JP2005206880A - Soft magnetic material and production method therefor, and dust core containing the soft magnetic material - Google Patents

Soft magnetic material and production method therefor, and dust core containing the soft magnetic material Download PDF

Info

Publication number
JP2005206880A
JP2005206880A JP2004014944A JP2004014944A JP2005206880A JP 2005206880 A JP2005206880 A JP 2005206880A JP 2004014944 A JP2004014944 A JP 2004014944A JP 2004014944 A JP2004014944 A JP 2004014944A JP 2005206880 A JP2005206880 A JP 2005206880A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic material
powder
dust core
particle powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004014944A
Other languages
Japanese (ja)
Other versions
JP4790224B2 (en
Inventor
Kazuyuki Hayashi
一之 林
Hiroko Morii
弘子 森井
Seiji Ishitani
誠治 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2004014944A priority Critical patent/JP4790224B2/en
Publication of JP2005206880A publication Critical patent/JP2005206880A/en
Application granted granted Critical
Publication of JP4790224B2 publication Critical patent/JP4790224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide soft magnetic material for a dust core, the material which is excellent in compressibility and fluidity, and undergoes little change in electric resistance value even when fired at high temperature, and to provide a dust core containing the soft magnetic material for a dust core and having high electric resistance value. <P>SOLUTION: The soft magnetic material for a dust core is composed of composite particle powder in which an inorganic compound selected from one or more metals selected from aluminum, zirconium, titanium, silicon, magnesium and iron formed from metal alkoxide and/or an inorganic compound such as a phosphorous compound is stuck to or covered on the surface of each particle of soft magnetic particle powder. The dust core is obtained by subjecting the soft magnetic material for a dust core to compression molding. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧縮性及び流動性に優れると共に、高温で焼成した場合においても電気抵抗値の変化が少ない軟磁性材料、該軟磁性材料を含有する高い電気抵抗値を有する圧粉磁心を提供する。   The present invention provides a soft magnetic material that is excellent in compressibility and fluidity and has little change in electrical resistance even when fired at high temperatures, and a dust core having a high electrical resistance containing the soft magnetic material. .

近年、家電及び電子機器の省エネルギー化及び小型化に伴い、これらに使用される磁心材料に対しても、小型で高出力、且つ電力変換効率の高効率化の要求が強まっている。機器サイズの小型化、高出力化及び電力変換効率の高効率化には動作周波数の高周波化が有効であることが知られており、高周波領域においても高い磁束密度と透磁率及び低鉄損を有する磁心材料が強く求められている。   In recent years, along with energy saving and miniaturization of home appliances and electronic devices, there is an increasing demand for miniaturization, high output, and high efficiency of power conversion efficiency for magnetic core materials used for these. Higher operating frequency is known to be effective in reducing the size of equipment, increasing output, and increasing power conversion efficiency. Even in the high frequency range, high magnetic flux density, magnetic permeability, and low iron loss. There is a strong need for magnetic core materials.

従来、このような磁心材料としては、ケイ素鋼板を用いた積層型磁心等が使用されているが、積層型磁心は、動作周波数が高くなるに従って磁心内部で発生する渦電流損失が増大するという欠点を有している。   Conventionally, as such a magnetic core material, a laminated magnetic core using a silicon steel plate or the like has been used. However, a laminated magnetic core has a disadvantage that eddy current loss generated inside the magnetic core increases as the operating frequency increases. have.

そのため、近年では、積層型磁心に比べて高周波領域での鉄損が低いと共に、成形性に優れた、軟磁性粉末をフェノール樹脂やエポキシ樹脂等の絶縁性樹脂で被覆し圧縮成形した圧粉磁心が、積層型磁心の代替品として広く用いられている。   For this reason, in recent years, a powder core in which a soft magnetic powder is coated with an insulating resin such as a phenol resin or an epoxy resin and is compression-molded has a low iron loss in a high frequency region as compared with a laminated magnetic core and has excellent moldability. However, it is widely used as a substitute for a laminated magnetic core.

一方、圧粉磁心に対して、更なる小型化及び高性能化、即ち、高磁束密度化が望まれており、このような高磁束密度化のために、軟磁性粉末の充填密度を増大させることが行われている。   On the other hand, further miniaturization and higher performance, that is, higher magnetic flux density is desired for the powder magnetic core. For such higher magnetic flux density, the packing density of the soft magnetic powder is increased. Things have been done.

しかしながら、軟磁性粉末を高充填するために高圧で圧縮成形を行うため、軟磁性粉末には歪みが残り、ヒステリシス損失の増大を招くことが知られている。そのため、歪みによるヒステリシス損失を低減するために、通常、成形品に対して焼鈍しが行われている。   However, it is known that since compression molding is performed at a high pressure in order to highly fill the soft magnetic powder, strain remains in the soft magnetic powder, leading to an increase in hysteresis loss. Therefore, in order to reduce the hysteresis loss due to strain, the molded product is usually annealed.

ところで、一般に、圧粉磁心の鉄損の主要因として、ヒステリシス損失と渦電流損失が知られている。ヒステリシス損失の低減方法としては、先に述べた通り、焼鈍しによる歪みの除去が有効であることが知られており、一方、渦電流損失の低減方法としては、粒子間を絶縁性樹脂等で絶縁することにより行われている。   By the way, in general, hysteresis loss and eddy current loss are known as main causes of iron loss of a dust core. As described above, it is known that the removal of strain due to annealing is effective as a method for reducing hysteresis loss. On the other hand, as a method for reducing eddy current loss, an insulating resin or the like is used between particles. It is done by insulating.

しかしながら、焼鈍しは、一般には500℃以上、好ましくは600℃、もしくはそれ以上の温度が効果的であるとされているが、軟磁性粒子粉末のバインダーとしての結合樹脂や上記粒子間の絶縁のために絶縁性樹脂を使用した場合、高温で焼鈍しを行うと、樹脂が分解して成形体が脆くなったり、絶縁性が低下してしまうため、高温での焼鈍しは困難であり、従って、ヒステリシス損失と渦電流損失の両方を同時に低減することは困難であった。   However, annealing is generally effective at a temperature of 500 ° C. or higher, preferably 600 ° C. or higher. However, the bonding resin as a binder of the soft magnetic particle powder and the insulation between the particles are not effective. Therefore, when an insulating resin is used, annealing at a high temperature will cause the resin to decompose and the molded body will become brittle, or the insulation will be degraded, so annealing at a high temperature is difficult. It was difficult to reduce both hysteresis loss and eddy current loss at the same time.

これまで、軟磁性金属粉末の表面に、リン酸塩の被膜及びケイ酸ナトリウムの被膜を形成した軟磁性金属粉末(特許文献1)又は、磁性粉表面をシリカ系ゾルの膜で被覆した磁性粉(特許文献2)を圧粉磁心用粉末として用いる技術が開示されている。   Up to now, soft magnetic metal powder (Patent Document 1) in which a phosphate film and a sodium silicate film are formed on the surface of the soft magnetic metal powder, or a magnetic powder in which the magnetic powder surface is coated with a silica-based sol film A technique using (Patent Document 2) as a powder for a powder magnetic core is disclosed.

また、エポキシ樹脂とアルミナ含有シリカを含む被膜で被覆された鉄基粉末を圧粉磁心用粉末として用いる技術が開示されている(特許文献3)。   Moreover, the technique which uses the iron-base powder coat | covered with the film containing an epoxy resin and an alumina containing silica as powder for powder magnetic cores is disclosed (patent document 3).

また、鉄粉、又はリン酸化合物被膜を表面に施した鉄粉を樹脂で結合した圧粉磁心が開示されている(特許文献4)。   Moreover, the powder magnetic core which combined the iron powder which gave the iron powder or the phosphate compound film on the surface with resin was disclosed (patent document 4).

また、磁性粉末粒子間に、シリコーン骨格と顔料を含有する絶縁層を有する圧粉磁心が開示されている(特許文献5)。   Further, a dust core having an insulating layer containing a silicone skeleton and a pigment between magnetic powder particles is disclosed (Patent Document 5).

一方、圧粉磁心の電気抵抗値は高い方が好ましく、圧粉磁心の電気抵抗が高ければ、高い周波数領域でも透磁率はほとんど変化しないが、電気抵抗値が低ければ、高い周波数領域では透磁率が急激に低下する傾向にある。   On the other hand, it is preferable that the electric resistance value of the dust core is high. If the electric resistance of the dust core is high, the permeability hardly changes even in a high frequency range, but if the electric resistance value is low, the permeability is high in the high frequency range. Tend to drop sharply.

電気抵抗値を高める手段として、軟磁性金属の粉末にリン酸塩処理を施してリン酸塩の被膜を形成した軟磁性粉末(特許文献6乃至7)及び金属アルコキシドを加水分解させて金属粉末表面に水酸化物を吸着させた磁性材料粉末(特許文献8)が開示されている。   As means for increasing the electrical resistance value, the surface of the metal powder is obtained by hydrolyzing the soft magnetic powder (Patent Documents 6 to 7) and the metal alkoxide obtained by subjecting the soft magnetic metal powder to a phosphate treatment to form a phosphate coating. Discloses a magnetic material powder in which a hydroxide is adsorbed on (Patent Document 8).

また、流動性と成形性を改善することを目的として、鉄基粉末、潤滑剤及び合金用粉末から選ばれる1種以上が、オルガノアルコキシシラン、オルガノシラザン、チタネート系カップリング剤、フッ素系カップリング剤から選ばれる1種以上の表面処理剤によって被覆された粉末が開示されている(特許文献9)。   For the purpose of improving fluidity and moldability, at least one selected from iron-based powders, lubricants and powders for alloys is an organoalkoxysilane, an organosilazane, a titanate coupling agent, a fluorine coupling. A powder coated with one or more surface treatment agents selected from agents is disclosed (Patent Document 9).

特開2002−170707号公報JP 2002-170707 A 特開2001−196217号公報JP 2001-196217 A 特開2003−166004号公報JP 2003-166004 A 特開2002−246219号公報JP 2002-246219 A 特開2002−343657号公報JP 2002-343657 A 特開昭62−22410号公報JP-A-62-222410 特開昭63−70504号公報JP-A-63-70504 特開平9−125111号公報JP-A-9-125111 特開平10−317001号公報JP 10-31001 A

圧縮性及び流動性に優れると共に、高温で焼成した場合においても電気抵抗値の変化が少ない圧粉磁心軟磁性材料は、現在最も要求されているところであるが、未だ得られていない。   A dust core soft magnetic material that is excellent in compressibility and fluidity and has a small change in electrical resistance even when fired at high temperature is currently most demanded, but has not yet been obtained.

即ち、特許文献1乃至2には、軟磁性金属粉末の表面に、リン酸塩の被膜及びケイ酸ナトリウムの被膜、又は、シリカ系ゾル被膜を形成した軟磁性金属粉末磁性粉を圧粉磁心用粉末として用いることが記載されているが、圧縮性については考慮されておらず、後出比較例に示す通り、圧縮性を示す圧縮密度の変化率(%)が5.2%と悪いものであった。   That is, in Patent Documents 1 and 2, a soft magnetic metal powder magnetic powder in which a phosphate film and a sodium silicate film or a silica-based sol film are formed on the surface of a soft magnetic metal powder is used for a dust core. Although it is described that it is used as a powder, the compressibility is not taken into consideration, and as shown in a comparative example described later, the change rate (%) of the compressive density indicating compressibility is as bad as 5.2%. there were.

また、特許文献3には、エポキシ樹脂とアルミナ含有シリカを含む被膜で被覆された鉄基粉末を圧粉磁心用粉末として用いることが記載されており、特許文献4には、鉄粉、又はリン酸化合物被膜を表面に施した鉄粉を樹脂で結合した圧粉磁心が記載されているが、加圧成形体の焼鈍し前後の比抵抗値の変化率は、10〜94%と、いずれも高いものとなっている。   Patent Document 3 describes that an iron-based powder coated with a coating containing an epoxy resin and alumina-containing silica is used as a powder for a powder magnetic core. Patent Document 4 describes iron powder or phosphorus. Although the powder magnetic core which combined the iron powder which gave the acid compound film on the surface with the resin is described, the rate of change of the specific resistance value before and after annealing of the pressure-molded body is 10 to 94%, both It is expensive.

特許文献5には、磁性粉末粒子間に、シリコーン骨格と顔料を含有する絶縁層を有する圧粉磁心が記載されているが、絶縁層にシリコーン樹脂が用いられているために、圧力に応じて圧縮される。そのため、圧縮性を示す圧縮密度の変化率は高いものとなり、加圧成形時に磁性粒子の歪みが残りやすくなる。   Patent Document 5 describes a dust core having an insulating layer containing a silicone skeleton and a pigment between magnetic powder particles. However, since a silicone resin is used for the insulating layer, depending on the pressure, Compressed. For this reason, the rate of change in compression density showing compressibility is high, and distortion of the magnetic particles tends to remain during pressure molding.

特許文献6乃至7には、リン酸亜鉛、リン酸マグネシウム、リン酸カルシウム、リン酸鉄等のリン酸塩被膜を形成した非晶質磁性合金粉末が記載されているが、これらの処理法によるリン酸塩被膜は耐熱温度が500℃程度であり、それ以上の温度で焼鈍しを行うと、絶縁性を維持することが困難である。   Patent Documents 6 to 7 describe amorphous magnetic alloy powders in which a phosphate coating such as zinc phosphate, magnesium phosphate, calcium phosphate, and iron phosphate is formed. The heat resistance temperature of the salt coating is about 500 ° C., and if it is annealed at a temperature higher than that, it is difficult to maintain the insulating properties.

また、特許文献8には、金属アルコキシドを加水分解させて金属粉末表面に水酸化物を吸着させた磁性材料粉末が記載されているが、金属アルコキシドに蒸留水を添加しているために加水分解が急激に進み、生じる水酸化物の粒子が粗大となり、緻密な被覆が困難となるため、良好な圧縮性を得ることが困難である。   Patent Document 8 describes a magnetic material powder in which a metal alkoxide is hydrolyzed and a hydroxide is adsorbed on the surface of the metal powder, but hydrolysis is caused by adding distilled water to the metal alkoxide. Advances rapidly, and the resulting hydroxide particles become coarse and it becomes difficult to provide a dense coating, so it is difficult to obtain good compressibility.

特許文献9には、鉄基粉末、潤滑剤及び合金用粉末から選ばれる1種以上が、オルガノアルコキシシラン、オルガノシラザン、チタネート系カップリング剤、フッ素系カップリング剤から選ばれる1種以上の表面処理剤によって被覆された粉末が記載されているが、有機物を処理しているために熱に弱く、加熱前後の体積固有抵抗値の変化が大きいものとなるため好ましくない。   Patent Document 9 discloses that at least one surface selected from iron-based powders, lubricants and alloy powders is at least one surface selected from organoalkoxysilanes, organosilazanes, titanate coupling agents, and fluorine coupling agents. Although powder coated with a treating agent is described, it is not preferable because it is weak against heat because it treats organic matter, and the volume resistivity value before and after heating becomes large.

そこで、本発明は、流動性に優れると共に、低い圧力で圧縮成形が可能であり、且つ、高温で焼成した場合においても体積固有抵抗値の変化が少ない軟磁性材料を得ることを技術的課題とする。   Therefore, the present invention has a technical problem to obtain a soft magnetic material that has excellent fluidity, can be compression-molded at a low pressure, and has a small volume resistivity change even when fired at a high temperature. To do.

本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、粒子表面に無機化合物が付着もしくは被覆している軟磁性粒子粉末は、流動性に優れると共に、低い圧力で圧縮成形が可能であり、且つ、高温で焼成した場合においても電気抵抗値の変化が少なく、また、該軟磁性粒子粉末を圧粉磁心用軟磁性材料として用いることにより、高い電気抵抗値を有する圧粉磁心が得られることを見いだし、本発明をなすに至った。   As a result of intensive research to solve the above problems, the present inventors have found that the soft magnetic particle powder having an inorganic compound attached or coated on the particle surface has excellent fluidity and can be compression-molded at a low pressure. In addition, even when fired at a high temperature, there is little change in the electric resistance value, and by using the soft magnetic particle powder as a soft magnetic material for a dust core, a dust core having a high electric resistance value can be obtained. As a result, the present invention has been found.

即ち、本発明は、軟磁性粒子粉末の粒子表面に無機化合物が付着もしくは被覆している複合粒子粉末からなることを特徴とする軟磁性材料である(本発明1)。   That is, the present invention is a soft magnetic material characterized by comprising a composite particle powder in which an inorganic compound is adhered or coated on the surface of the soft magnetic particle powder (Invention 1).

また、本発明は、無機化合物が、アルミニウム、ジルコニウム、チタニウム、ケイ素、マグネシウム、鉄及びリンから選ばれる1種又は2種以上の金属元素を含有する化合物からなることを特徴とする前記軟磁性材料である(本発明2)。   The present invention provides the soft magnetic material, wherein the inorganic compound comprises a compound containing one or more metal elements selected from aluminum, zirconium, titanium, silicon, magnesium, iron and phosphorus. (Invention 2).

また、本発明は、無機化合物が、アルミニウム、ジルコニウム、チタニウム、ケイ素、マグネシウム又は鉄から選ばれる1種又は2種以上の金属元素を含有する金属アルコキシドから生成する無機化合物及び/又はリン化合物であることを特徴とする本発明1又は2の軟磁性材料である(本発明3)。   Moreover, this invention is an inorganic compound and / or phosphorus compound which an inorganic compound produces | generates from the metal alkoxide containing 1 type, or 2 or more types of metal elements chosen from aluminum, zirconium, titanium, silicon, magnesium, or iron. This is the soft magnetic material of the present invention 1 or 2 (Invention 3).

また、本発明は、複合粒子粉末の圧縮密度の変化率が5%未満であることを特徴とする本発明1乃至3のいずれかの軟磁性材料である(本発明4)。   In addition, the present invention is the soft magnetic material according to any one of the first to third aspects, wherein the change rate of the compression density of the composite particle powder is less than 5% (the present invention 4).

また、本発明は、複合粒子粉末の加熱前後の体積固有抵抗値の変化率が20%以下であることを特徴とする本発明1乃至4のいずれかの軟磁性材料である(本発明5)。   Further, the present invention is the soft magnetic material according to any one of the present inventions 1 to 4, wherein the change rate of the volume resistivity before and after the heating of the composite particle powder is 20% or less (the present invention 5). .

また、本発明は、軟磁性粒子粉末を有機溶剤に分散した懸濁液中に金属アルコキシドの溶液を加えた後、風乾後、60〜120℃で乾燥させることを特徴とする本発明1乃至5のいずれかの軟磁性材料の製造法である(本発明6)。   In the present invention, the metal alkoxide solution is added to a suspension obtained by dispersing soft magnetic particle powder in an organic solvent, followed by air drying and then drying at 60 to 120 ° C. This is a method for producing any one of the soft magnetic materials (Invention 6).

また、本発明は、軟磁性粒子粉末を有機溶剤に分散した懸濁液中に金属アルコキシドの溶液を加えた後、リン酸溶液を加え、風乾後、60〜120℃で乾燥させることを特徴とする本発明1乃至5のいずれかの軟磁性材料の製造法である(本発明7)。   In addition, the present invention is characterized in that a metal alkoxide solution is added to a suspension in which soft magnetic particle powder is dispersed in an organic solvent, a phosphoric acid solution is added, air-dried, and then dried at 60 to 120 ° C. A method for producing a soft magnetic material according to any one of Inventions 1 to 5 (Invention 7).

また、本発明は、本発明1乃至5のいずれかの軟磁性材料を圧縮成形してなる圧粉磁心である(本発明8)。   In addition, the present invention is a dust core formed by compression molding the soft magnetic material according to any one of the first to fifth aspects (Invention 8).

本発明に係る軟磁性材料は、流動性に優れると共に、低い圧力で圧縮成形が可能であり、且つ、高温で焼成した場合においても電気抵抗値の変化が少ないので圧粉磁心用軟磁性材料として好適である。   The soft magnetic material according to the present invention is excellent in fluidity, can be compression-molded at a low pressure, and has a small change in electric resistance even when fired at a high temperature. Is preferred.

本発明に係る圧粉磁心は、前記軟磁性材料を用いたことにより、電気抵抗値が高く、且つ、高温で焼成した場合においても電気抵抗値の変化が少ないので、高性能圧粉磁心として好適である   The powder magnetic core according to the present invention is suitable as a high-performance powder magnetic core because the soft magnetic material is used so that the electric resistance value is high and the electric resistance value hardly changes even when fired at a high temperature. Is

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る軟磁性材料について述べる。   First, the soft magnetic material according to the present invention will be described.

本発明に係る軟磁性材料は、軟磁性粒子粉末の粒子表面に、アルミニウム、ジルコニウム、チタニウム、ケイ素、マグネシウム又は鉄から選ばれる1種又は2種以上の金属元素を含有する金属アルコキシドから生成する無機化合物及び/又はリン化合物が付着もしくは被覆している複合粒子粉末からなる。   The soft magnetic material according to the present invention is an inorganic material produced from a metal alkoxide containing one or more metal elements selected from aluminum, zirconium, titanium, silicon, magnesium or iron on the particle surface of the soft magnetic particle powder. It consists of composite particle powder to which a compound and / or a phosphorus compound adheres or is coated.

本発明に係る軟磁性材料の金属アルコキシドから生成する無機化合物の被覆量は、各元素換算で0.001〜100重量%が好ましい。0.001重量%未満の場合には、本発明の効果は得られない。0.001〜100重量%の添加量により、本発明の効果が十分に得られるので、100重量%を超えて必要以上に添加する意味がない。得られる軟磁性材料の圧縮性及び流動性を考慮した場合、0.002〜75重量%がより好ましく、更により好ましくは0.005〜50重量%である。   The coating amount of the inorganic compound generated from the metal alkoxide of the soft magnetic material according to the present invention is preferably 0.001 to 100% by weight in terms of each element. When the amount is less than 0.001% by weight, the effect of the present invention cannot be obtained. Since the effect of the present invention can be sufficiently obtained by the addition amount of 0.001 to 100% by weight, it is meaningless to add more than necessary exceeding 100% by weight. When considering the compressibility and fluidity of the obtained soft magnetic material, the content is more preferably 0.002 to 75% by weight, and still more preferably 0.005 to 50% by weight.

本発明に係る軟磁性材料のリン化合物の被覆量は、P換算で0.001〜100重量%が好ましい。0.001重量%未満の場合には、本発明の効果は得られない。0.001〜100重量%の添加量により、本発明の効果が十分に得られるので、100重量%を超えて必要以上に添加する意味がない。得られる軟磁性材料の圧縮性、流動性及び圧粉磁心に用いた場合の軟磁性粒子粉末の充填率を考慮した場合、0.002〜75重量%がより好ましく、更により好ましくは0.005〜50重量%である。   The coating amount of the phosphorus compound of the soft magnetic material according to the present invention is preferably 0.001 to 100% by weight in terms of P. When the amount is less than 0.001% by weight, the effect of the present invention cannot be obtained. Since the effect of the present invention can be sufficiently obtained by the addition amount of 0.001 to 100% by weight, it is meaningless to add more than necessary exceeding 100% by weight. In consideration of the compressibility and fluidity of the obtained soft magnetic material and the filling rate of the soft magnetic particle powder when used in a dust core, 0.002 to 75% by weight is more preferable, and still more preferably 0.005. ~ 50% by weight.

本発明に係る軟磁性材料の平均粒子径は、用途や特性に応じて選べばよいが、1.0〜500.0μmの範囲が好ましい。平均粒子径が500.0μm以上の場合には、粒子径が大きすぎ、圧粉磁心に用いた場合、充填密度が下がるため好ましくない。平均粒子径が1.0μm以下の場合には、粒子径が小さすぎ、流動性が低下するため好ましくない。より好ましくは5.0〜400.0μm、更により好ましくは10.0〜300.0μmである。   The average particle size of the soft magnetic material according to the present invention may be selected according to the application and characteristics, but is preferably in the range of 1.0 to 500.0 μm. When the average particle size is 500.0 μm or more, the particle size is too large, and when used in a dust core, the packing density is lowered, which is not preferable. An average particle size of 1.0 μm or less is not preferable because the particle size is too small and fluidity is lowered. More preferably, it is 5.0-400.0 micrometers, More preferably, it is 10.0-300.0 micrometers.

本発明に係る軟磁性材料の圧縮性は、後述する評価方法において、圧縮密度の変化率は5%未満が好ましい。圧縮密度の変化率は5%以上の場合には、圧粉磁心を作製する際に高い圧力が必要となるため好ましくない。より好ましくは4%以下、更により好ましくは3%以下である。   Regarding the compressibility of the soft magnetic material according to the present invention, the rate of change in compression density is preferably less than 5% in the evaluation method described later. If the change rate of the compression density is 5% or more, it is not preferable because a high pressure is required when producing a dust core. More preferably, it is 4% or less, and still more preferably 3% or less.

本発明に係る軟磁性材料の体積固有抵抗値は、1.0mΩ・cm以上であることが好ましく、より好ましくは2.0mΩ・cm以上である。また、500℃×1時間加熱前後の体積固有抵抗値の変化率は、20%以下が好ましく、より好ましくは15%以下、更により好ましくは10%以下である。加熱前後の体積固有抵抗値の変化率が20%を超える場合は、これを用いて得られる圧粉磁心の比抵抗値が焼鈍しによって低下しやすくなるため好ましくない。   The volume resistivity value of the soft magnetic material according to the present invention is preferably 1.0 mΩ · cm or more, more preferably 2.0 mΩ · cm or more. Further, the rate of change in volume resistivity value before and after heating at 500 ° C. for 1 hour is preferably 20% or less, more preferably 15% or less, and even more preferably 10% or less. When the rate of change of the volume resistivity value before and after heating exceeds 20%, the specific resistance value of the dust core obtained by using this tends to be lowered by annealing, which is not preferable.

本発明に係る軟磁性材料の流動性は、流動性指数70以上が好ましい。流動性指数が70未満の場合には、圧粉磁心の作製時に、金型への充填性が上がらず、そのため、圧粉磁心の軟磁性粒子粉末の充填率は悪いものとなる。より好ましくは75〜95である。   The fluidity of the soft magnetic material according to the present invention is preferably a fluidity index of 70 or more. When the fluidity index is less than 70, the filling property to the mold is not improved during the production of the dust core, and therefore the filling rate of the soft magnetic particle powder in the dust core is poor. More preferably, it is 75-95.

次に、本発明に係る軟磁性材料の製造法について述べる。   Next, a method for producing a soft magnetic material according to the present invention will be described.

本発明に係る軟磁性材料は、被処理粒子粉末である軟磁性粒子粉末を水溶性の有機溶剤に分散させた懸濁液中に金属アルコキシドの溶液及び/又はリン酸水溶液を加え、風乾後、60〜120℃で乾燥させることにより得ることができる。   The soft magnetic material according to the present invention is obtained by adding a metal alkoxide solution and / or a phosphoric acid aqueous solution to a suspension obtained by dispersing soft magnetic particle powder, which is a particle powder to be treated, in a water-soluble organic solvent. It can be obtained by drying at 60 to 120 ° C.

本発明における軟磁性粒子粉末としては、アトマイズ鉄粉、還元鉄粉、カルボニル鉄粉等の各種製法による鉄粉、フェライト粉、センダスト粉、パーマロイ粉等を用いることができる。得られる圧粉磁心の透磁率と磁束密度を考慮すれば、鉄粉が好ましい。軟磁性粒子粉末の平均粒子径は1.0〜500.0μmが好ましく、より好ましくは5.0〜400.0μm、更により好ましくは10.0〜300.0μmである。   As the soft magnetic particle powder in the present invention, iron powder, ferrite powder, sendust powder, permalloy powder, and the like by various production methods such as atomized iron powder, reduced iron powder, and carbonyl iron powder can be used. Considering the permeability and magnetic flux density of the obtained dust core, iron powder is preferred. The average particle size of the soft magnetic particle powder is preferably 1.0 to 500.0 μm, more preferably 5.0 to 400.0 μm, and still more preferably 10.0 to 300.0 μm.

本発明における軟磁性粒子粉末の圧縮性は、後述する評価方法において、圧縮密度の変化率が5%以上を有している。   The compressibility of the soft magnetic particle powder in the present invention has a compression density change rate of 5% or more in an evaluation method described later.

本発明における軟磁性粒子粉末の体積固有抵抗値は、通常、0.1mΩ・cm以上であることが好ましく、より好ましくは0.5mΩ・cm以上である。また、500℃で1時間加熱前後の体積固有抵抗値の変化率は、通常、25%以上である。   In general, the volume resistivity value of the soft magnetic particle powder in the present invention is preferably 0.1 mΩ · cm or more, more preferably 0.5 mΩ · cm or more. Moreover, the change rate of the volume resistivity value before and after heating for 1 hour at 500 ° C. is usually 25% or more.

本発明における軟磁性粒子粉末の流動性は、通常、流動性指数50以上を有しており、好ましくは55〜80である。   The fluidity of the soft magnetic particle powder in the present invention usually has a fluidity index of 50 or more, preferably 55-80.

本発明に用いる有機溶剤としては、一般的に用いられているものであれば何を用いてもよいが、好ましくは水溶性の有機溶剤である。具体的には、エチルアルコール、プロピルアルコール又はブチルアルコール等のアルコール系溶剤、アセトン又はメチルエチルケトン等のケトン系溶剤、メチルセロソルブ、エチルセロソルブ、プロピルセロソルブ又はブチルセロソルブ等のグリコールエーテル系溶剤、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール又はトリプロピレングリコール、ポリプロピレングリコール等のオキシエチレン、オキシプロピレン付加重合体、エチレングリコール、プロピレングリコール又は1,2,6−ヘキサントリオール等のアルキレングリコール、グリセリン、2−ピロリドン等を好適に用いることができるが、より好ましくは、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤である。   Any organic solvent may be used as long as it is generally used, but a water-soluble organic solvent is preferable. Specifically, alcohol solvents such as ethyl alcohol, propyl alcohol or butyl alcohol, ketone solvents such as acetone or methyl ethyl ketone, glycol ether solvents such as methyl cellosolve, ethyl cellosolve, propyl cellosolve or butyl cellosolve, diethylene glycol, triethylene glycol , Oxyethylene such as polyethylene glycol, dipropylene glycol or tripropylene glycol, polypropylene glycol, oxypropylene addition polymer, alkylene glycol such as ethylene glycol, propylene glycol or 1,2,6-hexanetriol, glycerin, 2-pyrrolidone, etc. Can be preferably used, but more preferably ethyl alcohol, propyl alcohol, butyl alcohol, etc. Alcohol solvents, acetone, ketone solvents such as methyl ethyl ketone.

本発明に用いる金属アルコキシドを構成する金属元素としては、アルミニウム、ジルコニウム、チタニウム、ケイ素、マグネシウム、鉄、バナジウム、ゲルマニウム、タンタル、タングステン、インジウム、モリブデン、バリウム等を用いることができ、好ましくはアルミニウム、ジルコニウム、チタニウム、ケイ素、マグネシウム、鉄である。また、アルコキシドの種類としては、メトキシド、エトキシド、プロポキシド、イソプロポキシド、オキシイソプロポキシド、ブトキシド等を用いることができる。処理の均一性及び処理効果を考慮すれば、テトラエトキシシラン、アルミニウムトリイソプロポキシド、ジルコニウムテトライソプロポキシド、チタニウムテトライソプロポキシド等が好ましい。   As the metal element constituting the metal alkoxide used in the present invention, aluminum, zirconium, titanium, silicon, magnesium, iron, vanadium, germanium, tantalum, tungsten, indium, molybdenum, barium and the like can be used, preferably aluminum, Zirconium, titanium, silicon, magnesium and iron. Moreover, as a kind of alkoxide, methoxide, ethoxide, propoxide, isopropoxide, oxyisopropoxide, butoxide, etc. can be used. Considering the uniformity of treatment and the treatment effect, tetraethoxysilane, aluminum triisopropoxide, zirconium tetraisopropoxide, titanium tetraisopropoxide and the like are preferable.

また、上記金属アルコキシドは、より均一な処理を行うために、前述の有機溶剤に予め分散又は溶解させて用いることが好ましい。   The metal alkoxide is preferably used after being dispersed or dissolved in advance in the above-mentioned organic solvent in order to perform a more uniform treatment.

また、上記金属アルコキシドの加水分解は、より微細な無機化合物を軟磁性粒子の粒子表面に付着もしくは被覆させるために、特に水分を添加する必要はなく、有機溶剤中の水分及び軟磁性粒子が有する水分により加水分解を行うことが好ましい。   In addition, the hydrolysis of the metal alkoxide does not require any particular addition of water in order to attach or cover a finer inorganic compound to the particle surface of the soft magnetic particles. It is preferable to perform hydrolysis with moisture.

金属アルコキシドの添加量は、軟磁性粒子粉末の比表面積によって異なるが、通常、軟磁性粒子粉末100重量部当たり、各元素換算で0.001〜100重量部である。0.001重量部未満の場合には、本発明の効果は得られない。0.001〜100重量部の添加量により、本発明の効果が十分に得られるので、100重量部を超えて必要以上に添加する意味がない。得られる軟磁性材料の圧縮性及び流動性を考慮した場合、0.002〜75重量部が好ましく、より好ましくは0.005〜50重量部である。   The addition amount of the metal alkoxide varies depending on the specific surface area of the soft magnetic particle powder, but is usually 0.001 to 100 parts by weight in terms of each element per 100 parts by weight of the soft magnetic particle powder. When the amount is less than 0.001 part by weight, the effect of the present invention cannot be obtained. Since the effect of this invention is fully acquired by the addition amount of 0.001-100 weight part, it is meaningless to add more than necessary exceeding 100 weight part. When considering the compressibility and fluidity of the obtained soft magnetic material, the amount is preferably 0.002 to 75 parts by weight, more preferably 0.005 to 50 parts by weight.

本発明においては、前記金属アルコキシドに代えて、リン酸溶液またはリン酸塩溶液を添加してもよい。より好ましくは金属アルコキシドの溶液を加えた懸濁液中にリン酸溶液またはリン酸塩溶液を添加する。   In the present invention, a phosphoric acid solution or a phosphate solution may be added instead of the metal alkoxide. More preferably, the phosphoric acid solution or the phosphate solution is added to the suspension to which the metal alkoxide solution is added.

本発明におけるリン酸またはリン酸塩の添加量は、軟磁性粒子粉末の比表面積によって異なるが、通常、軟磁性粒子粉末100重量部当たり、P換算で0.001〜100重量部である。0.001重量部未満の場合には、本発明の効果は得られない。0.001〜100重量部の添加量により、本発明の効果が十分に得られるので、100重量部を超えて必要以上に添加する意味がない。得られる軟磁性材料の圧縮性、流動性及び圧粉磁心に用いた場合の軟磁性粒子粉末の充填率を考慮した場合、0.002〜75重量部が好ましく、より好ましくは0.005〜50重量部である。   The amount of phosphoric acid or phosphate added in the present invention varies depending on the specific surface area of the soft magnetic particle powder, but is usually 0.001 to 100 parts by weight in terms of P per 100 parts by weight of the soft magnetic particle powder. When the amount is less than 0.001 part by weight, the effect of the present invention cannot be obtained. Since the effect of this invention is fully acquired by the addition amount of 0.001-100 weight part, it is meaningless to add more than necessary exceeding 100 weight part. When considering the compressibility and fluidity of the resulting soft magnetic material and the filling rate of the soft magnetic particle powder when used in a dust core, 0.002 to 75 parts by weight is preferable, and 0.005 to 50 is more preferable. Parts by weight.

軟磁性粒子粉末と金属アルコキシド溶液及び/又はリン酸、リン酸塩溶液とを混合するための機器としては、高速アジテート型ミキサー、具体的にはヘンシェルミキサー、スピードミキサー、ボールカッター、パワーミキサー、ハイブリッドミキサー等を使用すればい。   The equipment for mixing the soft magnetic particle powder with the metal alkoxide solution and / or phosphoric acid or phosphate solution includes a high-speed agitate mixer, specifically a Henschel mixer, a speed mixer, a ball cutter, a power mixer, and a hybrid. Use a mixer.

リン酸又はリン酸塩を水溶液として添加する場合は、加水分解が急激に進行するのを防ぐため、極少量ずつ添加することが好ましい。   When adding phosphoric acid or phosphate as an aqueous solution, it is preferable to add a small amount in order to prevent hydrolysis from proceeding rapidly.

得られた軟磁性粒子粉末は、室温下、ドラフト中で3〜24時間乾燥させた後、60〜120℃の温度範囲で、1〜24時間乾燥させることにより得ることができる。   The obtained soft magnetic particle powder can be obtained by drying in a draft at room temperature for 3 to 24 hours and then drying in a temperature range of 60 to 120 ° C. for 1 to 24 hours.

次に、本発明に係る圧粉磁心について述べる。   Next, the dust core according to the present invention will be described.

本発明に係る圧粉磁心は、本発明に係る軟磁性材料に、必要により、結合剤樹脂や潤滑剤等の添加剤を混合し、該混合粒子粉末を圧縮成形した後、加熱処理することによって得ることができる。   The powder magnetic core according to the present invention is obtained by mixing the soft magnetic material according to the present invention with additives such as a binder resin and a lubricant, if necessary, and compression-molding the mixed particle powder, followed by heat treatment. Can be obtained.

結合剤樹脂としては、エポキシ樹脂、イミド樹脂、フェノール樹脂、又はシリコーン樹脂等を単独又は混合して用いることができる。   As the binder resin, an epoxy resin, an imide resin, a phenol resin, a silicone resin, or the like can be used alone or in combination.

圧縮成形は、通常行われている、金型を用いた圧縮成形法で行うことができる。なお、成形圧は、用途に応じて適宜選べばよい。   The compression molding can be performed by a compression molding method using a mold that is usually performed. In addition, what is necessary is just to select a shaping | molding pressure suitably according to a use.

圧縮成形後の熱処理温度は、結合剤樹脂の種類と要求される特性に応じて適宜調整すればよく、熱処理温度の上限は、無機化合物被膜の分解温度以下である。   The heat treatment temperature after compression molding may be appropriately adjusted according to the type of binder resin and the required properties, and the upper limit of the heat treatment temperature is not higher than the decomposition temperature of the inorganic compound coating.

本発明に係る圧粉磁心における軟磁性粒子粉末の体積占有率(vol%)は、90%以上であり、好ましくは91%、より好ましくは92%以上である。   The volume occupancy (vol%) of the soft magnetic particle powder in the dust core according to the present invention is 90% or more, preferably 91%, more preferably 92% or more.

本発明に係る圧粉磁心の比抵抗値は、2.0mΩ・cm以上であり、好ましくは3.0mΩ・cm以上、より好ましくは4.0mΩ・cm以上である。また、熱処理前後の比抵抗値の変化率は、30%未満が好ましく、より好ましくは20%未満、更により好ましくは10%未満である。   The specific resistance value of the dust core according to the present invention is 2.0 mΩ · cm or more, preferably 3.0 mΩ · cm or more, more preferably 4.0 mΩ · cm or more. Further, the change rate of the specific resistance value before and after the heat treatment is preferably less than 30%, more preferably less than 20%, and still more preferably less than 10%.

<作用>
本発明における最も重要な点は、軟磁性粒子粉末の粒子表面に無機化合物が付着もしくは被覆している複合粒子粉末からなる軟磁性材料は、圧縮性及び流動性に優れると共に、高温で焼成した場合においても体積固有抵抗値の変化が少ないという事実である。
<Action>
The most important point in the present invention is that the soft magnetic material composed of the composite particle powder in which the inorganic compound adheres or is coated on the surface of the soft magnetic particle powder is excellent in compressibility and fluidity and fired at a high temperature. This is also the fact that there is little change in the volume resistivity value.

本発明に係る軟磁性材料の流動性が優れている理由として、本発明者は、軟磁性粒子粉末の粒子表面に付着もしくは被覆している無機化合物を金属アルコキシドから生成させることにより、粒子表面に非常に微細な突起が生じたためと推定している。   As the reason why the fluidity of the soft magnetic material according to the present invention is excellent, the present inventor has produced an inorganic compound adhering to or covering the particle surface of the soft magnetic particle powder from the metal alkoxide, thereby forming the particle surface. It is estimated that very fine protrusions were generated.

本発明に係る軟磁性材料の圧縮性が優れている理由として、本発明者は、前記理由により、軟磁性材料の流動性が向上したために充填性が向上し、その結果、低い圧力でも十分な圧縮密度を得ることが可能になったものと推定している。   As a reason why the compressibility of the soft magnetic material according to the present invention is excellent, the present inventors have improved the fluidity of the soft magnetic material for the above reasons, so that the filling property is improved. As a result, even a low pressure is sufficient. It is presumed that compression density can be obtained.

本発明に係る軟磁性材料の体積固有抵抗値が高温で焼成した場合でも変化が少ない理由として、本発明者は、軟磁性粒子粉末の粒子表面に付着もしくは被覆している無機化合物を金属アルコキシドから生成させることにより、緻密、且つ、微細な粒子による付着もしくは被覆が可能となり、芯粒子である軟磁性粒子粉末が熱による影響を受け難くなったためと推定している。   As a reason why the volume resistivity of the soft magnetic material according to the present invention is small even when fired at a high temperature, the present inventor has determined that the inorganic compound adhering to or covering the particle surface of the soft magnetic particle powder is from a metal alkoxide. It is presumed that by forming the particles, the fine particles can be adhered or covered with fine particles, and the soft magnetic particle powder as the core particles is hardly affected by heat.

また、本発明に係る軟磁性材料を用いて得られた圧粉磁心は、高い比抵抗値を有するという事実である。   Moreover, it is a fact that the dust core obtained by using the soft magnetic material according to the present invention has a high specific resistance value.

本発明に係る圧粉磁心が高い比抵抗値を有する理由として、本発明者は、軟磁性材料として、体積固有抵抗値が高温で焼成した場合でも変化が少ない本発明に係る軟磁性材料を用いたことにより、通常、加熱処理を行うことにより大幅に減少する比抵抗値を、加熱処理前とほぼ同じ値に維持できたことによるものと考えている。   The reason why the powder magnetic core according to the present invention has a high specific resistance value is that the present inventor used the soft magnetic material according to the present invention as a soft magnetic material, which has little change even when the volume resistivity value is fired at a high temperature. Therefore, it is considered that the specific resistance value, which is largely reduced by performing the heat treatment, can be maintained at substantially the same value as before the heat treatment.

以下、本発明における実施例を示し、本発明を具体的に説明する。   Examples of the present invention will be described below to specifically explain the present invention.

各粒子粉末の平均粒子径は、いずれも電子顕微鏡写真に示される粒子350個の粒子径をそれぞれ測定し、その平均値で示した。   The average particle diameter of each particle powder was measured by measuring the particle diameter of 350 particles shown in the electron micrograph, and the average value was shown.

軟磁性粒子粉末の粒子表面に付着もしくは被覆されている絶縁層の被覆量は、「蛍光X線分析装置3063M型」(理学電機工業株式会社製)を使用し、JIS K0119の「けい光X線分析通則」に従って測定した。   The coating amount of the insulating layer adhered to or coated on the surface of the soft magnetic particle powder is “fluorescence X-ray analyzer 3063M type” (manufactured by Rigaku Denki Kogyo Co., Ltd.). It was measured according to the “General Rules of Analysis”.

各粒子粉末の体積固有抵抗値は、まず、粒子粉末0.5gを測り取り、KBr錠剤成形器(株式会社島津製作所)を用いて、1.372×10Paの圧力で加圧成形を行い、円柱状の被測定試料を作製した。 For the volume resistivity of each particle powder, first, 0.5 g of the particle powder was measured and subjected to pressure molding at a pressure of 1.372 × 10 7 Pa using a KBr tablet molding machine (Shimadzu Corporation). A cylindrical sample to be measured was prepared.

次いで、被測定試料を温度25℃、相対温度60%の環境下に12時間以上暴露した後、この被測定試料をステンレス電極の間にセットし、電気抵抗測定装置(model 4329A 横河北辰電気株式会社製)で15Vの電圧を印加して抵抗値R(mΩ)を測定した。   Next, after the sample to be measured was exposed to an environment of 25 ° C. and a relative temperature of 60% for 12 hours or more, the sample to be measured was set between stainless steel electrodes, and an electric resistance measuring device (model 4329A Yokogawa Hokushin Electric Co., Ltd. The resistance value R (mΩ) was measured by applying a voltage of 15V.

次いで、被測定(円柱状)試料の上面の面積A(cm)と厚みt(cm)を測定し、下記数1にそれぞれの測定値を挿入して、体積固有抵抗値(mΩ・cm)を求めた。 Next, the area A (cm 2 ) and the thickness t 0 (cm) of the upper surface of the sample to be measured (cylindrical) are measured, and each measured value is inserted into the following Equation 1 to determine the volume resistivity (mΩ · cm )

<数1>
体積固有抵抗値(mΩ・cm)=R×(A/t
<Equation 1>
Volume resistivity (mΩ · cm) = R × (A / t 0 )

各粒子粉末の加熱前後における体積固有抵抗値の変化率(%)は、前記で作製した体積固有抵抗値測定用の円柱状の被測定試料を500℃にて1時間加熱した後、前記と同様にして体積固有抵抗値を測定し、下記数2に加熱前後の体積固有抵抗値を挿入して、体積固有抵抗値の変化率を求めた。   The rate of change (%) in volume resistivity before and after heating of each particle powder is the same as described above after heating the column-shaped sample for volume resistivity measurement prepared above at 500 ° C. for 1 hour. Then, the volume resistivity value was measured, and the volume resistivity value before and after heating was inserted into the following formula 2 to obtain the rate of change of the volume resistivity value.

<数2>
加熱前後の体積固有抵抗値の変化率(%)={体積固有抵抗値(加熱前)−体積固有抵抗値(加熱後)}/体積固有抵抗値(加熱前)×100
<Equation 2>
Change rate (%) of volume resistivity before and after heating = {volume resistivity (before heating) −volume resistivity (after heating)} / volume resistivity (before heating) × 100

各粒子粉末の流動性は、パウダテスタ(商品名、ホソカワミクロン株式会社製)を用いて、安息角(度)、圧縮度(%)、スパチュラ角(度)、凝集度の各粉体特性値を測定し、該各測定値を同一基準の数値に置き換えた各々の指数を求め、各々の指数を合計した流動性指数で示した。流動性指数が100に近いほど、流動性が優れていることを意味する。   The fluidity of each particle powder is measured using powder testers (trade name, manufactured by Hosokawa Micron Co., Ltd.) by measuring the powder characteristic values of angle of repose (degree), degree of compression (%), spatula angle (degree), and degree of aggregation. Then, each index obtained by replacing each measured value with a numerical value of the same standard was obtained, and each index was indicated as a total liquidity index. The closer the fluidity index is to 100, the better the fluidity.

各粒子粉末の圧縮密度の変化率は、まず、試料粉体0.3gを測り取り、φ13mmの円筒形の金型に入れ、KBr錠剤成形器(株式会社島津製作所)を用いて、9.8×10Pa及び4.9×10Paの圧力で加圧成形を行い、得られた粉体層の厚みから、それぞれの圧力における圧縮密度CD(g/cm)及びCD(g/cm)を求め、下記数3にそれぞれの測定値を挿入して、圧縮密度の変化率(%)を求めた。 The rate of change in the compression density of each particle powder was determined by first measuring 0.3 g of the sample powder, placing it in a cylindrical mold having a diameter of 13 mm, and using a KBr tablet molding machine (Shimadzu Corporation), 9.8. From the thickness of the powder layer obtained by pressure molding at pressures of × 10 7 Pa and 4.9 × 10 8 Pa, the compression densities CD 1 (g / cm 3 ) and CD 5 (g / Cm 3 ) and the respective measured values were inserted into the following formula 3 to determine the rate of change (%) in compression density.

<数3>
圧縮密度の変化率(%)={(CD−CD)/CD)}×100
<Equation 3>
Change rate of compression density (%) = {(CD 1 −CD 5 ) / CD 1 )} × 100

圧粉磁心に含有される軟磁性粒子粉末の体積占有率は、まず、各試料粉体の真比重と圧縮成形に用いる各試料粉体の重量から、圧粉磁心に含有される試料粉体の体積を求めた。次いで、後述する圧粉磁心用の混合粉を成形圧4.9×10Paで円柱状(φ23×5mm)に圧縮成形し、圧粉磁心に含有される試料粉体の体積と圧縮成形後の円柱の体積から求めた。 The volume occupancy of the soft magnetic particle powder contained in the powder magnetic core is determined from the true specific gravity of each sample powder and the weight of each sample powder used for compression molding. The volume was determined. Subsequently, the powder mixture for the dust core described later is compression-molded into a cylindrical shape (φ23 × 5 mm) at a molding pressure of 4.9 × 10 8 Pa, and the volume of the sample powder contained in the dust core and after the compression molding It was obtained from the volume of the cylinder.

圧粉磁心の比抵抗値は、後述する方法によって作製した圧粉磁心を用い、前述の各粒子粉末の体積固有抵抗値を測定したのと同様にして、電気抵抗測定装置(model 4329A 横河北辰電気株式会社製)を用いて熱処理前と熱処理後の比抵抗値の測定を行った。また、熱処理前後の比抵抗値の変化率は、加熱処理前の比抵抗値R(mΩ・cm)及び加熱処理後の比抵抗値R(mΩ・cm)を用いて、下記数4にそれぞれの測定値を挿入して、比抵抗値の変化率(%)を求めた。 The specific resistance value of the powder magnetic core was measured using an electric resistance measuring device (model 4329A Kita Yokogawa) in the same manner as the volume resistivity of each particle powder was measured using a powder magnetic core produced by the method described later. Electric resistivity) was used to measure the specific resistance value before and after the heat treatment. Further, the change rate of the specific resistance value before and after the heat treatment is expressed by the following equation 4 using the specific resistance value R 0 (mΩ · cm) before the heat treatment and the specific resistance value R 1 (mΩ · cm) after the heat treatment. Each measurement value was inserted, and the change rate (%) of the specific resistance value was obtained.

<数4>
比抵抗値の変化率(%)={(R−R)/R)}×100
<Equation 4>
Specific resistance change rate (%) = {(R 0 −R 1 ) / R 0 )} × 100

<実施例1−1:軟磁性材料の製造>
鉄粉(粒子形状:粒状、平均粒子径20.1μm、体積固有抵抗値315.1mΩ・cm、加熱前後の体積固有抵抗値の変化率35.8%、流動性59、圧縮密度の変化率7.5%)500gを、アセトン500mlに攪拌機を用いて邂逅し、鉄粉を含むアセトンのスラリーを得た。
<Example 1-1: Production of soft magnetic material>
Iron powder (particle shape: granular, average particle diameter 20.1 μm, volume resistivity 315.1 mΩ · cm, volume resistivity change before and after heating 35.8%, fluidity 59, compression density change 7 0.5%) was poured into 500 ml of acetone using a stirrer to obtain an acetone slurry containing iron powder.

次に、前記鉄粉を含むアセトンのスラリー中に、アルミニウムイソプロポキシド10.0gを分散させたアセトン溶液200mlを加え、60分間攪拌・混合させた。   Next, 200 ml of an acetone solution in which 10.0 g of aluminum isopropoxide was dispersed was added to the acetone slurry containing the iron powder, and the mixture was stirred and mixed for 60 minutes.

次いで、前記混合溶液中に、リン酸水溶液(リン酸含有量85重量%)6.0gを10分かけて加え、更に、20分間攪拌・混合させた。   Next, 6.0 g of an aqueous phosphoric acid solution (phosphoric acid content: 85% by weight) was added to the mixed solution over 10 minutes, and the mixture was further stirred and mixed for 20 minutes.

得られた混合溶液をドラフト中で3時間風乾させた後、乾燥機を用いて80℃で60分間乾燥を行い、軟磁性材料を得た。   The obtained mixed solution was air-dried in a fume hood for 3 hours and then dried at 80 ° C. for 60 minutes using a dryer to obtain a soft magnetic material.

得られた軟磁性材料は、平均粒子径が20.3μmの粒状粒子であった。体積固有抵抗値は411.2mΩ・cm、加熱前後の体積固有抵抗値の変化率は8.3%、流動性は82、圧縮密度の変化率は1.8%であった。付着もしくは被覆している表面処理物はAl換算で0.26重量%、P換算で0.32重量%であった。   The obtained soft magnetic material was granular particles having an average particle diameter of 20.3 μm. The volume resistivity value was 411.2 mΩ · cm, the rate of change in volume resistivity value before and after heating was 8.3%, the fluidity was 82, and the rate of change in compression density was 1.8%. The surface treated product adhered or coated was 0.26% by weight in terms of Al and 0.32% by weight in terms of P.

<実施例2−1:圧粉磁心の製造>
前記軟磁性材料100重量部とエポキシ樹脂0.6重量部を混合し、ステアリン酸亜鉛を塗布した金型を用い、混合粉を成形圧4.9×10Paでリング状(10×φ23×5mm)に圧縮成形した。成形体は、空気中、200℃で30分間加熱した後、冷却することにより圧粉磁心を得た。
<Example 2-1: Production of dust core>
Using a mold in which 100 parts by weight of the soft magnetic material and 0.6 parts by weight of an epoxy resin are mixed and zinc stearate is applied, the mixed powder is ring-shaped (10 × φ23 × at a molding pressure of 4.9 × 10 8 Pa). 5 mm). The compact was heated in air at 200 ° C. for 30 minutes and then cooled to obtain a dust core.

得られた圧粉磁心の軟磁性粒子粉末の体積占有率は、92.4vol%であり、熱処理前の比抵抗値は463.9mΩ・cm、熱処理後の比抵抗値は423.5mΩ・cm、比抵抗値の変化率は8.7%であった。   The volume occupancy of the soft magnetic particle powder of the obtained dust core is 92.4 vol%, the specific resistance value before heat treatment is 463.9 mΩ · cm, the specific resistance value after heat treatment is 423.5 mΩ · cm, The rate of change of the specific resistance value was 8.7%.

前記実施例1−1及び2−1に従って軟磁性材料及び圧粉磁心を作製した。各製造条件及び得られた軟磁性粒子粉末及び圧粉磁心の諸特性を示す。   A soft magnetic material and a dust core were prepared according to Examples 1-1 and 2-1. Various characteristics of each production condition and the obtained soft magnetic particle powder and dust core are shown.

軟磁性粒子A〜E:
被処理粒子粉末として表1に示す特性を有する軟磁性粒子粉末を用意した。
Soft magnetic particles A to E:
A soft magnetic particle powder having the characteristics shown in Table 1 was prepared as a particle to be treated.

Figure 2005206880
Figure 2005206880

実施例1−2〜1−7、比較例1及び2:
軟磁性粒子粉末の種類、表面処理工程における有機溶剤の種類、表面処理剤の種類及び添加量を種々変化させた以外は、前記実施例1−1と同様にして圧粉磁心用軟磁性材料を得た。
Examples 1-2 to 1-7, Comparative Examples 1 and 2:
A soft magnetic material for a dust core was prepared in the same manner as in Example 1-1 except that the type of soft magnetic particle powder, the type of organic solvent in the surface treatment step, the type of surface treatment agent, and the amount added were varied. Obtained.

このときの製造条件を表2に、得られた軟磁性粒子粉末の諸特性を表3に示す。   The production conditions at this time are shown in Table 2, and the characteristics of the obtained soft magnetic particle powder are shown in Table 3.

なお、比較例2は、市販のシリカゾル(平均粒子径10〜20nm、SiO含有量20重量%)をアセトン中に分散させたものを処理に用いた。 In Comparative Example 2, a commercially available silica sol (average particle size 10 to 20 nm, SiO 2 content 20% by weight) dispersed in acetone was used for the treatment.

比較例3(特開2001−196217号公報 実施例 追試実験)
平均粒子径35.3μmの鉄粉(表1 軟磁性粒子B)100重量部に対し、変性アルミニウムシリケートゾル(有機溶剤:メタノール、固形分50重量%)30重量部をミキサに投入し、約1時間混合した。次いで、温度100℃で加熱して約1時間混合した後、濾過して鉄粉を得た。
Comparative example 3 (JP 2001-196217 A Example additional test)
30 parts by weight of modified aluminum silicate sol (organic solvent: methanol, solid content 50% by weight) is charged into a mixer with respect to 100 parts by weight of iron powder (Table 1 soft magnetic particles B) having an average particle size of 35.3 μm. Mixed for hours. Next, the mixture was heated at 100 ° C. and mixed for about 1 hour, and then filtered to obtain iron powder.

得られた鉄粉の諸特性を表3に示す。   Table 3 shows various properties of the obtained iron powder.

比較例4(特開平9−125111号公報 実施例 追試実験)
ナトリウムメトキシド18.58gとテトラエトキシシラン160.85gをエタノール500mlに加え、よく攪拌した後、該溶液にカルボニル鉄粉(平均粒子径3.2μm)1000gを攪拌しながら加えた。次いで、該混合溶液を超音波分散機により攪拌し、均一に分散させた状態のままオーブンにて加熱した。該分散液に蒸留水を少しずつ入れていくと、容器の底に沈殿物ができ、前記沈殿物を濾過、乾燥し、300℃で30分加熱することにより、金属粉末を得た。
Comparative Example 4 (Japanese Patent Laid-Open No. 9-125111, Example Additional Test)
After adding 18.58 g of sodium methoxide and 160.85 g of tetraethoxysilane to 500 ml of ethanol and stirring well, 1000 g of carbonyl iron powder (average particle size: 3.2 μm) was added to the solution while stirring. Next, the mixed solution was stirred with an ultrasonic disperser and heated in an oven while being uniformly dispersed. When distilled water was gradually added to the dispersion, a precipitate was formed at the bottom of the container, and the precipitate was filtered, dried, and heated at 300 ° C. for 30 minutes to obtain a metal powder.

得られた金属粉末の諸特性を表3に示す。   Table 3 shows various properties of the obtained metal powder.

Figure 2005206880
Figure 2005206880

Figure 2005206880
Figure 2005206880

実施例2−2〜2−9、比較例5〜13:
軟磁性材料の種類を種々変化させた以外は、前記実施例2−1と同様にして圧粉磁心を得た。
Examples 2-2 to 2-9, Comparative Examples 5 to 13:
A dust core was obtained in the same manner as in Example 2-1, except that various types of soft magnetic materials were used.

得られた圧粉磁心の諸特性を表4に示す。   Table 4 shows various characteristics of the obtained dust core.

Figure 2005206880
Figure 2005206880

本発明に係る軟磁性材料は、流動性に優れると共に、低い圧力で圧縮成形が可能であり、且つ、高温で焼成した場合においても電気抵抗値の変化が少ないので圧粉磁心用軟磁性材料として好適である。   The soft magnetic material according to the present invention has excellent fluidity, can be compression-molded at a low pressure, and has little change in electric resistance even when fired at a high temperature. Is preferred.

本発明に係る圧粉磁心は、前記軟磁性材料を用いたことにより、電気抵抗値が高く、且つ、高温で焼成した場合においても電気抵抗値の変化が少ないので、高性能圧粉磁心として好適である。   The powder magnetic core according to the present invention is suitable as a high-performance powder magnetic core because the soft magnetic material is used so that the electric resistance value is high and the electric resistance value hardly changes even when fired at a high temperature. It is.

Claims (8)

軟磁性粒子粉末の粒子表面に無機化合物が付着もしくは被覆している複合粒子粉末からなることを特徴とする軟磁性材料。 A soft magnetic material comprising a composite particle powder in which an inorganic compound adheres to or covers the particle surface of the soft magnetic particle powder. 無機化合物が、アルミニウム、ジルコニウム、チタニウム、ケイ素、マグネシウム、鉄及びリンから選ばれる1種又は2種以上の元素を含有する化合物からなることを特徴とする請求項1記載の軟磁性材料。 2. The soft magnetic material according to claim 1, wherein the inorganic compound comprises a compound containing one or more elements selected from aluminum, zirconium, titanium, silicon, magnesium, iron and phosphorus. 無機化合物が、アルミニウム、ジルコニウム、チタニウム、ケイ素、マグネシウム又は鉄から選ばれる1種又は2種以上の金属元素を含有する金属アルコキシドから生成する無機化合物及び/又はリン化合物であることを特徴とする請求項1又は請求項2記載の軟磁性材料。 The inorganic compound is an inorganic compound and / or a phosphorus compound produced from a metal alkoxide containing one or more metal elements selected from aluminum, zirconium, titanium, silicon, magnesium or iron. Item 3. The soft magnetic material according to item 1 or 2. 複合粒子粉末の圧縮密度の変化率が5%未満であることを特徴とする請求項1乃至請求項3のいずれかに記載の軟磁性材料。 The soft magnetic material according to any one of claims 1 to 3, wherein a rate of change in compression density of the composite particle powder is less than 5%. 複合粒子粉末の加熱前後の体積固有抵抗値の変化率が20%以下であることを特徴とする請求項1乃至請求項4のいずれかに記載の軟磁性材料。 The soft magnetic material according to any one of claims 1 to 4, wherein a change rate of a volume resistivity value before and after heating of the composite particle powder is 20% or less. 軟磁性粒子粉末を有機溶剤に分散した懸濁液中に金属アルコキシドの溶液を加えた後、風乾後、60〜120℃で乾燥させることを特徴とする請求項1乃至請求項5のいずれかに記載の軟磁性材料の製造法。 The metal alkoxide solution is added to a suspension in which soft magnetic particle powder is dispersed in an organic solvent, and then air-dried and then dried at 60 to 120 ° C. The manufacturing method of the soft-magnetic material of description. 軟磁性粒子粉末を有機溶剤に分散した懸濁液中に金属アルコキシドの溶液を加えた後、リン酸溶液を加え、風乾後、60〜120℃で乾燥させることを特徴とする請求項1乃至請求項5のいずれかに記載の軟磁性材料の製造法。 A metal alkoxide solution is added to a suspension of soft magnetic particle powder dispersed in an organic solvent, a phosphoric acid solution is added, air-dried, and dried at 60 to 120 ° C. Item 6. A method for producing a soft magnetic material according to Item 5. 請求項1乃至請求項5のいずれかに記載の軟磁性材料を圧縮成形してなる圧粉磁心。
A dust core formed by compression-molding the soft magnetic material according to any one of claims 1 to 5.
JP2004014944A 2004-01-22 2004-01-22 SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL Expired - Lifetime JP4790224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014944A JP4790224B2 (en) 2004-01-22 2004-01-22 SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014944A JP4790224B2 (en) 2004-01-22 2004-01-22 SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL

Publications (2)

Publication Number Publication Date
JP2005206880A true JP2005206880A (en) 2005-08-04
JP4790224B2 JP4790224B2 (en) 2011-10-12

Family

ID=34900574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014944A Expired - Lifetime JP4790224B2 (en) 2004-01-22 2004-01-22 SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL

Country Status (1)

Country Link
JP (1) JP4790224B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264192A (en) * 2004-03-16 2005-09-29 Toda Kogyo Corp Soft magnetic material and method for manufacturing the same, dust core including soft magnetic material
WO2007015378A1 (en) * 2005-08-03 2007-02-08 Sumitomo Electric Industries, Ltd. Soft magnetic material, process for production of the material, powder compressed magnetic core, and process for production of the magnetic core
WO2007077689A1 (en) 2006-01-04 2007-07-12 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust magnetic core, process for producing soft magnetic material and process for producing dust magnetic core
JP2010062217A (en) * 2008-09-01 2010-03-18 Toda Kogyo Corp Soft magnetic particle powder, method for manufacturing the same, and powder magnetic core containing soft magnetic particle powder
JP2021021096A (en) * 2019-07-25 2021-02-18 Tdk株式会社 Composite magnetic powder, powder magnetic core using the same, and manufacturing method for composite magnetic powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2504854C1 (en) * 2012-04-16 2014-01-20 Учреждение образования "Гомельский государственный технический университет имени П.О. Сухого" (УО "ГГТУ им. П.О. Сухого") Soft magnetic composite material and method for production thereof in form of article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154111A (en) * 1984-12-27 1986-07-12 Toshiba Corp Iron core and manufacture thereof
JPH0851010A (en) * 1994-05-23 1996-02-20 Alps Electric Co Ltd Green compact of soft magnetic alloy, production method thereof and coating powder therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154111A (en) * 1984-12-27 1986-07-12 Toshiba Corp Iron core and manufacture thereof
JPH0851010A (en) * 1994-05-23 1996-02-20 Alps Electric Co Ltd Green compact of soft magnetic alloy, production method thereof and coating powder therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264192A (en) * 2004-03-16 2005-09-29 Toda Kogyo Corp Soft magnetic material and method for manufacturing the same, dust core including soft magnetic material
WO2007015378A1 (en) * 2005-08-03 2007-02-08 Sumitomo Electric Industries, Ltd. Soft magnetic material, process for production of the material, powder compressed magnetic core, and process for production of the magnetic core
JP2007042891A (en) * 2005-08-03 2007-02-15 Sumitomo Electric Ind Ltd Soft magnetic material, its manufacturing method, powder magnetic core, and its manufacturing method
JP4707054B2 (en) * 2005-08-03 2011-06-22 住友電気工業株式会社 Soft magnetic material, method for producing soft magnetic material, dust core, and method for producing dust core
EP1970917A4 (en) * 2006-01-04 2011-04-06 Sumitomo Electric Industries Soft magnetic material, dust magnetic core, process for producing soft magnetic material and process for producing dust magnetic core
EP1970917A1 (en) * 2006-01-04 2008-09-17 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust magnetic core, process for producing soft magnetic material and process for producing dust magnetic core
WO2007077689A1 (en) 2006-01-04 2007-07-12 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust magnetic core, process for producing soft magnetic material and process for producing dust magnetic core
JP4851470B2 (en) * 2006-01-04 2012-01-11 住友電気工業株式会社 Powder magnetic core and manufacturing method thereof
US8153256B2 (en) 2006-01-04 2012-04-10 Sumitomo Electric Industries, Ltd. Soft magnetic material comprising an insulating layer containing aluminum, silicon, phosphorous and oxygen; dust magnetic core; process for producing soft magnetic material; and process for producing dust magnetic core
US8557330B2 (en) 2006-01-04 2013-10-15 Sumitomo Electric Industries, Ltd. Manufacturing method of soft magnetic material and manufacturing method of dust core
JP2010062217A (en) * 2008-09-01 2010-03-18 Toda Kogyo Corp Soft magnetic particle powder, method for manufacturing the same, and powder magnetic core containing soft magnetic particle powder
JP2021021096A (en) * 2019-07-25 2021-02-18 Tdk株式会社 Composite magnetic powder, powder magnetic core using the same, and manufacturing method for composite magnetic powder
JP7400241B2 (en) 2019-07-25 2023-12-19 Tdk株式会社 Composite magnetic powder and powder magnetic core using the same

Also Published As

Publication number Publication date
JP4790224B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
US9067833B2 (en) Iron oxide and silica magnetic core
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
CA2708830C (en) Powder and method for producing the same
US10975457B2 (en) Iron cobalt ternary alloy and silica magnetic core
US20140027667A1 (en) Iron cobalt ternary alloy nanoparticles with silica shells
JP6265210B2 (en) Reactor dust core
CN104321839B (en) Soft-magnetic composite material
JP4400728B2 (en) SOFT MAGNETIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP5372481B2 (en) Powder magnetic core and manufacturing method thereof
JP2014072367A (en) Coated metal powder and dust core
JP2008277775A (en) Dust core and its manufacturing method
JP2007092120A (en) Method for producing soft magnetic material, soft magnetic material and dust core
JP4803353B2 (en) SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL
JP2017508873A (en) Soft magnetic composite powder and soft magnetic member
JP2004288983A (en) Dust core and method for manufacturing same
JP4995222B2 (en) Powder magnetic core and manufacturing method thereof
JP5023041B2 (en) Powder magnetic core and manufacturing method thereof
JP2010245460A (en) Dust core, and method of manufacturing the same
JP4790224B2 (en) SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL
JP6466741B2 (en) Iron-cobalt ternary alloy nanoparticles with silica shell and metal silicate interface
JP2007273929A (en) Insulation coating soft magnetic metallic powder, pressed powder core, and their manufacturing method
JP5924675B2 (en) Method for producing nanocrystalline magnetic material
JP4856602B2 (en) Iron-based soft magnetic powder for dust core and dust core
JP4561988B2 (en) Method for producing soft magnetic metal powder for soft magnetic metal dust core, and soft magnetic metal dust core
JP4527225B2 (en) Manufacturing method of dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100219

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4790224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term