JP4644842B2 - Non-contact tonometer - Google Patents

Non-contact tonometer Download PDF

Info

Publication number
JP4644842B2
JP4644842B2 JP2005082074A JP2005082074A JP4644842B2 JP 4644842 B2 JP4644842 B2 JP 4644842B2 JP 2005082074 A JP2005082074 A JP 2005082074A JP 2005082074 A JP2005082074 A JP 2005082074A JP 4644842 B2 JP4644842 B2 JP 4644842B2
Authority
JP
Japan
Prior art keywords
cornea
airflow
light intensity
intensity signal
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005082074A
Other languages
Japanese (ja)
Other versions
JP2006262990A (en
Inventor
真 金子
弘 三嶋
浩 小泉
直樹 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Hiroshima University NUC
Original Assignee
Topcon Corp
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp, Hiroshima University NUC filed Critical Topcon Corp
Priority to JP2005082074A priority Critical patent/JP4644842B2/en
Publication of JP2006262990A publication Critical patent/JP2006262990A/en
Application granted granted Critical
Publication of JP4644842B2 publication Critical patent/JP4644842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、角膜の硬さ(角膜の剛性)を測定できる非接触式眼圧計の改良に関する。   The present invention relates to an improvement in a non-contact tonometer that can measure the hardness of the cornea (corneal stiffness).

非接触式眼圧計には、被検者の眼の角膜に気流を吹き付け、角膜への気流の吹き付け開始から角膜の所定変形量時点までの時間を検出して眼圧を測定すると共に、角膜が圧平されてから陥没し、陥没した角膜が元の圧平状態に復元するまでの時間が角膜の硬さによって異なることから、この復元時間を計測することにより角膜の硬さを推定し、眼圧を補正する構成のものが知られている(例えば、特許文献1参照。)。
特開2000−212号公報
The non-contact tonometer measures the intraocular pressure by blowing airflow onto the cornea of the subject's eye, detecting the time from the start of blowing the airflow to the cornea until the predetermined amount of deformation of the cornea, and the cornea Since the time it takes for the cornea to collapse after being applanated and the collapsed cornea reverts to its original applanation depends on the hardness of the cornea, by measuring this recovery time, the hardness of the cornea is estimated, and the eye The thing of the structure which correct | amends a pressure is known (for example, refer patent document 1).
JP 2000-212 JP

ところで、一般に、眼圧が高いと角膜の変位量(陥没量)は小さく、眼圧が低いと角膜の変形量は大きく、その従来の非接触式眼圧計では、角膜の圧平時点からこの角膜を更に陥没させてこの陥没した角膜が元の圧平状態に復元するまでの復元時点までの時間を計測する構成を採用して角膜の硬さを測定しているので、角膜の硬さの測定に際して、眼圧の影響を受ける度合いが大きいという問題点がある。   By the way, in general, when the intraocular pressure is high, the amount of displacement of the cornea (the amount of depression) is small, and when the intraocular pressure is low, the amount of deformation of the cornea is large. In the conventional non-contact tonometer, this cornea is from the applanation time of the cornea. Corneal hardness is measured by adopting a configuration that measures the time until the point of restoration until the depressed cornea is restored to its original applanation state. At this time, there is a problem that the degree of influence of intraocular pressure is large.

また、角膜を陥没させて角膜の硬さを測定するため、被検者の受ける負担も大きい。   Moreover, since the cornea is depressed and the hardness of the cornea is measured, the burden on the subject is large.

本発明は、上記事情に鑑みて為されたもので、眼圧の影響を受ける度合いが極力少なくかつ被検者の負担の軽減を図ることのできる非接触式眼圧計を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-contact tonometer that is less affected by intraocular pressure and can reduce the burden on the subject. To do.

請求項1に記載の発明は、被検眼の角膜に気流を吹き付けて前記角膜を変形させる気流吹きつけ手段と、前記気流吹き付け手段による角膜の変形を光学的に検出して光量強度信号を出力する角膜変形検出手段と、前記気流吹きつけ手段の作動開始時点から計時を開始しかつ前記光量強度信号の立ち上がりの裾の部分に対応する所定時点での前記光量強度信号を取得させる該所定時点を計時する計時手段と、前記光量強度信号を角膜変形量に換算すると共に該角膜変形量と前記被検眼の角膜に実際に吹き付けられる気流の前記所定時点での力に対応する気流吹きつけ手段の内圧との関係から前記角膜の剛性を求める演算手段とを備えていることを特徴とする。   The invention according to claim 1 outputs a light intensity signal by optically detecting the airflow blowing means for deforming the cornea by blowing an airflow on the cornea of the eye to be examined, and the deformation of the cornea by the airflow blowing means. The corneal deformation detection means and the predetermined time point at which the light intensity signal is acquired at a predetermined time point corresponding to the skirt portion of the rising edge of the light intensity signal are measured from the start of operation of the airflow blowing means. Time measuring means for converting the light intensity signal into an amount of corneal deformation, and an internal pressure of the airflow blowing means corresponding to the amount of airflow actually blown to the cornea of the eye to be examined and a force at the predetermined time point. And calculating means for obtaining the rigidity of the cornea from the relationship.

請求項2に記載の発明は、前記気流吹き付け手段には内圧測定センサが設けられ、前記演算手段は前記気流吹き付け手段の作動開始時点から前記所定時間までの内圧を時系列的に求めることを特徴とする。   The invention according to claim 2 is characterized in that the airflow blowing means is provided with an internal pressure measuring sensor, and the calculation means obtains the internal pressure from the start of operation of the airflow blowing means to the predetermined time in time series. And

請求項3に記載の発明は、前記演算手段が前記角膜変形検出手段の光量強度信号と前記気流吹き付け手段の内圧との関係から前記被検眼の眼圧を演算することを特徴とする。   The invention according to claim 3 is characterized in that the calculation means calculates an intraocular pressure of the eye to be examined from a relationship between a light intensity signal of the corneal deformation detection means and an internal pressure of the airflow blowing means.

請求項4に記載の発明は、前記角膜の剛性を報知することを特徴とする。   The invention described in claim 4 is characterized in that the rigidity of the cornea is notified.

請求項5に記載の発明は、被検眼の角膜に気流を吹き付けて前記角膜を変形させる気流吹きつけ手段と、前記気流吹き付け手段による角膜の変形を光学的に検出して光量強度信号を出力する角膜変形検出手段と、前記気流吹きつけ手段の作動開始時点から計時を開始しかつ前記光量強度信号が立ち上がりの裾の部分に対応する所定光量強度信号に到達した時点を計時して該所定時点での前記光量強度信号を取得する計時手段と、前記光量強度信号を角膜変形量に換算すると共に該角膜変形量と前記被検眼の角膜に実際に吹き付けられる気流の前記所定時点での力に対応する所定の光量強度信号に到達する際の前記計時手段による時間との関係から前記角膜の剛性を求める演算手段とを備えていることを特徴とする。   According to a fifth aspect of the present invention, an air current blowing means for deforming the cornea by blowing an air current on a cornea of an eye to be examined, and a light intensity signal is output by optically detecting the deformation of the cornea by the air current blowing means. The time measurement is started from the start of operation of the corneal deformation detecting means and the airflow blowing means, and the time when the light intensity signal reaches the predetermined light intensity signal corresponding to the skirt portion of the rising edge is measured and the predetermined time is reached. A timing means for acquiring the light intensity signal, and converting the light intensity signal into a corneal deformation amount and corresponding to the corneal deformation amount and a force at the predetermined time point of the airflow actually blown to the cornea of the eye to be examined. And calculating means for obtaining the rigidity of the cornea from the relationship with the time by the time measuring means when reaching a predetermined light intensity signal.

請求項6に記載の発明は、前記演算手段が前記角膜の剛性が考慮される補正された眼圧を演算することを特徴とする。   The invention according to claim 6 is characterized in that the calculation means calculates a corrected intraocular pressure in consideration of rigidity of the cornea.

本発明によれば、以上説明したように構成したので、眼圧の影響を受ける度合いが極力少なくかつ被検者の負担の軽減を図ることができる。   According to the present invention, since it is configured as described above, the degree of influence of intraocular pressure is as small as possible and the burden on the subject can be reduced.

以下に、本発明に係わる非接触式眼圧計の発明の実施の形態を図面を参照しつつ説明する。   Embodiments of a non-contact tonometer according to the present invention will be described below with reference to the drawings.

(実施例1)
図1、図2において、Sは装置本体である。この装置本体Sは、被検眼Eの前眼部を観察する前眼部観察系10、XY方向のアライメント検出・角膜変形検出用の指標光を被検眼Eの角膜Cに正面から投影するXYアライメント指標投影光学系20、被検眼Eに固視標を提供する固視標投影光学系30、XYアライメント指標光の角膜Cによる反射光を受光して装置本体Sと角膜CのXY方向の位置関係を検出するXYアライメント検出光学系40、XYアライメント指標光の角膜Cによる反射光を受光し角膜Cの変形量を検出する角膜変形検出光学系(角膜変形検出手段)50、角膜Cに斜めからZ方向のアライメント用指標光を投影するZアライメント指標投影光学系60、Zアライメント指標光の角膜Cによる反射光を前眼部観察光学系10の光軸に対して対称な方向から受光し装置本体Sと角膜CのZ方向の位置関係を検出するZアライメント検出光学系70とを備えている。
Example 1
In FIG. 1 and FIG. 2, S is an apparatus main body. This apparatus main body S is an anterior ocular segment observation system 10 for observing the anterior segment of the eye E, XY alignment for projecting index light for detecting alignment and corneal deformation in the XY directions onto the cornea C of the eye E from the front. Index projection optical system 20, fixation target projection optical system 30 that provides a fixation target to eye E to be examined, positional relationship between XY alignment index light and cornea C in the XY direction by receiving reflected light from cornea C XY alignment detection optical system 40 for detecting the corneal deformation detection optical system (corneal deformation detection means) 50 for detecting the amount of deformation of the cornea C by receiving the reflected light of the XY alignment index light from the cornea C, and Z from the diagonal to the cornea C Z alignment index projection optical system 60 for projecting direction alignment index light, and light reflected by cornea C of Z alignment index light is received from a direction symmetric with respect to the optical axis of anterior ocular segment observation optical system 10. And a Z alignment detection optical system 70 for detecting the Z-direction positional relationship of the Okimoto body S and the cornea C.

前眼部観察光学系10は、被検眼Eの左右に位置して前眼部をダイレクトに照明する複数個の前眼部照明光源11、気流吹き付けノズル12、前眼部窓ガラス13、チャンバー14A、チャンバー窓ガラス14、ハーフミラー15、対物レンズ16、ハーフミラー17、18、CCDカメラ19を備え、O1はその光軸である。ここで、気流吹き付けノズル12、前眼部窓ガラス13、チャンバー14A、チャンバー窓ガラス14、は図示を略すロータリソレノイドと共に被検眼Eの角膜Cに向けて気流を吹き付け、角膜Cを変形させる気流吹き付け手段として機能する。   The anterior ocular segment observation optical system 10 is located on the left and right sides of the eye E, and has a plurality of anterior ocular segment illumination light sources 11 that directly illuminate the anterior segment, an airflow spray nozzle 12, an anterior segment window glass 13, and a chamber 14A. , Chamber window glass 14, half mirror 15, objective lens 16, half mirrors 17 and 18, and CCD camera 19, where O 1 is the optical axis thereof. Here, the airflow spray nozzle 12, the anterior ocular window glass 13, the chamber 14 </ b> A, and the chamber windowglass 14 blow an airflow toward the cornea C of the eye E together with a rotary solenoid (not shown) to deform the cornea C. Functions as a means.

前眼部照明光源11によって照明された被検眼Eの前眼部像は、気流吹き付けノズル12の内外を通り、前眼部窓ガラス13、チャンバー窓ガラス14、ハーフミラー15を透過し、対物レンズ16により集束されつつハーフミラー17、18を透過してCCDカメラ19上に形成される。なお、前眼部窓ガラス13は、ノズル12内外の光束をCCDカメラ19上に結像させるパワーを持っている。   The anterior segment image of the eye E illuminated by the anterior segment illumination light source 11 passes through the inside and outside of the airflow spray nozzle 12, passes through the anterior segment window glass 13, the chamber window glass 14, and the half mirror 15, and the objective lens. 16 is formed on the CCD camera 19 through the half mirrors 17, 18 while being focused by 16. Note that the anterior ocular window glass 13 has power to form an image of the light flux inside and outside the nozzle 12 on the CCD camera 19.

XYアライメント指標投影光学系20は、赤外光を出射するXYアライメント用光源21、集光レンズ22、開口絞り23、ピンホール板24、ダイクロイックミラー25、ピンホール板24に焦点を一致させるように光路上に配置された投影レンズ26、ハーフミラー15、チャンバー窓ガラス14、気流吹き付けノズル12を有する。   The XY alignment index projection optical system 20 is configured to make the focal point coincide with the XY alignment light source 21 that emits infrared light, the condenser lens 22, the aperture stop 23, the pinhole plate 24, the dichroic mirror 25, and the pinhole plate 24. A projection lens 26, a half mirror 15, a chamber window glass 14, and an airflow blowing nozzle 12 are disposed on the optical path.

XYアライメント用光源21から出射された赤外光は、集光レンズ22により集束されつつ開口絞り23を通過し、ピンホール板24に導かれる。そして、ピンホール板24を通過した光束は、ダイクロイックミラー25で反射され、投影レンズ26によって平行光束となってハーフミラー15で反射された後に、チャンバー窓ガラス14を透過して気流吹き付けノズル12の内部を通過し、図3に示すようにXYアライメント指標光Kを形成する。図3において、XYアライメント指標光Kは、角膜Cの頂点Pと角膜Cの曲率中心との中間位置に輝点像Rを形成するようにして角膜表面Tで反射される。なお、開口絞り23は投影レンズ26に関して角膜頂点Pと共役な位置に設けられている。   Infrared light emitted from the light source 21 for XY alignment passes through the aperture stop 23 while being focused by the condenser lens 22 and is guided to the pinhole plate 24. Then, the light beam that has passed through the pinhole plate 24 is reflected by the dichroic mirror 25, converted into a parallel light beam by the projection lens 26, reflected by the half mirror 15, and then transmitted through the chamber window glass 14 to the airflow blowing nozzle 12. Passing through the interior, XY alignment index light K is formed as shown in FIG. In FIG. 3, the XY alignment index light K is reflected on the corneal surface T so as to form a bright spot image R at an intermediate position between the apex P of the cornea C and the center of curvature of the cornea C. The aperture stop 23 is provided at a position conjugate with the corneal apex P with respect to the projection lens 26.

固視標光学系30は、可視光を出射する固視標用光源31、ピンホール板32、ダイクロイックミラー25、投影レンズ26、ハーフミラー15、チャンバー窓ガラス14、気流吹き付けノズル12を有する。   The fixation target optical system 30 includes a fixation target light source 31 that emits visible light, a pinhole plate 32, a dichroic mirror 25, a projection lens 26, a half mirror 15, a chamber window glass 14, and an air blowing nozzle 12.

固視標用光源31から出射された固視標光は、ピンホール板32、ダイクロイックミラー25を経て、投影レンズ26により平行光とされ、ハーフミラー15で反射された後に、チャンバー窓ガラス14を透過し、気流吹き付けノズル12の内部を通過して被検眼Eに導かれる。被検者はその固視標を固視目標として注視することにより視線が固定される。   The fixation target light emitted from the fixation target light source 31 passes through the pinhole plate 32 and the dichroic mirror 25, becomes parallel light by the projection lens 26, is reflected by the half mirror 15, and then passes through the chamber window glass 14. The light passes through the airflow nozzle 12 and is guided to the eye E to be examined. The subject's line of sight is fixed by gazing at the fixation target as a fixation target.

XYアライメント指標投影光学系20により角膜Cに投影され、角膜表面Tで反射された反射光束は、ノズル12の内部を通りチャンバー窓ガラス14、ハーフミラー15を透過し、対物レンズ16により集束されつつハーフミラー17でその一部が透過し、ハーフミラー18でその一部が反射される。   The reflected light beam projected onto the cornea C by the XY alignment index projection optical system 20 and reflected by the cornea surface T passes through the nozzle 12, passes through the chamber window glass 14 and the half mirror 15, and is focused by the objective lens 16. A part of the light is transmitted by the half mirror 17 and a part of the light is reflected by the half mirror 18.

ハーフミラー18で反射された光束は、センサ41上に輝点像R’1を形成する。センサ41はPSDのような位置検出可能な受光センサである。XYアライメント検出回路42は、センサ41の出力を基にして、装置本体Sと角膜Cの位置関係(XY方向)を公知の手段によって演算し、その演算結果をZアライメント検出補正回路74及び制御回路80に向けて出力する。   The light beam reflected by the half mirror 18 forms a bright spot image R ′ 1 on the sensor 41. The sensor 41 is a light receiving sensor capable of detecting a position such as a PSD. The XY alignment detection circuit 42 calculates the positional relationship (XY direction) between the apparatus body S and the cornea C based on the output of the sensor 41 by known means, and the calculation result is a Z alignment detection correction circuit 74 and a control circuit. Output to 80.

一方、ハーフミラー18を透過した角膜Cによる反射光束は、CCDカメラ19上に輝点像R’2を形成する。CCDカメラ19はモニタ装置に画像信号を出力し、図4に示すように、被検眼Eの前眼部像E’、XYアライメント指標光の輝点像R’2がモニタ装置の画面Gに表示される。なお、Hは図示しない画像生成手段によって生成されたアライメント補助マークである。   On the other hand, the light flux reflected by the cornea C transmitted through the half mirror 18 forms a bright spot image R ′ 2 on the CCD camera 19. The CCD camera 19 outputs an image signal to the monitor device, and as shown in FIG. 4, the anterior segment image E ′ of the eye E and the bright spot image R′2 of the XY alignment index light are displayed on the screen G of the monitor device. Is done. H is an alignment auxiliary mark generated by an image generation means (not shown).

さらに、ハーフミラー17によって反射された一部の光束は、角膜変形検出光学系50に導かれ、ピンホール板51を通過してセンサ52に導かれる。センサ52はフォトダイオードのように光量検出可能な受光センサである。   Further, a part of the light beam reflected by the half mirror 17 is guided to the corneal deformation detection optical system 50, passes through the pinhole plate 51, and is guided to the sensor 52. The sensor 52 is a light receiving sensor capable of detecting the amount of light like a photodiode.

Zアライメント指標投影光学系60は、赤外光を出射するZアライメント用光源61、集光レンズ62、開口絞り63、ピンホール板64、ピンホール板64に焦点を一致させるように光路上に配置された投影レンズ65を有し、O2はその光軸である。   The Z alignment index projection optical system 60 is arranged on the optical path so as to be in focus with the Z alignment light source 61 that emits infrared light, the condenser lens 62, the aperture stop 63, the pinhole plate 64, and the pinhole plate 64. Projection lens 65, and O2 is its optical axis.

Zアライメント用光源61を出射した赤外光は、集光レンズ62により集光されつつ開口絞り63を通過してピンホール板64に導かれる。ピンホール板64を通過した光束は、投影レンズ65によって平行光とされて角膜Cに導かれ、図5に示すように、輝点像Qを形成するようにして角膜表面Tで反射される。なお、開口絞り63は投影レンズ65に関して角膜頂点Pと共役な位置に設けられている。   The infrared light emitted from the light source 61 for Z alignment passes through the aperture stop 63 while being condensed by the condenser lens 62 and is guided to the pinhole plate 64. The light beam that has passed through the pinhole plate 64 is converted into parallel light by the projection lens 65, guided to the cornea C, and reflected by the cornea surface T so as to form a bright spot image Q as shown in FIG. The aperture stop 63 is provided at a position conjugate with the corneal apex P with respect to the projection lens 65.

Zアライメント検出光学系70は、結像レンズ71、Y方向にパワーを持ったシリンドリカルレンズ72、センサ73、Zアライメント検出補正回路74を有し、O3はその光軸である。   The Z alignment detection optical system 70 includes an imaging lens 71, a cylindrical lens 72 having power in the Y direction, a sensor 73, and a Z alignment detection correction circuit 74, and O3 is the optical axis thereof.

Zアライメント指標投影光学系60によって投影された指標光の角膜表面Tにおける反射光束は、結像レンズ71によって集束されつつシリンドリカルレンズ72を介してセンサ73上に輝点像Q’を形成する。センサ73はラインセンサやPSDのように位置検出可能な受光センサである。センサ73からの情報はZアライメント検出補正回路74に導かれる。そのZアライメント検出補正回路74による補正は特開2000−212号公報に詳述されているので、その詳細な説明は省略する。   The reflected light beam on the corneal surface T of the index light projected by the Z alignment index projection optical system 60 forms a bright spot image Q ′ on the sensor 73 via the cylindrical lens 72 while being focused by the imaging lens 71. The sensor 73 is a light receiving sensor capable of detecting a position, such as a line sensor or PSD. Information from the sensor 73 is guided to the Z alignment detection correction circuit 74. Since the correction by the Z alignment detection correction circuit 74 is described in detail in Japanese Patent Laid-Open No. 2000-212, detailed description thereof is omitted.

なお、XZ平面内では、輝点像Qとセンサ73は結像レンズ71に関して共役な位置関係にあり、YZ平面内では、角膜頂点Pとセンサ73が結像レンズ71、シリンドリカルレンズ72に関して共役な位置関係にある。   In the XZ plane, the bright spot image Q and the sensor 73 are conjugated with respect to the imaging lens 71. In the YZ plane, the corneal apex P and the sensor 73 are conjugated with respect to the imaging lens 71 and the cylindrical lens 72. It is in a positional relationship.

つまり、センサ73は開口絞り63と共役関係にあり(このときの倍率は、開口絞り63の像がセンサ73の大きさよりも小さくなるように選んである)、Y方向に角膜Cがずれたとしても角膜表面Tにおける反射光束は、効率良くセンサ73に入射するようになる。   That is, the sensor 73 has a conjugate relationship with the aperture stop 63 (the magnification at this time is selected so that the image of the aperture stop 63 is smaller than the size of the sensor 73), and the cornea C is shifted in the Y direction. Also, the reflected light beam on the corneal surface T enters the sensor 73 efficiently.

ここでは、チャンバー14A内にはチャンバー14A内の圧力を測定する圧力センサ14Bが設けられている。検者は図4に示すモニタ画面で前眼部像E’を観察しながら、輝点像R’2がアライメント補助マークHの中に入り、かつ、ピントが合うように装置本体SをXYZ方向に手動で移動させ、アライメント調整を行う。   Here, a pressure sensor 14B for measuring the pressure in the chamber 14A is provided in the chamber 14A. While observing the anterior segment image E ′ on the monitor screen shown in FIG. 4, the examiner moves the apparatus body S in the XYZ directions so that the bright spot image R′2 enters the alignment auxiliary mark H and is in focus. Manually adjust the alignment.

このとき、制御回路80はXYアライメント検出回路42及びZアライメント検出補正回路74の出力が所定範囲内に入った場合、気流吹き付け手段を作動させ、気流吹き付けノズル12から角膜Cに向けて気流を吹き付ける。なお、この発明の実施の形態では、自動的に気流吹き付け手段を作動させる構成としているが、図示を略すトリガースイッチを作動させ、気流の角膜Cへの吹き付けを開始させても良い。   At this time, when the outputs of the XY alignment detection circuit 42 and the Z alignment detection correction circuit 74 fall within a predetermined range, the control circuit 80 activates the airflow blowing means and blows the airflow from the airflow blowing nozzle 12 toward the cornea C. . In the embodiment of the present invention, the airflow spraying means is automatically operated. However, a trigger switch (not shown) may be operated to start spraying the airflow to the cornea C.

気流の角膜Cへの吹き付けを開始すると、時間tの経過と共にチャンバー14A内の圧力が図6に符号F1で示すように上昇する。ついで、チャンバー内の圧力(実線で示す)F1の上昇に若干遅れて、角膜Cに実際に吹き付けられる気流の力が符号F2で示すように上昇する。   When the air flow is started to be blown onto the cornea C, the pressure in the chamber 14A increases as time t passes as indicated by reference numeral F1 in FIG. Next, the force of the airflow actually blown to the cornea C rises as indicated by the symbol F2, slightly behind the increase in the pressure (shown by the solid line) F1 in the chamber.

この角膜Cに実際に吹き付けられる気流の力(二点鎖線で示す)F2に若干遅れて角膜Cが図7に示すように変形を開始し、センサ52からの光量強度信号Sの出力は図8に示すように時間tの経過と共に上昇し、角膜Cが偏平に達したときに最大となる。その図7において、実線は角膜Cの変形前の状態を示し、一点鎖線はその角膜Cの圧平状態を示し、破線は角膜Cが変形を受ける前から圧平されるまでの途中の状態を示す。Δは角膜Cの気流吹き付けによる変形量を示す。この変形量Δは、変形前の角膜Cの頂点Pから変形後の角膜Cの頂点Pまでの間隔により求まる。   The cornea C starts to deform as shown in FIG. 7 with a slight delay from the airflow force F2 (shown by a two-dot chain line) actually blown onto the cornea C, and the output of the light intensity signal S from the sensor 52 is shown in FIG. As shown in FIG. 4, the value rises as time t elapses, and becomes maximum when the cornea C reaches a flat shape. In FIG. 7, the solid line shows the state before the cornea C is deformed, the alternate long and short dash line shows the applanation state of the cornea C, and the broken line shows the state before the cornea C undergoes deformation until it is applanated. Show. Δ indicates the amount of deformation of the cornea C due to airflow spraying. This deformation amount Δ is obtained from the interval from the vertex P of the cornea C before deformation to the vertex P of the cornea C after deformation.

角膜Cの変形量Δと光量強度信号Sとの間には、図8に示すように、角膜Cの変形量Δが小さい初期段階、すなわち、光量強度信号Sの立ち上がりの裾の部分Saでも、角膜Cの変形量Δと光量強度信号Sとの間には、相関関係があることが実験により判明した。   Between the deformation amount Δ of the cornea C and the light intensity signal S, as shown in FIG. 8, even at the initial stage where the deformation amount Δ of the cornea C is small, that is, at the bottom part Sa of the rising edge of the light intensity signal S, It has been experimentally found that there is a correlation between the deformation amount Δ of the cornea C and the light intensity signal S.

この相関関係は、高感度高速カメラにより被検眼の角膜Cを横から連続的に撮影する一方、その各撮影時刻における光量強度信号Sの値を求めることにより、角膜Cの気流吹き付け初期における角膜Cの変形量Δと光量強度信号Sの値とを関連づけることにより得られる。図9はその相関分布図を示し、相関係数は約0.7である。   This correlation indicates that the cornea C of the eye to be inspected is continuously photographed from the side by a high-sensitivity high-speed camera, and the cornea C in the initial stage of airflow spraying of the cornea C by obtaining the value of the light intensity signal S at each photographing time. Is obtained by associating the amount of deformation Δ with the value of the light intensity signal S. FIG. 9 shows the correlation distribution diagram, and the correlation coefficient is about 0.7.

制御回路80は、気流吹き付け手段の作動開始時点t0から計時を開始しかつ光量強度信号Sの立ち上がりの低い裾の部分Saに対応する所定時点t1を計時してこの所定時点t1での光量強度信号Sを取得する計時手段を有する。その所定時点t1は、気流吹き付け手段の作動開始時点t0から例えば約10msであり、図9に示す相関分布図はその光量強度信号Sと変形量Δとの相関関係を示している。   The control circuit 80 starts timing from the operation start time t0 of the airflow blowing means and measures a predetermined time t1 corresponding to the skirt portion Sa having a low rise in the light intensity signal S, and measures the light intensity signal at the predetermined time t1. It has time measuring means for acquiring S. The predetermined time t1 is, for example, about 10 ms from the operation start time t0 of the airflow blowing means, and the correlation distribution diagram shown in FIG. 9 shows the correlation between the light intensity signal S and the deformation amount Δ.

制御回路80は、この光量強度信号Sを角膜変形量Δに換算し、この角膜変形量Δと被検眼Eの角膜Cに実際に吹き付けられる気流の力F2に対応する気流吹き付け手段の内圧F1との関係から、F2=k・Δの関係式に基づき角膜Cの剛性kを求める。角膜Cの変形量Δが微小の範囲内であるので、眼圧の影響はほとんど受けていないと考えられる。   The control circuit 80 converts the light intensity signal S into a corneal deformation amount Δ, and the internal pressure F1 of the airflow blowing means corresponding to the corneal deformation amount Δ and the airflow force F2 actually blown to the cornea C of the eye E to be examined. From the relationship, the stiffness k of the cornea C is obtained based on the relational expression F2 = k · Δ. Since the deformation amount Δ of the cornea C is within a minute range, it is considered that the effect of intraocular pressure is hardly received.

制御回路80は、気流吹き付け手段の作動開始時点t0からその角膜Cが偏平に達した所定時点(所定時間)t2を計時して、この所定時点(所定時間)t2に対応する内圧F3を取得する。内圧F3と眼圧F4との間には対応関係があるので、角膜Cが圧平した時点での内圧F3を取得することにより被検眼の眼圧F4を求めることができる。   The control circuit 80 measures a predetermined time (predetermined time) t2 at which the cornea C reaches flatness from the operation start time t0 of the airflow blowing means, and acquires an internal pressure F3 corresponding to the predetermined time (predetermined time) t2. . Since there is a correspondence between the internal pressure F3 and the intraocular pressure F4, the intraocular pressure F4 of the eye to be examined can be obtained by acquiring the internal pressure F3 when the cornea C is applanated.

なお、制御回路80は、角膜変形検出手段の光量強度信号Sと気流吹き付け手段の内圧F1との関係から被検眼Eの眼圧を演算しても良い。また、角膜Cの剛性を5段階(0(柔らかい)から5(硬い)までの5段階)に区切って、モニタ画面に報知させても良い。また、角膜Cの剛性を音声により報知する構成を採用しても良い。   The control circuit 80 may calculate the intraocular pressure of the eye E based on the relationship between the light intensity signal S of the corneal deformation detection unit and the internal pressure F1 of the airflow blowing unit. Further, the rigidity of the cornea C may be divided into five steps (five steps from 0 (soft) to 5 (hard)) and notified on the monitor screen. Moreover, you may employ | adopt the structure which alert | reports the rigidity of the cornea C by an audio | voice.

日本人には、正常眼圧緑内障患者が多いが、この発明の実施の形態によれば、眼球剛性の影響を排した眼圧測定ができるので、正常眼圧緑内障患者の早期発見が実現する。
(実施例2)
実施例1では、光量強度信号Sを角膜変形量Δに換算すると共に角膜変形量Δと被検眼Eの角膜Cに実際に吹き付けられる気流の所定時点t1での力F2に対応する気流吹きつけ手段の内圧F1との関係から角膜Cの剛性を求めることにしたが、図10に示すように、光量強度信号Sの裾の部分Saに閾値SLを設定し、角膜Cが所定変形量ΔLに達するに要する時間t1’を求める。
Although there are many normal-tension glaucoma patients in Japan, according to the embodiment of the present invention, it is possible to measure intraocular pressure without the influence of eyeball rigidity, and thus early detection of normal-tension glaucoma patients is realized.
(Example 2)
In the first embodiment, the light intensity signal S is converted into the corneal deformation amount Δ and the airflow blowing means corresponding to the corneal deformation amount Δ and the force F2 at the predetermined time point t1 of the airflow actually blown to the cornea C of the eye E to be examined. The stiffness of the cornea C is determined from the relationship with the internal pressure F1, but as shown in FIG. 10, the threshold value SL is set in the skirt portion Sa of the light intensity signal S, and the cornea C reaches a predetermined deformation amount ΔL. The time t1 ′ required for is obtained.

角膜Cが柔らかい場合には、角膜Cが所定変形量ΔLに達するまでの時間は短くかつその力F2も小さい。角膜Cが硬い場合には、角膜Cが所定変形量ΔLに達するまでの時間は長くかつその力F2も大きい。従って、図11に示す時間−力相関曲線が得られ、気流吹き付け手段による吹き付け開始時点t0からの時間を測定することにより、力F1を求めることができる。   When the cornea C is soft, the time until the cornea C reaches the predetermined deformation amount ΔL is short and the force F2 is small. When the cornea C is hard, the time until the cornea C reaches the predetermined deformation amount ΔL is long and the force F2 is large. Therefore, the time-force correlation curve shown in FIG. 11 is obtained, and the force F1 can be obtained by measuring the time from the spray start time t0 by the airflow spraying means.

その図11において、時間t1’は角膜Cが仮に柔らかいとした場合の所定変形量ΔLに達するに要する時間を示し、時間t2’は角膜Cが仮に硬いとした場合の所定変形量ΔLに達するに要する時間を示し、この時間t1’、時間t2’から時間−力相関曲線を用いて、角膜Cに与えられている力F2’、F2”が求まり、これにより、角膜Cの剛性kが求まることになる。   In FIG. 11, the time t1 ′ indicates the time required to reach the predetermined deformation amount ΔL when the cornea C is soft, and the time t2 ′ reaches the predetermined deformation amount ΔL when the cornea C is hard. The time required is shown, and the forces F2 ′ and F2 ″ applied to the cornea C are obtained from the time t1 ′ and the time t2 ′ using the time-force correlation curve, whereby the stiffness k of the cornea C is obtained. become.

また、上述の実施例1及び実施例2等の方法で求められた眼剛性を用いて測定された眼圧値を補正することも可能である。これは、例えば求められた眼剛性又はそれに係わるパラメータと測定された眼圧値とに対応する補正された眼圧値を示す相関関係を用いることにより行われる。また、補正された眼圧値を測定結果として表示するのみでなく、補正前の眼圧値、眼剛性についても同時に表示する態様とすることも可能である。   It is also possible to correct the intraocular pressure value measured using the eye stiffness obtained by the method of the first embodiment and the second embodiment described above. This is performed, for example, by using a correlation indicating a corrected intraocular pressure value corresponding to the obtained intraocular stiffness or a parameter related thereto and the measured intraocular pressure value. In addition to displaying the corrected intraocular pressure value as a measurement result, it is also possible to display an intraocular pressure value before correction and ocular stiffness at the same time.

この発明に係わる非接触式眼圧計の光学系の平面配置図である。It is a plane arrangement view of the optical system of the non-contact tonometer according to the present invention. 図1に示す非接触式眼圧計の光学系の側面配置図である。FIG. 2 is a side view of an optical system of the non-contact tonometer shown in FIG. 1. 角膜に正面から照射されたアライメント光束の反射の説明図である。It is explanatory drawing of the reflection of the alignment light beam irradiated to the cornea from the front. モニタの画面に表示された前眼部像を示す図である。It is a figure which shows the anterior ocular segment image displayed on the screen of a monitor. 角膜に斜め方向から照射されたアライメント光束の反射の説明図である。It is explanatory drawing of reflection of the alignment light beam irradiated to the cornea from the diagonal direction. 気流吹き付け手段のチャンバー内の力と実際に角膜に吹き付けられる気流の吹き付け圧力との関係を示す図である。It is a figure which shows the relationship between the force in the chamber of an airflow spraying means, and the spraying pressure of the airflow actually sprayed on a cornea. 角膜の変形状態を示す説明図である。It is explanatory drawing which shows the deformation | transformation state of a cornea. 光量強度信号と角膜変形との関係を横軸を時間軸として表した説明図である。It is explanatory drawing which represented the relationship between a light quantity intensity signal and a cornea deformation | transformation by making a horizontal axis into a time axis. 光量強度信号と角膜変形量との相関分布図である。FIG. 6 is a correlation distribution diagram between a light intensity signal and a corneal deformation amount. 光量強度信号の裾の部分の拡大図である。It is an enlarged view of the skirt portion of the light intensity signal. 時間−力相関曲線を示す図である。It is a figure which shows a time-force correlation curve.

符号の説明Explanation of symbols

12…ノズル(気流吹き付け手段)
14A…チャンバ(気流吹き付け手段)
50…角膜変形検出光学系(角膜変形検出手段)
80…制御回路(計時手段、演算手段)
12 ... Nozzle (air flow spraying means)
14A ... chamber (air flow spraying means)
50. Corneal deformation detection optical system (corneal deformation detection means)
80 ... Control circuit (time measuring means, calculating means)

Claims (6)

被検眼の角膜に気流を吹き付けて前記角膜を変形させる気流吹きつけ手段と、前記気流吹き付け手段による角膜の変形を光学的に検出して光量強度信号を出力する角膜変形検出手段と、前記気流吹きつけ手段の作動開始時点から計時を開始しかつ前記光量強度信号の立ち上がりの裾の部分に対応する所定時点での前記光量強度信号を取得させる該所定時点を計時する計時手段と、前記光量強度信号を角膜変形量に換算すると共に該角膜変形量と前記被検眼の角膜に実際に吹き付けられる気流の前記所定時点での力に対応する気流吹きつけ手段の内圧との関係から前記角膜の剛性を求める演算手段とを備えていることを特徴とする非接触式眼圧計。   An airflow blowing means for deforming the cornea by blowing an airflow on the cornea of the eye to be examined; a corneal deformation detecting means for optically detecting deformation of the cornea by the airflow blowing means and outputting a light intensity signal; and the airflow blowing Clocking means for timing the predetermined time to start timing from the start of operation of the lighting means and to acquire the light intensity signal at a predetermined time corresponding to the bottom of the light intensity signal, and the light intensity signal Is converted into a corneal deformation amount, and the stiffness of the cornea is obtained from the relationship between the corneal deformation amount and the internal pressure of the airflow blowing means corresponding to the force at the predetermined time point of the airflow actually blown onto the cornea of the eye to be examined. A non-contact tonometer comprising a calculation means. 前記気流吹き付け手段には内圧測定センサが設けられ、前記演算手段は前記気流吹き付け手段の作動開始時点から前記所定時間までの内圧を時系列的に求めることを特徴とする請求項1に記載の非接触式眼圧計。   The non-air flow sensor according to claim 1, wherein an internal pressure measurement sensor is provided in the airflow blowing means, and the calculation means obtains the internal pressure from the start of operation of the airflow blowing means to the predetermined time in time series. Contact tonometer. 前記演算手段が前記角膜変形検出手段の光量強度信号と前記気流吹き付け手段の内圧との関係から前記被検眼の眼圧を演算することを特徴とする請求項1に記載の非接触式眼圧計。   2. The non-contact tonometer according to claim 1, wherein the calculating unit calculates an intraocular pressure of the eye to be examined from a relationship between a light intensity signal of the corneal deformation detecting unit and an internal pressure of the airflow blowing unit. 前記角膜の剛性を報知することを特徴とする請求項1に記載の非接触式眼圧計。   The non-contact tonometer according to claim 1, wherein the rigidity of the cornea is notified. 被検眼の角膜に気流を吹き付けて前記角膜を変形させる気流吹きつけ手段と、前記気流吹き付け手段による角膜の変形を光学的に検出して光量強度信号を出力する角膜変形検出手段と、前記気流吹きつけ手段の作動開始時点から計時を開始しかつ前記光量強度信号が立ち上がりの裾の部分に対応する所定光量強度信号に到達した時点を計時して該所定時点での前記光量強度信号を取得する計時手段と、前記光量強度信号を角膜変形量に換算すると共に該角膜変形量と前記被検眼の角膜に実際に吹き付けられる気流の前記所定時点での力に対応する所定の光量強度信号に到達する際の前記計時手段による時間との関係から前記角膜の剛性を求める演算手段とを備えていることを特徴とする非接触式眼圧計。   An airflow blowing means for deforming the cornea by blowing an airflow on the cornea of the eye to be examined; a corneal deformation detecting means for optically detecting deformation of the cornea by the airflow blowing means and outputting a light intensity signal; and the airflow blowing The time measurement is started from the time when the lighting means is started, and the time when the light intensity signal reaches the predetermined light intensity signal corresponding to the bottom of the rising edge is measured to obtain the light intensity signal at the predetermined time. Means for converting the light intensity signal into a corneal deformation amount and reaching a predetermined light intensity signal corresponding to the corneal deformation amount and the force at the predetermined time point of the airflow actually blown to the cornea of the eye to be examined A non-contact tonometer comprising: a calculating means for determining the rigidity of the cornea from the relationship with time by the time measuring means. 前記演算手段が前記角膜の剛性が考慮される補正された眼圧を演算することを特徴とする請求項1ないし請求項5のいずれか1項に記載の非接触式眼圧計。   6. The non-contact tonometer according to claim 1, wherein the calculation unit calculates a corrected intraocular pressure in consideration of the rigidity of the cornea.
JP2005082074A 2005-03-22 2005-03-22 Non-contact tonometer Active JP4644842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082074A JP4644842B2 (en) 2005-03-22 2005-03-22 Non-contact tonometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005082074A JP4644842B2 (en) 2005-03-22 2005-03-22 Non-contact tonometer

Publications (2)

Publication Number Publication Date
JP2006262990A JP2006262990A (en) 2006-10-05
JP4644842B2 true JP4644842B2 (en) 2011-03-09

Family

ID=37199559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082074A Active JP4644842B2 (en) 2005-03-22 2005-03-22 Non-contact tonometer

Country Status (1)

Country Link
JP (1) JP4644842B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936047B1 (en) 2008-03-03 2010-01-08 한국표준과학연구원 Testing device of an air-buff tonometer
JP5268053B2 (en) 2008-05-15 2013-08-21 晃太郎 石井 Apparatus for measuring natural frequency of eyeball tissue and non-contact tonometer using the same
TWI446892B (en) * 2011-12-23 2014-08-01 Crystalvue Medical Corp Jet pressure detection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000213A (en) * 1998-06-12 2000-01-07 Topcon Corp Non-contact type ophthalmotonometer
JP2001204689A (en) * 2000-01-28 2001-07-31 Tomey Corp Cornea hardness measuring device
JP2002017683A (en) * 2000-06-30 2002-01-22 Nidek Co Ltd Non-contact type tomometer
JP2002085352A (en) * 2000-09-21 2002-03-26 Topcon Corp Non-contact tonometer
JP2003199714A (en) * 2002-01-07 2003-07-15 Nidek Co Ltd Non-contact type tonometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000213A (en) * 1998-06-12 2000-01-07 Topcon Corp Non-contact type ophthalmotonometer
JP2001204689A (en) * 2000-01-28 2001-07-31 Tomey Corp Cornea hardness measuring device
JP2002017683A (en) * 2000-06-30 2002-01-22 Nidek Co Ltd Non-contact type tomometer
JP2002085352A (en) * 2000-09-21 2002-03-26 Topcon Corp Non-contact tonometer
JP2003199714A (en) * 2002-01-07 2003-07-15 Nidek Co Ltd Non-contact type tonometer

Also Published As

Publication number Publication date
JP2006262990A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP5209341B2 (en) Non-contact tonometer
JP3313309B2 (en) Ophthalmic equipment
JP5340434B2 (en) Ophthalmic apparatus, processing apparatus, ophthalmic system, processing method, ophthalmic apparatus control method, program
JP4644842B2 (en) Non-contact tonometer
JP4426552B2 (en) Non-contact tonometer
JP3317806B2 (en) Ophthalmic instruments
JPH11137523A (en) Ophthalmologic apparatus
JP3308465B2 (en) Non-contact tonometer
JP2002102170A (en) Ophthalmic apparatus
JPH0984761A (en) Ophthalmic device
JP3886255B2 (en) Non-contact tonometer
JP2007330609A (en) Noncontact type tonometer
JP3394418B2 (en) Ophthalmic equipment
JP2000000213A (en) Non-contact type ophthalmotonometer
JP5443225B2 (en) Non-contact tonometer
JP4397684B2 (en) Non-contact tonometer
JP5677495B2 (en) Ophthalmic apparatus and control method thereof
JPH1080397A (en) Apparatus for dentistry
JP4494596B2 (en) Ophthalmic equipment
JP7359611B2 (en) Non-contact tonometer and its control method
JP4578660B2 (en) Non-contact tonometer
JP2005087549A (en) Non-contact tonometer
JP5719916B2 (en) Non-contact tonometer
JP5916333B2 (en) Z alignment device and ophthalmic device
JP2017051430A (en) Ophthalmologic apparatus, control method thereof, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4644842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250