載の受熱器。 A plurality of the first fins are erected along the flow direction of the liquid refrigerant, and the second fins are disposed upstream of the gap between the first fins adjacent to each other in the direction orthogonal to the flow direction of the liquid refrigerant. The heat receiver according to claim 4, wherein 第2のフィンの構成であって、液体冷媒の流れ方向と直交する方向に並べた板状の外形形状のフィン群と液体冷媒の流れる方向と直交する方向に並べた円柱状の外形形状のフィン群とを構成し、その異なる外形形状のフィン群を、液体冷媒の流れる方向に沿って相互に隣接させることを特徴とする請求項2記載の受熱器。 The fins having a plate-like outer shape arranged in the direction orthogonal to the flow direction of the liquid refrigerant and the columnar outer fins arranged in the direction orthogonal to the direction of the liquid refrigerant flowing, which are the configurations of the second fins The heat receiver according to claim 2, wherein the fin groups having different outer shapes are adjacent to each other along a direction in which the liquid refrigerant flows. 請求項1からいずれか1項に記載の受熱器を備えたことを特徴とする冷却装置。 Cooling apparatus characterized by comprising a heat receiver according to any of the preceding claims 1 to.
JP2005332378A 2005-11-17 2005-11-17 Heat receiver and cooling device provided with the same Expired - Fee Related JP4645420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005332378A JP4645420B2 (en) 2005-11-17 2005-11-17 Heat receiver and cooling device provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005332378A JP4645420B2 (en) 2005-11-17 2005-11-17 Heat receiver and cooling device provided with the same

Publications (2)

Publication Number Publication Date
JP2007142068A JP2007142068A (en) 2007-06-07
JP4645420B2 true JP4645420B2 (en) 2011-03-09

Family

ID=38204595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332378A Expired - Fee Related JP4645420B2 (en) 2005-11-17 2005-11-17 Heat receiver and cooling device provided with the same

Country Status (1)

Country Link
JP (1) JP4645420B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002522B2 (en) * 2008-04-24 2012-08-15 株式会社日立製作所 Cooling device for electronic equipment and electronic equipment provided with the same
KR101159038B1 (en) * 2012-04-09 2012-06-22 주식회사 송촌조명 The heatsink for lighting equipment
JP6194504B2 (en) * 2012-09-12 2017-09-13 三菱電機株式会社 Cooling system
KR101951881B1 (en) * 2017-08-24 2019-02-26 (주)위지아이 LED lighting apparatus
CN109696008B (en) * 2019-01-31 2023-09-26 深圳市研派科技有限公司 Fluid cooling device
JP6984778B1 (en) * 2021-05-20 2021-12-22 富士電機株式会社 Semiconductor device with cooling device and cooling device
JP2022188388A (en) * 2021-06-09 2022-12-21 日立Astemo株式会社 Electronic control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738025A (en) * 1993-07-22 1995-02-07 Nippondenso Co Ltd Cooling structure
JP2001015662A (en) * 1999-06-30 2001-01-19 Nippon Keiki Works Ltd Cooling device
JP2004134423A (en) * 2002-10-08 2004-04-30 Hitachi Ltd Electronic apparatus cooling device
JP2004218941A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Cooling device
JP2004288809A (en) * 2003-03-20 2004-10-14 Matsushita Electric Ind Co Ltd Contact type liquid-cooled heat-receiving body and cooling system for electronic part having it
JP2004347291A (en) * 2003-05-26 2004-12-09 Matsushita Electric Ind Co Ltd Cooling device
JP2005142191A (en) * 2003-11-04 2005-06-02 Matsushita Electric Ind Co Ltd Cooling device
JP2005150755A (en) * 2003-11-19 2005-06-09 Intel Corp Cold plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738025A (en) * 1993-07-22 1995-02-07 Nippondenso Co Ltd Cooling structure
JP2001015662A (en) * 1999-06-30 2001-01-19 Nippon Keiki Works Ltd Cooling device
JP2004134423A (en) * 2002-10-08 2004-04-30 Hitachi Ltd Electronic apparatus cooling device
JP2004218941A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Cooling device
JP2004288809A (en) * 2003-03-20 2004-10-14 Matsushita Electric Ind Co Ltd Contact type liquid-cooled heat-receiving body and cooling system for electronic part having it
JP2004347291A (en) * 2003-05-26 2004-12-09 Matsushita Electric Ind Co Ltd Cooling device
JP2005142191A (en) * 2003-11-04 2005-06-02 Matsushita Electric Ind Co Ltd Cooling device
JP2005150755A (en) * 2003-11-19 2005-06-09 Intel Corp Cold plate

Also Published As

Publication number Publication date
JP2007142068A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4645420B2 (en) Heat receiver and cooling device provided with the same
JP3994948B2 (en) Cooling device and electronic equipment
JP4244703B2 (en) Cooling system
US20060171801A1 (en) Heatsink apparatus
JP5002522B2 (en) Cooling device for electronic equipment and electronic equipment provided with the same
US6832646B1 (en) Cooler for electronic device
JP4532422B2 (en) Heat sink with centrifugal fan
JP2006207881A (en) Cooling device and electronic apparatus comprising the same
JP2006294678A (en) Radiator and cooling device having the same
JP2009088125A (en) Cooling unit, and electronic equipment equipped with the same
JP4682859B2 (en) Cooling system for electronic equipment
JP2003152376A (en) Electronic equipment
JP2007247495A (en) Centrifugal fan device and electronics provided therewith
JP7238400B2 (en) Cooling system
JP2006039663A (en) Liquid-circulating system and liquid-cooling system using the same
JP2006332575A (en) Cooler, heat sink and electronic apparatus
JP5117287B2 (en) Electronic equipment cooling system
JP2007035901A (en) Heat receiver and cooling device equipped with it
JP4238776B2 (en) Cooling system
JP4682858B2 (en) Cooling device for electronic equipment
JP2005315158A (en) Pump, cooling system and electronic equipment
JP4258292B2 (en) Cooling system
JP2004047922A (en) Cooling unit for electronic apparatus
JP2006249966A (en) Centrifugal pump and cooling device using the same
JP2005243925A (en) Cooling module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees