JP4644340B2 - Manufacturing method of hydraulic shock absorber - Google Patents

Manufacturing method of hydraulic shock absorber Download PDF

Info

Publication number
JP4644340B2
JP4644340B2 JP2000271514A JP2000271514A JP4644340B2 JP 4644340 B2 JP4644340 B2 JP 4644340B2 JP 2000271514 A JP2000271514 A JP 2000271514A JP 2000271514 A JP2000271514 A JP 2000271514A JP 4644340 B2 JP4644340 B2 JP 4644340B2
Authority
JP
Japan
Prior art keywords
empty container
shock absorber
cylinder
hydraulic oil
hydraulic shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000271514A
Other languages
Japanese (ja)
Other versions
JP2002081481A (en
Inventor
孝 古田
義夫 有浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2000271514A priority Critical patent/JP4644340B2/en
Publication of JP2002081481A publication Critical patent/JP2002081481A/en
Application granted granted Critical
Publication of JP4644340B2 publication Critical patent/JP4644340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/43Filling or drainage arrangements, e.g. for supply of gas

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、自動車の懸架装置など車体の振動を抑制する低圧ガス入り油圧緩衝器に係わり、詳しくは油圧緩衝器とする製造方法に関するものである。
【0002】
【従来の技術】
まず、従来の油圧緩衝器を図3に基づいて説明する。一般に、車体側に結合部1B及び車輪側に結合部材6を介して取付けられる油圧緩衝器SAは、下端部に圧側減衰弁BV及び吸込み弁DVを配設したシリンダ2内に、下端部に設けられたピストン部1Aに伸側減衰弁PV及び逆止弁CVを組み付けたピストンロッド1を摺動自在に収容するとともに、シリンダ2の上端部をピストンロッド1を出没自在に案内するロッドガイド3Aで覆蓋して外筒3に収容する。ロッドガイド3Aには、ピストンロッド1に摺動自在に嵌合して油圧緩衝器を密封するオイルシール4が組み付けられている。
【0003】
油圧緩衝器の内部には所定量の作動油Fが封入される一方、緩衝作動をする際に作動油中の気泡の発生を抑制して減衰力を安定させるため、数気圧の低圧ガスN(例えば不活性の窒素ガス)を封入することが多い。そして、シリンダ2内の上部室A及び下部室Bは双方とも作動油Fで満たされる一方、シリンダ2と外筒3の間には、作動油Fで満たされたタンク室Cと低圧ガスNが密封されたガス室Dが区画される。
【0004】
油圧緩衝器を組み立てる際には、まず、下端部に圧側減衰弁BV及び吸込み弁DVを配設したシリンダ2内に、下端に伸側減衰弁PV及び逆止弁CVを組み付けたピストンロッド1を摺動自在に収容したシリンダサブアッシーを、外筒3の下端部を覆蓋する底蓋3Bに着座させることにより外筒3に収容する。続いて、ピストンロッド1を出没自在に案内するロッドガイド3Aを外筒3の上部に嵌挿して、外筒3の上部を例えば可締めることにより、シリンダ2の上端部及び外筒3の上部を覆蓋する。
【0005】
次に、底蓋3Bに設けられた注入孔3Cに、図1の下部に例示したのと同様に、注入用の溝5Bを設けたプラグ5の尖端部を挿し込み溝5Bによる注入路を確保した状態で、シリンダ2及びシリンダ2と外筒3との間に所定量の作動油及び所定圧力の不活性ガスを封入する。その後、底蓋3Bの注入孔3Cにプラグ5の円筒部5Aを完全に打ち込んで油圧緩衝器内を密閉する。最後に、車輪側に取付けられる結合部材6を底蓋3Bに溶接等により結合することにより油圧緩衝器が完成する。
【0006】
作動油の充満したシリンダ2内をピストンロッド1が上昇する際には、密閉された上部室Aの作動油は、伸側減衰弁PVを介して下部室Bに流出し、この際の通路抵抗により伸側減衰力を発生する。ピストンロッド1の上昇によって不足する退出体積分の作動油は、前記シリンダ2の下端部に配設された圧側減衰弁BVと並列に組み付けられている吸込み弁DVを介して、タンク室Cより下部室Bに吸入される。
【0007】
逆に、シリンダ2内をピストンロッド1が下降する際には、密閉された下部室Bの作動油は、伸側減衰弁PVと並列に組み付けられている逆止弁CVを通り上部室Aに補充される分を除いて、圧側減衰弁BVを介してタンク室Cに流出し、この際の通路抵抗により圧側減衰力を発生する。
【0008】
【発明が解決しようとする課題】
油圧緩衝器への低圧ガス(例えば不活性の窒素ガス)の封入は、底蓋3Bに設けられた注入孔3Cに注入用の溝5Bを設けたプラグ5をの尖端部を挿し込み、シリンダ2及びシリンダ2と外筒3との間に所定量の作動油及び所定圧の不活性ガスを封入した後、注入孔3Cにプラグ5を打ち込んで油圧緩衝器内を密閉することにより行われる。不活性の低圧ガスと言えば、いきおい窒素ガスと言うことになるが、窒素ガス自体にコスト用がかかるうえ、低圧ガス入り油圧緩衝器の製造には、窒素ガスの圧力管理及び配管等の設備費用がかかる。
【0009】
作動油中の気泡の発生を抑制して減衰力を安定させるためには、必ずしも窒素ガスである必要はなく、また封入圧力もそう高くなくてもよいので、安価で簡便な製造方法による油圧緩衝器の実現が嘱望されていた。本発明は以上のような実情に鑑みてなされたものであり、その目的とするところは、安価で簡便油圧緩衝器の製造方法を提供することである。
【0010】
【課題を解決するための手段】
上記の目的を達成するため本発明の手段は、シリンダ内にピストン部を介してピストンロッドを摺動自在に収容し、上記ピストン部で上記シリンダ内に上部室と下部室とを区画し、上記上部室と上記下部室を上記ピストン部に設けた伸側減衰弁と逆止弁とを介して連通し、上記下部室に連通する作動油の注入孔を備えている油圧緩衝器において、シリンダ内に作動油を入れていない状態で当該シリンダ内に上記ピストンロッドを最伸長或いは所定量押し込んだ状態の空容器を組立て、次いで上記注入孔から上記空容器内に当該空容器内の空気が外部に漏出するのを防止しながら作動油を注入することによって上記空容器内の空気を圧縮し、上記空容器内の圧力を大気圧よりも高くしたことを特徴とするものである。
【0011】
【発明の実施の形態】
本発明に係る油圧緩衝器の製造方法の特徴は、作動油を入れずに注入孔を大気に解放した油圧緩衝器の空容器に、空容器内の空気が外部に逃げるのを防止しながら作動油を注入することによって容器内の空気を圧縮し、容器内の圧力を大気圧よりも高くすることである。
即ち、本発明の油圧緩衝器はは、図1または図2に示すように、シリンダ2内にピストン部1Aを介してピストンロッド1を摺動自在に収容し、上記ピストン部1Aで上記シリンダ2内に上部室Aと下部室Bとを区画し、上記上部室Aと上記下部室Bを上記ピストン部1Aに設けた伸側減衰弁PVと逆止弁CVとを介して連通し、上記下部室Bに連通する作動油の注入孔3Cを備えているものである。
そして、本発明では、シリンダ2内に作動油を入れていない状態で当該シリンダ2内に上記ピストンロッド1を最伸長或いは所定量押し込んだ状態の空容器SVを組立て、次いで上記注入孔3Cから上記空容器SV内に当該空容器SV内の空気が外部に漏出するのを防止しながら作動油を注入することによって上記空容器SV内の空気を圧縮し、上記空容器SV内の圧力を大気圧よりも高くしたことを特徴とするものである。
【0012】
次に、本発明の第1実施形態に係る油圧緩衝器の製造方法を図1に示す実施形態に基づいて説明する。図3に示す従来技術と同一部分には同一符号を用い、特に必要のない部分については説明を省略する。ピストンロッド1を最伸長状態で組み立てた空容器SVの底蓋3Bに設けられた注入孔3Cに、空容器内と外部が注入用の溝5Bを介して連通する状態にプラグ5をの尖端部を挿し込み、図示を省略した注入用の治具を使用して空容器SV内の空気が外部に逃げるのを防止しながら所定量の作動油を注入する。
【0013】
注入孔3Cを含めたシリンダ2内の容積をVc,シリンダ2と外筒3の間の容積をVtとすると、ピストンロッド1が最伸長状態の空容器SV内の容積Veは、Ve=Vc+Vtとなる。空容器SV内の空気が外部に逃げるのを防止しながら注入した作動油の容量をVoとすると、空容器内のガス室の容積Qeは、Qe=Vc+Vt−Voに圧縮される。
【0014】
作動油を注入する前においては、空容器SV内は大気に連通し、空容器SV内の圧力は大気圧(1bar)と同じであるので、作動油を注入した後の空容器SV内の圧力は、P=Ve/Qe=(Vc+Vt)/(Vc+Vt−Vo)となる。この式は、作動油を注入する前の空容器SV内のガス室の容積が、作動油を注入した後に1/2になれば容器内の圧力は大気圧の2倍(2bar)となり、1/3になれば大気圧の3倍(3bar)となることを意味する。
【0015】
すなわち、従来の製造方法にようなコストの高い窒素ガスを封入する替わりに、大気圧の中で組み立てた容積がVeの空容器SV内に、容量がVoの作動油を注入することによって容器内の空気を圧縮し、油圧緩衝器内に密封された空気の圧力を調整することができる。
【0016】
ピストンロッド1の断面積をAr,油圧緩衝器の最大ストロークをSmとすると、ピストンロッド1が最伸長状態から最大ストロークSmまで収縮すると、空容器SV内のガス室の容積Qsは、上述した容積(Vc+Vt−Vo)より更にピストンロッド1の侵入体積分(Ar・Sm)だけ縮小され、Qs=Vc+Vt−Vo−Ar・Smとなる。
【0017】
このため、注入する作動油の容量Voについては以下の制約がある。作動油の注入量Voとピストンロッド1の侵入体積分(Ar・Sm)との和Vo+Ar・Smが、ピストンロッド1が最伸長状態の空容器SV内の容積Ve=Vc+Vtを越えると油圧緩衝器は破裂してしまうので、Vo+Ar・Sm<Vc+Vtが制約条件となる。すなわち、作動油の注入量Voとしては、Vo<Vc+Vt−Ar・Smでなければならない。
【0018】
以上、ピストンロッド1を最伸長状態で組み立てた空容器内に、作動油を注入する方式について説明したが、図2に示す本発明の第2実施形態のように、ピストンロッド1をシリンダ2内に押し下げて、空容器内の容積を調整することもできる。ピストンロッド1の断面積をAr,上部室Aの容積をVa,下部室Bの容積をVb,押し下げ長をStとすると、空容器内の容積Vsは、 Vs=Va+Vb+Vtとなる。ところが、この実施形態のシリンダ内の容積Va+Vbは、上記第1実施形態のシリンダ内の容積Vcをピストンロッド1の押し下げ体積分(Ar・St)だけ縮小したものに等しいから、結局、Vs=Vc+Vt−Ar・Stとなる。
【0019】
空容器内の空気が外側に逃げるのを防止しながら注入した作動油の容量をVoとすると、空容器内のガス室の容積Qsは、Qs=Vc+Vt−Ar・St−Voに圧縮される。作動油を注入する前は空容器内は大気に連通し、空容器内の圧力は大気圧(1bar)と同じであるので、作動油を注入した後の空容器内の圧力は、P=Vs/Qs=(Vc+Vt−Ar・St)/(Vc+Vt−Ar・St−Vo)となる。すなわち第1実施形態と同様に、作動油を注入する前の空容器内の容積Vsと作動油の注入量Voにより、容器内の圧力を調整できることになる。注入する作動油の容量Voについての制約は、第1実施形態と同様であるので、説明を省略する。
【0020】
【発明の効果】
本発明では、シリンダ2内に作動油を入れていない状態で当該シリンダ2内にピストンロッド1を最伸長或いは所定量押し込んだ状態の空容器SVを組立て、次いで注入孔3Cから上記空容器SV内に当該空容器SV内の空気が外部に漏出するのを防止しながら作動油を注入することによって上記空容器SV内の空気を圧縮し、上記空容器SV内の圧力を大気圧よりも高くしたので、従来の製造方法のようなコストの高い窒素ガスを封入する必要が無く、安価で簡便な製造方法による油圧緩衝器の実現が可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る低圧ガス入り油圧緩衝器のモデル図である。
【図2】本発明の第2実施形態に係る低圧ガス入り油圧緩衝器のモデル図である。
【図3】従来技術に係る油圧緩衝器の低圧ガス入り油圧緩衝器のモデル図である。
【符号の説明】
SV (油圧緩衝器の)空容器
F 作動油
N 容器内の空気
1 ピストンロッド
2 シリンダ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-pressure gas-filled hydraulic shock absorber that suppresses vibrations of a vehicle body, such as an automobile suspension system, and more particularly to a manufacturing method for a hydraulic shock absorber.
[0002]
[Prior art]
First, a conventional hydraulic shock absorber will be described with reference to FIG. Generally, the hydraulic shock absorber SA attached to the vehicle body side via the coupling portion 1B and the wheel side via the coupling member 6 is provided at the lower end portion in the cylinder 2 in which the compression side damping valve BV and the suction valve DV are disposed at the lower end portion. A rod guide 3A that slidably accommodates the piston rod 1 in which the expansion side damping valve PV and the check valve CV are assembled in the piston portion 1A, and that guides the piston rod 1 so that the piston rod 1 can be raised and retracted. Cover and store in outer cylinder 3. The rod guide 3A is assembled with an oil seal 4 that is slidably fitted to the piston rod 1 to seal the hydraulic shock absorber.
[0003]
While a predetermined amount of hydraulic oil F is sealed inside the hydraulic shock absorber, in order to stabilize the damping force by suppressing the generation of bubbles in the hydraulic oil during the buffer operation, the low pressure gas N ( For example, inert nitrogen gas) is often enclosed. The upper chamber A and the lower chamber B in the cylinder 2 are both filled with the hydraulic oil F, while the tank chamber C and the low-pressure gas N filled with the hydraulic oil F are interposed between the cylinder 2 and the outer cylinder 3. A sealed gas chamber D is defined.
[0004]
When assembling the hydraulic shock absorber, first, the piston rod 1 in which the expansion side damping valve PV and the check valve CV are assembled at the lower end is installed in the cylinder 2 having the compression side damping valve BV and the suction valve DV disposed at the lower end. The cylinder subassembly accommodated slidably is accommodated in the outer cylinder 3 by being seated on a bottom lid 3B that covers the lower end of the outer cylinder 3. Subsequently, a rod guide 3A that guides the piston rod 1 so that it can freely move is inserted into the upper part of the outer cylinder 3, and the upper part of the outer cylinder 3 is tightened, for example, so that the upper end of the cylinder 2 and the upper part of the outer cylinder 3 are Cover.
[0005]
Next, in the same way as illustrated in the lower part of FIG. 1, the tip of the plug 5 provided with the injection groove 5B is inserted into the injection hole 3C provided in the bottom cover 3B to secure an injection path by the groove 5B. In this state, a predetermined amount of hydraulic oil and an inert gas having a predetermined pressure are sealed between the cylinder 2 and the cylinder 2 and the outer cylinder 3. Thereafter, the cylindrical portion 5A of the plug 5 is completely driven into the injection hole 3C of the bottom lid 3B to seal the inside of the hydraulic shock absorber. Finally, the hydraulic shock absorber is completed by connecting the connecting member 6 attached to the wheel side to the bottom lid 3B by welding or the like.
[0006]
When the piston rod 1 ascends in the cylinder 2 filled with hydraulic oil, the hydraulic oil in the sealed upper chamber A flows into the lower chamber B via the expansion side damping valve PV, and the passage resistance at this time To generate an extensional damping force. The hydraulic oil corresponding to the retraction volume that is insufficient due to the rise of the piston rod 1 is lower than the tank chamber C via the suction valve DV that is assembled in parallel with the compression side damping valve BV disposed at the lower end of the cylinder 2. Inhaled into chamber B.
[0007]
Conversely, when the piston rod 1 descends in the cylinder 2, the hydraulic fluid in the sealed lower chamber B passes through the check valve CV assembled in parallel with the expansion side damping valve PV and enters the upper chamber A. Except for the amount of replenishment, it flows out to the tank chamber C via the pressure side damping valve BV, and a pressure side damping force is generated by the passage resistance at this time.
[0008]
[Problems to be solved by the invention]
The low pressure gas (for example, inert nitrogen gas) is sealed in the hydraulic shock absorber by inserting the tip of the plug 5 provided with the injection groove 5B into the injection hole 3C provided in the bottom cover 3B, and the cylinder 2 In addition, a predetermined amount of hydraulic oil and an inert gas having a predetermined pressure are sealed between the cylinder 2 and the outer cylinder 3, and then the plug 5 is driven into the injection hole 3C to seal the inside of the hydraulic shock absorber. Speaking of inert low-pressure gas, it will be called nitrogen gas, but the cost of the nitrogen gas itself is high, and the production of a low-pressure gas-filled hydraulic shock absorber is equipped with nitrogen gas pressure management and piping, etc. It costs money.
[0009]
To stabilize the damping force to suppress the generation of air bubbles in the hydraulic oil is not necessarily a nitrogen gas and since it is no so higher filling pressure, the hydraulic pressure by the inexpensive and simple production method The realization of the shock absorber was envied. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an inexpensive and simple method for manufacturing a hydraulic shock absorber.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the means of the present invention slidably accommodates a piston rod in a cylinder via a piston portion, and partitions the upper chamber and the lower chamber in the cylinder by the piston portion. In the hydraulic shock absorber, the upper chamber and the lower chamber communicate with each other through an extension side damping valve and a check valve provided in the piston portion, and the hydraulic shock absorber has a hydraulic oil injection hole communicating with the lower chamber . Assembling an empty container in which the piston rod is fully extended or pushed into the cylinder with no hydraulic oil in the cylinder, and then the air in the empty container is exposed to the outside through the injection hole. The air in the empty container is compressed by injecting hydraulic oil while preventing leakage, and the pressure in the empty container is made higher than the atmospheric pressure .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Features of a method of manufacturing a hydraulic shock absorber according to the present invention, the empty containers of the hydraulic shock absorber the injection hole was opened to the atmosphere without putting hydraulic oil, while preventing the air in the empty container from escaping to the outside working The air in the container is compressed by injecting oil, and the pressure in the container is made higher than the atmospheric pressure.
That is, the hydraulic shock absorber according to the present invention, as shown in FIG. 1 or FIG. 2, accommodates the piston rod 1 in the cylinder 2 through the piston portion 1A so as to be slidable. An upper chamber A and a lower chamber B are partitioned inside, and the upper chamber A and the lower chamber B communicate with each other via an extension side damping valve PV and a check valve CV provided in the piston portion 1A. A hydraulic oil injection hole 3 </ b> C communicating with the chamber B is provided.
In the present invention, an empty container SV in which the piston rod 1 is fully extended or pushed into the cylinder 2 in a state where no hydraulic oil is put in the cylinder 2 is assembled, and then the injection hole 3C The air in the empty container SV is compressed by injecting hydraulic oil into the empty container SV while preventing the air in the empty container SV from leaking to the outside, and the pressure in the empty container SV is reduced to atmospheric pressure. It is characterized by having made it higher than.
[0012]
Next, the manufacturing method of the hydraulic shock absorber according to the first embodiment of the present invention will be described based on the embodiment shown in FIG. The same parts as those in the prior art shown in FIG. 3 are denoted by the same reference numerals, and description of parts that are not particularly necessary is omitted. The tip of the plug 5 so that the inside and outside of the empty container communicate with each other through the injection groove 5B to the injection hole 3C provided in the bottom lid 3B of the empty container SV assembled with the piston rod 1 in the fully extended state. Is inserted, and a predetermined amount of hydraulic oil is injected while preventing air in the empty container SV from escaping to the outside using an injection jig (not shown).
[0013]
Assuming that the volume in the cylinder 2 including the injection hole 3C is Vc, and the volume between the cylinder 2 and the outer cylinder 3 is Vt, the volume Ve in the empty container SV with the piston rod 1 in the most extended state is Ve = Vc + Vt. Become. Assuming that the volume of the injected hydraulic oil is Vo while preventing the air in the empty container SV from escaping to the outside, the volume Qe of the gas chamber in the empty container is compressed to Qe = Vc + Vt−Vo.
[0014]
Before the hydraulic oil is injected, the empty container SV communicates with the atmosphere, and the pressure in the empty container SV is the same as the atmospheric pressure (1 bar). Therefore, the pressure in the empty container SV after the hydraulic oil is injected Is P = Ve / Qe = (Vc + Vt) / (Vc + Vt−Vo). If the volume of the gas chamber in the empty container SV before injecting the hydraulic oil becomes 1/2 after injecting the hydraulic oil, the pressure in the container becomes twice the atmospheric pressure (2 bar). / 3 means that it is 3 times the atmospheric pressure (3 bar).
[0015]
That is, instead of enclosing high-cost nitrogen gas as in the conventional manufacturing method, the inside of the container is injected by injecting the working oil having the capacity Vo into the empty container SV having the volume assembled at atmospheric pressure Ve. The pressure of air sealed in the hydraulic shock absorber can be adjusted.
[0016]
Assuming that the cross-sectional area of the piston rod 1 is Ar and the maximum stroke of the hydraulic shock absorber is Sm, when the piston rod 1 contracts from the maximum extension state to the maximum stroke Sm, the volume Qs of the gas chamber in the empty container SV is the volume described above. Further, the intrusion volume integral (Ar · Sm) of the piston rod 1 is further reduced from (Vc + Vt−Vo), so that Qs = Vc + Vt−Vo−Ar · Sm.
[0017]
For this reason, there exists the following restrictions about the capacity | capacitance Vo of the hydraulic fluid to inject | pour. When the sum Vo + Ar · Sm of the injection amount Vo of the hydraulic oil and the intrusion volume (Ar · Sm) of the piston rod 1 exceeds the volume Ve = Vc + Vt in the empty container SV with the piston rod 1 in the most extended state, the hydraulic shock absorber Will burst, so Vo + Ar · Sm <Vc + Vt is the limiting condition. That is, the injection amount Vo of the hydraulic oil must be Vo <Vc + Vt−Ar · Sm.
[0018]
As described above, the method of injecting the hydraulic oil into the empty container assembled with the piston rod 1 in the fully extended state has been described. However, as in the second embodiment of the present invention shown in FIG. The volume in the empty container can be adjusted by pushing down. Assuming that the sectional area of the piston rod 1 is Ar, the volume of the upper chamber A is Va, the volume of the lower chamber B is Vb, and the push-down length is St, the volume Vs in the empty container is Vs = Va + Vb + Vt . However, since the volume Va + Vb in the cylinder of this embodiment is equal to the volume Vc in the cylinder of the first embodiment reduced by the push-down volume (Ar · St) of the piston rod 1, Vs = Vc + Vt -Ar.St.
[0019]
Assuming that the volume of the injected hydraulic oil is Vo while preventing the air in the empty container from escaping to the outside, the volume Qs of the gas chamber in the empty container is compressed to Qs = Vc + Vt−Ar · St−Vo. Before injecting the hydraulic oil, the inside of the empty container communicates with the atmosphere, and the pressure in the empty container is the same as the atmospheric pressure (1 bar), so the pressure in the empty container after injecting the hydraulic oil is P = Vs /Qs=(Vc+Vt-Ar.St)/(Vc+Vt-Ar.St-Vo). That is, as in the first embodiment, the pressure in the container can be adjusted by the volume Vs in the empty container before the hydraulic oil is injected and the injection amount Vo of the hydraulic oil. The restrictions on the volume Vo of the hydraulic oil to be injected are the same as those in the first embodiment, and thus the description thereof is omitted.
[0020]
【The invention's effect】
In the present invention, an empty container SV in which the piston rod 1 is fully extended or pushed into a predetermined amount by assembling the cylinder 2 with no hydraulic oil in the cylinder 2 is assembled, and then the empty container SV is filled from the injection hole 3C. The air in the empty container SV is compressed by injecting hydraulic oil while preventing the air in the empty container SV from leaking to the outside, and the pressure in the empty container SV is made higher than the atmospheric pressure. Therefore, it is not necessary to enclose high-cost nitrogen gas as in the conventional manufacturing method, and it is possible to realize a hydraulic shock absorber by an inexpensive and simple manufacturing method.
[Brief description of the drawings]
FIG. 1 is a model diagram of a low-pressure gas-filled hydraulic shock absorber according to a first embodiment of the present invention.
FIG. 2 is a model diagram of a low-pressure gas-filled hydraulic shock absorber according to a second embodiment of the present invention.
FIG. 3 is a model diagram of a hydraulic shock absorber with a low-pressure gas in a hydraulic shock absorber according to the prior art.
[Explanation of symbols]
SV (Hydraulic shock absorber) Empty container F Hydraulic oil N Air in container 1 Piston rod 2 Cylinder

Claims (1)

シリンダ内にピストン部を介してピストンロッドを摺動自在に収容し、上記ピストン部で上記シリンダ内に上部室と下部室とを区画し、上記上部室と上記下部室を上記ピストン部に設けた伸側減衰弁と逆止弁とを介して連通し、上記下部室に連通する作動油の注入孔を備えている油圧緩衝器において、シリンダ内に作動油を入れていない状態で当該シリンダ内に上記ピストンロッドを最伸長或いは所定量押し込んだ状態の空容器を組立て、次いで上記注入孔から上記空容器内に当該空容器内の空気が外部に漏出するのを防止しながら作動油を注入することによって上記空容器内の空気を圧縮し、上記空容器内の圧力を大気圧よりも高くしたことを特徴とする油圧緩衝器の製造方法。 A piston rod is slidably accommodated in the cylinder via a piston portion, and the upper chamber and the lower chamber are partitioned in the cylinder by the piston portion, and the upper chamber and the lower chamber are provided in the piston portion. In the hydraulic shock absorber having a hydraulic oil injection hole that communicates with the extension side damping valve and the check valve and communicates with the lower chamber, the hydraulic oil is not placed in the cylinder. assembling an empty container condition pushed maximum extension or a predetermined amount of the piston rod, and then injecting a hydraulic fluid while preventing the air in the empty container to the empty container from the injection hole from leaking to the outside The method for producing a hydraulic shock absorber according to claim 1, wherein the air in the empty container is compressed to make the pressure in the empty container higher than atmospheric pressure.
JP2000271514A 2000-09-04 2000-09-04 Manufacturing method of hydraulic shock absorber Expired - Fee Related JP4644340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000271514A JP4644340B2 (en) 2000-09-04 2000-09-04 Manufacturing method of hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000271514A JP4644340B2 (en) 2000-09-04 2000-09-04 Manufacturing method of hydraulic shock absorber

Publications (2)

Publication Number Publication Date
JP2002081481A JP2002081481A (en) 2002-03-22
JP4644340B2 true JP4644340B2 (en) 2011-03-02

Family

ID=18757795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000271514A Expired - Fee Related JP4644340B2 (en) 2000-09-04 2000-09-04 Manufacturing method of hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JP4644340B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815403B2 (en) * 2007-07-31 2011-11-16 カヤバ工業株式会社 Shock absorber and working fluid injection jig
JP5077549B2 (en) * 2007-10-31 2012-11-21 日立オートモティブシステムズ株式会社 Manufacturing method of hydraulic shock absorber
JP2011011682A (en) * 2009-07-03 2011-01-20 Kyb Co Ltd Suspension device
CN106763416B (en) * 2017-03-28 2019-01-29 山东交通学院 A kind of rigidity adjustable automobile suspension system
CN108253074A (en) * 2018-03-05 2018-07-06 河南天减振器科技有限公司 The charger of bitubular inflatable hydraulic buffer
JP7086281B2 (en) * 2019-04-24 2022-06-17 日立Astemo株式会社 Manufacturing method of cylinder device
WO2022249623A1 (en) * 2021-05-26 2022-12-01 日立Astemo株式会社 Shock absorber and method for manufacturing shock absorber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284031U (en) * 1988-12-16 1990-06-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284031U (en) * 1988-12-16 1990-06-29

Also Published As

Publication number Publication date
JP2002081481A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
KR101503532B1 (en) Method for assembling hydraulic damper and hydraulic damper
JP3981561B2 (en) Self-pumped hydropneumatic shock absorbing strut with internal level adjuster
US8898899B2 (en) Apparatus and method for encapsulating fluid in a shock absorber and a shock absorber manufactured thereby
JP4644340B2 (en) Manufacturing method of hydraulic shock absorber
KR100880820B1 (en) Apparatus and method for filling and sealing fluid in shock absorber
CN110998129B (en) Pressurized telescopic front fork leg, front fork and vehicle
JP5413752B2 (en) Manufacturing method of hydraulic shock absorber
JPS5927461B2 (en) cylinder device
US3512243A (en) Method and device for sealing gas under high pressure into a gas-sealed type shock absorber
WO2010125856A1 (en) Multi-cylinder shock absorber
JP3649352B2 (en) Vehicle height adjustment device
KR100726587B1 (en) Vehicular height control damper device
JPS609479Y2 (en) Shock absorber
CN111348597B (en) Gas-liquid double-medium buffer oil cylinder and buffer method thereof
JP3943259B2 (en) Two-stage telescopic hydraulic shock absorber
KR100716427B1 (en) Vehicular height adjusting shock absorber
CN107228152A (en) Shock absorber packing gland, shock absorber and its inflation method
JPH017607Y2 (en)
JPS6228336B2 (en)
JPS5819390Y2 (en) Dual cylinder type gas filled shock absorber
JPH0637215Y2 (en) Front fork
JPH0138363Y2 (en)
KR100736548B1 (en) Vehicular height adjusting shock absorber
KR100834505B1 (en) Vehicle heigt adjustable type shock absorber
KR950000016B1 (en) Gas filling of hydraulic absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees