JP2002017683A - Non-contact type tomometer - Google Patents

Non-contact type tomometer

Info

Publication number
JP2002017683A
JP2002017683A JP2000203099A JP2000203099A JP2002017683A JP 2002017683 A JP2002017683 A JP 2002017683A JP 2000203099 A JP2000203099 A JP 2000203099A JP 2000203099 A JP2000203099 A JP 2000203099A JP 2002017683 A JP2002017683 A JP 2002017683A
Authority
JP
Japan
Prior art keywords
cornea
time
deformation
intraocular pressure
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000203099A
Other languages
Japanese (ja)
Other versions
JP3929681B2 (en
Inventor
Nobuo Suzuki
信雄 鈴木
Tetsuyuki Miwa
哲之 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2000203099A priority Critical patent/JP3929681B2/en
Publication of JP2002017683A publication Critical patent/JP2002017683A/en
Application granted granted Critical
Publication of JP3929681B2 publication Critical patent/JP3929681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact type tomometer capable of obtaining measurement values with high reliability, even if there are differences in a corneal thickness or a corneal hardness, by reducing the affection by the differences. SOLUTION: The tomometer is provided with a fluid blowing means for blowing a compressed fluid toward the cornea of an examined eye, a cornea deformation detection means for detecting the deformation of the cornea caused by the compressed fluid from the blowing means, a pressure detection means for detecting a pressure value of the compressed fluid blown against the cornea, an operating means for determining an intraocular pressure value based on the detection results by the cornea deformation detection means and the pressure detection means, a time determination means for determining a time from the start of cornea deformation to a prescribed deformed state, and a correction means for correcting the intraocular pressure value determined by the operating means based on the determined time by the time determination means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、眼科医院等で使用
される非接触式眼圧計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact tonometer used in ophthalmic clinics and the like.

【0002】[0002]

【従来技術】被検眼角膜に向けて空気等の圧縮流体を噴
射し、角膜が所定の変形となったことを検出して眼圧値
を測定する非接触式眼圧計が知られている。
2. Description of the Related Art There is known a non-contact tonometer which injects a compressed fluid such as air toward a cornea to be examined, detects that the cornea has undergone a predetermined deformation, and measures an intraocular pressure value.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来技術では角膜厚、角膜硬さによる影響を考慮しておら
ず、正確な眼圧値を測定できないという問題があった。
However, in the above-mentioned prior art, there is a problem that the influence of the corneal thickness and corneal hardness is not taken into consideration, so that an accurate intraocular pressure value cannot be measured.

【0004】本発明は、上記従来技術の問題点に鑑み、
角膜厚、角膜硬さに差がある場合でもその影響を少なく
し、信頼性の高い測定値が得られる非接触式眼圧計を提
供することを技術課題とする。
The present invention has been made in view of the above-mentioned problems of the prior art,
It is an object of the present invention to provide a non-contact tonometer capable of reducing the influence of a difference in corneal thickness and corneal hardness even when there is a difference in the corneal thickness and corneal hardness and obtaining a highly reliable measurement value.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は以下のような構成を備えることを特徴とす
る。
Means for Solving the Problems In order to solve the above problems, the present invention is characterized by having the following configuration.

【0006】(1) 被検眼角膜に向けて圧縮流体を噴
射する流体噴射手段と、該流体噴射手段からの圧縮流体
による角膜の変形状態を検出する角膜変形検出手段と、
角膜に噴射される圧縮流体の圧力を検出する圧力検出手
段と、前記角膜変形検出手段及び圧力検出手段の検出結
果に基づいて眼圧値を求める演算手段と、前記圧縮流体
の噴射による角膜の変形開始から所定の変形状態に変化
するまでの時間を求める時間計測手段と、該時間計測手
段による計測時間に基づいて前記演算手段によって求め
られた眼圧値を補正する補正手段と、を備えることを特
徴とする。
(1) Fluid ejecting means for injecting a compressed fluid toward the cornea to be examined, corneal deformation detecting means for detecting a state of deformation of the cornea by the compressed fluid from the fluid ejecting means,
Pressure detecting means for detecting the pressure of the compressed fluid injected into the cornea; calculating means for obtaining an intraocular pressure value based on the detection results of the corneal deformation detecting means and the pressure detecting means; and deformation of the cornea due to the injection of the compressed fluid A time measuring unit for obtaining a time from a start to a change to a predetermined deformation state, and a correcting unit for correcting an intraocular pressure value obtained by the calculating unit based on the time measured by the time measuring unit. Features.

【0007】(2) (1)の補正手段は、前記演算手
段によって求められた眼圧値毎に前記時間計測手段によ
る計測時間に対応した補正値を求めることを特徴とす
る。
(2) The correction means (1) is characterized in that a correction value corresponding to the time measured by the time measurement means is obtained for each intraocular pressure value obtained by the calculation means.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は本発明に係る非接触式眼圧
計の流体噴出機構及びその制御機構を示す図であり、図
2は光学系の概略構成を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a view showing a fluid ejection mechanism and a control mechanism of the non-contact tonometer according to the present invention, and FIG. 2 is a view showing a schematic configuration of an optical system.

【0009】[流体噴射機構]流体圧は、シリンダ1内
の空気をソレノイド3により駆動されるピストン2で押
圧することにより、空気圧縮室11で圧縮されて発生す
る。圧縮された空気はノズル6を通り、被検眼Eの角膜
に向けて噴出される。
[Fluid Injection Mechanism] Fluid pressure is generated by being compressed in the air compression chamber 11 by pressing the air in the cylinder 1 with the piston 2 driven by the solenoid 3. The compressed air is ejected toward the cornea of the eye E through the nozzle 6.

【0010】7は透明なガラス板で、ノズル6を保持す
るとともに、観察光やアライメント光を透過させる。ま
た、ガラス板7は空気圧縮室11の側壁となっている。
9はノズル6の背面に設けられた透明なガラス板で、空
気圧縮室11の後壁を構成するとともに、観察光やアラ
イメント光を透過させる。ガラス板9の背後には、後述
する観察・アライメントのための光学系が配置される。
12は空気圧縮室11の圧力を検出する圧力センサであ
る。
Reference numeral 7 denotes a transparent glass plate which holds the nozzle 6 and transmits observation light and alignment light. The glass plate 7 serves as a side wall of the air compression chamber 11.
Reference numeral 9 denotes a transparent glass plate provided on the back surface of the nozzle 6, which constitutes a rear wall of the air compression chamber 11, and transmits observation light and alignment light. Behind the glass plate 9, an optical system for observation and alignment described later is arranged.
Reference numeral 12 denotes a pressure sensor that detects the pressure of the air compression chamber 11.

【0011】[光学系]図2において、赤外照明光源3
0により照明された被検眼像は、ビームスプリッタ3
1、対物レンズ32、フィルタ34を介してCCDカメ
ラ35に結像する。フィルタ34は、光源30、アライ
メント用光源40の光を透過し、後述する角膜変形検出
用のLED50の光に対して不透過の特性を持つ。CC
Dカメラ35に結像した像はテレビモニタ36に映し出
される。OLはこの観察光学系の光軸を示し、ノズル6
の軸線と一致している。
[Optical system] In FIG.
The image of the eye to be inspected illuminated by the beam splitter 3
1. An image is formed on the CCD camera 35 via the objective lens 32 and the filter 34. The filter 34 transmits light from the light source 30 and the light source 40 for alignment, and has a characteristic of being impermeable to light from an LED 50 for detecting corneal deformation described later. CC
The image formed on the D camera 35 is displayed on a television monitor 36. OL indicates the optical axis of the observation optical system, and the nozzle 6
Axis.

【0012】40はアライメント用の赤外LEDであ
り、投影レンズ41を介して投影された赤外光はビーム
スプリッタ31で反射され、被検眼Eに照明から投影さ
れる。LED40により被検眼角膜に形成される角膜輝
点は、ビームスプリッタ31〜フィルタ34を介してC
CDカメラ35に結像し、アライメントに利用される。
Numeral 40 denotes an infrared LED for alignment. The infrared light projected through the projection lens 41 is reflected by the beam splitter 31 and projected on the eye E from the illumination. The corneal bright spot formed on the cornea of the subject's eye by the LED 40 is transmitted through the beam splitter 31 to the filter 34 to C.
An image is formed on the CD camera 35 and used for alignment.

【0013】50は角膜変形検出用のLEDであり、L
ED50を出射した光はコリメータレンズ51により略
平行光束とされて被検眼角膜に投光される。角膜で反射
した光は受光レンズ52、光源30及び光源40の光に
対して不透過の特性を持つフィルタ53を通過した後、
ビームスプリッタ54で反射し、ピンホール板55を通
過して光検出器56に受光される。角膜変形検出用の光
学系は、被検眼角膜が偏平されたときに光検出器56の
受光量が最大になるように配置されている。
Reference numeral 50 denotes an LED for detecting corneal deformation.
The light emitted from the ED 50 is converted into a substantially parallel light beam by the collimator lens 51 and projected onto the cornea of the eye to be examined. The light reflected by the cornea passes through a light-receiving lens 52, a filter 53 having a characteristic of being impermeable to light from the light source 30 and the light source 40,
The light is reflected by the beam splitter 54, passes through a pinhole plate 55, and is received by a photodetector 56. The optical system for detecting corneal deformation is arranged so that the amount of light received by the photodetector 56 becomes maximum when the cornea of the eye to be examined is flattened.

【0014】また、この角膜変形検出用の光学系は、作
動距離検出光学系の一部を兼ねており、ビームスプリッ
タ54を通過した光は一次元検出素子57に入射し、こ
の出力信号から作動距離が検出される。
The optical system for detecting the corneal deformation also serves as a part of the optical system for detecting the working distance. The light passing through the beam splitter 54 is incident on the one-dimensional detecting element 57 and is operated based on the output signal. The distance is detected.

【0015】[制御系]図1において、20は装置全体
を制御する制御回路であり、圧力センサ12からの出力
信号及び光検出器56からの出力信号は、圧平検出信号
処理回路21、信号検出処理回路22を介して制御回路
20に入力される。制御回路20は入力される各出力信
号に基づき、所定の演算処理を行って眼圧を求める。そ
の測定結果はテレビモニタ36に表示出力される。23
はソレノイド3を駆動させる駆動回路である。24はメ
モリであり、圧力センサ12で検出される経時的な圧力
変化のデータ及び光検出器56からの経時的な出力信号
データを記憶する。また、メモリ24は、角膜厚さ、硬
さの影響による眼圧補正データを収めた眼圧補正テーブ
ルを記憶している。
[Control System] In FIG. 1, reference numeral 20 denotes a control circuit for controlling the entire apparatus. An output signal from the pressure sensor 12 and an output signal from the photodetector 56 are converted into an applanation detection signal processing circuit 21 and a signal. It is input to the control circuit 20 via the detection processing circuit 22. The control circuit 20 obtains intraocular pressure by performing predetermined arithmetic processing based on each input output signal. The measurement result is displayed and output on the television monitor 36. 23
Is a drive circuit for driving the solenoid 3. Reference numeral 24 denotes a memory, which stores data of a temporal change in pressure detected by the pressure sensor 12 and temporal output signal data from the photodetector 56. In addition, the memory 24 stores an intraocular pressure correction table which stores intraocular pressure correction data due to the influence of the corneal thickness and hardness.

【0016】以上のような構成の装置において、眼圧算
出の動作を中心に説明する。検者は、テレビモニタ36
に表示される前眼部像及びアライメント輝点を観察し、
上下左右方向のアライメント調整を行う。また、作動距
離方向は一次元検出素子57から送られる位置情報に基
づいてテレビモニタ36に誘導指標が表示されるので、
これに従ってアライメント調整を行う。
The operation of calculating the intraocular pressure in the apparatus having the above configuration will be mainly described. The examiner uses the television monitor 36
Observe the anterior segment image and alignment bright spot displayed on the
Performs vertical and horizontal alignment adjustments. In addition, since the guidance distance is displayed on the television monitor 36 based on the position information sent from the one-dimensional detection element 57, the working distance direction is displayed.
The alignment is adjusted according to this.

【0017】アライメント完了後、検者が測定開始スイ
ッチを押すと(又は制御回路20がアライメント光学系
からの検出信号に基づき測定開始信号を自動的に発
し)、制御回路20は駆動回路23を介してソレノイド
3を駆動する。ピストン2はシリンダ1内の空気を圧縮
し、ノズル6から圧縮された空気を被検眼角膜に吹きつ
ける。圧縮空気の吹きつけにより角膜は徐々に変形し、
LED50の角膜反射光は角膜が扁平状態に達したと
き、光検出器56に最大光量が入射される。圧力センサ
12、光検出器56からの出力信号は、逐次処理されて
時間と共にメモリ24に保存される。
After the alignment is completed, when the examiner presses the measurement start switch (or the control circuit 20 automatically issues a measurement start signal based on a detection signal from the alignment optical system), the control circuit 20 sends the signal via the drive circuit 23. To drive the solenoid 3. The piston 2 compresses the air in the cylinder 1 and blows the compressed air from the nozzle 6 onto the cornea of the eye. The cornea is gradually deformed by blowing compressed air,
The maximum amount of corneal reflected light of the LED 50 is incident on the photodetector 56 when the cornea reaches a flat state. Output signals from the pressure sensor 12 and the light detector 56 are sequentially processed and stored in the memory 24 with time.

【0018】図3は、圧力センサ12による圧力信号P
s、光検出器56による角膜反射光量信号Qsの経時的
変化グラフを示した図である。光量信号Qsは、角膜表
面を変形させる圧力値に達すると圧力信号Psの増加と
共に増える。制御回路20は圧縮空気の吹き付け開始か
ら終了までの間、所定のサンプリング時間間隔で圧力信
号Psと光量信号Qsをメモリ24に記憶する。圧縮空
気の吹き付けが終了すると、サンプリングした光量信号
Qsからその最大値Qmaxが得られたときの時間taを
基準にして、その前後を同じ時間幅でとった時間tb〜
tcの圧力信号Psの値を抽出し、その平均圧力値Pav
(t)を求める。そして、この平均圧力値Pav(t)か
ら所定の眼圧換算式で演算することによって眼圧値PE
(t)を算出する。
FIG. 3 shows a pressure signal P from the pressure sensor 12.
FIG. 6 is a graph showing a time-dependent change graph of the corneal reflected light amount signal Qs by the photodetector 56. When the light amount signal Qs reaches a pressure value that deforms the corneal surface, the light amount signal Qs increases as the pressure signal Ps increases. The control circuit 20 stores the pressure signal Ps and the light amount signal Qs in the memory 24 at a predetermined sampling time interval from the start to the end of the blowing of the compressed air. When the blowing of the compressed air is completed, the time tb, which has the same time width before and after the time ta when the maximum value Qmax is obtained from the sampled light amount signal Qs, is taken as a reference.
tc, the value of the pressure signal Ps is extracted, and the average pressure value Pav
Find (t). An intraocular pressure value PE is calculated from the average pressure value Pav (t) by a predetermined intraocular pressure conversion formula.
(T) is calculated.

【0019】従前はこうして求めた眼圧値PE(t)を
そのまま被検眼の測定結果としていた。しかし、これは
角膜の厚さや硬さを考慮していない値であるので、真の
眼内圧が同じにも拘わらず、角膜の厚さや硬さが異なる
と、算出される値は異なる結果となる。図4は角膜が柔
らかい場合の角膜反射光量信号Qs1と、これに対して
眼内圧が等しく、その角膜が厚く硬い場合に得られる角
膜反射光量信号Qs2、及び圧力信号Psの経時的変化
グラフを示した図である。ここで、角膜が厚く硬い方の
光量信号Qs2から求められる圧平時の平均圧力値Pav
(t2)は、角膜の柔らかい方の平均圧力値Pav(t1)
に比べて高い値となる。
Conventionally, the intraocular pressure value PE (t) obtained in this way is used as a measurement result of the eye to be examined. However, since this is a value that does not consider the thickness and hardness of the cornea, the calculated value will be different if the thickness and hardness of the cornea are different even though the true intraocular pressure is the same . FIG. 4 shows a temporal change graph of the corneal reflection light quantity signal Qs1 when the cornea is soft, the corneal reflection light quantity signal Qs2 obtained when the intraocular pressure is equal, and the cornea is thick and hard, and the pressure signal Ps. FIG. Here, the average pressure value Pav at the time of applanation obtained from the light amount signal Qs2 of the thicker and harder cornea.
(T2) is the average pressure value Pav (t1) of the soft side of the cornea.
This is a higher value than.

【0020】角膜の厚さ、硬さを考慮した眼圧値の補正
について説明する。図4に示したように、眼内圧が等し
い場合、角膜の厚さや硬さに拘わらず、角膜は吹き付け
圧力が眼内圧を上回ったときに変形し始める。つまり、
光量信号Qs1、Qs2の立ち上がり時点(時間)は両者
とも略同じ時点txである。しかし、角膜変形の開始か
ら偏平状態までの時間(光量信号Qsが最大となる時
間)は角膜変形に角膜自体の弾性力が影響してくる。こ
のため、光量信号Qs1側のΔT1(角膜変形の開始か
ら偏平状態までの時間)に比べ、角膜が厚く硬い光量信
号Qs2側のΔT2の方が長くなる。従って、角膜変形の
開始から偏平状態までの時間をそれぞれの測定眼圧値に
対して比較することによって角膜厚さや硬さに影響され
る眼圧値の変動を補正することができる。
The correction of the intraocular pressure value in consideration of the thickness and hardness of the cornea will be described. As shown in FIG. 4, when the intraocular pressure is equal, the cornea starts to deform when the spray pressure exceeds the intraocular pressure, regardless of the thickness and hardness of the cornea. That is,
The rising time points (time) of the light quantity signals Qs1 and Qs2 are substantially the same time point tx. However, the elastic force of the cornea itself affects the corneal deformation during the time from the start of the corneal deformation to the flattened state (the time when the light amount signal Qs is maximized). For this reason, ΔT2 on the light amount signal Qs2 side where the cornea is thick and hard is longer than ΔT1 on the light amount signal Qs1 side (time from the start of corneal deformation to the flat state). Therefore, by comparing the time from the start of corneal deformation to the flattened state with respect to each measured intraocular pressure value, it is possible to correct the fluctuation of the intraocular pressure value affected by the corneal thickness and hardness.

【0021】図5に示すフローチャートに従って眼圧値
補正の処理手順を説明する。制御回路20は上述のよう
に、光量信号Qsの最大値Qmaxが得られたときの時間
を基準にして平均圧力値Pav(t)を求め、これから換
算される眼圧値PE(t)を算出する。また、所定のサ
ンプリング時間間隔で得られる光量信号Qsの立ち上が
り時点、すなわち、角膜変形開始点から偏平状態(光量
信号Qsの最大値Qmax)までの時間ΔTを求める。次
に、この時間ΔTが測定眼圧値PE(t)に対する補正
範囲の下限値T1、上限値T2と比較し、補正が必要で
あるか否かの判断がされる。補正範囲の下限値T1と上
限値T2は、眼圧値と対応付けられて予めメモリ24に
記憶されている。時間ΔTがこの下限値T1〜上限値T
2の範囲にあれば補正は不要となり、測定眼圧値PE
(t)がそのまま測定結果となる。
The procedure for correcting the intraocular pressure will be described with reference to the flowchart shown in FIG. As described above, the control circuit 20 calculates the average pressure value Pav (t) based on the time when the maximum value Qmax of the light amount signal Qs is obtained, and calculates the converted intraocular pressure value PE (t) from this. I do. In addition, the time ΔT from the rising point of the light amount signal Qs obtained at a predetermined sampling time interval, that is, the corneal deformation start point to the flat state (the maximum value Qmax of the light amount signal Qs) is obtained. Next, the time ΔT is compared with the lower limit value T1 and the upper limit value T2 of the correction range for the measured intraocular pressure value PE (t), and it is determined whether correction is necessary. The lower limit value T1 and the upper limit value T2 of the correction range are stored in the memory 24 in advance in association with the intraocular pressure value. The time ΔT is equal to the lower limit T1 to the upper limit T
If it is in the range of 2, no correction is required, and the measured intraocular pressure value PE
(T) is the measurement result as it is.

【0022】一方、時間ΔTが下限値T1〜上限値T2
の範囲から外れている場合は補正の演算が行われる。メ
モリ24には、図6に示すような測定眼圧値PE(t)
と時間ΔTの組合わせに合う補正値Ph(ΔT、t)の
テーブルが予め記憶されており、補正が必要な場合は、
このテーブルから補正値が求められる。そして、補正眼
圧値PE´(t)は、 PE´(t)=PE(t)+Ph(ΔT、t) の演算により算出され、モニタ36に表示される。
On the other hand, the time ΔT is between the lower limit value T1 and the upper limit value T2.
If it is out of the range, a correction calculation is performed. The measured intraocular pressure value PE (t) as shown in FIG.
And a table of correction values Ph (ΔT, t) that match the combination of time ΔT and time ΔT are stored in advance.
The correction value is obtained from this table. Then, the corrected intraocular pressure value PE ′ (t) is calculated by the calculation of PE ′ (t) = PE (t) + Ph (ΔT, t) and displayed on the monitor 36.

【0023】なお、補正値Phのテーブルは、例えば、
眼内に直接針を入れて眼内圧を測定するマノメトリーの
測定結果と、同じ被検眼で上記の測定によって得られる
眼圧値PE(t)及びΔTの関係を臨床実験により求
め、これを多数の眼について行うことで作成することが
できる。
The table of the correction values Ph is, for example,
The relationship between the measurement result of manometry, which measures the intraocular pressure by placing a needle directly in the eye, and the intraocular pressure values PE (t) and ΔT obtained by the above-described measurement with the same subject's eye was determined by clinical experiments. It can be created by performing on the eyes.

【0024】[0024]

【発明の効果】以上のように、本発明によれば、角膜
厚、角膜硬さに差がある場合でもその影響を少なくし、
信頼性の高い測定結果が得られる。
As described above, according to the present invention, even if there is a difference in corneal thickness and corneal hardness, the influence is reduced,
Highly reliable measurement results can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる非接触式眼圧計の流体機構及び
その制御機構を示す図である。
FIG. 1 is a view showing a fluid mechanism of a non-contact tonometer according to the present invention and a control mechanism thereof.

【図2】光学系の概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of an optical system.

【図3】光量信号及び圧力信号の時系列変化を示した図
である。
FIG. 3 is a diagram illustrating a time-series change of a light amount signal and a pressure signal.

【図4】角膜が柔らかい眼と厚く硬い眼の光量信号及び
圧力信号の時系列変化を示した図である。
FIG. 4 is a diagram showing a time series change of a light amount signal and a pressure signal of a soft cornea eye and a thick and hard eye.

【図5】眼圧補正のフローチャートを示す図である。FIG. 5 is a diagram showing a flowchart of intraocular pressure correction.

【図6】測定眼圧値と偏平までの立上り時間の組合わせ
から眼圧補正値を求めるテーブルを示した図である。
FIG. 6 is a diagram showing a table for obtaining an intraocular pressure correction value from a combination of a measured intraocular pressure value and a rise time until flattening.

【符号の説明】[Explanation of symbols]

1 シリンダ 2 ピストン 3 ソレノイド 12 圧力センサ 20 制御回路 21 圧力信号処理回路 22 信号検出処理回路 23 駆動回路 24 メモリ 50 LED 56 光検出器 DESCRIPTION OF SYMBOLS 1 Cylinder 2 Piston 3 Solenoid 12 Pressure sensor 20 Control circuit 21 Pressure signal processing circuit 22 Signal detection processing circuit 23 Drive circuit 24 Memory 50 LED 56 Photodetector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検眼角膜に向けて圧縮流体を噴射する
流体噴射手段と、該流体噴射手段からの圧縮流体による
角膜の変形状態を検出する角膜変形検出手段と、角膜に
噴射される圧縮流体の圧力を検出する圧力検出手段と、
前記角膜変形検出手段及び圧力検出手段の検出結果に基
づいて眼圧値を求める演算手段と、前記圧縮流体の噴射
による角膜の変形開始から所定の変形状態に変化するま
での時間を求める時間計測手段と、該時間計測手段によ
る計測時間に基づいて前記演算手段によって求められた
眼圧値を補正する補正手段と、を備えることを特徴とす
る非接触式眼圧計。
1. A fluid ejecting means for ejecting a compressed fluid toward a cornea to be examined, a corneal deformation detecting means for detecting a state of deformation of the cornea caused by the compressed fluid from the fluid ejecting means, and a compressed fluid ejected to the cornea. Pressure detection means for detecting the pressure of
Calculating means for obtaining an intraocular pressure value based on the detection results of the corneal deformation detecting means and pressure detecting means; and time measuring means for obtaining a time from the start of the deformation of the cornea due to the injection of the compressed fluid to a change to a predetermined deformation state. A non-contact tonometer comprising: a correction unit configured to correct an intraocular pressure value obtained by the calculation unit based on a time measured by the time measurement unit.
【請求項2】 請求項1の補正手段は、前記演算手段に
よって求められた眼圧値毎に前記時間計測手段による計
測時間に対応した補正値を求めることを特徴とする非接
触式眼圧計。
2. The non-contact tonometer according to claim 1, wherein the correction means obtains a correction value corresponding to the measurement time by the time measurement means for each of the intraocular pressure values obtained by the calculation means.
JP2000203099A 2000-06-30 2000-06-30 Non-contact tonometer Expired - Fee Related JP3929681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000203099A JP3929681B2 (en) 2000-06-30 2000-06-30 Non-contact tonometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000203099A JP3929681B2 (en) 2000-06-30 2000-06-30 Non-contact tonometer

Publications (2)

Publication Number Publication Date
JP2002017683A true JP2002017683A (en) 2002-01-22
JP3929681B2 JP3929681B2 (en) 2007-06-13

Family

ID=18700541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000203099A Expired - Fee Related JP3929681B2 (en) 2000-06-30 2000-06-30 Non-contact tonometer

Country Status (1)

Country Link
JP (1) JP3929681B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262990A (en) * 2005-03-22 2006-10-05 Hiroshima Univ Noncontact type tonometer
JP2008136616A (en) * 2006-11-30 2008-06-19 Nidek Co Ltd Noncontact type tonometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262990A (en) * 2005-03-22 2006-10-05 Hiroshima Univ Noncontact type tonometer
JP4644842B2 (en) * 2005-03-22 2011-03-09 国立大学法人広島大学 Non-contact tonometer
JP2008136616A (en) * 2006-11-30 2008-06-19 Nidek Co Ltd Noncontact type tonometer

Also Published As

Publication number Publication date
JP3929681B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
AU683142B2 (en) Improved non-contact tonometer
US9089295B2 (en) Ophthalmic apparatus and storage medium
JP3695949B2 (en) Non-contact tonometer
US6537215B2 (en) Non-contact type tonometer
KR20040025564A (en) Noncontact tonometer
JP3108261B2 (en) Ophthalmic instruments
JP3929681B2 (en) Non-contact tonometer
US5946073A (en) Non-contact type tonometer
JP3330461B2 (en) Non-contact tonometer
JPH07171110A (en) Non-contact type ophthalmotonometer
JP3805682B2 (en) Non-contact tonometer
US7101335B2 (en) Non-contact type tonometer
JPH08173385A (en) Ophthalmic instrument
JP4907320B2 (en) Non-contact tonometer
JP3496994B2 (en) Non-contact tonometer
JP3521980B2 (en) Ophthalmic instruments
JP3379719B2 (en) Non-contact tonometer
JPH0556931A (en) Non-contact type ophthalmic pressure gage
JPH11216118A (en) Non-contact type tonometer
JP3986407B2 (en) Non-contact tonometer
JP3839240B2 (en) Non-contact tonometer
JPH0288036A (en) Noncontact type tonometer
JP3762229B2 (en) Non-contact tonometer
JP3176897B2 (en) Eye measurement device
JP2003079582A (en) Non-contact tonometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees