JP4644390B2 - Method for producing silica-coated metal composite powder - Google Patents
Method for producing silica-coated metal composite powder Download PDFInfo
- Publication number
- JP4644390B2 JP4644390B2 JP2001196713A JP2001196713A JP4644390B2 JP 4644390 B2 JP4644390 B2 JP 4644390B2 JP 2001196713 A JP2001196713 A JP 2001196713A JP 2001196713 A JP2001196713 A JP 2001196713A JP 4644390 B2 JP4644390 B2 JP 4644390B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- silica
- metal
- slurry
- colloidal silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims description 192
- 239000000843 powder Substances 0.000 title claims description 102
- 239000000377 silicon dioxide Substances 0.000 title claims description 70
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000002905 metal composite material Substances 0.000 title description 3
- 229910052751 metal Inorganic materials 0.000 claims description 73
- 239000002184 metal Substances 0.000 claims description 73
- 239000008119 colloidal silica Substances 0.000 claims description 47
- 239000002245 particle Substances 0.000 claims description 42
- 239000002002 slurry Substances 0.000 claims description 34
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 25
- 239000011248 coating agent Substances 0.000 claims description 24
- 238000000576 coating method Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 24
- 239000002131 composite material Substances 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- 238000004108 freeze drying Methods 0.000 claims description 8
- 125000005372 silanol group Chemical group 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 150000002736 metal compounds Chemical class 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 6
- 229910000765 intermetallic Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 238000007710 freezing Methods 0.000 claims description 3
- 230000008014 freezing Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims 1
- 238000001035 drying Methods 0.000 description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 230000002776 aggregation Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 238000004220 aggregation Methods 0.000 description 6
- 239000011941 photocatalyst Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000004408 titanium dioxide Substances 0.000 description 5
- 235000002597 Solanum melongena Nutrition 0.000 description 4
- 239000007822 coupling agent Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- -1 etc. Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000007970 homogeneous dispersion Substances 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 239000006247 magnetic powder Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010907 mechanical stirring Methods 0.000 description 2
- 239000013528 metallic particle Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910001199 N alloy Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010303 mechanochemical reaction Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- POWFTOSLLWLEBN-UHFFFAOYSA-N tetrasodium;silicate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])[O-] POWFTOSLLWLEBN-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000010333 wet classification Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
- Chemically Coating (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、シリカ被覆金属系複合粉体の製造方法およびその方法により得られたシリカ被覆金属系複合粉体に関する。さらに詳しくは、本発明は、凝集粒子やシリカ粒子を実質上含まず、かつ表面に均質で緻密なシリカ被膜をむらなく有し、機能性粉体として各種の用途に有用な金属系複合粉体を効率よく製造する方法、およびこの方法で得られた前記シリカ被覆金属系複合粉体に関するものである。
【0002】
【従来の技術】
従来、金属粉体、合金粉体、金属間化合物粉体および金属化合物粉体は、その化学的、機械的、電気的、熱的、光学的性質などに応じて、様々な分野において種々の用途に用いられており、そして、それぞれの用途に応じた機能を効果的に発揮させるために、あるいは2種以上の複合化された機能を発揮させるために、様々な表面改質が行われている。粉体の表面改質法としては、例えばコーティングによる改質、トポケミカルな改質、メカノケミカル反応による改質、カプセル化による改質、高エネルギー利用による改質、沈殿反応による改質などが知られている。
【0003】
具体的には、磁性トナーには磁性粉体が用いられており、従来の黒い磁性トナーでは、該磁性粉体の色調は問題とならないが、カラー磁性トナーにおいては、その色調のままでは使用できないことがあり、この場合、該磁性粉体の表面改質処理を行い、表面の色調をカラー磁性トナーに使用可能なものに変えることが必要となる。また、半導体の封止材の充填物として使用する放熱物質においては、熱伝導性の良い金属粉体だけでは使用できず、電気絶縁性であることが必要となるから、該金属粉体はその表面に十分な電気絶縁性のある膜を備えたものでなければならない。したがって、前記金属粉体の表面改質処理を行い、粒子表面に絶縁性被膜を設けることが必要となる。
【0004】
そこで、このような事態に対処するために、例えば金属アルコキシド溶液中に金属または金属化合物粉体を分散し、該金属アルコキシドを加水分解することにより該金属または金属化合物粉体の表面において金属酸化物を生成させて該金属酸化物の膜を形成させる方法が開示されている(特開平6−228604号公報)。しかしながら、この方法においては、ミクロンサイズ以上の金属や金属化合物粉体に表面処理を行う際、粉体の比重および反応溶媒へのなじみの悪さから、反応溶媒中で、均一に、個々の粒子として分散させることは極めて困難であり、その状態で反応を行うと、当然なことながら、凝集状態のまま表面がコーティングされることになり、均質で緻密な被膜が形成されないという問題が生じる。
【0005】
一方、現在、高磁気特性を有する希土類磁石は、磁石の小型化、小片化を可能にし、それを組み込んだ通信機器、情報処理機器などのエレクトロニクス製品の小型化に欠くことのできない材料となっている。特に、希土類ボンド磁石は優れた形状加工性を有し、薄肉微小への成形が可能であることからその使用量はますます増加の一途をたどっている。
【0006】
ところで、近年、二酸化チタンを代表とする光触媒は、環境触媒として期待され、NOxやダイオキシン、室内のVOC(揮発性有機化学物質)など、多くの有害有機物の分解に適用され始めている。しかし、この光触媒は、光触媒作用である強い酸化力のために、バインダーに無機物を選択したり、あるいは光触媒と樹脂などが直接接触しないようにするなどの工夫が必要とされ、光触媒応用のネックの一つとなっていた。このため、光触媒である二酸化チタン微粒子の表面を、微細な空隙を有するシリカ系多孔質体で被覆することが試みられている。このような光触媒は、樹脂などの有機物と接触しても、二酸化チタンが直接触れないことから、該有機物を劣化させることが抑制され、塗料、樹脂、紙、繊維などに混合して使用することが可能となる。
【0007】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、凝集粒子やシリカ粒子を実質上含まず、かつ表面にシリカ被膜をむらなく有し、機能性粉体として各種の用途に有用な金属系複合粉体を効率よく製造する方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、表面にシラノール基を有するコロイダルシリカスラリー中に金属系粉体を分散させ、シラノール基を有するコロイダルシリカ間で不可逆な凝集を発生させない条件下で乾燥処理し、その後、得られた乾燥粉体をコロイダルシリカが分散可能な溶媒中に再分散して、被覆に寄与していない過剰なコロイダルシリカを湿式分級により除去することにより、その目的を達成し得ることを見出し、この知見に基づいて本発明を完成するに至った。
【0009】
すなわち、本発明は、
(1)表面にシラノール基を有するコロイダルシリカと平均粒径0.5〜500μmであって、金属、合金、金属間化合物および金属化合物の中から選ばれる少なくとも1種の粉体からなる金属系粉体とを含むスラリーを、凍結乾燥処理し、次いで得られた乾燥粉体をコロイダルシリカが分散可能な溶媒中で再分散して、被覆に寄与していない過剰なコロイダルシリカを分級・除去することを特徴とするシリカ被覆金属系複合粉体の製造方法、
(2)スラリーを粘度が0.15Pa・s以上になるように調整し、分散状態を保持した状態で乾燥処理を行う(1)に記載の方法、
(3)凍結乾燥における凍結工程において、スラリーを撹拌しながら冷却して凍結させる(1)または(2)に記載の方法、
(4)得られたシリカ被覆金属系複合粉体を、さらに50〜1200℃の間で加熱処理する(1)ないし(3)のいずれか1項に記載の方法、
【0010】
(5)コロイダルシリカの平均粒径が金属系粉体の平均粒径に対して1/10以下で、かつ1〜200nmである(1)ないし(4)のいずれか1項に記載の方法、
(6)スラリー中のコロイダルシリカと金属系粉体との含有割合が、重量比3:97ないし50:50である(1)ないし(5)のいずれか1項に記載の方法、
(7)コロイダルシリカと金属系粉体を含むスラリーが水系スラリーである(1)ないし(6)のいずれか1項に記載の方法、および
(8)金属系粉体が、ニッケルである(1)ないし(7)のいずれか1項に記載の方法、
を提供するものである。
【0011】
【発明の実施の形態】
本発明において、コア粒子として用いられる金属系粉体は、金属粉体、合金粉体、金属間化合物粉体および金属化合物粉体であり、このようなものとしては、特に制限はなく、様々なものを挙げることができる。具体的には、鉄、ニッケル、クロム、コバルト、チタン、ジルコニウム、錫、銅、アルミニウム、亜鉛など、およびこれらの合金、酸化物、複合酸化物、Sm−Co系合金、Nd−Fe−B系合金、Sm−Fe−N系合金、Ce−Co系合金、Srフェライト、Baフェライトなどの磁性材料、さらには錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、酸化タングステン、チタン酸バリウム(BaTi4O9)、チタン酸ストロンチウム(SrTiO3)、チタン酸ナトリウム(Na2Ti6O13)、硫化カドミウムなどの粉体の中から、得られるシリカ被覆金属系複合粉体の使用目的に応じて、適宜一種以上を選び用いられる。
【0012】
この金属系粉体の平均粒径は、0.5〜500μmの範囲で選定される。該平均粒径が上記範囲にあることにより、金属系粉体の粒径をコロイダルシリカより10倍以上の粒径とすることができ、該金属系粉体の粒子表面をシリカで十分に被服することが可能となる。この金属系粉体のより好ましい平均粒径は、1〜100μmであり、より好ましくは1〜50μmの範囲である。
【0013】
本発明の方法においては、まず表面にシラノール基を有するコロイダルシリカのスラリーに、前記の金属系粉体を分散させてコロイダルシリカと金属系粉体とのスラリーを得る。ここで、コロイダルシリカは、その製造方法については特に制限はなく、従来公知の方法で製造されたものを用いることができる。例えば、メタケイ酸ナトリウムやオルトケイ酸ナトリウム、あるいは水ガラスなどを含む水系溶液を、鉱酸や酸性イオン交換樹脂などにより処理して得られたもの、およびテトラアルコキシシランを水系媒体中で加水分解・縮合して得られたものなど、いずれも用いることができるが、得られるシリカ被覆金属系複合粉体をアルカリ金属イオンなどのイオン性不純物を嫌う電子材料用途のフィラーなどとして用いる場合には、テトラアルコキシシランの加水分解・縮合による方法、いわゆるゾルゲル法により得られたものが好ましい。
【0014】
このコロイダルシリカスラリーに用いられる溶媒としては、特に制限はなく、例えば水系溶媒やアルコールなどの有機溶剤系溶媒を用いることができるが、環境や操作性などを考慮すると、水系溶媒が好ましい。なお、このようにして得られたコロイダルシリカスラリーは、乾燥処理することなく、そのまま用いるのが有利である。該コロイダルシリカスラリーを乾燥処理すると、乾燥処理特に凝集が生じ、この乾燥コロイダルシリカを水系溶媒に再分散させてスラリーを調製して使用した場合、金属系粉体の粒子表面にコロイダルシリカの凝集物がコーティングされ、斑のないシリカ被膜が形成されにくい。
【0015】
本発明で用いられる前記コロイダルシリカスラリーにおけるコロイダルシリカの平均粒径は、小さすぎるとその凝集力が強すぎてコロイダルシリカを介した凝集体が発生してしまう。また大きすぎると、凝集力や付着力が弱くなり、金属系粉体との密着性が低下する。そのため、金属系粉体に対して1/10以下で、かつ1〜200nmであるのが好ましいが、より好ましくは10〜150nm、特に好ましくは30〜120nmの範囲で選定される。また、このコロイダルシリカスラリーに分散させる金属系粉体の量は、該粉体の粒子表面に、均質で緻密なシリカ被膜をむらなく設けるためには、金属系粉体の表面積によって変化するが、コロイダルシリカと金属系粉体との重量比が、通常3:97ないし50:50、好ましくは5:95ないし40:60、より好ましくは5:90ないし30:70の範囲になるように選定するのがよい。コロイダルシリカは、金属系粉体の表面積に対して十分な量添加する必要があるが、あまり過剰に添加しても経済的ではない。
【0016】
コロイダルシリカスラリー中への金属系粉体の分散は機械的攪拌および/または超音波照射などにより行うことができる。本発明においては、このようにして得られたコロイダルシリカと金属系粉体とを均質な分散状態で含むスラリーを濃縮したものも用いることできる。なお、前記濃縮は、減圧下で加熱することにより行うのが好ましい。
【0017】
次に、このようにしてを得られたコロイダルシリカと金属系粉体とを均質に分散したスラリーをコロイダルシリカ間で不可逆な凝集を発生させない条件下で乾燥処理する。乾燥処理時の、加熱温度が高いと、コロイダルシリカ間の凝集が強固なものとなり、その結果、シリカ被覆金属系複合粉体の凝集を防止することが困難となる。したがって、乾燥処理は40℃以下の温度で行うことが好ましく、その方法としては真空乾燥、噴霧乾燥、凍結乾燥等が適用可能であるが、特に凍結乾燥が好適である。
【0018】
この乾燥処理の前処理として、コロイダルシリカと金属系粉体とを均質な分散状態で含むスラリーを濃縮して、粘度が0.15Pa・s以上になるように調整し、分散状態を保持したまま乾燥処理することで金属系粉体表面に斑なく、シリカ皮膜を形成させることができる。上記粘度が0.15Pa・s未満では金属系粉体とコロイダルシリカとが、粒径および比重の違いから相分離を起こし、該粉体の粒子表面に、斑のないシリカ被膜が形成されず、本発明の目的が達せられない。好ましい粘度は0.5〜4.0Pa・sであり、特に0.8〜3.0Pa・sの範囲が好ましい。なお、前記濃縮は、エバポレーター等を用いた撹拌操作と減圧下で加熱することを同時に行う方法が好ましい。
【0019】
一方、撹拌を行い、コロイダルシリカと金属系粉体とを含むスラリーを均質な分散状態に保ちながら乾燥処理することによっても金属系粉体表面に斑なく、シリカ皮膜を形成させることができる。特に凍結乾燥処理を行う前に、該スラリーを入れた容器を回転させるなどの撹拌操作を行い、該スラリーの分散状態を保ったままの状態で冷却、凍結させて、凍結乾燥処理を行うのが最適である。
【0020】
以上のような方法によって得られたシリカ被覆金属系粉体のシリカと金属系粉体の界面では、メタロシロキサン結合(M−O−Si)が生成しているため、その化学的結合力によって強固な密着性を有するものと推察される。
【0021】
このようにして得られた乾燥粉体には、あらかじめ金属系粉体表面を斑なく、完全に被覆するため、金属系粉体表面に対して過剰のコロイダルシリカを仕込んであるので、目的のシリカ被覆金属系複合粒子以外に、コロイダルシリカ由来のシリカ成分が存在しており、したがって、この乾燥粉体を、そのままフィラーとして用いる場合、樹脂との混合特に粘度上昇などが生じるおそれがあり、また焼結成形する場合には、成形体に斑などが生じる場合がある。したがって、本発明においては、コロイダルシリカが分散可能な溶媒中で再分散を行い、粒子の沈降速度差を利用した分級操作により、上記シリカ成分を取り除く操作を行うことが望ましい。これにより、粒子表面に均質で緻密なシリカ被膜をむらなく有する金属系複合粉体が得られる。また、再分散の際には、機械的撹拌および/または超音波照射を行うが、目的のシリカ被覆金属系複合粒子表面のシリカ成分は、脱落することがなく、このことからも界面密着性が良い被覆状態にあることが分かる。
【0022】
本発明においては、このようにして得られたシリカ被覆金属系複合粉体に、所望により加熱処理を行い、皮膜の強度をさらに向上させることができる。加熱処理温度は、通常50〜1200℃、好ましくは、50〜800℃、さらに好ましくは、100〜800℃である。この加熱処理温度は、この他にも被被覆粉体である金属の機能変化が起きないような温度に設定する必要もある。
【0023】
そして、ハイブリダイゼーションやメカノフュージョンなどの装置などを用いた物理的なせん断力や衝撃力による処理を施し、被膜の強度をさらに向上させることや球形化を行うこともできる。
【0024】
本発明においては、ミクロンサイズの金属系粉体の粒子表面に設けるシリカ被膜の原料として、粒子表面にシラノール基を含むナノメータサイズのコロイダルシリカをスラリー状態で用いることにより、シラノール基による凝集力や脱水縮合を利用して、むらのないシリカ被膜を設けることができる。
【0025】
このコロイダルシリカスラリーの代わりに、気相法によるシリカのスラリーを用いる場合、該気相法によるシリカは凝集構造を有しているため、金属系粉体の粒子表面に均質で緻密なシリカ被膜を形成することは困難である。さらに、シラノール基を有していないので、シリカ被膜と金属系粒子間や、シリカ被膜におけるシリカ同士間での結合が期待できないので、金属系粒子との密着性に優れ、かつ緻密で強度の良好なシリカ被膜が形成されにくい。
【0026】
また、テトラエトキシシランなどを用いて、その加水分解縮合によって金属系粉体の粒子表面にシリカ被膜を設ける際、完全なカプセル化を試みる場合は、凝集のない分散状態を保ちながら処理する必要があり、また系内で均一に、かつすべての粒子表面で反応させる必要がある。しかし、特にミクロンサイズの金属系粉体の場合にはそれらが困難であり、したがって、粒子間で凝集を発生させずに粒子表面にむらなくシリカ被膜を形成させることは難しく、粉体攪拌および流動状態の非常に精密な制御を要する。
【0027】
本発明においては、金属系粉体の粒子表面に微細な空隙を有する多孔質シリカ被膜を形成させる場合には、例えば、コロイダルシリカと金属系粉体を含むスラリーに、適当な有機溶剤に可溶な有機微粒子、あるいは焼成により取り除くことのできる有機微粒子を加え、前記と同様な操作を行い、シリカ被覆金属系複合粉体を得たのち、有機溶剤処理あるいは焼成処理を施せばよい。二酸化チタン粉体に、このような操作を施すことにより、粒子表面に多孔質シリカ被膜を有する二酸化チタン粉体からなる光触媒を得ることができる。
【0028】
また、本発明においては、前記のようにして得られたシリカ被覆金属系複合粉体を樹脂などと混合して用いる場合、樹脂との濡れ性などを改善する目的で、所望により該シリカ被覆金属系複合粉体に対し、カップリング剤による表面処理を施すことができる。このカップリング剤としては、例えば公知のシラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤などが挙げられる。
本発明はまた、前述の方法で得られたシリカ被覆金属系複合粉体をも提供する。
【0029】
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
【0030】
実施例1
<合成>
1000mlのナスフラスコに、テトラエトキシシランを加水分解・重縮合反応することで得られた平均粒径92nmのコロイダルシリカ粒子[宇部日東化成(株)製「ハイプレシカUF」、合成後生シリカ]を含む水分散シリカスラリー(シリカ濃度9.85重量%)を457g仕込み、これに平均粒径10μmのニッケル粉体を255g添加した。その後、エバポレーターに接続し、約1時間回転させることによる攪拌および超音波照射により、分散を行った。次いで、圧力3450Pa、温度50℃で減圧濃縮を行い、水およびアンモニアを除去し、粘性が高くなって、ニッケルとシリカとが相分離を起こさなくなるまで濃縮を続けた。濃縮後の液粘度を、振動式粘度計(Viscomate Model VM1G 山一電機社製)で測定した結果、20℃条件下で、1.6Pa・sであった。
【0031】
次に、メタノール中にドライアイスを添加した溶液中に、ナスフラスコを静置してスラリーを凍結させた後、凍結乾燥器によって乾燥処理することにより、粉体を得た。次いで、この一部をガラス製容器に添加し、イオン交換水中で撹拌及び超音波照射によって再分散させた後、放置し、目的のシリカ被覆ニッケル粉末が沈降後、白濁したコロイダルシリカ単独物が浮遊する上澄みを除去した。そして再度、イオン交換水を添加し、再分散させるという沈降速度差を利用した分級操作によるシリカ単独粒子の除去を行うことで、目的のシリカ被覆ニッケル粉末を得た。
【0032】
<評価>
図1にニッケル粉末の走査型電子顕微鏡(SEM)写真を示した。このシリカ被覆ニッケル粉末を、走査型電子顕微鏡(SEM)で観察したところ、図2に示すように、粒子表面にシリカ被膜がむらなく形成され、かつ凝集粒子が、実質上ないことが確認された。
BET比表面積を測定(フローソーブII2300、島津製作所社製)した結果、Ni粉末が、0.425m2/gであったのに対して、シリカ被覆ニッケル粉末は、4.265m2/gであった。
さらに蛍光X線測定(PW2400型 全自動蛍光X線分析装置 PHILIPS社製)を行った結果、Niが91wt%、Siが3.1wt%であった。
【0033】
実施例2
<熱処理>
実施例1で得られたシリカ被覆ニッケル粉末を空気中で300℃、12時間の加熱処理を行った。
【0034】
<評価>
この加熱処理後シリカ被覆ニッケル粉末をSEM 観察した結果、粒子表面及び凝集状態に大きな変化が、実質上ないことが確認された。
実施例1と同様にBET比表面積を測定した結果、2.025m2/gであり、シリカ被覆層が緻密化されていることが推察された。
【0035】
実施例3
<機械的処理>
実施例1において、凍結乾燥後に得られた粉体を、ハイブリダイゼーションシステム(奈良機械製作所社製)にて、15000rpm、30分間の条件で処理を行った。ついで、イオン交換水中に分散し、実施例1と同様に分級操作を行った。
【0036】
<評価>
このハイブリダイゼーション処理後シリカ被覆ニッケル粉末をSEM 観察した結果、図3に示すように、粒子が物理的衝撃によって球形化されており、またその処理によってシリカ被覆層の脱落、凝集の発生は実質上ないことが確認された。
【0037】
実施例4
<合成>
実施例1におけるコロイダルシリカを、市販品のスノーテックZL(シリカ成分濃度40重量%、日産化学社製)にし、仕込み量を113gにし、減圧濃縮工程を行わず、かつナスフラスコを回転させ、撹拌しながら凍結させた後、凍結乾燥を行った以外は、同様の操作を行った。
【0038】
<評価>
このシリカ被覆ニッケル粉末を、走査型電子顕微鏡(SEM)で観察したところ、図4に示すように、粒子表面にシリカ被膜がむらなく形成され、かつ凝集粒子が、実質上ないことが確認された。
【0039】
実施例5
実施例1において、濃縮工程後にナスフラスコを回転させ、撹拌しながら凍結させた上、凍結乾燥を行った以外は同様の操作を行った。
そして、得られたシリカ被覆ニッケル粉体をSEM観察した結果、実施例1や4と同様に粒子表面にシリカ被膜がむらなく形成され、かつ凝集粒子が、実質上ないことが確認された。
【0040】
比較例1
実施例1において、減圧濃縮処理を行なわなかった以外は、実施例1と同様に行った。
得られた粉末のSEM観察を行った結果、その形状から表面に全くシリカが被覆されていないことが分かった。
【0041】
比較例2
実施例1において、減圧濃縮処理を継続して、水分をそのまま除去して乾燥粉末を得、ついで、同様な分級操作を行った。
得られた粉末は、乾固した状態であり、コロイダルシリカ成分を介した強固な凝集塊の発生していたため、撹拌や超音波照射では、それら凝集を解すことはできなかった。
【0042】
【発明の効果】
本発明によれば、凝集粒子やシリカ粒子を実質上含まず、かつ表面に均質で緻密なシリカ被膜をむらなく有し、機能性粉体として各種の用途に有用な金属系複合粉体を効率よく得ることができる。
【図面の簡単な説明】
【図1】 被覆前のニッケル粉末のSEM写真である。
【図2】 実施例1において得られたシリカ被覆ニッケル粉末のSEM写真である。
【図3】 実施例3において得られたシリカ被覆ニッケル粉末のSEM写真である。
【図4】 実施例4において得られたシリカ被覆ニッケル粉末のSEM写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a silica-coated metal-based composite powder and a silica-coated metal-based composite powder obtained by the method. More specifically, the present invention is a metal-based composite powder that is substantially free of agglomerated particles and silica particles, has a uniform and dense silica coating on the surface, and is useful for various applications as a functional powder. The present invention relates to a method for efficiently producing the silica-coated metal-based composite powder obtained by this method.
[0002]
[Prior art]
Conventionally, metal powders, alloy powders, intermetallic compound powders and metal compound powders have various applications in various fields depending on their chemical, mechanical, electrical, thermal and optical properties. Various surface modifications have been carried out in order to effectively exhibit the function according to each application or to exhibit two or more combined functions. . Known surface modification methods for powders include, for example, coating modification, topochemical modification, mechanochemical reaction modification, encapsulation modification, high energy utilization modification, and precipitation reaction modification. ing.
[0003]
Specifically, a magnetic powder is used for the magnetic toner, and the color tone of the magnetic powder is not a problem with the conventional black magnetic toner, but the color tone cannot be used with the color magnetic toner. In this case, it is necessary to perform a surface modification treatment of the magnetic powder to change the color tone of the surface to one that can be used for the color magnetic toner. In addition, a heat dissipation material used as a filling material for a semiconductor sealing material cannot be used only with a metal powder having good thermal conductivity, and must be electrically insulating. It must have a film with sufficient electrical insulation on the surface. Therefore, it is necessary to perform a surface modification treatment of the metal powder and provide an insulating coating on the particle surface.
[0004]
Therefore, in order to cope with such a situation, for example, a metal oxide or metal compound powder is dispersed in a metal alkoxide solution, and the metal alkoxide is hydrolyzed to form a metal oxide on the surface of the metal or metal compound powder. Has been disclosed to form a film of the metal oxide (JP-A-6-228604). However, in this method, when surface treatment is performed on metal or metal compound powder of micron size or more, due to the specific gravity of the powder and poor adaptability to the reaction solvent, in the reaction solvent, uniformly as individual particles. It is extremely difficult to disperse, and when the reaction is carried out in this state, it is a matter of course that the surface is coated in an agglomerated state, causing a problem that a homogeneous and dense film is not formed.
[0005]
On the other hand, rare earth magnets with high magnetic properties are now indispensable for miniaturization of electronic products such as communication equipment and information processing equipment that can make magnets smaller and smaller. Yes. In particular, rare earth bonded magnets have an excellent shape processability and can be formed into thin and minute shapes, so that the amount of use thereof continues to increase.
[0006]
By the way, in recent years, a photocatalyst represented by titanium dioxide is expected as an environmental catalyst, and has begun to be applied to the decomposition of many harmful organic substances such as NOx, dioxin, and indoor VOC (volatile organic chemicals). However, this photocatalyst has a strong oxidizing power that is a photocatalytic action, so it is necessary to devise measures such as selecting an inorganic substance for the binder or preventing the photocatalyst and the resin from coming into direct contact with each other. It was one. For this reason, it has been attempted to coat the surface of titanium dioxide fine particles as a photocatalyst with a silica-based porous material having fine voids. Such photocatalyst is not directly touched by titanium dioxide even when it comes into contact with organic substances such as resin, so that deterioration of the organic substance is suppressed, and it is used by mixing with paint, resin, paper, fiber, etc. Is possible.
[0007]
[Problems to be solved by the invention]
Under such circumstances, the present invention is a metal-based composite powder that is substantially free of agglomerated particles and silica particles, has a uniform silica coating on the surface, and is useful as a functional powder for various applications. It aims at providing the method of manufacturing a body efficiently.
[0008]
[Means for Solving the Problems]
As a result of intensive research to achieve the above-mentioned object, the present inventors have dispersed metal-based powder in a colloidal silica slurry having silanol groups on the surface, and irreversible aggregation between colloidal silicas having silanol groups. Drying is performed under conditions that do not generate water, and then the obtained dry powder is redispersed in a solvent in which colloidal silica can be dispersed, and excess colloidal silica that does not contribute to coating is removed by wet classification. Thus, it has been found that the object can be achieved, and the present invention has been completed based on this finding.
[0009]
That is, the present invention
(1) Metal-based powder comprising colloidal silica having a silanol group on the surface and an average particle size of 0.5 to 500 μm and comprising at least one powder selected from metals, alloys, intermetallic compounds and metal compounds The slurry containing the body is freeze-dried, and then the obtained dry powder is redispersed in a solvent in which colloidal silica can be dispersed to classify and remove excess colloidal silica that does not contribute to coating. A method for producing a silica-coated metal-based composite powder characterized by
(2) The method according to (1), wherein the slurry is adjusted to have a viscosity of 0.15 Pa · s or more, and the drying treatment is performed in a state where the dispersion state is maintained.
(3) The method according to (1) or (2), wherein in the freezing step in lyophilization, the slurry is cooled and frozen with stirring.
(4) The method according to any one of (1) to (3), wherein the obtained silica-coated metal-based composite powder is further subjected to a heat treatment at 50 to 1200 ° C.
[0010]
(5) The method according to any one of (1) to (4), wherein the average particle size of the colloidal silica is 1/10 or less of the average particle size of the metal-based powder and 1 to 200 nm.
(6) The method according to any one of (1) to (5), wherein the content ratio of the colloidal silica and the metal-based powder in the slurry is a weight ratio of 3:97 to 50:50.
( 7 ) The method according to any one of (1) to ( 6 ), wherein the slurry containing colloidal silica and metal powder is an aqueous slurry, and ( 8 ) the metal powder is nickel (1 ) To ( 7 ) any one of the methods,
Is to provide.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the metal-based powder used as the core particle is a metal powder, an alloy powder, an intermetallic compound powder, and a metal compound powder. Things can be mentioned. Specifically, iron, nickel, chromium, cobalt, titanium, zirconium, tin, copper, aluminum, zinc, etc., and alloys, oxides, composite oxides, Sm—Co alloys, Nd—Fe—B alloys, etc. Alloys, Sm—Fe—N alloys, Ce—Co alloys, magnetic materials such as Sr ferrite and Ba ferrite, tin doped indium oxide (ITO), antimony doped tin oxide (ATO), tungsten oxide, barium titanate Among the powders such as (BaTi 4 O 9 ), strontium titanate (SrTiO 3 ), sodium titanate (Na 2 Ti 6 O 13 ), cadmium sulfide, etc. Depending on the type, one or more types are appropriately selected and used.
[0012]
The average particle size of the metal-based powder is selected in the range of 0.5 to 500 μm. When the average particle size is in the above range, the particle size of the metal-based powder can be made 10 times or more than colloidal silica, and the particle surface of the metal-based powder is sufficiently covered with silica. It becomes possible. A more preferable average particle size of the metal-based powder is 1 to 100 μm, and more preferably 1 to 50 μm.
[0013]
In the method of the present invention, first, the metal powder is dispersed in a colloidal silica slurry having silanol groups on the surface to obtain a slurry of colloidal silica and metal powder. Here, colloidal silica is not particularly limited as to its production method, and those produced by a conventionally known method can be used. For example, hydrolyzed / condensed aqueous solution containing sodium metasilicate, sodium orthosilicate or water glass with mineral acid or acidic ion exchange resin, and tetraalkoxysilane in aqueous medium However, when the obtained silica-coated metal-based composite powder is used as a filler for electronic materials that dislike ionic impurities such as alkali metal ions, a tetraalkoxy is used. A method obtained by hydrolysis / condensation of silane, that is, a so-called sol-gel method is preferred.
[0014]
There is no restriction | limiting in particular as a solvent used for this colloidal silica slurry, For example, organic solvent type | system | group solvents, such as an aqueous solvent and alcohol, can be used, However, Considering environment, operativity, etc., an aqueous solvent is preferable. In addition, it is advantageous to use the colloidal silica slurry thus obtained as it is without drying. When the colloidal silica slurry is subjected to a drying treatment, agglomeration occurs particularly in the drying treatment. When the dried colloidal silica is redispersed in an aqueous solvent to prepare a slurry, the aggregate of colloidal silica is formed on the surface of the metal powder particles. Is coated, and it is difficult to form a flat silica film.
[0015]
If the average particle size of the colloidal silica in the colloidal silica slurry used in the present invention is too small, the cohesive force is too strong and aggregates via the colloidal silica are generated. On the other hand, if it is too large, the cohesive force and adhesive force become weak, and the adhesiveness with the metal powder decreases. Therefore, it is preferably 1/10 or less and 1 to 200 nm with respect to the metallic powder, more preferably 10 to 150 nm, and particularly preferably 30 to 120 nm. Further, the amount of the metal-based powder dispersed in the colloidal silica slurry varies depending on the surface area of the metal-based powder in order to uniformly provide a uniform and dense silica coating on the particle surface of the powder. The weight ratio of the colloidal silica to the metal-based powder is usually selected to be in the range of 3:97 to 50:50, preferably 5:95 to 40:60, more preferably 5:90 to 30:70. It is good. Although it is necessary to add a sufficient amount of colloidal silica to the surface area of the metal-based powder, it is not economical to add too much.
[0016]
The metal-based powder can be dispersed in the colloidal silica slurry by mechanical stirring and / or ultrasonic irradiation. In this invention, what concentrated the slurry containing the colloidal silica and metal type powder which were obtained in this way in a homogeneous dispersion state can also be used. The concentration is preferably performed by heating under reduced pressure.
[0017]
Next, the slurry in which the colloidal silica and metal powder thus obtained are uniformly dispersed is dried under conditions that do not cause irreversible aggregation between the colloidal silica. When the heating temperature during the drying process is high, the aggregation between the colloidal silicas becomes strong, and as a result, it becomes difficult to prevent the aggregation of the silica-coated metal-based composite powder. Therefore, the drying treatment is preferably performed at a temperature of 40 ° C. or lower, and vacuum drying, spray drying, freeze drying, and the like can be applied as the method, and freeze drying is particularly preferable.
[0018]
As a pretreatment for this drying treatment, the slurry containing colloidal silica and metal powder in a homogeneous dispersion state is concentrated and adjusted so that the viscosity is 0.15 Pa · s or more, and the dispersion state is maintained. By performing the drying treatment, a silica film can be formed without unevenness on the surface of the metal-based powder. When the viscosity is less than 0.15 Pa · s, the metal-based powder and colloidal silica cause phase separation due to the difference in particle diameter and specific gravity, and a surface-free silica coating is not formed on the particle surface of the powder. The object of the present invention cannot be achieved. A preferable viscosity is 0.5 to 4.0 Pa · s, and a range of 0.8 to 3.0 Pa · s is particularly preferable. The concentration is preferably carried out by simultaneously performing a stirring operation using an evaporator or the like and heating under reduced pressure.
[0019]
On the other hand, a silica film can be formed on the surface of the metal-based powder without any spots by stirring and drying the slurry containing colloidal silica and the metal-based powder while maintaining a homogeneous dispersion state. In particular, before the freeze-drying treatment, the stirring operation such as rotating the container containing the slurry is performed, and the slurry is cooled and frozen while keeping the dispersed state of the slurry, and the freeze-drying treatment is performed. Is optimal.
[0020]
Since the metallosiloxane bond (M-O-Si) is formed at the interface between the silica and the metal powder of the silica-coated metal powder obtained by the above method, it is strong due to its chemical bond strength. It is presumed to have good adhesion.
[0021]
The dry powder obtained in this way is preliminarily coated with the metal powder surface without any spots, so that an excessive amount of colloidal silica is charged to the metal powder surface. In addition to the coated metal composite particles, there is a silica component derived from colloidal silica. Therefore, when this dry powder is used as it is as a filler, there is a risk of mixing with the resin, in particular, an increase in viscosity. In the case of molding, spots or the like may occur on the molded body. Therefore, in the present invention, it is desirable to redisperse in a solvent in which colloidal silica can be dispersed, and to perform the operation of removing the silica component by the classification operation utilizing the difference in the sedimentation rate of the particles. Thereby, a metal-based composite powder having a uniform and dense silica coating on the particle surface is obtained. In addition, during the redispersion, mechanical stirring and / or ultrasonic irradiation is performed, but the silica component on the surface of the target silica-coated metal-based composite particles does not fall off, which also indicates the interfacial adhesion. It turns out that it is in a good covering state.
[0022]
In the present invention, the silica-coated metal-based composite powder thus obtained can be subjected to a heat treatment as desired to further improve the strength of the coating. Heat processing temperature is 50-1200 degreeC normally, Preferably, it is 50-800 degreeC, More preferably, it is 100-800 degreeC. In addition to this, it is necessary to set the heat treatment temperature to a temperature at which the functional change of the metal that is the powder to be coated does not occur.
[0023]
Then, treatment with a physical shearing force or impact force using an apparatus such as hybridization or mechanofusion can be performed to further improve the strength of the coating or to make it spherical.
[0024]
In the present invention, as a raw material for the silica coating provided on the surface of the micron-sized metal-based powder, nanometer-sized colloidal silica containing a silanol group on the particle surface is used in a slurry state, so that the cohesive force and dehydration due to the silanol group Condensation can be used to provide a uniform silica coating.
[0025]
When using a silica slurry by a gas phase method instead of the colloidal silica slurry, the silica by the gas phase method has an agglomerated structure, so that a homogeneous and dense silica coating is formed on the particle surface of the metal-based powder. It is difficult to form. Furthermore, since it does not have a silanol group, bonding between the silica coating and the metallic particles or between the silica in the silica coating cannot be expected, so it has excellent adhesion to the metallic particles and is dense and has good strength. It is difficult to form a silica film.
[0026]
Moreover, when a silica coating is provided on the surface of a metal powder particle by hydrolytic condensation using tetraethoxysilane or the like, it is necessary to perform treatment while maintaining a dispersed state without aggregation when attempting to encapsulate completely. Yes, it is necessary to react uniformly in the system and on all particle surfaces. However, especially in the case of micron-sized metal-based powders, they are difficult, so it is difficult to form a uniform silica film on the particle surface without causing aggregation between the particles. Requires very precise control of the condition.
[0027]
In the present invention, when forming a porous silica film having fine voids on the particle surface of the metal powder, for example, it is soluble in a slurry containing colloidal silica and metal powder in an appropriate organic solvent. Organic fine particles or organic fine particles that can be removed by firing are added and the same operation as described above is performed to obtain a silica-coated metal-based composite powder, followed by an organic solvent treatment or a firing treatment. By subjecting the titanium dioxide powder to such an operation, a photocatalyst comprising a titanium dioxide powder having a porous silica coating on the particle surface can be obtained.
[0028]
In the present invention, when the silica-coated metal composite powder obtained as described above is mixed with a resin or the like, the silica-coated metal is optionally used for the purpose of improving wettability with the resin. Surface treatment with a coupling agent can be applied to the composite powder. Examples of the coupling agent include known silane coupling agents, titanate coupling agents, aluminum coupling agents, and the like.
The present invention also provides a silica-coated metal-based composite powder obtained by the above-described method.
[0029]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
[0030]
Example 1
<Synthesis>
Water containing colloidal silica particles [“High Presica UF” manufactured by Ube-Nitto Kasei Co., Ltd., synthetic raw silica] obtained by hydrolysis and polycondensation reaction of tetraethoxysilane in a 1000 ml eggplant flask 457 g of dispersed silica slurry (silica concentration: 9.85% by weight) was charged, and 255 g of nickel powder having an average particle size of 10 μm was added thereto. Then, it connected to the evaporator and disperse | distributed by stirring and ultrasonic irradiation by rotating for about 1 hour. Subsequently, concentration was performed under reduced pressure at a pressure of 3450 Pa and a temperature of 50 ° C. to remove water and ammonia, and the concentration was continued until the viscosity became high and phase separation between nickel and silica did not occur. The liquid viscosity after the concentration was measured with a vibration viscometer (Viscomate Model VM1G, manufactured by Yamaichi Electronics Co., Ltd.), and as a result, it was 1.6 Pa · s under 20 ° C. conditions.
[0031]
Next, the eggplant flask was allowed to stand in a solution in which dry ice was added to methanol to freeze the slurry, followed by drying with a freeze dryer to obtain a powder. Next, a part of this is added to a glass container, re-dispersed by stirring and ultrasonic irradiation in ion-exchanged water, and allowed to stand. After the target silica-coated nickel powder settles, the cloudy colloidal silica alone floats. The supernatant was removed. Then, the target silica-coated nickel powder was obtained by removing the silica single particles by the classification operation using the difference in the sedimentation rate of adding ion exchange water and redispersing again.
[0032]
<Evaluation>
FIG. 1 shows a scanning electron microscope (SEM) photograph of nickel powder. When this silica-coated nickel powder was observed with a scanning electron microscope (SEM), as shown in FIG. 2, it was confirmed that a silica coating was uniformly formed on the particle surface and that there were substantially no agglomerated particles. .
As a result of measuring the BET specific surface area (Flowsorb II2300, manufactured by Shimadzu Corporation), the Ni powder was 0.425 m 2 / g, whereas the silica-coated nickel powder was 4.265 m 2 / g. .
Furthermore, as a result of fluorescent X-ray measurement (PW2400 type fully automatic X-ray fluorescence analyzer, manufactured by PHILIPS), Ni was 91 wt% and Si was 3.1 wt%.
[0033]
Example 2
<Heat treatment>
The silica-coated nickel powder obtained in Example 1 was heat-treated in air at 300 ° C. for 12 hours.
[0034]
<Evaluation>
As a result of SEM observation of the silica-coated nickel powder after this heat treatment, it was confirmed that there was substantially no significant change in the particle surface and the aggregated state.
As a result of measuring the BET specific surface area in the same manner as in Example 1, it was 2.025 m 2 / g, and it was inferred that the silica coating layer was densified.
[0035]
Example 3
<Mechanical processing>
In Example 1, the powder obtained after lyophilization was treated with a hybridization system (manufactured by Nara Machinery Co., Ltd.) under the condition of 15000 rpm for 30 minutes. Subsequently, it disperse | distributed in ion-exchange water and the classification operation was performed like Example 1. FIG.
[0036]
<Evaluation>
As a result of SEM observation of the silica-coated nickel powder after the hybridization treatment, as shown in FIG. 3, the particles were spheroidized by physical impact, and the silica coating layer was not dropped or aggregated by the treatment. Not confirmed.
[0037]
Example 4
<Synthesis>
The colloidal silica in Example 1 is made into a commercially available Snowtec ZL (silica component concentration 40 wt%, manufactured by Nissan Chemical Co., Ltd.), the charged amount is 113 g, the vacuum concentration step is not performed, and the eggplant flask is rotated and stirred. Thereafter, the same operation was performed except that freeze-drying was performed after freezing.
[0038]
<Evaluation>
When this silica-coated nickel powder was observed with a scanning electron microscope (SEM), as shown in FIG. 4, it was confirmed that a silica coating was uniformly formed on the particle surface and that there were substantially no agglomerated particles. .
[0039]
Example 5
In Example 1, the same operation was performed except that the eggplant flask was rotated after the concentration step, frozen with stirring, and lyophilized.
As a result of SEM observation of the obtained silica-coated nickel powder, it was confirmed that a silica coating was uniformly formed on the particle surface as in Examples 1 and 4, and that there were substantially no aggregated particles.
[0040]
Comparative Example 1
In Example 1, it carried out like Example 1 except not having performed the vacuum concentration process.
As a result of SEM observation of the obtained powder, it was found from its shape that the surface was not coated with silica at all.
[0041]
Comparative Example 2
In Example 1, the vacuum concentration treatment was continued to remove moisture as it was to obtain a dry powder, and then the same classification operation was performed.
The obtained powder was in a dry state, and a strong agglomerate was generated via the colloidal silica component. Therefore, the agglomeration could not be solved by stirring or ultrasonic irradiation.
[0042]
【The invention's effect】
According to the present invention, a metal-based composite powder that is substantially free of aggregated particles and silica particles, has a uniform and dense silica coating on the surface, and is useful for various applications as a functional powder. Can get well.
[Brief description of the drawings]
FIG. 1 is an SEM photograph of nickel powder before coating.
2 is a SEM photograph of the silica-coated nickel powder obtained in Example 1. FIG.
3 is a SEM photograph of silica-coated nickel powder obtained in Example 3. FIG.
4 is a SEM photograph of silica-coated nickel powder obtained in Example 4. FIG.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001196713A JP4644390B2 (en) | 2001-06-28 | 2001-06-28 | Method for producing silica-coated metal composite powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001196713A JP4644390B2 (en) | 2001-06-28 | 2001-06-28 | Method for producing silica-coated metal composite powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003013106A JP2003013106A (en) | 2003-01-15 |
JP4644390B2 true JP4644390B2 (en) | 2011-03-02 |
Family
ID=19034468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001196713A Expired - Fee Related JP4644390B2 (en) | 2001-06-28 | 2001-06-28 | Method for producing silica-coated metal composite powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4644390B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140119796A (en) * | 2012-02-01 | 2014-10-10 | 닛산 가가쿠 고교 가부시키 가이샤 | Coating solution for metal oxide film and metal oxide film |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1683592A4 (en) | 2003-10-20 | 2010-11-10 | Harima Chemicals Inc | Fine metal particles and fine metal oxide particles in dry powder form, and use thereof |
JP4573138B2 (en) * | 2008-06-26 | 2010-11-04 | Dic株式会社 | Method for producing silver-containing powder, silver-containing powder and dispersion thereof |
KR101239816B1 (en) * | 2008-06-26 | 2013-03-06 | 디아이씨 가부시끼가이샤 | Method for producing silver-containing powder, silver-containing powder, conductive paste and plastic substrate |
CN116574383B (en) * | 2023-05-23 | 2024-05-10 | 江西天永诚高分子材料有限公司 | Low-volatility high-heat-conductivity single-component addition type heat-conducting daub and preparation method thereof |
CN116606608B (en) * | 2023-05-23 | 2024-04-05 | 江西天永诚高分子材料有限公司 | Heat conducting filler, double-component organic silicon pouring sealant containing heat conducting filler and preparation method of double-component organic silicon pouring sealant |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH069897A (en) * | 1992-06-24 | 1994-01-18 | Nippon Dakuro Shamrock:Kk | Coated metallic flake containing zinc, its production and coating |
-
2001
- 2001-06-28 JP JP2001196713A patent/JP4644390B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH069897A (en) * | 1992-06-24 | 1994-01-18 | Nippon Dakuro Shamrock:Kk | Coated metallic flake containing zinc, its production and coating |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140119796A (en) * | 2012-02-01 | 2014-10-10 | 닛산 가가쿠 고교 가부시키 가이샤 | Coating solution for metal oxide film and metal oxide film |
KR102190719B1 (en) | 2012-02-01 | 2020-12-14 | 닛산 가가쿠 가부시키가이샤 | Coating solution for metal oxide film and metal oxide film |
Also Published As
Publication number | Publication date |
---|---|
JP2003013106A (en) | 2003-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102262637B1 (en) | Method for surface modification of submicron silicon micropowder | |
US7393586B2 (en) | Highly oxidation-resistant copper powder for conductive paste and process for producing the powder | |
CN101981631A (en) | Composite material, and method for manufacturing the same | |
JP6831498B1 (en) | Spherical magnesium oxide, its production method, thermally conductive filler and resin composition | |
CN110698859A (en) | Silicon dioxide coated modified barium titanate/polysulfone dielectric composite material and preparation method thereof | |
CN106715335A (en) | Spherical ferrite powder, resin composition containing said spherical ferrite powder, and molded article using said resin composition | |
JP2508847B2 (en) | Method for producing silver-coated glass flakes with SiO2 coating | |
CN113429600A (en) | Silver-titanium dioxide filler doped polyvinylidene fluoride dielectric composite film and preparation method thereof | |
JP4644390B2 (en) | Method for producing silica-coated metal composite powder | |
JP6916022B2 (en) | Ε Iron oxide powder in which a part of iron sites is replaced with a metal element other than iron, its manufacturing method, and paste | |
WO2020203710A1 (en) | Spherical magnesium oxide, method for producing same, heat-conductive filler, and resin composition | |
TWI712560B (en) | Silane-treated forsterite fine particles and manufacturing method thereof, and organic solvent dispersion liquid of silane-treated forsterite fine particles and manufacturing method thereof | |
JPH05213611A (en) | Treatment of graphitic powder and graphite powder for making them hydrophilic | |
JP3935513B2 (en) | Method for producing conductive fine powder dispersion | |
JP2003034523A (en) | Method for manufacturing coated magnesium oxide powder | |
JP2012111650A (en) | Porous spherical particle, method for producing the same and friction material for brake containing the porous spherical particle | |
JP3932336B2 (en) | Method for producing copper powder for conductive paste | |
JP2003034522A (en) | Method for manufacturing coated magnesium oxide powder | |
JP2005502183A (en) | Particularly conductive particles dispersed in a liquid medium, and a method for producing the same | |
Han et al. | Synthesis of Monodispersed and Spherical $ SiO_2-coated Fe_2O_3 $ Nanoparticle | |
JP2007099548A (en) | Method of manufacturing silica powder and silica powder obtained by the same | |
JP2005206880A (en) | Soft magnetic material and production method therefor, and dust core containing the soft magnetic material | |
JP3985028B2 (en) | Production method of fly ash powder | |
KR20210002405A (en) | Silver powder manufacturing method | |
JP5657280B2 (en) | Coated magnetite particles and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080523 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100415 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100917 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101130 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4644390 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |