JP4644266B2 - Manufacturing method of electronic parts - Google Patents

Manufacturing method of electronic parts Download PDF

Info

Publication number
JP4644266B2
JP4644266B2 JP2008074937A JP2008074937A JP4644266B2 JP 4644266 B2 JP4644266 B2 JP 4644266B2 JP 2008074937 A JP2008074937 A JP 2008074937A JP 2008074937 A JP2008074937 A JP 2008074937A JP 4644266 B2 JP4644266 B2 JP 4644266B2
Authority
JP
Japan
Prior art keywords
roller
stencil
workpiece
plastic material
squeegee
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008074937A
Other languages
Japanese (ja)
Other versions
JP2008205489A (en
Inventor
健二 神原
Original Assignee
東海商事株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海商事株式会社 filed Critical 東海商事株式会社
Priority to JP2008074937A priority Critical patent/JP4644266B2/en
Publication of JP2008205489A publication Critical patent/JP2008205489A/en
Application granted granted Critical
Publication of JP4644266B2 publication Critical patent/JP4644266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子部品のボイドレスで精密形状を有する樹脂封止、半田バンプ形成、基板の穴埋め、又はディスペンス等を行う電子部品の製造方法に関するものである。 The present invention relates to a method for manufacturing an electronic component that performs resin sealing having a precise shape with a voidless of the electronic component, formation of a solder bump, filling a hole in a substrate, or dispensing.

従来の技術は下記の文献に開示されている。例えば、従来のパッケージング技術としてワークピース上に形成した集積回路を封止(パッケージ化)することが周知である。その主流は、トランスファモールド法であるが、液状の合成樹脂から成る可塑性材料を用いる方法として、ディスペンサー法や印刷法が周知である。印刷法には、大気印刷して脱泡する方法や、真空差圧印刷法がある。セラミック基板では、主に真空差圧印刷法が採用されている。可塑性材料基板についても、これが一部採用され、次第に拡大しつつあるが、色々な課題があり未だ主流にはなっていない。また、ウェハレベルのCSP製造工程、又はその封止にも適用されている。今後は、電子部品の複合化、3次元化、又は基板の内蔵化が進むことから、ボイドレスで精密形状を有する封止方法が求められている。   Conventional techniques are disclosed in the following documents. For example, it is well known to seal (package) an integrated circuit formed on a workpiece as a conventional packaging technique. The mainstream is the transfer molding method, but as a method using a plastic material made of a liquid synthetic resin, a dispenser method and a printing method are well known. The printing method includes a method of defoaming by air printing and a vacuum differential pressure printing method. For ceramic substrates, the vacuum differential pressure printing method is mainly employed. A part of the plastic material substrate has been adopted and is gradually expanding, but it has not yet become mainstream due to various problems. It is also applied to a wafer level CSP manufacturing process or its sealing. In the future, as electronic components are becoming more and more complex, three-dimensional, or embedded in a substrate, a sealing method having a precise shape with a voiceless is required.

半田バンプ形成にも従来の転写法に対して、印刷法が最近注目されるようになつた。高粘度半田ペーストを狭ピッチ化に対応してアスペクト比の高い孔版にいかに定量にボイドなく充填するかが重要な技術で、色々な手法が提案されている。大気印刷機を用いて印刷機のヘッドは、開放型スキージ、密閉型スキージ、圧入型スキージ、密閉型スキージ、ローラ圧入式スキージで印刷や充填される方式が紹介されている。また、ウェハのバンプ形成で感光性ドライフィルムをラミネートしてビアを形成し、印刷法で半田ペーストを埋め、リフローしてバンプを形成し、フィルムを剥離する方法もある。   The printing method has recently attracted attention as compared to the conventional transfer method for forming solder bumps. Various techniques have been proposed as an important technique in how to fill a high-viscosity solder paste into a stencil with a high aspect ratio without voids in response to a narrow pitch. A method of printing and filling a head of a printing press using an atmospheric printing press with an open squeegee, a sealed squeegee, a press-fitting squeegee, a sealed squeegee, or a roller press-fitting squeegee is introduced. There is also a method in which a photosensitive dry film is laminated by forming a bump on the wafer, vias are formed, solder paste is filled by a printing method, reflow is performed to form bumps, and the film is peeled off.

プリント基板やウェハ基板のビア、及びスルーホールの穴埋めは、導電ペースト及び非導電ペーストを用い、スキージを用いた大気印刷又は真空差圧印刷法で充填する方法がある。一括積層法でより簡単で低コストを求めたプロセスの開発が進行している。導電ペーストの印刷法は電気特性と信頼性の向上を目指しペーストの開発が進められている。それをボイドレスで、簡単に各種のビアに充填する真空印刷方法が実用段階に入りつつあるが、装置がおおがかりになり、生産性も低い等の欠点があり改良が求められている。また、スルーホールの穴埋めはマスクと治具を使用して、位置合わせしてワークに樹脂を充填し、更にワークの上面、下面にプラグを形成し、硬化させてワーク両面を研磨して平坦化している。
特許第3198273号 特許第3084440号 特願第2001−33147号 特許第3113974号 特許第2873501号 特開平5−90271号公報 特開2001−232758号公報 Electronic Journal 2003年4月号掲載
Filling vias and through-holes on a printed circuit board or a wafer substrate includes a method of filling by air printing or vacuum differential pressure printing using a squeegee using a conductive paste and a non-conductive paste. Development of a process requiring simpler and lower cost by the batch lamination method is in progress. As for the printing method of the conductive paste, the development of the paste is being promoted with the aim of improving the electrical characteristics and reliability. A vacuum printing method in which various vias are simply filled with a voidless dress is entering the practical stage, but there is a demand for improvement due to disadvantages such as an overwhelming apparatus and low productivity. Also, for filling the through hole, use a mask and jig to align and fill the workpiece with resin, and then form plugs on the upper and lower surfaces of the workpiece, and then cure and polish both sides of the workpiece to flatten it. ing.
Patent No.3198273 Japanese Patent No. 3084440 Japanese Patent Application No. 2001-33147 Japanese Patent No. 3113974 Japanese Patent No. 2873501 JP-A-5-90271 JP 2001-232758 A Electronic Journal April 2003 issue

孔版を使用して、高粘度樹脂を、隙間を持った形状にスキージで平坦に印刷する原理は成り立たない。図15(a)に示すように、スキージ60とワークピース2に付着した樹脂mは、孔版1の開口部103では、上下に間隔があり、スキージ60の移動に対して速度勾配が発生し、後方の樹脂mは引き伸ばされて、規定厚みから数十μ薄く印刷される。これは粘度や隙間に影響されない樹脂供給方法である。   The principle of using a stencil to print a high-viscosity resin flat with a squeegee into a shape with a gap does not hold. As shown in FIG. 15 (a), the resin m attached to the squeegee 60 and the workpiece 2 has a vertical gap at the opening 103 of the stencil 1, and a velocity gradient is generated with respect to the movement of the squeegee 60. The rear resin m is stretched and printed several tens of microns thinner than the specified thickness. This is a resin supply method that is not affected by viscosity or gaps.

孔版1の開口部103の終端では、図15(b)に示すように、スキージ60で押し込められた樹脂mが開口部103の端部で、堰止めされ更にスキージ60が通過時に加圧され開放され、規定厚みより数十μ厚く印刷される。これはスキージの先端部の充填圧力が、マスクやワークピース2の形状に関わらず常に一定を保つ方法である。   At the end of the opening 103 of the stencil 1, as shown in FIG. 15 (b), the resin m pushed in by the squeegee 60 is dammed at the end of the opening 103 and is further pressurized and released when passing. And printed several tens of microns thicker than the specified thickness. In this method, the filling pressure at the tip of the squeegee is always kept constant regardless of the shape of the mask or the workpiece 2.

図15に示す孔版1の開口部103や図示されていないが開口部103内にあるチィップ間の溝部の印刷開始部は、スキージ60の充填圧力が追従できず、未充填になるか又は薄くしか印刷できずボイド発生原因となる。上述の3つの要因で液状樹脂は、精密な形状に印刷ができず、やむなくマスクの形状やスキージ60の無駄な動作、更には信頼性を犠牲にして樹脂を低粘度化することで対処してきたが本質的解決がなされていない。これが印刷部の形状に影響されない強力な充填力のある樹脂供給方法である。   The opening 103 of the stencil 1 shown in FIG. 15 and the printing start part of the groove between the chips in the opening 103 (not shown) cannot follow the filling pressure of the squeegee 60 and become unfilled or thin. Cannot print, causing voids. Due to the above three factors, the liquid resin cannot be printed in a precise shape, and has been dealt with by reducing the viscosity of the resin at the expense of the mask shape, wasteful operation of the squeegee 60, and reliability. However, the essential solution has not been made. This is a resin supply method having a strong filling power that is not affected by the shape of the printing part.

積層型等のBGAやCSPの封止で、高密度にワイヤーボンドされ、ネットを張った状態で、高いパーセントでフィラ等が入った高粘度樹脂は、スキージの機能ではとても充填できない。そこで真空下で印刷し真空差圧をかけると充填効果はある程度期待できるが、残留したボイドを排除するメカニズムは無く、ボイドは微小化し分散して残る。基本的には差圧をかける前に樹脂が空洞を充填しエアを押し出す事が必要条件である。ごく薄のパッケージはワイヤが表面近くにあり空洞部と短絡し差圧が発生されずボイドの発生の危険性が高い。又3次元に積層された実装は、高密度にワイヤーボンドされ、更にフリップチィップもされていて、微小隙間にも充填が要求されるので、強力充填機能を有し且つ精密印刷できる方法が不可欠である。更に、電子部品の基板内蔵化では、液状樹脂のボイドレス充填と均一な厚みのコーティングが必要となる。これは粘性の影響を受けない強力な充填方法及びボイドレス充填方法である。   A high-viscosity resin with a high percentage of filler, etc. in a state of high-strength wirebonding and netting with the sealing of a laminated type BGA or CSP cannot be filled with the function of the squeegee. Therefore, if the printing is performed under vacuum and a vacuum differential pressure is applied, a filling effect can be expected to some extent, but there is no mechanism for eliminating the remaining voids, and the voids remain finely dispersed. Basically, it is a necessary condition that the resin fills the cavity and pushes out the air before applying the differential pressure. A very thin package has a high risk of voids due to the fact that the wire is close to the surface and short-circuited with the cavity and no differential pressure is generated. In addition, since the three-dimensionally stacked mounting is wire-bonded with high density and flip-chiped, and filling is required even in minute gaps, a method that has a strong filling function and can be printed precisely is indispensable. is there. Furthermore, in order to incorporate an electronic component into a substrate, it is necessary to fill a liquid resin with a voidless coating and to coat with a uniform thickness. This is a powerful filling method and voidless filling method that are not affected by viscosity.

ウェハ基板や積層基板のビアに各種の樹脂を充填する場合、強力な印圧を必要とし、スキージの食い込みや樹脂の粘性で、ビアから樹脂がえぐり出され、更にキュアで収縮する。これをカバーするため各種のマスクを用いて、精密位置合わせして充填し補間するが凸状の硬いプラグが形成され、これを研磨でとるのが大変な困難を伴う。これは孔版、精密位置合わせ装置、及びクリーニング装置が一切無くワークピース2に直接充填し、ボイドレスで、凹部や樹脂の収縮をカバーでき、研磨加工を最小限にする穴埋め方法である。   When various types of resin are filled into the vias of the wafer substrate or the laminated substrate, a strong printing pressure is required, and the resin is squeezed out from the via due to the squeegee biting or the viscosity of the resin, and further contracted by curing. In order to cover this, various masks are used to precisely align, fill and interpolate, but a convex hard plug is formed, which is very difficult to polish. This is a hole filling method that directly fills the workpiece 2 without any stencil, precision alignment device, and cleaning device, and can cover the recesses and shrinkage of the resin with a void dress, thereby minimizing polishing.

詳細に記述するとワークの上面にマスクを位置決めし、下部にはプラグを形成する治具を位置決めして印刷しワークの両面にプラグ(凸状印刷)を形成し、硬化して研磨する。この場合異径穴は選別して印刷し硬化研磨を各穴径ごとに行う。更に、微細化と大型基板化で、マスクのパターンとワークのパターンが、マスクの伸びやワークの研磨伸びで位置が合わず2回に分けて印刷する必要もある。プラグを形成すると研磨が大変でプラグと銅メッキを均一に研磨し厚みや伸びを管理するのが大変な装置を必用とする。ボイドレス化を要求されると真空下での印刷となりマスクがあると位置合わせやクリーニング等を備えた装置となりプラントのような大型で高価となり更に生産性の低い装置となる。ボイドレスで、プラグを治具やマスクを使用しないで形成し、異径穴を同時に充填でき更に加工を最小限にする穴埋め方法が求められている。   More specifically, a mask is positioned on the upper surface of the workpiece, a jig for forming a plug is positioned and printed on the lower portion, and plugs (convex printing) are formed on both surfaces of the workpiece, and then cured and polished. In this case, holes having different diameters are selected and printed, and then hardened and polished for each hole diameter. Further, with the miniaturization and the large-sized substrate, the mask pattern and the work pattern need to be printed separately in two times because the positions of the mask and the work are not aligned due to the elongation of polishing. When a plug is formed, it is difficult to polish, and it is necessary to use a device that uniformly grinds the plug and copper plating and manages the thickness and elongation. If boyidization is required, printing will be performed under vacuum, and if there is a mask, the apparatus will be equipped with alignment, cleaning, etc., which will be large and expensive like a plant, and will be a low productivity apparatus. There is a need for a hole filling method in which a plug is formed without using a jig or a mask with a voidless, so that holes of different diameters can be filled at the same time and processing is minimized.

半田のバンプ形成で、特2001−232758号、及び特開平10−34878号公報による半田ペースト印刷方法が提案されている。これらの方法の最大の欠点は、ローラの回転とマスクで樹脂を充填し、スクレーパー又はブレードで、マスク上に残留する樹脂をかきとる方式であるから、極めて充填力が弱い。本方法では、ローラ30の半分範囲が充填に寄与し、他半分は樹脂充填の妨げとなっている。これを補う為に特2001−232758号はエア加圧しているが距離も長く、樹脂量でも変化し高粘度樹脂は均等に反応しない。全体としてはかなり大掛かりな装置となるので真空装置には採用し難い。 In the solder bump forming, Japanese Open No. 2001-232758, and the solder paste printing method according to JP-A-10-34878 JP has been proposed. The biggest drawback of these methods is that the resin is filled with the rotation of the roller and the mask, and the resin remaining on the mask is scraped off with a scraper or blade, so that the filling power is extremely weak. In this method, the half range of the roller 30 contributes to filling, and the other half hinders resin filling. Japanese Open No. 2001-232758 in order to compensate for this is that pressurized air pressurized distance also long, high viscosity resins vary in amount of resin is not uniformly react. As a whole, the apparatus is quite large, so it is difficult to adopt it for a vacuum apparatus.

また、これらの方式は、図16(a)及び(b)を参照しながら述べると、孔版(マスク)1とローラ30が近接し、ローラ30の前後に配置したスキージ601によって樹脂mを供給し、また除去することで充填している。孔版1又はワーク2の広い空間に充填する場合は、樹脂mはローラ30の周りを矢印30x又は矢印30yで表したように循環するだけで、充填には殆ど寄与しない極めて大きな欠陥を有する。 In addition, these systems are described with reference to FIGS. 16A and 16B, and the stencil (mask) 1 and the roller 30 are close to each other, and the resin m is supplied by the squeegee 601 disposed before and after the roller 30. Also, it is filled by removing . When filling the wide space of the stencil 1 or the work 2, the resin m only circulates around the roller 30 as indicated by the arrow 30x or the arrow 30y, and has a very large defect that hardly contributes to the filling.

2001−232765号は、ローラの後部が樹脂mを引き戻す力と樹脂mの全体の加圧の差が内部圧となり圧が高くなるとスクレーパーでは樹脂mを止められず押し出されて厚く印刷される。充填する空間が小さくても大部分は充填に寄与するが途中から樹脂mを引き戻す力も働くので強力な充填が達成されず、印刷形状をコントロールすることができない。 Japanese Open No. 2001-232765, the rear portion of the roller is printed thicker extruded without being stopped resin m in total the difference in pressurization pressure becomes the internal pressure rises scraper forces and the resin m retract the resin m . Even if the space for filling is small, the majority contributes to filling, but the force to pull back the resin m from the middle also works, so that strong filling is not achieved and the printing shape cannot be controlled.

平10−34878号公報も小空間にはローラ半分の充填力寄与の効果はあるが弱くローラ30の後部で引き戻され後部ブレードと後部のローラ30との間の圧力は不安定で印刷形状をコントロールする事はできない。また、上記のブレードやスクレーパー形状を有する印刷法は、レジストで形成された基板にダイレクトに印刷するとレジストが破壊されてはがれる欠陥を有する。微細化が進むバンプ形成で孔版による方式は限界が来ていて、殆どはレジストでパターン形成された方式に変わりつつある。多様な形状で空間を要するワークにダイレクトに、強力な充填力を持って、平坦にも凸状にも精密に印刷できる基本技術要素が求められている。 Unstable printing shape pressure between the rear of the blade and a rear roller 30 is pulled back at the rear of the Japanese open flat 10-34878 discloses also in small spaces roller half of filling power contribution effect is but weakly roller 30 Cannot be controlled. Further, the printing method having the blade or scraper shape described above has a defect that the resist is destroyed and peeled off when directly printing on the substrate formed of the resist. The stencil method has reached its limit due to the formation of finer bumps, and the method is almost changed to a method in which a pattern is formed with a resist. There is a need for basic technical elements that can directly print flat and convex shapes directly on workpieces that require space in a variety of shapes, with strong filling power.

特開2001−232758号は、ローラの周囲が強固なフレームで包まれ、樹脂換えが極めて困難な事である。当装置を分解して洗浄する必要がある。半田の種類だけでも最近は非常に種類が多くなってきた。また、当装置は樹脂封止にも、各種の穴埋めも行う必要があり樹脂換えが出来るだけ少ない溶剤で簡単に出来るかが実用化のカギを握っている。樹脂に接触する部分はロール1本を残しスキージが簡単に外れ容易に洗浄できる構造でなければならない。   Japanese Patent Application Laid-Open No. 2001-232758 is that it is extremely difficult to change resin because the periphery of the roller is wrapped in a strong frame. The device must be disassembled and cleaned. Recently, there are many types of solder alone. In addition, it is necessary to perform various hole fillings for resin sealing, and the key to practical use is whether the resin can be easily changed with as little solvent as possible. The part that comes into contact with the resin must have a structure in which one squeegee can be easily removed and cleaned easily, leaving only one roll.

更に当方式は、ローラの回りが完全に密閉されているので、マスクとスクレーパーの境界でもエアを噛みこむ。また、特開平10−34878号公報もレジスト等の各種の方法でビアを形成した基板に、半田ペーストを充填するとビア中のエアが樹脂中に取り込まれ、ローラの回りを樹脂が回転を継続し、走行距離に比例して蓄積され多量のボイドを含んだ半田ペーストが供給されることになる。充填しても半田量が少なくなり精密バンプは製造できないし、内部にもボイドが包含される。また、最近の半田はボールが微小化され非常に酸化されやすく後行程での半田の溶解にも大きな問題を生じる。   Furthermore, in this method, since the periphery of the roller is completely sealed, air is also taken in at the boundary between the mask and the scraper. Japanese Patent Laid-Open No. 10-34878 also describes that when a solder paste is filled in a substrate on which vias are formed by various methods such as resist, air in the vias is taken into the resin, and the resin continues to rotate around the roller. The solder paste that is accumulated in proportion to the travel distance and contains a large amount of voids is supplied. Even if it is filled, the amount of solder is reduced and a precision bump cannot be manufactured, and voids are included inside. Also, recent solders are very susceptible to oxidation due to the miniaturization of the balls, which causes a major problem in the melting of the solder in the subsequent process.

また、上記の真空差圧印刷方法では、可塑性材料mをワークピース2に押込充填する印刷工程において、可塑性材料がワークピース2と孔版1に強く粘着するため、ワークピース2から孔版1を離反する工程で、この可塑性材料を切り離すのが困難である。このように粘着した可塑性材料mは、孔版1に粘着したまま同孔版1から垂れ下がったり、また封止部(パッケージ)の形が崩れるという問題が起こる。   Further, in the above vacuum differential pressure printing method, since the plastic material strongly adheres to the workpiece 2 and the stencil plate 1 in the printing step of pressing and filling the plastic material m into the workpiece 2, the stencil plate 1 is separated from the workpiece 2. It is difficult to separate this plastic material in the process. The thus-adhered plastic material m hangs down from the stencil plate 1 while adhering to the stencil plate 1, and the shape of the sealing portion (package) is lost.

詳しくは、図17(a)に示すように、樹脂等の高粘度な可塑性材料mを用いて孔版印刷法を実施する場合に、孔版1とワークピース(回路基板)2とに可塑性材料mが粘着し、孔版1からワークピース2を切り離す際に、封止部を形成する可塑性材料mから成る封止部の周囲が引っ張られることになる。これにより、可塑性材料mから成る封止部の端部が厚くなったり、その近辺が薄くなったりして、厚みムラが発生する。更には、孔版1から垂れ下がった可塑性材料mは切断の反動で孔版1の裏面に付着したり、或いはワークピース2まで落下したりするので、当該印刷法を実施する毎に、孔版1又はワークピース2のクリーニングが不可欠である。また、当該印刷に供する可塑性材料mの分量が変動する要因ともなる。   Specifically, as shown in FIG. 17A, when the stencil printing method is performed using a high-viscosity plastic material m such as a resin, the plastic material m is applied to the stencil 1 and the workpiece (circuit board) 2. When adhering and separating the workpiece 2 from the stencil 1, the periphery of the sealing portion made of the plastic material m forming the sealing portion is pulled. Thereby, the edge part of the sealing part which consists of the plastic material m becomes thick, or the vicinity becomes thin, and thickness nonuniformity generate | occur | produces. Further, since the plastic material m hanging from the stencil 1 adheres to the back surface of the stencil 1 or drops to the workpiece 2 due to the reaction of cutting, each time the printing method is performed, the stencil 1 or the workpiece 2 cleaning is essential. In addition, the amount of the plastic material m to be used for printing also becomes a factor that varies.

また、同図(b)に示すように、上記の厚みムラを有する封止部を平坦化させるために、これを大気中に一定時間放置することが試みられているが、可塑性材料mが硬化する途中で低粘度化すると、これが流れ出し封止部の形状が崩れるという問題が起こる。この対策として、可塑性材料mが流れるのをキャビティダウン方式で軽減し、或いは、予めディスペンサー等で可塑性材料mの流れを規制するダム状の堰を作ることが試みられているが、製造工程が煩雑になるという問題がある。   In addition, as shown in FIG. 4B, in order to flatten the sealing portion having the above thickness unevenness, an attempt is made to leave it in the atmosphere for a certain period of time, but the plastic material m is cured. If the viscosity is lowered in the middle of the process, this causes a problem that it flows out and the shape of the sealing part is broken. As countermeasures, attempts have been made to reduce the flow of the plastic material m by a cavity down method, or to make a dam-shaped weir that regulates the flow of the plastic material m in advance with a dispenser or the like, but the manufacturing process is complicated. There is a problem of becoming.

半田のバンプ形成で、半田ペーストの粘度が極めて高く、色々な充填方法が提案されている。しかし狭ピッチ化ではアスペクト比が大きくなり、ワークピース2に充填した半田ペーストの粘着力と側壁の面積による粘着力の差が少なくなり、非常に転写が不安定で孔版から樹脂が抜ける場合と、一部残して抜ける場合と、更には抜けない場合とがあり、孔版の穴の形状、面粗度の改善及び離型材のコーティングで粘着を低減する対策で補われてきたが、孔版に半田ペーストが残らないことが要求されるようになった。これが孔版の穴に充填された半田ペーストのディスペンス法である。   In solder bump formation, the viscosity of the solder paste is extremely high, and various filling methods have been proposed. However, when the pitch is narrowed, the aspect ratio becomes large, the difference between the adhesive strength of the solder paste filled in the workpiece 2 and the adhesive strength due to the area of the side wall is reduced, the transfer is very unstable, and the resin comes out of the stencil, There are cases where some parts are left out, and there are cases where they do not come out, and it has been compensated by measures to reduce adhesion by improving the shape and surface roughness of the stencil and coating the release material. Is now required not to remain. This is the dispensing method of the solder paste filled in the stencil holes.

微細化に対応する為、ウェハ基板や樹脂基板に、レジストでマスクを作り、大気印刷でビアに半田を充填し、リフローして、レジストを剥離する方法が実施されているが、ブラインドのビアに大気印刷すると内部に空気が残留し充填量が不足する。更に印刷中の半田にも走行距離に比例した空気が蓄積され半田の量が不足する。更にスキージを使用するので粘性でえぐられ凹状に印刷され半田量が不足し、これらが原因でバンプ精度が低下する問題がある。又バンプの内部にボイド発生の原因にもなる。ボイドレスの半田樹脂で定量充填する方法が望まれている。   In order to cope with the miniaturization, a method of making a mask with a resist on a wafer substrate or a resin substrate, filling the vias with solder by air printing, reflowing, and peeling the resist is carried out. When air printing is performed, air remains inside and the filling amount is insufficient. Furthermore, air proportional to the travel distance is accumulated in the solder during printing, and the amount of solder is insufficient. In addition, since a squeegee is used, it is viscous and printed in a concave shape, and the amount of solder is insufficient. It also causes voids inside the bumps. A method of quantitative filling with a solderless solder resin is desired.

本発明は、以上の諸問題に鑑みて成されたものであり、精密な電子部品の製造に適した電子部品の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing an electronic component suitable for manufacturing a precise electronic component.

本発明は、一面を上向きにして水平に位置決めされるワークピースに、可塑性材料を押込充填する電子部品の印刷装置に係るものであって、前記ワークピースの近傍に軸方向の端部が支持され周面を前記ワークピースの一面に近接するローラと、該ローラを前記ワークピースの一面に沿って移動させる移動手段と、該移動手段が前記ローラを移動する移動方向に対して前転する方向に前記ローラを回転させる回転手段と、前記ローラに近接又は接触して、前記ワークピースの一面に押し付けられるスキージとを備えることを特徴とする。   The present invention relates to an electronic component printing apparatus in which a plastic material is pressed and filled into a workpiece that is horizontally positioned with one surface facing upward, and an axial end portion is supported in the vicinity of the workpiece. A roller having a peripheral surface close to one surface of the workpiece, a moving unit that moves the roller along one surface of the workpiece, and a direction in which the moving unit rolls forward with respect to a moving direction in which the roller moves. Rotating means for rotating the roller, and a squeegee that is pressed against one surface of the workpiece in proximity to or in contact with the roller.

また、本発明は、一面を上向きにして水平に位置決めされるワークピースに、可塑性材料を押込充填する電子部品の印刷装置に係るものであって、前記ワークピースの近傍に軸方向の端部が支持され周面を前記ワークピースの一面に近接するローラと、該ローラを前記ワークピースの一面に沿って移動させる移動手段と、該移動手段が前記ローラを移動する移動方向に対して前転する方向に前記ローラを回転させる回転手段と、前記ローラに近接又は接触して前記ローラの周面に沿って旋回可能に支持されるスキージと、前記回転手段が前記ローラを回転させるトルクの反力により前記スキージを前記ワークピースの一面に押し付ける印圧発生手段とを備えることを特徴とする。前記ワークピースの概念には、少なくともワークピース、及びその一面に形成される集積回路等の表面実装部とが含まれる。   Further, the present invention relates to a printing apparatus for electronic parts in which a plastic material is pressed and filled into a workpiece positioned horizontally with one surface facing upward, and an axial end portion is provided in the vicinity of the workpiece. A roller that is supported and has a peripheral surface close to one surface of the workpiece, a moving means that moves the roller along one surface of the workpiece, and a forward rotation with respect to a moving direction in which the moving means moves the roller A rotation means for rotating the roller in a direction, a squeegee supported so as to be able to turn along the peripheral surface of the roller in proximity to or in contact with the roller, and a reaction force of torque that causes the rotation means to rotate the roller. Printing pressure generating means for pressing the squeegee against one surface of the workpiece. The concept of the workpiece includes at least a workpiece and a surface mounting portion such as an integrated circuit formed on one surface thereof.

更に、前記回転手段は、前記ローラに内装され相対的に回転可能なロータ及びステータを有する回転機と、前記ローラの軸方向に延び前記ローラの端部を貫いて先端を前記ローラの外部へ突出する支軸と、該支軸に前記回転機のロータを接続する減速機と、前記支軸の先端付近から前記ローラの径方向へ延出して前記スキージを支持するリンク部材とを備え、前記ロータが回転駆動する反力を前記スキージが受けると共に、前記ロータの回転を前記減速機で減速しつつ前記支軸へ伝達することを特徴とする。   Furthermore, the rotating means includes a rotating machine having a rotor and a stator that are relatively rotatable and are mounted on the roller, and extends in the axial direction of the roller, penetrates the end of the roller, and projects the tip to the outside of the roller. A rotating shaft, a speed reducer that connects the rotor of the rotating machine to the supporting shaft, and a link member that extends in the radial direction of the roller from the vicinity of the tip of the supporting shaft to support the squeegee, and the rotor The squeegee receives a reaction force for rotationally driving the rotor, and transmits the rotation of the rotor to the support shaft while decelerating with the speed reducer.

更に、前記ローラが、前記回転機を収納するインナケーシングと、該インナケーシングの周りに配置され且つゴムライニングされた筒状アウタケーシングとを備え、前記インナケーシングと前記筒状アウタケーシングとの間に、空気を誘引するための空隙を設けたことを特徴とする。   Further, the roller includes an inner casing that houses the rotating machine, and a cylindrical outer casing that is disposed around the inner casing and is rubber-lined, and the roller is disposed between the inner casing and the cylindrical outer casing. In addition, a gap for attracting air is provided.

更に、前記支軸が、一端を真空引きされ他端を前記ローラ内に連通した中空軸から成り、前記ローラ内の空気を前記支軸を介して真空引きすることにより、前記ローラを強制冷却することを特徴とする。   Further, the support shaft comprises a hollow shaft having one end evacuated and the other end communicated with the roller, and the roller is forcibly cooled by evacuating the air in the roller through the support shaft. It is characterized by that.

更に、前記印圧発生手段は、前記ローラの回転を制動するブレーキ装置を備え、前記回転機が前記ローラを前記ブレーキ装置の制動に抗して回転させるトルクの反力にて、前記リンク部材を、前記ローラの回転する方向と反対方向へ旋回させることにより、前記スキージを前記ワークピースの一面に押し付けることを特徴とする。   Further, the printing pressure generating means includes a brake device that brakes rotation of the roller, and the rotating member rotates the link member with a reaction force of torque that rotates the roller against braking of the brake device. The squeegee is pressed against one surface of the workpiece by turning in a direction opposite to the rotating direction of the roller.

更に、前記移動手段は、前記ローラの端部に結合したローラ径以下の直径を有するピニオンと、前記ワークピースの側方に敷設され前記移動方向へ延びるラックと、前記ローラの内部で回転可能なロータを有する回転機とを備え、前記ラックを前記ピニオンに噛み合わせ、前記回転機のロータの回転に従わせて前記ローラと共に前記ピニオンを回転することにより、前記ローラを前記移動方向へ移動させることを特徴とする。   Further, the moving means includes a pinion having a diameter equal to or less than a roller diameter coupled to an end portion of the roller, a rack laid on the side of the workpiece and extending in the moving direction, and rotatable inside the roller. A rotating machine having a rotor, meshing the rack with the pinion, and rotating the pinion together with the roller in accordance with the rotation of the rotor of the rotating machine, thereby moving the roller in the moving direction. It is characterized by.

更に、前記移動手段は、前記ローラを回転自在に支持するブラケットを、前記ローラの外部に設けられた駆動源により、前記移動方向へ移動させることを特徴とする。   Furthermore, the moving means is characterized in that a bracket that rotatably supports the roller is moved in the moving direction by a drive source provided outside the roller.

更に、本発明は、前記可塑性材料が通過可能な通孔パターンを有する孔版を、前記ワークピースの一面に重ね合わせたことを特徴とする。 Furthermore, the onset Ming, a stencil of the plastic material has a through hole pattern passable, characterized in that superimposed on a surface of the workpiece.

本発明は、一面を有するワークピースに可塑性材料を押込充填する印刷装置、及び前記ワークピースの一面に重なり前記可塑性材料が通過可能な通孔パターンを有する孔版を、収納する上部密封室と、前記孔版を隔てて前記上部密封室内に画定され、前記ワークピースを高さ調整可能に前記一面を上向きにして水平姿勢で位置決めするアライメントテーブルを収納する下部密封室と、前記上部密封室と前記下部密封室との間に差圧を発生させる差圧発生手段とを備えることを特徴とする。 This onset Ming, an upper sealing chamber printing apparatus for pushing filled with plastic material to the work piece and that the stencil of the plastic material overlaps on one side of the workpiece has a through hole pattern passable houses having one surface, A lower sealed chamber for accommodating an alignment table defined in the upper sealed chamber across the stencil and positioning the workpiece in a horizontal posture with the one surface facing upward so that the height can be adjusted; the upper sealed chamber and the lower sealed chamber; And a differential pressure generating means for generating a differential pressure between the sealed chamber and the sealed chamber.

更に、前記差圧発生手段は、前記上部密封室と前記下部密封室とに接続した真空ポンプと、前記上部密封室と前記下部密封室にそれぞれ接続した2つのリーク弁と、前記上部密封室及び前記下部密封室と前記真空ポンプとの間を開閉するストップ弁とを備え、前記真空ポンプが、前記上部密封室と前記下部密封室を真空引きし、印刷後に、前記2つのリーク弁及びストップ弁の操作の組合せで、前記上部密封室と前記下部密封室に大気が流入するのを個別に許容又は封止することを特徴とする。   Further, the differential pressure generating means includes a vacuum pump connected to the upper sealed chamber and the lower sealed chamber, two leak valves respectively connected to the upper sealed chamber and the lower sealed chamber, the upper sealed chamber, A stop valve that opens and closes between the lower sealed chamber and the vacuum pump, the vacuum pump evacuates the upper sealed chamber and the lower sealed chamber, and after printing, the two leak valves and the stop valve A combination of the operations described above is characterized by individually allowing or sealing the flow of air into the upper sealed chamber and the lower sealed chamber.

また、本発明は、水平に位置決めされるワークピースに可塑性材料を押込充填する電子部品の製造方法に係るものであって、一面を有するワークピースを、該一面を上向きにして水平姿勢で位置決めするステップと、回転機に接続されたローラを、前記ワークピースの近傍に水平姿勢で待機させるステップと、前記回転機により前記ローラを回転させ、該ローラの周面に前記可塑性材料を供給するステップと、前記ローラの周面を前記ワークピースの一面に近接しつつ、前記ローラを前記ワークピースの一面に沿って移動させると同時に、前記ローラが移動する移動方向に対して前転する方向に、前記ローラを前記回転機により回転させるステップと、前記ローラに近接又は接触して前記ローラの周面に沿って支持されるスキージを、前記ワークピースの一面に押し付けるステップと、を含むことを特徴とする。   Further, the present invention relates to a method for manufacturing an electronic component in which a plastic material is pressed and filled into a horizontally positioned workpiece, and the workpiece having one surface is positioned in a horizontal posture with the one surface facing upward. A step of waiting a roller connected to a rotating machine in a horizontal posture in the vicinity of the workpiece; a step of rotating the roller by the rotating machine and supplying the plastic material to a peripheral surface of the roller; The roller is moved along one surface of the workpiece while the peripheral surface of the roller is close to one surface of the workpiece, and at the same time, the roller is moved forward in the moving direction in which the roller moves. A step of rotating a roller by the rotating machine; and a squeegee that is supported along the circumferential surface of the roller in proximity to or in contact with the roller. Characterized in that it comprises the steps of pressing on one side of Kupisu, the.

また、本発明は、水平に位置決めされるワークピースに可塑性材料を押込充填する電子部品の製造方法に係るものであって、一面を有するワークピースを該一面を上向きにして水平姿勢で位置決めするステップと、前記ワークピースの一面に、前記可塑性材料が通過可能な通孔パターンを有する孔版を重ね合わせるステップと、回転機に接続されたローラを、前記孔版の近傍に水平姿勢で待機させるステップと、前記ローラを前記回転機により回転させ、該ローラの周面に前記可塑性材料を供給するステップと、前記ローラの周面を前記孔版の上面に近接しつつ、前記ローラを前記孔版の上面に沿って移動させると同時に、前記ローラが移動する移動方向に対して前転する方向に、前記ローラを前記回転機により回転させるステップと、前記ローラに近接又は接触して前記ローラの周面に沿って支持されるスキージを、前記孔版に押し付けるステップと、を含むことを特徴とする。   The present invention also relates to a method for manufacturing an electronic component in which a plastic material is pressed and filled into a horizontally positioned workpiece, and the workpiece having one surface is positioned in a horizontal posture with the one surface facing upward. And a step of superimposing a stencil having a through hole pattern through which the plastic material can pass on one surface of the workpiece, a step of waiting a roller connected to a rotating machine in a horizontal posture near the stencil, and Rotating the roller by the rotating machine and supplying the plastic material to the peripheral surface of the roller; and bringing the roller along the upper surface of the stencil while bringing the peripheral surface of the roller close to the upper surface of the stencil Rotating the roller by the rotating machine in a direction forwardly moving with respect to a moving direction in which the roller moves, The squeegee proximity or in contact with the over La is supported along the circumferential surface of the roller, characterized in that it comprises the steps of: pressing the stencil.

また、本発明は、水平に位置決めされるワークピースに可塑性材料を押込充填する電子部品の製造方法に係るものであって、一面を有するワークピースを該一面を上向きにして水平姿勢で位置決めするステップと、ステータの周りをロータが回転する回転機を内装したローラを、前記ワークピースの近傍に水平姿勢で待機させるステップと、前記ローラを前記回転機により回転させ、該ローラの周面に前記可塑性材料を供給するステップと、余剰の可塑性材料をローラ周面に戻し真空中であれば強力な脱法を可能とし、前記ローラの周面を前記ワークピースの一面に近接しつつ、前記ローラを前記ワークピースの一面に沿って移動させると同時に、前記ローラが移動する移動方向に対して前転する方向に、前記ローラを前記回転機により回転させるステップと、前記ローラに近接し前記ローラの周面に沿って旋回可能に支持されるスキージを、前記回転機が前記ローラを回転させるトルクの反力により、前記ワークピースの一面に押し付けるステップと、を含むことを特徴とする。   The present invention also relates to a method for manufacturing an electronic component in which a plastic material is pressed and filled into a horizontally positioned workpiece, and the workpiece having one surface is positioned in a horizontal posture with the one surface facing upward. And a step in which a roller having a rotating machine with a rotor rotating around the stator is waited in a horizontal position in the vicinity of the workpiece, the roller is rotated by the rotating machine, and the plastic is provided on a peripheral surface of the roller. A step of supplying a material, and returning the excess plastic material to the roller peripheral surface, enabling powerful de-moulding if it is in a vacuum, and bringing the roller peripheral surface close to one surface of the workpiece while the roller is moved to the workpiece At the same time as moving along one surface of the piece, the roller is rotated by the rotating machine in a forward direction with respect to the moving direction in which the roller moves. And a step of pressing a squeegee adjacent to the roller and rotatably supported along the circumferential surface of the roller against one surface of the workpiece by a reaction force of torque that causes the rotating machine to rotate the roller; , Including.

また、本発明は、水平に位置決めされるワークピースに可塑性材料を押込充填する電子部品の製造方法に係るものであって、一面を有するワークピースを該一面を上向きにして水平姿勢で位置決めするステップと、前記ワークピースの一面に、前記可塑性材料が通過可能な通孔パターンを有する孔版を重ね合わせるステップと、ステータの周りをロータが回転する回転機を内装したローラを、前記孔版の近傍に水平姿勢で待機させるステップと、前記ローラを前記回転機により回転させ、該ローラの周面に前記可塑性材料を供給するステップ(真空中であればローラ周面の可塑性材料は強力に脱法される。)と、前記ローラの周面を前記孔版の上面に近接しつつ、前記ローラを前記孔版の上面に沿って移動させると同時に、前記ローラが移動する移動方向に対して前転する方向に、前記ローラを前記回転機により回転させるステップと、前記ローラに近接又は接触して前記ローラの周面に沿って旋回可能に支持されるスキージを、前記回転機が前記ローラを回転させるトルクの反力により、前記孔版に押し付けるステップと、を含むことを特徴とする。   The present invention also relates to a method for manufacturing an electronic component in which a plastic material is pressed and filled into a horizontally positioned workpiece, and the workpiece having one surface is positioned in a horizontal posture with the one surface facing upward. And a step of superimposing a stencil having a through hole pattern through which the plastic material can pass on one surface of the workpiece, and a roller having a rotating machine in which a rotor rotates around the stator. A step of waiting in a posture, and a step of rotating the roller by the rotating machine and supplying the plastic material to the peripheral surface of the roller (the plastic material on the peripheral surface of the roller is strongly desorbed in a vacuum). The roller is moved along the upper surface of the stencil while the peripheral surface of the roller is close to the upper surface of the stencil. A step of rotating the roller by the rotating machine in a forward rotation direction with respect to the moving direction, and a squeegee supported so as to be rotatable along the peripheral surface of the roller in proximity to or in contact with the roller. And a step of pressing the stencil against the stencil by a reaction force of a torque that causes the rotating machine to rotate the roller.

更に、本発明は、前記ワークピースを大気圧中に位置決めするステップを含むことを特徴とする。前記ワークピースを真空中に位置決めするステップを含むことを特徴とする。この場合、前記ローラに余剰の可塑性材料が付着して真空に触れながら循環し強力な脱泡が行なわれるようにしても良い。或いは、前記ワークピースを大気圧中に位置決めするステップと、前記ワークピースを真空中に位置決めするステップとを連続的に組み合わせたことを特徴とする。 Furthermore, the onset Ming, characterized in that it comprises a step of positioning the workpiece in the atmospheric pressure. Positioning the workpiece in a vacuum. In this case, excessive plastic material may adhere to the roller and circulate while touching the vacuum to perform strong defoaming. Alternatively, the step of positioning the workpiece in atmospheric pressure and the step of positioning the workpiece in vacuum are continuously combined.

また、本発明は、水平姿勢で位置決めされるワークピースに、上面及び下面を貫く通孔パターンを有する孔版を重ね合わせて、前記ワークピースに前記孔版の下面を近接させるステップと、前記孔版の通孔パターンに可塑性材料を加圧供給するステップと、回転機によって回転されるローラを前記ワークピースの一面に沿って移動させると同時に、前記ローラが移動する方向に対して前進する方向に前記ローラを回転させ、前記ローラの周面に沿って旋回するスキージを、前記回転機が前記ローラを回転させるトルクの反力によって前記ワークピースに押し付けることにより前記可塑性材料を押込充填するステップと、前記孔版の上面側の気圧が前記下面側より高くなるように、前記孔版を隔てて差圧を発生させるステップと、を含むことを特徴とする。 The present invention also includes a step of superimposing a stencil having a through hole pattern penetrating the upper surface and the lower surface on a workpiece positioned in a horizontal posture, and bringing the lower surface of the stencil in proximity to the workpiece; a step you pressure supplying plastic material to a hole pattern, when the rollers are rotated by a rotating machine is moved along a surface of the workpiece at the same time, the roller in the direction of advance with respect to the direction in which the roller is moved is rotated, the squeegee to pivot along the circumferential surface of the roller, the steps of the rotating machine is pushed filled pre Symbol thermoplastic material by pressing the workpiece by the reaction force of the torque for rotating the roller, the Generating a differential pressure across the stencil so that the air pressure on the upper surface side of the stencil is higher than that on the lower surface side. And butterflies.

また、本発明は、ワークピースを高さ調整可能なアライメントテーブルに水平姿勢で位置決めするステップと、前記アライメントテーブルに位置決めされた前ワークピースの上方に、上面及び下面を貫く通孔パターンを有する孔版を水平姿勢で支持するステップと、前記アライメントテーブルの高さ調整を行うことにより、前記ワークピースに前記孔版の下面を近接させるステップと、前記孔版の通孔パターンに可塑性材料を加圧供給するステップと、回転機によって回転されるローラを前記ワークピースの一面に沿って移動させると同時に、前記ローラが移動する方向に対して前進する方向に前記ローラを回転させ、前記ローラの周面に沿って旋回するスキージを、前記回転機が前記ローラを回転させるトルクの反力によって前記ワークピースに押し付けることにより前記可塑性材料を押込充填するステップと、前記孔版の下面側の気圧が前記上面側より高くなるように、前記孔版を隔てて差圧を発生させるステップと、を含むことを特徴とする。 The present invention also includes a step of positioning the workpiece on an alignment table capable of adjusting the height in a horizontal posture, and a stencil having a through hole pattern penetrating the upper surface and the lower surface above the previous workpiece positioned on the alignment table. a step of supporting a horizontally, by adjusting the height of the alignment table, the steps of close the lower surface of the stencil to said workpiece, you pressure supplying plastic material to the through hole pattern of the stencil And at the same time, the roller rotated by the rotating machine is moved along one surface of the workpiece, and at the same time, the roller is rotated in a forward direction with respect to the moving direction of the roller, along the circumferential surface of the roller. The squeegee that turns is rotated by the reaction force of the torque that causes the rotating machine to rotate the roller. A step of pushing the filling pre Symbol thermoplastic material by pressing the scan, as the lower surface of pressure of the stencil is higher than the upper surface, that includes the steps of: generating a differential pressure across said stencil Features.

更に、本発明は、前記アライメントテーブルの高さ調整を行うことにより、前記ワークピースを前記孔版の下方へ離反させるステップを含むことを特徴とする。また、前記孔版の上面側の気圧、又は前記下面側の気圧の少なくとも一方を、大気圧又は真空圧に設定することを特徴とする。また、前記可塑性材料が、前記ワークピースを絶縁封止する樹脂であることを特徴とする。前記可塑性材料が、半田バンプを形成する半田ペーストであることを特徴とする。或いは、前記可塑性材料が、ウエハ及び樹脂基板を穴埋めする導電性ペースト又は非導電性ペーストであり、スルーホールは裏面に粘着フィルムをラミネートしてブラインド化して、同径又は異径穴も一度で真空充填し、凸状にプラグを形成して硬化又は半硬化し、裏面のフィルムを剥離することを特徴とする。 Furthermore, the onset Ming, by adjusting the height of the alignment table, characterized in that it comprises a step of separating the workpiece downwardly of the stencil. In addition, at least one of the air pressure on the upper surface side of the stencil and the air pressure on the lower surface side is set to atmospheric pressure or vacuum pressure. Further, the plastic material is a resin for insulatingly sealing the workpiece. The plastic material is a solder paste for forming solder bumps. Alternatively, the plastic material is a conductive paste or a non-conductive paste that fills the wafer and the resin substrate, and the through hole is blinded by laminating an adhesive film on the back surface, and the same diameter or different diameter holes are vacuumed at once. Filling, forming a convex plug, curing or semi-curing, and peeling back film.

更に、本発明は上記に記載の方法において、前記可塑性材料がウェハ及び樹脂基板を穴埋めする導電ペースト又は非導電ペーストであり、前記可塑性材料を真空下で押込充填するステップと、前記可塑性材料が硬化後に前記可塑性材料を真空下又は大気下で充填又は真空充填後大気充填するステップとを含むことを特徴とする。 Furthermore, the onset Ming, in the method described above, the plastic material is a conductive paste or non-conductive paste filling the wafer and the resin substrate, a step of pushing the filling under vacuum the plastic material, the plastic material Filling the plastic material in a vacuum or in the air after curing, or filling in the air after vacuum filling.

本発明によれば、以下の効果を達成できる。即ち、回転機によりローラを回転させつつ、ローラの周面に可塑性材料を供給し、ローラを回転させつつ、回路基板及び表面実装(以下で「ワークピース」と記す。)の一面に沿って同ローラを直線的に移動させると、可塑性材料はローラの周面に付着しつつ、ローラとワークピースとの間に押し込まれる。一方、ローラが回転しながらワークピースの一面に沿って移動する過程で、スキージがワークピースの一面に押し付けられる。この状態で、ローラとワークピースとの間に押し込まれた可塑性材料は、ローラの移動する向きに対して後方へ逃げることが充填に適した角度と長さを有するスキージによって規制される、同時にローラとスキージ間の樹脂もシールされる。 According to the present onset Akira, the following effects can be achieved. That is, while rotating a roller by a rotating machine, a plastic material is supplied to the peripheral surface of the roller, and while rotating the roller, the same along one surface of a circuit board and surface mounting (hereinafter referred to as “workpiece”). When the roller is moved linearly, the plastic material is pushed between the roller and the workpiece while adhering to the peripheral surface of the roller. On the other hand, the squeegee is pressed against one surface of the workpiece in the process of moving along the one surface of the workpiece while the roller rotates. In this state, the plastic material pushed between the roller and the workpiece is controlled by a squeegee having an angle and a length suitable for filling, while escaping backward with respect to the moving direction of the roller. The resin between the squeegee and the squeegee is also sealed.

従って、可塑性材料は、ローラとワークピースとの間でローラの自転と移動で樹脂が送り込まれ、スキージの充填力とローラによる充填力の合力で強力に加圧されながら、マスクされた基板やマスク無しの基板にダイレクトに押込充填され、スキージの角度と接触長さ及びローラの回転速度や移動速度の調整で充填力を目的に合せて最適化して、スキージ先端の圧力をコントロールして、平坦にも凸状にも形状や面積に左右されず印刷できる、スキージの先端で充填力がゼロで有れば平坦に樹脂は切断され、充填力がプラスで有れば凸状に印刷される(図2を参照)。隙間を有する部材に充填し印刷する基本的な要素技術の画期的な発明である。   Therefore, the plastic material is sent by the rotation and movement of the roller between the roller and the workpiece, and is strongly pressed by the resultant force of the filling force of the squeegee and the filling force of the roller. The substrate is pressed and filled directly, and the squeegee angle and contact length, and the rotation speed and movement speed of the roller are adjusted to optimize the filling force according to the purpose. Can be printed regardless of the shape and area, and if the filling force is zero at the tip of the squeegee, the resin is cut flat, and if the filling force is positive, it is printed in a convex shape (Fig. 2). It is an epoch-making invention of basic elemental technology that fills and prints a member having a gap.

また、スキージとローラ間に若干の隙間を持たせば、過剰な樹脂はローラの回りを循環する、これを利用して例えば、真空と組み合わせると、ローラの表面に付着し循環して真空にさらされ、完全に脱泡された可塑性材料(図11の符号235を参照)が供給され、従来の真空差圧法より高いボイドレスを達成できる。スキージ印圧、ローラ回転、及び移動速度を単独駆動としそれぞれ調整可能にすれば、広範囲な用途に最適化して容易に適合さす事ができる。   In addition, if there is a slight gap between the squeegee and the roller, excess resin circulates around the roller.Using this, for example, when combined with vacuum, it adheres to the surface of the roller and circulates to expose the vacuum. Then, a completely defoamed plastic material (see reference numeral 235 in FIG. 11) is supplied, and a higher voidless than the conventional vacuum differential pressure method can be achieved. If the squeegee printing pressure, the roller rotation, and the moving speed can be adjusted independently, respectively, it can be easily adapted by optimizing for a wide range of applications.

また、装置を極限まで小型化しシンプル化する為に、ロータが回転駆動する反力をスキージが受けると共に、ロータの回転が減速機で減速されつつ支軸へ伝達されるように、当該印刷装置を構成すれば、次の効果を達成することができる。即ち、可塑性材料の粘度等に応じて、上記の反力を調整、言い換えればローラに加わる負荷を調整するだけで、スキージをワークピースに押し付ける力を増減することができる。また、ローラの端部に結合したピニオンを、ワークピースの側方に敷設され移動方向へ延びるラックに噛み合わせ、回転機によりローラを回転させるので、当該装置の全体を極限まで小型化できる。制御も正転、逆転、停止のみで操作が簡単でどのようなプロセスも即座に実現できる。   In order to reduce the size of the device to the limit and simplify it, the squeegee receives the reaction force that the rotor rotates, and the rotation of the rotor is transmitted to the spindle while being decelerated by the speed reducer. If configured, the following effects can be achieved. That is, the force for pressing the squeegee against the workpiece can be increased or decreased simply by adjusting the reaction force according to the viscosity of the plastic material, in other words, by adjusting the load applied to the roller. Further, since the pinion coupled to the end of the roller is engaged with a rack laid on the side of the workpiece and extending in the moving direction, and the roller is rotated by a rotating machine, the entire apparatus can be miniaturized to the limit. Control can be performed simply by forward, reverse, and stop, and any process can be realized immediately.

従って、可塑性材料からボイドを完全に排除することを企図して当該装置を真空中に配置する場合に、このような真空を形成する例えば密封室の容積を大幅に縮小でき、エア機器等のアクチュエータを使用せずエアリークもなく、密封室を真空引きするための真空ポンプ等の小型化が図れ、密封室の強度を小さくでき軽量化でき、更にタクト短縮でき生産性を向上できる。或いは、ローラを回転自在に支持するブラケットを、ローラの外部に設けられた駆動源により、移動方向へ移動させるよう構成した場合、可塑性材料の送り込み量を自由に調整できる利点があるが、装置は多少複雑になる。   Therefore, when the apparatus is placed in a vacuum with the intention of completely eliminating voids from the plastic material, the volume of the sealed chamber that forms such a vacuum, for example, can be greatly reduced, and actuators such as pneumatic equipment Therefore, it is possible to reduce the size of a vacuum pump or the like for evacuating the sealed chamber, reduce the strength of the sealed chamber, reduce the weight, reduce the tact time, and improve productivity. Alternatively, when the bracket for rotatably supporting the roller is configured to move in the moving direction by a drive source provided outside the roller, there is an advantage that the feeding amount of the plastic material can be freely adjusted. A little complicated.

更に、上記のローラが、回転機を収納するインナケーシングと、インナケーシングの周りに空隙を設けて配置される筒状アウタケーシングとを備える場合、回転機のロータを回転させると、筒状アウタケーシングと共にインナケーシングとが回転する。これらの回転方向は、ローラ全体が孔版の上面に沿って移動する移動方向に対して前転する方向に一致する。   Further, in the case where the roller includes an inner casing that houses the rotating machine and a cylindrical outer casing that is disposed with a gap around the inner casing, the cylindrical outer casing is obtained by rotating the rotor of the rotating machine. At the same time, the inner casing rotates. These rotation directions coincide with the forward rotation direction with respect to the movement direction in which the entire roller moves along the upper surface of the stencil plate.

また、ローラのインナケーシングと筒状アウタケーシングとの間に空隙を設けることにより、回転機の発生する熱が、ローラの周面に付着した可塑性材料まで伝導するのを阻止し、可塑性材料の粘度が温度の影響を受けて変化するのを抑えることができる。更に、ローラのインナケーシングと筒状アウタケーシングを支える、両端のフランジに通穴を設け、本発明の一部である真空印刷コーターや真空印刷機に適用した場合は、真空引き繰り返すので、回転機を積極的に冷却できるので、熱可塑性材料の粘度を確実に安定させることができる。更に強制冷却をするには、両端の支軸を中空にして真空ポンプに連結する。又ローラは常に樹脂と接しスキージで研摩される状態で消耗品となるので、筒状アウタケーシングが容易に取り替える必がある、その為にも筒状アウタケーシングは有効である。 Also, by providing a gap between the inner casing of the roller and the cylindrical outer casing, the heat generated by the rotating machine is prevented from being conducted to the plastic material adhering to the peripheral surface of the roller, and the viscosity of the plastic material Can be prevented from changing under the influence of temperature. Furthermore, when the inner casing of the roller and the cylindrical outer casing are provided with through holes in both end flanges, and applied to a vacuum printing coater or a vacuum printing machine that is a part of the present invention, vacuuming is repeated. Can be positively cooled, so that the viscosity of the thermoplastic material can be reliably stabilized. For further forced cooling, the support shafts at both ends are hollow and connected to a vacuum pump. The roller is always made in a state of being polished by a squeegee contact with the resin and consumables, it is necessary that the cylindrical outer casing easily replaced, tubular outer casing in order that is valid.

更に、本発明によれば、可塑性材料を通過させる通孔パターンを有する孔版を、ワークピースの一面に重ね合わせても、上記の効果を奏することができるので、CSP,BGA等の電子部品を表面実装した基板の従来の真空差圧印刷法より、ローラの回転による脱泡効果と充填力強化効果で、一層ボイドレスで平坦度が高く精密な封止が可能である。 Furthermore, according to this onset bright, the stencil having a through hole pattern for passing the thermoplastic material, be superimposed on a surface of the workpiece, it is possible to achieve the effects described above, CSP, an electronic component such as a BGA Compared with the conventional vacuum differential pressure printing method for surface-mounted substrates, the defoaming effect by rotating the roller and the effect of strengthening the filling force enable a higher degree of flatness and precise sealing with higher voids.

また、本発明によれば、水平姿勢で位置決めされるワークピースに、上面及び下面を貫く通孔パターンを有する孔版を重ね合わせて、ワークピースに孔版の下面を近接させボイドレスにするには、上下密封室を真空にして、上記の方法によってワークピースに孔版の通孔パターンを介して可塑性材料を押込充填し、2つのリーク弁とストップ弁との操作の組合せで、上部密封室と下部密封室に大気が流入するのを個別に許容又は封止できるので、個々のリーク弁とストップ弁を操作して、孔版の上面側の気圧が下面側より高くなるように、孔版を隔てて差圧を発生させる。 Further, according to this onset bright, the workpiece being positioned in a horizontal position, by superimposing the stencil having a through hole pattern penetrating the upper and lower surfaces, to void-less brought closer to the lower surface of the stencil in the workpiece, The upper and lower sealed chambers are evacuated and the workpiece is pressed and filled with the plastic material through the perforation pattern of the stencil by the above method. Since the atmospheric air can be allowed or sealed individually, the differential pressure across the stencil is controlled by operating each leak valve and stop valve so that the pressure on the upper surface side of the stencil is higher than the lower surface side. Is generated.

これにより、可塑性材料が孔版の通孔パターンから下方へ押し出されようとするので、可塑性材料は良好にワークピースに転写することになる。これをバンプ形成に適用すれば高アスペクトの通孔に充填された半田ペーストが粘着力と差圧で転写され、狭ピッチで高精度のバンプ形成ができる。   As a result, the plastic material tends to be pushed downward from the through-hole pattern of the stencil, so that the plastic material is well transferred to the workpiece. If this is applied to bump formation, the solder paste filled in the high-aspect through-holes is transferred with adhesive force and differential pressure, and high-precision bump formation can be performed at a narrow pitch.

或いは、アライメントテーブルに上記のように水平姿勢で位置決めされたワークピースの上方に、上面及び下面を貫く通孔パターンを有する孔版を水平姿勢で支持し、アライメントテーブルの高さ調整を行うことにより、ワークピースに孔版の下面を近接させ、可塑性材料を供給して、真空ポンプを起動して、上部密封室と下部密封室を真空引きすることにより上部密封室と下部密封室を真空にした状態で、上記の方法によってワークピースに孔版の通孔パターンを介して可塑性材料を押込充填することができる。更に、個々のリーク弁、及びストップ弁を操作して、孔版の下面側の気圧が上面側より高くなるように、孔版を隔てて差圧を発生させる。   Alternatively, by supporting the stencil having a through hole pattern penetrating the upper surface and the lower surface in a horizontal posture above the workpiece positioned in the horizontal posture as described above on the alignment table, and adjusting the height of the alignment table, With the upper and lower sealed chambers evacuated by bringing the underside of the stencil closer to the workpiece, supplying plastic material, starting the vacuum pump, and evacuating the upper and lower sealed chambers By the above method, the workpiece can be filled with the plastic material through the piercing pattern of the stencil. Further, by operating individual leak valves and stop valves, a differential pressure is generated across the stencil so that the air pressure on the lower surface side of the stencil becomes higher than that on the upper surface side.

これにより、可塑性材料と通孔パターンの周縁との間を、下部密封室の僅かな空気が上方へ通り抜けようとするので、可塑性材料が通孔パターンの周縁から良好に切断されると、同時に周辺の可塑性材料を内部に押しやり硬化途中での粘度低下で周辺への流れ出しを防止できる。主として樹脂封止に適用され精密形状を達成できる革新的方法である。   As a result, a small amount of air in the lower sealed chamber tries to pass upward between the plastic material and the periphery of the through hole pattern, so that when the plastic material is cut well from the periphery of the through hole pattern, It is possible to prevent the plastic material from flowing out to the periphery by lowering the viscosity during curing. It is an innovative method that can be applied mainly to resin sealing and achieve a precise shape.

特に、孔版の剛性が高く孔版とワークピースの間に空気が進入するのが阻止される場合には、アライメントテーブルの高さ調整を行うことにより、ワークピースを孔版の下方へ離反させれば良い。これにより、ワークピースを孔版との間の隙間を積極的に広げられるので、両者の間を下部密封室の空気が容易に通り抜けられることになり、孔版の材質や厚み等に係わらず上記の効果を達成するこができる。更に、孔版の上面側の気圧、又は下面側の気圧の少なくとも一方を、大気圧又は真空圧に設定すれば、大気印刷法にも適用できる。   In particular, when the stencil has high rigidity and air is prevented from entering between the stencil and the work piece, the work piece can be separated downward from the stencil by adjusting the height of the alignment table. . As a result, the gap between the workpiece and the stencil can be positively widened, so that the air in the lower sealed chamber can easily pass between the two, and the above effect can be achieved regardless of the material and thickness of the stencil. Can be achieved. Furthermore, if at least one of the atmospheric pressure on the upper surface side or the atmospheric pressure on the lower surface side of the stencil plate is set to atmospheric pressure or vacuum pressure, it can be applied to the atmospheric printing method.

更に、上記の真空印刷コーターを封止に使用した場合、スキージとローラの充填力の合力が働き非常に複雑な形状で凹凸や多重のワイヤを樹脂が強力に充填され、残留空気は圧縮されてワークと基板やチップの壁面より押し出される、その後に大気圧に戻され差圧で隅々まで含浸され、表面はスキージの先端で樹脂圧がゼロに近く設定され平坦に切断されて印刷される。従来の真空印刷機はスキージで樹脂を被せるように供給し、真空差圧で充填し真空で仕上げ印刷されるが、ワイヤの上部に樹脂が薄く被された状態で、差圧をかけると未充填部と外部の圧とが短絡し充填できない問題や、残留空気ぶんがマイクロボイドとして残留する事が避けられない問題がある。   In addition, when the above vacuum printing coater is used for sealing, the resultant force of the filling force of the squeegee and roller works, and the resin is strongly filled with unevenness and multiple wires in a very complicated shape, and the residual air is compressed. It is pushed out from the wall surface of the workpiece and the substrate or chip, then returned to atmospheric pressure and impregnated in every corner with differential pressure, and the surface is printed with the resin pressure set near zero at the tip of the squeegee and cut flat. A conventional vacuum printer supplies the resin with a squeegee, fills it with a vacuum differential pressure, and finishes it with a vacuum. However, if the resin is thinly covered on the upper part of the wire, it is not filled when the differential pressure is applied. There is a problem that the portion and the external pressure are short-circuited and cannot be filled, and that residual air remains as microvoids.

更に、基板の穴埋めに使用した場合、スルホールの穴埋には、基板の裏面に粘着フィルムをラミネートし、ブラインドビアを形成しマスクレスで真空印刷コーターを使用して、真空で充填印刷し、大気圧で含浸さし更にスキージ先端部で充填力をプラスサイドに設定し、印刷すると上面はプラグが(凸状印刷)形成され、下部は基板と同一面に充填される。これを半硬化又は硬化してフィルムを除去する。この方法異径穴を同時に充填でき、マスクも不要で位置合わせも必要なく、研摩行程を大幅に簡略化できる、従来の装置はプラントであったが簡略な装置となり、革新的な穴埋め法を達成した。更にアスペクトの高いワークは1回充填した後硬化して再度充填硬化すれば、充填ミスも、無く完璧な穴埋めできる。又ダイレクト印刷は例え未充填部が在っても再充填することができ不良品がでない利点がある。   In addition, when used for filling holes in a substrate, the through holes are filled by laminating an adhesive film on the back of the substrate, forming blind vias, using a maskless vacuum printing coater, filling and printing in vacuum, When it is impregnated with atmospheric pressure and the filling force is set to the plus side at the tip of the squeegee and printing is performed, a plug is formed on the upper surface (convex printing), and the lower portion is filled on the same surface as the substrate. This is semi-cured or cured to remove the film. This method can fill holes with different diameters at the same time, does not require a mask, does not require alignment, and greatly simplifies the polishing process. The conventional device was a simple plant but achieved an innovative hole filling method. did. Furthermore, if a workpiece with a high aspect is filled once and then cured and filled and cured again, perfect filling can be completed without any filling mistakes. Further, direct printing has an advantage that it can be refilled even if there is an unfilled portion, and there is no defective product.

更に、バンプ形成に適用する場合は、基板にレジストでバンプ形成に必用なビアを形成し、マスクレスで、真空で印刷コーターで充填し、大気圧に戻し含浸さしてスキージ先端の充填圧をゼロ近辺に設定して平坦に切断し、リフローしてレジストを剥離して達成した。試作では、SnAgCuで10μサイズの粒子を持つ半田ペーストで60μのバンプを形成し、1μ以下の誤差で容易に形成された。   Furthermore, when applied to bump formation, vias necessary for bump formation are formed on the substrate with resist, filled with a print coater in a vacuum, without a mask, and returned to atmospheric pressure and impregnated, and the filling pressure at the squeegee tip is near zero. This was achieved by cutting the substrate flatly, reflowing and stripping the resist. In the trial production, a bump of 60 μm was formed with a solder paste having a particle size of 10 μm with SnAgCu, and it was easily formed with an error of 1 μm or less.

以下に、図1乃至図5に基づき、孔版1を重ね合わされ一面21を上向きにしたワークピース2に、適量の可塑性材料を押込充填する電子部品の印刷装置E1について、印刷ヘッドを例に説明する。また、図中に矢印X,Y,Zでそれぞれ指した方向は、以下の軸方向、移動方向、及び高さ方向に各々対応している。ボルト、ナット、キー、キー溝、及びベアリング等の自明の機械要素については、その図示又は説明を省略する。印刷装置E1の動作を制御するための制御機器、及び動作/停止を検出するセンサー等についても、同様に省略する   In the following, a printing head will be described as an example of an electronic component printing apparatus E1 that presses and fills an appropriate amount of a plastic material into a workpiece 2 with the stencil 1 superimposed and one surface 21 facing upward, with reference to FIGS. . In addition, the directions indicated by arrows X, Y, and Z in the drawing respectively correspond to the following axial direction, moving direction, and height direction. Illustrations and descriptions of obvious machine elements such as bolts, nuts, keys, keyways, and bearings are omitted. Similarly, the control device for controlling the operation of the printing apparatus E1 and the sensor for detecting the operation / stop are also omitted.

先ずは、印刷装置E1の印刷ヘッドの原理を説明する。図1は、ワークピース2の一面21に周面を近接するローラ3と、ローラ3をワークピース2の一面21に沿って矢印Yで指した方向に移動させる移動手段4と、移動手段4がローラ3を移動する移動方向に対して前転する方向にローラ3を回転させる回転手段5と、ローラ3に近接又は接触してワークピース2の一面21に押し付けられるスキージ6とを表している。   First, the principle of the print head of the printing apparatus E1 will be described. FIG. 1 shows a roller 3 whose circumferential surface is close to one surface 21 of the workpiece 2, a moving means 4 that moves the roller 3 along the one surface 21 of the workpiece 2 in the direction indicated by the arrow Y, and a moving means 4 Rotating means 5 that rotates the roller 3 in a forward direction with respect to the moving direction in which the roller 3 is moved, and a squeegee 6 that is pressed against one surface 21 of the workpiece 2 in proximity to or in contact with the roller 3.

移動手段4としては、ローラ3を支持するブラケット(図示せず)にボールナット40を取付ける一方、ボールナット40に螺合する送りネジ41を、ローラ3の外部に配置したモータ等の駆動源で回転させることにより、ローラ3を移動させるものを適用しても良い。回転手段5としては、ローラ3の外部に配置した回転機50の出力軸に、タイミングプーリ501を取付け、ローラ3の支軸34にタイミングプーリ502を設け、回転機50の出力軸の回転力を、タイミングプーリ501,502に巻掛したタイミングベルト503を介してローラ3に伝達するものを適用しても良い。   As the moving means 4, a ball nut 40 is attached to a bracket (not shown) that supports the roller 3, and a feed screw 41 that is screwed into the ball nut 40 is a drive source such as a motor disposed outside the roller 3. You may apply what moves the roller 3 by rotating. As the rotation means 5, a timing pulley 501 is attached to the output shaft of the rotating machine 50 disposed outside the roller 3, and the timing pulley 502 is provided on the support shaft 34 of the roller 3, and the rotational force of the output shaft of the rotating machine 50 is increased. Alternatively, a belt that transmits to the roller 3 via the timing belt 503 wound around the timing pulleys 501 and 502 may be applied.

スキージ6は、ローラ3の周面に沿って旋回できるよう図に表れていない支持体で支持されていれば良く、例えば、エアシリンダ等のアクチュエータを主体とする印圧発生手段7によってワークピース2の一面21に適度に押付けられるようにしても良い。印圧発生手段7は、ローラ3の近傍に設けた滑節70に、直立姿勢又は傾斜姿勢になるよう回動自在に取付けられ、その作動ロッド71をスキージ6に滑節72を介して回動自在に接続している。   The squeegee 6 only needs to be supported by a support body not shown in the figure so as to be able to turn along the peripheral surface of the roller 3. You may make it press on the one surface 21 moderately. The printing pressure generating means 7 is rotatably attached to a smooth joint 70 provided in the vicinity of the roller 3 so as to be in an upright posture or an inclined posture, and its operating rod 71 is turned to the squeegee 6 via the smooth joint 72. Connect freely.

また、図1に表した一対のスキージ6は、その一方が印圧発生手段7によってワークピース2の一面21に押付けられ、他方がワークピース2の一面21から浮き上がっている。これは、ローラ3の移動方向Yに対して前途に位置するスキージ6の下側に、適量の可塑性材料mを溜めつつ、可塑性材料mが、ローラ3の回転に伴ってその下側に徐々に引き込まれ、更にはローラ3の移動方向Yに対して後方に位置するスキージ6によって圧縮されることを企図している。   Further, one of the pair of squeegees 6 shown in FIG. 1 is pressed against one surface 21 of the workpiece 2 by the printing pressure generating means 7, and the other is lifted from the one surface 21 of the workpiece 2. This is because an appropriate amount of the plastic material m is accumulated below the squeegee 6 positioned in the forward direction with respect to the moving direction Y of the roller 3, and the plastic material m gradually moves downward as the roller 3 rotates. It is intended to be drawn in and further compressed by a squeegee 6 located rearward with respect to the movement direction Y of the roller 3.

詳しくは、図2(a)及び(b)に示すように、ローラ3の周面に付着するよう供給された可塑性材料mは、ローラ3が回転しながら移動するに従って、ローラ3の下側に徐々に引き込まれ、ワークピース2の一面21とローラ3との間で圧縮される。このときの可塑性材料mに加わる圧力は、可塑性材料mがローラ3の真下を略過ぎた位置P1でピーク値に達する。この後、同圧力は、スキージ6がワークピース2の一面21に接する接点位置P2に至るまでに降下するが、接点位置P2において尚も所期の圧力を維持できるように設定する。これにより、ワークピース2(例えば、プリント基板又はウェハ基板)のビア又はスルーホールの穴埋を行う場合に、ビア又はスルーホールに詰め込まれる可塑性材料mに適度な圧力を蓄積できるため、図示のように、スキージ6が通過した後で、ビア又はスルーホールから可塑性材料mが凸状に盛り上がることになる。   Specifically, as shown in FIGS. 2A and 2B, the plastic material m supplied so as to adhere to the peripheral surface of the roller 3 moves to the lower side of the roller 3 as the roller 3 moves while rotating. It is gradually pulled in and compressed between one surface 21 of the workpiece 2 and the roller 3. The pressure applied to the plastic material m at this time reaches a peak value at a position P 1 where the plastic material m is substantially over the roller 3. Thereafter, the pressure drops until the squeegee 6 reaches the contact position P2 where the squeegee 6 contacts the one surface 21 of the workpiece 2, but is set so that the desired pressure can be maintained at the contact position P2. Accordingly, when filling a via or a through hole of the workpiece 2 (for example, a printed board or a wafer substrate), an appropriate pressure can be accumulated in the plastic material m filled in the via or the through hole. In addition, after the squeegee 6 passes, the plastic material m rises in a convex shape from the via or the through hole.

或いは、図2(c)及び(d)に示すように、ローラ3の周面に付着するよう供給された可塑性材料mは、既述の通りワークピース2の一面21とローラ3との間で圧縮される。そして、可塑性材料mに加わる圧力は、ローラ3の真下を略過ぎた位置P3でピーク値に達するが、この後、同圧力が、接点位置P4に至るまでにゼロになるように設定する。これにより、ワークピース2の一面21の凹所に充填された可塑性材料mに圧力が残存しないので、図示のように、スキージ6が通過した後でも、可塑性材料mは平坦な形状を保つことになる。多様な用途に適するためには、ローラ3の回転、移動、及び上記の圧力が単独に調整できることば好ましい。以上の原理を具現化するための最良の形態を以下で詳しく述べる。   Alternatively, as shown in FIGS. 2C and 2D, the plastic material m supplied to adhere to the peripheral surface of the roller 3 is between the one surface 21 of the workpiece 2 and the roller 3 as described above. Compressed. Then, the pressure applied to the plastic material m reaches a peak value at a position P3 that is substantially just below the roller 3, but thereafter, the pressure is set to be zero before reaching the contact position P4. As a result, no pressure remains in the plastic material m filled in the recess of the one surface 21 of the workpiece 2, so that the plastic material m maintains a flat shape even after the squeegee 6 passes as shown in the figure. Become. In order to be suitable for various applications, it is preferable that the rotation, movement, and pressure of the roller 3 can be adjusted independently. The best mode for embodying the above principle will be described in detail below.

図3は印刷装置E1の正面図である。図4(a)は印刷装置E1の側面図、(b)は図3のA−A断面図である。図5は印刷装置E1の要部の構成を概念的に表している。これらの図面に示されるように、印刷装置E1は、水平姿勢で位置決めされる回路基板、及びその表面実装部から成るワークピース2(以下で単に「回路基板2」と記す。)の両側近傍に軸方向Xの両端部31が各々支持され孔版1を介して回路基板2の一面21に周面32を近接するローラ3と、ローラ3を回路基板2の一面21に沿って矢印Y方向に移動させる移動手段4と、移動手段4がローラ3を移動させる過程でローラ3を回転させる回転手段5と、ローラ3に近接しローラ3の周面32に沿って旋回可能に支持されたスキージ6と、回転手段5がローラ3を回転させるトルクの反力によりスキージ6を回路基板2の一面21に重ねられた孔版1に押し付ける印圧発生手段7とを備える。   FIG. 3 is a front view of the printing apparatus E1. 4A is a side view of the printing apparatus E1, and FIG. 4B is a cross-sectional view taken along line AA in FIG. FIG. 5 conceptually shows the configuration of the main part of the printing apparatus E1. As shown in these drawings, the printing apparatus E1 is in the vicinity of both sides of a workpiece 2 (hereinafter simply referred to as “circuit board 2”) composed of a circuit board positioned in a horizontal posture and a surface mounting portion thereof. Both end portions 31 in the axial direction X are supported, and the roller 3 that has the peripheral surface 32 close to the one surface 21 of the circuit board 2 through the stencil 1 and the roller 3 is moved in the arrow Y direction along the one surface 21 of the circuit board 2. A moving means 4 for rotating, a rotating means 5 for rotating the roller 3 in the process in which the moving means 4 moves the roller 3, and a squeegee 6 which is close to the roller 3 and supported so as to be rotatable along the peripheral surface 32 of the roller 3. The rotating means 5 includes printing pressure generating means 7 that presses the squeegee 6 against the stencil 1 superimposed on the one surface 21 of the circuit board 2 by the reaction force of the torque that rotates the roller 3.

移動手段4と回転手段5とは、それぞれの駆動源として、ローラ3に内装された回転機50を共用している。詳しくは次の通りである。即ち、移動手段4は、ローラ3の両端部31に各々結合した一対のピニオン10と、回路基板2をその両側から挟むように配置され図に表れていない基盤等に固定された一対のラック11と、上記の回転機50とから構成される。一対のラック11は、互いに平行に移動方向Yに沿って延びており、それぞれがピニオン10に噛み合っている。この状態で、ローラ3の周面32は孔版1から僅かに浮き上がり、孔版1とローラ3との間に適当な間隙が保たれている。回転機50は、そのステータ51とロータ52とが相対的に回転可能であり、軸方向Xに延びる筒状のステータ51の内側をロータ52が回転駆動する。   The moving means 4 and the rotating means 5 share a rotating machine 50 built in the roller 3 as their respective driving sources. Details are as follows. That is, the moving means 4 includes a pair of pinions 10 respectively coupled to both end portions 31 of the roller 3 and a pair of racks 11 arranged so as to sandwich the circuit board 2 from both sides and fixed to a base or the like not shown in the drawing. And the rotating machine 50 described above. The pair of racks 11 extend in parallel with each other along the movement direction Y, and each of the racks 11 meshes with the pinion 10. In this state, the peripheral surface 32 of the roller 3 is slightly lifted from the stencil 1, and an appropriate gap is maintained between the stencil 1 and the roller 3. In the rotating machine 50, the stator 51 and the rotor 52 are relatively rotatable, and the rotor 52 is rotationally driven inside the cylindrical stator 51 extending in the axial direction X.

ロータ52が上記のように回転駆動すると、これに従ってローラ3と共にピニオン10が回転する。ローラ3とピニオン10の回転の反力は、印圧発生手段7に伝達され、印圧発生手段7がスキージ6を孔版1に押し付けることにより力の釣合いが保たれる。この原理は後述する。ピニオン10が回転すれば、ローラ3全体が移動方向Yに沿って図中を右側又は左側へ移動(以下で「往動」又は「復動」と記す。)することになる。同時に、ローラ3は、これ自体が往動又は復動する方向に対して、前転する方向に回転する。   When the rotor 52 is rotationally driven as described above, the pinion 10 is rotated together with the roller 3 accordingly. The reaction force of the rotation of the roller 3 and the pinion 10 is transmitted to the printing pressure generating means 7, and the printing pressure generating means 7 presses the squeegee 6 against the stencil 1 to keep the balance of force. This principle will be described later. When the pinion 10 rotates, the entire roller 3 moves along the movement direction Y to the right or left in the drawing (hereinafter referred to as “forward movement” or “reverse movement”). At the same time, the roller 3 rotates in the forward direction with respect to the direction in which the roller 3 moves forward or backward.

つまり、ローラ3は、往動するとき図4中を時計回りに回転し、復動するとき反時計回りに回転する。このように「前転」するローラ3の周面32の速度(周速度)は、ピニオン10のピッチ円とローラ3の周面32の直径の比率により概ね決定する。図示の例では、ローラ3の周速度は、ローラ3が矢印Y方向へ移動する移動速度の1.2〜1.5倍程度の速さに設定されている。   That is, the roller 3 rotates clockwise in FIG. 4 when moving forward, and rotates counterclockwise when moving backward. Thus, the speed (circumferential speed) of the peripheral surface 32 of the roller 3 that “rotates forward” is generally determined by the ratio of the pitch circle of the pinion 10 to the diameter of the peripheral surface 32 of the roller 3. In the illustrated example, the peripheral speed of the roller 3 is set to a speed of about 1.2 to 1.5 times the moving speed of the roller 3 moving in the arrow Y direction.

回転手段5は、ローラ3の軸方向Xに延び上記のピニオン10を各々貫いてそれぞれの先端33をローラ3の外部へ突出する一対の支軸34と、回転機50のロータ52に発生するトルクを一方(図3右側)の支軸34へ伝達する減速機8と、一対の支軸34のそれぞれの先端33付近からローラ3の径方向へ延出する一対のリンク部材9を備える。一対のリンク部材9は、スキージ6の中央をピン94にて軸支するスキージ支持バー95の両端を各々支持し、スキージ6はピン94を支点として僅かに揺動できる。また、個々の支軸34は、ローラ3及び個々のピニオン10に対して自由に回転できる。   The rotating means 5 includes a pair of support shafts 34 extending in the axial direction X of the roller 3 and penetrating the pinions 10 and projecting from the tip 33 to the outside of the roller 3, and torque generated in the rotor 52 of the rotating machine 50. And a pair of link members 9 extending in the radial direction of the roller 3 from the vicinity of the respective distal ends 33 of the pair of support shafts 34. The pair of link members 9 respectively support both ends of a squeegee support bar 95 that pivotally supports the center of the squeegee 6 with pins 94, and the squeegee 6 can swing slightly with the pin 94 as a fulcrum. Each support shaft 34 can freely rotate with respect to the roller 3 and each pinion 10.

一対の支軸34のそれぞれの先端33付近は、一対の支持片35に各々軸受されている。一対の支持片35は、一対の直動案内軸受36に各々固定されている。更に、一対の直動案内軸受36は、移動方向Yへ延びる一対のガイドレール37にスライド自在に各々係合している。これらの部材は、ローラ3を移動方向Yにスライド自在に支持するブラケット38を構成し、ピニオン10がラック11から離脱することのないよう、ローラ3を真っ直ぐに案内する役割を果たしている。   The vicinity of each tip 33 of the pair of support shafts 34 is respectively supported by a pair of support pieces 35. The pair of support pieces 35 are fixed to a pair of linear motion guide bearings 36, respectively. Further, the pair of linear guide bearings 36 are slidably engaged with a pair of guide rails 37 extending in the moving direction Y, respectively. These members constitute a bracket 38 that slidably supports the roller 3 in the moving direction Y, and plays a role of guiding the roller 3 straight so that the pinion 10 is not detached from the rack 11.

印圧発生手段7は、ローラ3の回転を適度に制動、言い換えればローラ3に負荷を与えるバンドブレーキ17を一対の支持片35の一方に取付けたものである。減速機8、及びバンドブレーキ17は自明の技術であるため詳細な図示を省略し、印圧発生手段7が上記回転の反力を受ける原理のみを説明する。以下に述べる減速機8は、ロータ52に直結したセクタギア91と、このセクタギア91の周囲に配置した複数のプラネタリギア92と、以上のギア91,92を収納するケーシングとから概ね構成されている。 The printing pressure generating means 7 is one in which a band brake 17 that moderately brakes the rotation of the roller 3, in other words, applies a load to the roller 3, is attached to one of the pair of support pieces 35. Since the speed reducer 8 and the band brake 17 are obvious techniques, detailed illustration is omitted, and only the principle that the printing pressure generating means 7 receives the reaction force of the rotation will be described. The speed reducer 8 described below is generally composed of a sector gear 91 directly connected to the rotor 52, a plurality of planetary gears 92 disposed around the sector gear 91, and a casing that houses the gears 91 and 92 .

即ち、回転機50を起動してロータ52が回転すると、この回転が減速機8にて減速されつつローラ3に伝達される。これによりローラ3が図4中で時計回りに正転する過程で、この反力は上記のプラネタリギア92を介して一方(図3右側)の支軸34に伝達され、同支軸34に反時計回りのトルクが発生する。この結果、図4(b)に実線で表したスキージ6が、回路基板2の一面21に重ねられた孔版1に押し付けられる。或いは、ローラ3を図4中で反時計回りに逆転させると、ローラ3の回転の反力として、ロータ52が正転していた時とは逆の時計回りのトルクが一方の支軸34に発生する。この結果、一方のリンク部材9と共にスキージ6が時計回りに旋回する。そして、スキージ6は、図中に仮想線で表した右側の位置まで達したところで、孔版1に突き当たって静止する。 That is, when the rotating machine 50 is started and the rotor 52 rotates, this rotation is transmitted to the roller 3 while being decelerated by the speed reducer 8. As a result, in the process in which the roller 3 rotates clockwise in FIG. 4, this reaction force is transmitted to one of the support shafts 34 (on the right side in FIG. 3) via the planetary gear 92 . Clockwise torque is generated. As a result, the squeegee 6 represented by a solid line in FIG. 4B is pressed against the stencil 1 superimposed on the one surface 21 of the circuit board 2. Alternatively, when the roller 3 is rotated in the counterclockwise direction in FIG. 4, a counterclockwise torque opposite to that when the rotor 52 is rotating forward is applied to one of the support shafts 34 as a reaction force of the rotation of the roller 3. appear. As a result, the squeegee 6 turns clockwise together with the one link member 9. When the squeegee 6 reaches the position on the right side represented by the phantom line in the drawing, it strikes the stencil 1 and stops.

このような回転機50が正転/逆転を繰り返す毎に、スキージ6が以上の旋回動作を繰り返すことになる。また、印圧発生手段7がローラ3に負荷を与えること、言い換えれば、バンドブレーキ17がローラ3の両端部31の何れか一方を締め付けることで得られる摩擦力でローラ3の回転に抵抗を与えることにより、回転機50の反力を積極的に増大し、スキージ6が回路基板2の一面21に押し付けられる力(以下で「印圧」と記す。)を所望に調整することができる。   Each time the rotating machine 50 repeats forward / reverse rotation, the squeegee 6 repeats the above-described turning operation. Further, the printing pressure generating means 7 applies a load to the roller 3, in other words, the band brake 17 provides resistance to the rotation of the roller 3 by a frictional force obtained by tightening one of the both end portions 31 of the roller 3. Accordingly, the reaction force of the rotating machine 50 can be positively increased, and the force (hereinafter referred to as “printing pressure”) by which the squeegee 6 is pressed against the one surface 21 of the circuit board 2 can be adjusted as desired.

尚、以上のスキージ6の動作は一方のリンク部材9にのみ着目して述べたが、実際には、スキージ6は軸方向Xの全長が30〜90cm以上に及ぶ長尺な形状であるため、印圧を実用的な強さに調節するには、スキージ6に撓みや捩じれが生じないように、スキージ支持バー95の両端に均等な力が加わらなければならない。そこで、一対のリンク部材9を機械的に接続することが望ましい。   In addition, although the above operation | movement of the squeegee 6 was described paying attention only to one link member 9, in fact, since the squeegee 6 is a long shape where the full length of the axial direction X reaches 30-90 cm or more, In order to adjust the printing pressure to a practical strength, an equal force must be applied to both ends of the squeegee support bar 95 so that the squeegee 6 does not bend or twist. Therefore, it is desirable to mechanically connect the pair of link members 9.

例えば、一対のセクタギア91を、ブラケット38の一対の支持片35に各々固定し、個々のセクタギア91に噛み合うプラネタリギア92を、個々のリンク部材9の適所に対にして回転自在に各々取付け、これら一対のプラネタリギア92を連結軸93で連結して成る連動機構を付加する。これにより、一方のリンク部材9を一方の支軸34の周りに旋回させる力は、一方のリンク部材9側の各ギア91,92にて、連結軸93を回転されるトルクに変換され、同トルクが、他方のリンク部材9側の各ギア91,92にて、他方のリンク部材9を他方の支軸34の周りに旋回させる力に変換される。   For example, the pair of sector gears 91 are fixed to the pair of support pieces 35 of the bracket 38, and the planetary gears 92 that mesh with the individual sector gears 91 are rotatably attached to the appropriate positions of the individual link members 9, respectively. An interlocking mechanism formed by connecting a pair of planetary gears 92 with a connecting shaft 93 is added. As a result, the force for turning one link member 9 around one support shaft 34 is converted into torque for rotating the connecting shaft 93 by the gears 91 and 92 on the one link member 9 side. The torque is converted into a force for turning the other link member 9 around the other support shaft 34 by the gears 91 and 92 on the other link member 9 side.

また、1個のローラ3に1個の回転機50を内装する例を図示したが、1個のローラ3に2個の回転機50とそれぞれのロータ52に接続する2機の減速機8を内装し、一対の支軸34を個別に駆動しても良い。この場合、2機の回転機50は、それぞれを駆動するためのドライブ回路を電気的に同期させることができるので、上記の連動機構は不要となる。また、回転機50のロータ52の両端から出力を取り出せるようにし、ロータ52の両端にそれぞれ減速機8を個別に接続し、これら2機の減速機にそれぞれ一対の支軸34を接続しても良い。   In addition, although an example in which one rotating machine 50 is mounted on one roller 3 is illustrated, two rotating machines 50 and two speed reducers 8 connected to the respective rotors 52 are provided on one roller 3. A pair of support shafts 34 may be driven individually. In this case, the two rotating machines 50 can electrically synchronize the drive circuits for driving the two rotating machines 50, and thus the above interlocking mechanism is not necessary. Further, output can be taken out from both ends of the rotor 52 of the rotating machine 50, the speed reducer 8 is individually connected to both ends of the rotor 52, and a pair of support shafts 34 is connected to each of the two speed reducers. good.

また、移動手段4が、既述のように、ボールナット40をブラケット38に取付ける一方、ボールナット40に螺合する送りネジ41を、ローラ3の外部に配置したモータ等の駆動源で回転させる装置である場合、上記のピニオン10とラック11は省略できる。また、孔版1は、印刷装置E1の構成、及び使用に際して必須の要素ではないので、省略しても良い。   Further, as described above, the moving means 4 attaches the ball nut 40 to the bracket 38 and rotates the feed screw 41 screwed to the ball nut 40 with a drive source such as a motor arranged outside the roller 3. In the case of a device, the above-described pinion 10 and rack 11 can be omitted. Further, the stencil 1 is not an essential element in the configuration and use of the printing apparatus E1, and may be omitted.

次に、図6乃至図9に基づき、上記の印刷装置E1(印刷ヘッド)を組み込んだ電子部品の製造装置E2を説明する。また、上記の印刷装置E1の移動手段4は、ローラ3に内装された回転機50を主体とする構成に限定されず、ローラ3の外部に設けた駆動源により回転するボールナット等を用いてローラ3を移動させても良い点は、既述の通りである。図6(a)は製造装置E2の正面図であり、図7はその要部の正面である。図8及び図9はそれぞれ製造装置E2の側面図及び平面図である。これらの図面に示されるように、製造装置E2は、印刷装置E1及び孔版1を収納する上部密封室13と、アライメントテーブル12を収納する下部密封室14と、後述の差圧発生手段15とを備える。   Next, an electronic component manufacturing apparatus E2 incorporating the printing apparatus E1 (printing head) will be described with reference to FIGS. Further, the moving means 4 of the printing apparatus E1 is not limited to the configuration mainly composed of the rotating machine 50 built in the roller 3, but a ball nut or the like that is rotated by a driving source provided outside the roller 3 is used. As described above, the roller 3 may be moved. Fig.6 (a) is a front view of the manufacturing apparatus E2, and FIG. 7 is the front of the principal part. 8 and 9 are a side view and a plan view of the manufacturing apparatus E2, respectively. As shown in these drawings, the manufacturing apparatus E2 includes an upper sealing chamber 13 for storing the printing apparatus E1 and the stencil 1, a lower sealing chamber 14 for storing the alignment table 12, and a differential pressure generating means 15 to be described later. Prepare.

アライメントテーブル12は、ワークピース2をこの一面101を上向きにして水平姿勢で位置決めできる。具体的には、ワークピース2を水平姿勢で水平面に沿ってスライドさせ、且つワークピース2を水平姿勢のまま回転させられる。更に、このように位置決めしたワークピース2の位置を、アライメントテーブル12は矢印Zで指した高さ方向に変位させることができる。これを以下で「高さ調整」と記す。   The alignment table 12 can position the workpiece 2 in a horizontal posture with the one surface 101 facing upward. Specifically, the workpiece 2 is slid along the horizontal plane in a horizontal posture, and the workpiece 2 is rotated in a horizontal posture. Furthermore, the alignment table 12 can displace the position of the workpiece 2 positioned in this way in the height direction indicated by the arrow Z. This is referred to as “height adjustment” below.

上部密封室13は、アルミニウム又は鋼製の方形塊から成る基盤230の上面を彫り込んで上記の印刷装置E1及び孔版1が動作可能な凹部231及び下部密封室14を形成し、下部密封室14の上に開閉できる枠体18に取付けられる孔版1(図13を参照)が設けられる。凹部231の底面に、上記一対のガイドレール37を敷設し、同底面から浮き上がらせた位置に、上記一対のラック11を架設している。また、凹部231の底面には挿通孔234が形成されており、下部密封室14内のアライメントテーブル12に、挿通孔234を経て、基盤230の下方に配置された調整機構121が接続している。   The upper sealing chamber 13 is formed by engraving the upper surface of the base 230 made of aluminum or steel square lump to form the recess 231 and the lower sealing chamber 14 in which the printing apparatus E1 and the stencil 1 can operate. A stencil 1 (see FIG. 13) attached to a frame 18 that can be opened and closed is provided. The pair of guide rails 37 are laid on the bottom surface of the recess 231, and the pair of racks 11 are laid at positions raised from the bottom surface. In addition, an insertion hole 234 is formed in the bottom surface of the recess 231, and the adjustment mechanism 121 disposed below the base 230 is connected to the alignment table 12 in the lower sealed chamber 14 through the insertion hole 234. .

調整機構121は、アライメントテーブル12の高さ調整に加え、アライメントテーブル12の位置を水平方向に微調整するものである。基盤230は、調整機構121や差圧発生手段15を内側に収納する架台232に支持されている。アライメントテーブル12と挿通孔234との間は、オーリング等により封止されている。基盤230の上面には、アクリル樹脂製の蓋体233が開閉可能に取り付けられ上部密封室13を形成する。蓋体233は、この内部の真空到達度が50Pas〜100Pasに達しても耐えうる剛性を有する。   The adjustment mechanism 121 finely adjusts the position of the alignment table 12 in the horizontal direction in addition to the height adjustment of the alignment table 12. The base 230 is supported by a mount 232 that houses the adjustment mechanism 121 and the differential pressure generating means 15 inside. A space between the alignment table 12 and the insertion hole 234 is sealed with an O-ring or the like. An acrylic resin lid 233 is attached to the upper surface of the base 230 so as to be openable and closable to form the upper sealed chamber 13. The lid 233 has a rigidity that can withstand even if the degree of vacuum in the interior reaches 50 Pas to 100 Pas.

差圧発生手段15は、後述の孔版1によって上部密封室13と下部密封室14とが互いに隔てられた状態で、上部密封室13と下部密封室14との間に差圧を発生させるものである。例えば、差圧発生手段15は、上部密封室13と下部密封室14との両方に接続した1機の真空ポンプ151と、上部密封室13と下部密封室14にそれぞれ接続した2つのリーク弁152,153と備えるものである。更に、上部密封室13及び下部密封室14と、真空ポンプ151との間を、図6(b)の配管系統図に示すように、上部密封室13にはリーク弁152及びストップ弁155が設けられ、下部密封室14にはリーク弁153及びストップ弁154が接続され、これらの弁の操作を組み合わせることで、上部密封室13及び/又は下部密封室14に自由に真空を発生でき、可塑性材料の切断やディスペンスを行なうことができる。   The differential pressure generating means 15 generates a differential pressure between the upper sealed chamber 13 and the lower sealed chamber 14 in a state where the upper sealed chamber 13 and the lower sealed chamber 14 are separated from each other by a stencil 1 described later. is there. For example, the differential pressure generating means 15 includes one vacuum pump 151 connected to both the upper sealed chamber 13 and the lower sealed chamber 14, and two leak valves 152 connected to the upper sealed chamber 13 and the lower sealed chamber 14, respectively. , 153. Further, a leak valve 152 and a stop valve 155 are provided in the upper sealed chamber 13 between the upper sealed chamber 13 and the lower sealed chamber 14 and the vacuum pump 151 as shown in the piping system diagram of FIG. In addition, a leak valve 153 and a stop valve 154 are connected to the lower sealing chamber 14, and by combining the operations of these valves, a vacuum can be generated freely in the upper sealing chamber 13 and / or the lower sealing chamber 14, and the plastic material Can be cut and dispensed.

次に、上記のアライメントテーブル12に位置決めされる回路基板2に、適量の可塑性材料を押込充填するようにした電子部品の製造方法について説明する。また、当該方法で取り扱える可塑性材料には、フィラーを混入したエポキシ樹脂等の液状樹脂(封止用)、エポキシ樹脂をバインダーとして銅又は銀の含有率が80パーセント以上の電導性ペースト/エポキシ樹脂に銅又はシリカゲル等のフィラーを混入した非電導性ペースト(穴埋め用)、半田ペースト(バンプ形成用)、及びポリイミド樹脂/液状レジスト(ワークピースの絶縁用)が少なくとも含まれる。 Next, a method for manufacturing an electronic component in which the circuit board 2 positioned on the alignment table 12 is filled with an appropriate amount of the plastic material m will be described. In addition, the plastic materials that can be handled by the method include liquid resins such as epoxy resins mixed with filler (for sealing), and conductive paste / epoxy resins having a copper or silver content of 80% or more with an epoxy resin as a binder. A non-conductive paste (for filling holes), a solder paste (for forming bumps), and a polyimide resin / liquid resist (for insulating a workpiece) mixed with a filler such as copper or silica gel are included.

先ずは、図10及び図11に示すように、アライメントテーブル12上に回路基板2を位置決めする。回路基板2の位置決めは、アライメントテーブル12に設けられた図に表示されていない位置決めピンで行なう。この状態で、回路基板2が置かれる雰囲気が大気圧であるか、真空であるかは特に問わない。また、孔版1を回路基板2に重ね合わせても良い。孔版1は、回路基板2の一面21の適所がフィルム等にて予めラミネート(被覆)されている場合には不要であるが、以下では、一面101及び他面102を貫く通孔パターン(開口部)103を有する孔版1を適用した例を説明する。 First, as shown in FIGS. 10 and 11, the circuit board 2 is positioned on the alignment table 12. Positioning of the circuit board 2 is performed by positioning pins that are not displayed in the figures provided in the alignment table 12. In this state, it does not matter whether the atmosphere in which the circuit board 2 is placed is atmospheric pressure or vacuum. Further, the stencil 1 may be superposed on the circuit board 2. The stencil plate 1 is not necessary when an appropriate position of the one surface 21 of the circuit board 2 is previously laminated (coated) with a film or the like, but in the following, a through-hole pattern (opening portion) penetrating the one surface 101 and the other surface 102 is used. ) An example in which the stencil plate 1 having 103 is applied will be described.

続いて、ローラ3を、例えば図10に表したように、孔版1の近傍に待機させる。この状態で、図11(a)に示すように、ローラ3の周面32又は孔版1の一面101に可塑性材料mを供給する。そして、ローラ3の周面32を孔版1の一面101に近接しつつ、ローラ3を孔版1の一面101に沿って往動させると同時に、ローラ3が移動する移動方向Yに対して前転する方向に、ローラ3を回転機50により回転させる。これにより、ローラ3の周面32に付着した可塑性材料mは、往動するローラ3と孔版1との間に押し込まれる。 Subsequently, the roller 3, as shown in FIG. 10, for example, to stand in the vicinity of the stencil 1. In this state, as shown in FIG. 11A, the plastic material m is supplied to the circumferential surface 32 of the roller 3 or one surface 101 of the stencil 1. Then, the roller 3 is moved forward along the one surface 101 of the stencil 1 while the peripheral surface 32 of the roller 3 is brought close to the one surface 101 of the stencil 1, and at the same time, the roller 3 moves forward with respect to the moving direction Y in which the roller 3 moves. The roller 3 is rotated by the rotating machine 50 in the direction. Thereby, the plastic material m adhering to the peripheral surface 32 of the roller 3 is pushed in between the moving roller 3 and the stencil 1.

この過程で、ローラ3に内装した回転機50の発生する熱が、ローラ3の周面32に付着した可塑性材料mまで伝導すると、可塑性材料mの粘度が温度の影響を受けて変化するという不都合がある。そこで、図12(a)に示すように、ローラ3を、回転機50のロータ52(同図で省略)を収納するインナケーシング53と、インナケーシング53の周りに約2mmの空隙54を設けて配置される筒状アウタケーシング55とを備える2重構造としても良い。これにより、回転機50の発生する熱が、ローラ3の周面32を経て可塑性材料mまで伝導するのを阻止できる。また、回転機50のロータ52を回転させると、インナケーシング53と共に筒状アウタケーシング55が回転する。この回転方向は、ローラ3の全体が孔版1の上面に沿って移動する移動方向に対して前転する方向である。   In this process, if the heat generated by the rotating machine 50 built in the roller 3 is conducted to the plastic material m attached to the peripheral surface 32 of the roller 3, the viscosity of the plastic material m changes under the influence of temperature. There is. Therefore, as shown in FIG. 12A, the roller 3 is provided with an inner casing 53 that houses the rotor 52 (not shown) of the rotating machine 50, and a gap 54 of about 2 mm around the inner casing 53. It is good also as a double structure provided with the cylindrical outer casing 55 arrange | positioned. Thereby, it is possible to prevent the heat generated by the rotating machine 50 from being conducted to the plastic material m through the peripheral surface 32 of the roller 3. Further, when the rotor 52 of the rotating machine 50 is rotated, the cylindrical outer casing 55 is rotated together with the inner casing 53. This rotational direction is a direction that rolls forward with respect to the moving direction in which the entire roller 3 moves along the upper surface of the stencil 1.

更に、真空ポンプ151によって空隙54へ空気を誘引するよう構成しても良い。この場合、図12(b)に示すように、ローラ3の両端部31に、空隙54に通じる複数の通気孔57を形成すると共に、ローラ3の一対の支軸34に中空軸をそれぞれ適用し、これらの中空軸の内孔58を経て空隙54を既述の真空ポンプ151に接続する。真空ポンプ151を起動すると、複数の通気孔57からローラ3の内部へ空気が導入され、更に、この空気が真空ポンプ151によってローラ3の外へ排出される。これにより、ローラ3と回転機50を積極的に冷却できるので、熱可塑性材料mの粘度を確実に安定させられる。また、ローラ3を回転させない時には、回転機50が余計な熱を放出しないように、回転機50に供給される電力を完全に遮断することが好ましい。   Further, the vacuum pump 151 may be configured to attract air to the gap 54. In this case, as shown in FIG. 12 (b), a plurality of vent holes 57 communicating with the gap 54 are formed at both end portions 31 of the roller 3, and a hollow shaft is applied to the pair of support shafts 34 of the roller 3. The air gap 54 is connected to the above-described vacuum pump 151 through the inner holes 58 of these hollow shafts. When the vacuum pump 151 is activated, air is introduced into the roller 3 from the plurality of air holes 57, and the air is further discharged out of the roller 3 by the vacuum pump 151. Thereby, since the roller 3 and the rotary machine 50 can be positively cooled, the viscosity of the thermoplastic material m can be reliably stabilized. Further, when the roller 3 is not rotated, it is preferable to completely cut off the electric power supplied to the rotating machine 50 so that the rotating machine 50 does not release extra heat.

また、ローラ3の周面32に付着した可塑性材料mが、ローラ3と孔版1との間に良好に押し込まれるように、ローラ3の周面32にゴム製のライニング(被覆材)を設ける等して、可塑性材料mのローラ3への粘着を促進しても良い。また、ゴム製品はその磨耗が比較的早いので、同ライニングを交換するに際して、ローラ3から筒状アウタケーシング55だけを取り外せるという観点からも、ローラ3を上記のような2重構造にすることが好ましい。   In addition, a rubber lining (covering material) is provided on the peripheral surface 32 of the roller 3 so that the plastic material m attached to the peripheral surface 32 of the roller 3 is favorably pressed between the roller 3 and the stencil 1. Then, adhesion of the plastic material m to the roller 3 may be promoted. Further, since the rubber product wears relatively quickly, the roller 3 can be made to have a double structure as described above from the viewpoint that only the cylindrical outer casing 55 can be removed from the roller 3 when replacing the lining. preferable.

続いて、ローラ3が回転しながら孔版1の上方を通過する過程で、スキージ6が、回転機50がローラ3を回転させるトルクの反力により、孔版1の一面101に押し付けられる。このため、上記のように往動するローラ3と孔版1との間に押し込まれた可塑性材料mは、ローラ3の往動する向きに対して後方へ逃げようとすることがスキージ6によって規制される。従って、往動するローラ3と孔版1との間で適度に加圧されながら、通孔パターン103内へ供給される(加圧供給)。これにより、可塑性材料mは、回路基板2の一面21に確実に押込充填されることになる。上記のように可塑性材料mが加圧される程度は、可塑性材料mの粘度等を勘案して上記の印圧の調整、並びに、スキージ6の移動速度、スキージ6の角度、樹脂の接触長さ、及びローラ3の回転速度の設定/調整を行なうことにより所望に設定することができる。   Subsequently, while the roller 3 rotates and passes over the stencil 1, the squeegee 6 is pressed against the one surface 101 of the stencil 1 by the reaction force of the torque that causes the rotating machine 50 to rotate the roller 3. For this reason, the squeegee 6 restricts the plastic material m pushed between the roller 3 moving forward and the stencil 1 as described above to escape backward in the direction in which the roller 3 moves forward. The Accordingly, the sheet is supplied into the through-hole pattern 103 while being pressurized appropriately between the roller 3 and the stencil 1 moving forward (pressure supply). Thereby, the plastic material m is surely pushed and filled into the one surface 21 of the circuit board 2. The degree to which the plastic material m is pressed as described above is adjusted for the above-mentioned printing pressure in consideration of the viscosity of the plastic material m, the moving speed of the squeegee 6, the angle of the squeegee 6, and the contact length of the resin. And setting / adjustment of the rotation speed of the roller 3 can be set as desired.

尚、孔版1を省略する場合、回路基板2の一面21にスキージ6を直接に接触させても良いが、上記の押え板又は押え枠に印刷エリアを広く開口し、基板上の樹脂を残さず受け渡す役割を担わせる。また、スキージ6はローラ3の往動又は復動に関係なく、所定の均し効果を達成できるように、図11に例示したような上下に対称な形状として良いが、両縁部(図中で上下部)の形状を非対称にしても良い。この場合、ローラ3が往動又は復動するときに可塑性材料mを往動側では、押込充填用で、スキージ6の角度と接触長さを設定し、復動側は、表面を平坦にするか凸状にするかで角度と長さを決める。   When the stencil 1 is omitted, the squeegee 6 may be brought into direct contact with the one surface 21 of the circuit board 2, but a wide print area is opened in the above-mentioned holding plate or holding frame, leaving no resin on the board. Have a hand-over role. Further, the squeegee 6 may have a vertically symmetrical shape as illustrated in FIG. 11 so that a predetermined leveling effect can be achieved regardless of the forward or backward movement of the roller 3, but both edges (in the drawing) The upper and lower portions) may be asymmetrical. In this case, when the roller 3 moves forward or backward, the plastic material m is used for indentation filling on the forward side, and the angle and contact length of the squeegee 6 are set, and the reverse side makes the surface flat. The angle and length are decided by making it convex or convex.

次に、電子部品の他の製造方法について説明する。先ずは、図13に示すように、基盤230におけるアライメントテーブル12の真上に対応する位置に、枠体18が設けられており、枠体18に孔版1を水平姿勢で位置決めする。一方、上記の要領にてアライメントテーブル12に回路基板2を水平姿勢で位置決めする。この回路基板2を適切に高さ調整することによりに、孔版1の他面102に回路基板2の一面21を近接させる。   Next, another method for manufacturing an electronic component will be described. First, as shown in FIG. 13, the frame 18 is provided at a position corresponding to the base 230 directly above the alignment table 12, and the stencil 1 is positioned in a horizontal posture on the frame 18. On the other hand, the circuit board 2 is positioned on the alignment table 12 in a horizontal posture in the above manner. By appropriately adjusting the height of the circuit board 2, the one surface 21 of the circuit board 2 is brought close to the other surface 102 of the stencil 1.

続いて、実施例3として述べた方法を適用して、真空ポンプ151により上部密封室13と下部密封室14とを同時に真空にする。この過程で、可塑性材料mに大気圧下で潜在していたボイドを完全に排出(脱泡)できる。可塑性材料mを孔版1の通孔パターン103に加圧供給することにより、回路基板2に可塑性材料mを押込充填する。更に、孔版1によって隔てられた上部密封室13と下部密封室14との間に、上記の差圧発生手段15を起動させて差圧を発生させる。   Subsequently, the method described as the third embodiment is applied, and the upper sealed chamber 13 and the lower sealed chamber 14 are simultaneously evacuated by the vacuum pump 151. In this process, the voids hidden in the plastic material m under atmospheric pressure can be completely discharged (defoamed). By pressing and supplying the plastic material m to the through-hole pattern 103 of the stencil plate 1, the circuit board 2 is pressed and filled with the plastic material m. Further, the differential pressure generating means 15 is activated between the upper sealed chamber 13 and the lower sealed chamber 14 separated by the stencil 1 to generate a differential pressure.

そして、図6(b)の配管系統図で示すストップ弁155を閉じ、リーク弁152を開ければ上部密封室13の圧力が上昇する。これにより、可塑性材料mが孔版1の通孔パターン103から下方へ押し出されようとする。更に、アライメントテーブル12を僅かに下降させれば、図13に示すように、可塑性材料mは、通孔パターン103に残ることなく、回路基板2へ良好に転写する。この後、上部密封室13と下部密封室14とを大気圧に戻し、図8に示すように蓋体233を開き、更に枠体18及び孔版1を開き、回路基板2を製造装置E2から取り外せば一連の製造工程は終了する。   If the stop valve 155 shown in the piping system diagram of FIG. 6B is closed and the leak valve 152 is opened, the pressure in the upper sealed chamber 13 increases. Thereby, the plastic material m tends to be pushed out from the through hole pattern 103 of the stencil plate 1. Further, if the alignment table 12 is slightly lowered, the plastic material m is transferred to the circuit board 2 satisfactorily without remaining in the through hole pattern 103 as shown in FIG. Thereafter, the upper sealed chamber 13 and the lower sealed chamber 14 are returned to atmospheric pressure, the cover 233 is opened as shown in FIG. 8, the frame 18 and the stencil 1 are opened, and the circuit board 2 can be removed from the manufacturing apparatus E2. A series of manufacturing processes is completed.

次に、電子部品の更に他の製造方法について説明する。図14に示すように、枠体18に孔版1を位置決めし、アライメントテーブル12に回路基板2を位置決めする点は実施例4と同様である。更に、回路基板2を適切に高さ調整することによりに、孔版1の他面102に回路基板2の一面21を近接させ、真空ポンプ151により上部密封室13と下部密封室14とを同時に真空にした状態で、回路基板2に可塑性材料mを押込充填する点も実施例4と同様である。   Next, still another method for manufacturing an electronic component will be described. As shown in FIG. 14, the point that the stencil 1 is positioned on the frame 18 and the circuit board 2 is positioned on the alignment table 12 is the same as in the fourth embodiment. Further, by appropriately adjusting the height of the circuit board 2, the one surface 21 of the circuit board 2 is brought close to the other surface 102 of the stencil 1, and the upper sealed chamber 13 and the lower sealed chamber 14 are simultaneously vacuumed by the vacuum pump 151. In this state, the point that the circuit board 2 is filled with the plastic material m is the same as in the fourth embodiment.

続いて、孔版1を隔てて差圧を発生させる。図6(b)の配管系統図で示すストップ弁154を閉じ、リーク弁153を僅かに開放すれば、下部密封室14の内圧が上昇するので、孔版1の他面102側の気圧が一面101側より高くなる。これにより、可塑性材料mと通孔パターン103の周縁との間を、下部密封室14の僅かな空気が上方へ通り抜けようとするので、可塑性材料mが通孔パターン103の周縁から良好に切断される。孔版1の剛性が高く孔版1と回路基板2の間に空気が進入するのが阻止される場合には、アライメントテーブル12の高さ調整を行うことにより、回路基板2を孔版1の下方へ離反させることで、回路基板2を孔版1との間の隙間を広げても良い。   Subsequently, a differential pressure is generated across the stencil 1. If the stop valve 154 shown in the piping system diagram of FIG. 6B is closed and the leak valve 153 is slightly opened, the internal pressure of the lower sealed chamber 14 increases, so the pressure on the other surface 102 side of the stencil 1 is one surface 101. Higher than the side. As a result, a slight amount of air in the lower sealing chamber 14 tends to pass upward between the plastic material m and the peripheral edge of the through hole pattern 103, so that the plastic material m is well cut from the peripheral edge of the through hole pattern 103. The When the stencil 1 has high rigidity and air is prevented from entering between the stencil 1 and the circuit board 2, the height of the alignment table 12 is adjusted so that the circuit board 2 is separated downward from the stencil 1. By doing so, the gap between the circuit board 2 and the stencil 1 may be widened.

尚、実施例4,5に記した上部密封室13と下部密封室14とは、必ずしも真空にする必要はなく、孔版1の一面101側の気圧、又は他面102側の気圧の少なくとも一方を、大気圧であっても良い。また、可塑性材料mは、回路基板2を絶縁封止する合成樹脂であっても良い。或いは、可塑性材料mは、半田バンプを形成する半田ペーストであっても良い。   The upper sealed chamber 13 and the lower sealed chamber 14 described in the fourth and fifth embodiments are not necessarily evacuated, and at least one of the atmospheric pressure on the one surface 101 side of the stencil 1 or the atmospheric pressure on the other surface 102 side is used. Or atmospheric pressure. The plastic material m may be a synthetic resin that insulates and seals the circuit board 2. Alternatively, the plastic material m may be a solder paste for forming solder bumps.

本発明は、ワークピース上に表面実装された電子部品の樹脂封止、ワークピースへの半田バンプの形成、回路基板の穴埋め、回路基板の樹脂コーティング、ディスプレー分野の各種製造工程等に適用できる。   The present invention is applicable to resin sealing of electronic components surface-mounted on a workpiece, formation of solder bumps on the workpiece, filling of a circuit board, resin coating of a circuit board, various manufacturing processes in the display field, and the like.

本発明の実施形態に係る電子部品の印刷装置の原理を説明する概念図。The conceptual diagram explaining the principle of the printing apparatus of the electronic component which concerns on embodiment of this invention. (a)本発明の実施形態に係る電子部品の印刷装置の作動の一例を説明する概念図、(b)はその圧力を充填力として縦軸に表し、ローラ及びスキージのそれぞれ位置に対応する距離を横軸に表したグラフであり、(c)は作動の他例を説明する概念図、(d)はその圧力を充填力として縦軸に表し、ローラ及びスキージのそれぞれ位置に対応する距離を横軸に表したグラフ。(A) The conceptual diagram explaining an example of the operation | movement of the printing apparatus of the electronic component which concerns on embodiment of this invention, (b) expresses the pressure on a vertical axis | shaft as a filling force, and the distance corresponding to each position of a roller and a squeegee (C) is a conceptual diagram for explaining another example of the operation, (d) is a graph showing the pressure as a filling force on the vertical axis, and the distance corresponding to each position of the roller and the squeegee. Graph represented on the horizontal axis. 本発明の実施例1の電子部品の印刷装置の一部を破断した正面図。The front view which fractured | ruptured a part of printing apparatus of the electronic component of Example 1 of this invention. (a)は本発明の実施例1の電子部品の印刷装置の側面図、(b)は図3のA−A断面図。FIG. 4A is a side view of the electronic component printing apparatus according to the first embodiment of the present invention, and FIG. 本発明の実施例1の電子部品の印刷装置の要部を示す概念図。1 is a conceptual diagram illustrating a main part of a printing apparatus for electronic components according to a first embodiment of the present invention. (a)は本発明の実施例2の電子部品の製造装置の正面図、(b)はその配管系統図。(A) is a front view of the manufacturing apparatus of the electronic component of Example 2 of this invention, (b) is the piping system | strain diagram. 本発明の実施例2の電子部品の製造装置の要部の正面図。The front view of the principal part of the manufacturing apparatus of the electronic component of Example 2 of this invention. 本発明の実施例2の電子部品の製造装置の側面図。The side view of the manufacturing apparatus of the electronic component of Example 2 of this invention. 本発明の実施例2の電子部品の製造装置の平面図。The top view of the manufacturing apparatus of the electronic component of Example 2 of this invention. 本発明の実施例3の電子部品の製造方法の工程を表した概念図。The conceptual diagram showing the process of the manufacturing method of the electronic component of Example 3 of this invention. (a)は本発明の実施例3の電子部品の製造方法の原理を表した概念図、(b)はその他の例を表した概念図。(A) is a conceptual diagram showing the principle of the manufacturing method of the electronic component of Example 3 of this invention, (b) is a conceptual diagram showing the other example. (a)は本発明の実施例3の電子部品の製造方法に適用したローラの変形例を示す断面図、(b)はその端面図。(A) is sectional drawing which shows the modification of the roller applied to the manufacturing method of the electronic component of Example 3 of this invention, (b) is the end elevation. 本発明の実施例4の電子部品の製造方法の工程を表した概念図。The conceptual diagram showing the process of the manufacturing method of the electronic component of Example 4 of this invention. 本発明の実施例5の電子部品の製造方法の工程を表した概念図。The conceptual diagram showing the process of the manufacturing method of the electronic component of Example 5 of this invention. (a)は従来例のスキージによる電子部品の製造工程を表した概念図、(b)はその仕上がりを表した概念図。(A) is the conceptual diagram showing the manufacturing process of the electronic component by the squeegee of a prior art example, (b) is the conceptual diagram showing the finish. (a)は、従来例の装置による電子部品の製造工程の一例を表した概念図(b)はその他例を表した概念図。(A) is the conceptual diagram showing an example of the manufacturing process of the electronic component by the apparatus of a prior art example, (b) is the conceptual diagram showing the other example. (a)は従来例の孔版による電子部品の製造工程を表した概念図、(b)はその他の例を表した概念図。(A) is a conceptual diagram showing the manufacturing process of the electronic component by the stencil of a prior art example, (b) is a conceptual diagram showing the other example.

符号の説明Explanation of symbols

1:孔版
101:一面
102:他面
103:通孔パターン(開口部)
2:ワークピース(回路基板、表面実装部)
21:一面
3:ローラ
31:両端部
32:周面
33:先端
34:支軸
35:支持片
36:直動案内軸受
37:ガイドレール
38:ブラケット
4:移動手段
40:ボールナット
41:送りネジ
5:回転手段
50:回転機
501,502:タイミングプーリ
503:タイミングベルト
51:ステータ
52:ロータ
53:インナケーシング
54:空隙
55:アウタケーシング
57:通気孔
58:内孔
6:スキージ
7:印圧発生手段
70,72:滑節
71:作動ロッド
8:減速機
9:リンク部材
91:セクタギア
92:プラネタリギア
93:連結軸
94:ピン
95:スキージ支持バー
10:ピニオン
11:ラック
12:アライメントテーブル
121:調整機構
13:上部密封室
14:下部密封室
15:差圧発生手段
151:真空ポンプ
152,153:リーク弁
154,155:ストップ弁
17:バンドブレーキ
18:枠体
230:基盤
231:凹部
232:架台
233:蓋体
234:挿通孔
E1:印刷装置
E2:製造装置
m:可塑性材料
P1,P3:位置
P2,P4:接点位置
X:軸方向
Y,Z:矢印、移動方向
1: Stencil 101: One side 102: Other side 103: Through hole pattern (opening)
2: Workpiece (circuit board, surface mount part)
21: One surface 3: Roller 31: Both ends 32: Peripheral surface 33: Tip 34: Support shaft 35: Support piece 36: Linear motion guide bearing 37: Guide rail 38: Bracket 4: Moving means 40: Ball nut 41: Feed screw 5: Rotating means 50: Rotating machine 501, 502: Timing pulley 503: Timing belt 51: Stator 52: Rotor 53: Inner casing 54: Air gap 55: Outer casing 57: Vent hole 58: Inner hole 6: Squeegee 7: Printing pressure Generation means 70, 72: Sliding joint 71: Actuating rod 8: Reduction gear 9: Link member 91: Sector gear 92: Planetary gear 93: Connection shaft 94: Pin 95: Squeegee support bar 10: Pinion 11: Rack 12: Alignment table 121 : Adjustment mechanism 13: Upper sealed chamber 14: Lower sealed chamber 15: Differential pressure generating means 151 Vacuum pumps 152, 153: Leak valves 154, 155: Stop valve 17: Band brake 18: Frame body 230: Base 231: Recess 232: Base 233: Lid 234: Insertion hole E1: Printing device E2: Manufacturing device m: Plasticity Materials P1, P3: Position P2, P4: Contact position X: Axial direction Y, Z: Arrow, moving direction

Claims (6)

水平姿勢で位置決めされるワークピースに上面及び下面を貫く通孔パターンを有する孔版を重ね合わせて前記ワークピースに前記孔版の下面を近接させるステップと、
前記孔版の通孔パターンに可塑性材料を加圧供給するステップと、
回転機によって回転されるローラを前記ワークピースの一面に沿って移動させると同時に、前記ローラが移動する方向に対して前進する方向に前記ローラを回転させ、前記ローラの周面に沿って旋回するスキージを、前記回転機が前記ローラを回転させるトルクの反力によって前記ワークピースに押し付けることにより前記可塑性材料を押込充填するステップと、
前記孔版の上面側の気圧が前記下面側より高くなるように、前記孔版を隔てて差圧を発生させるステップと、
を含むことを特徴とする電子部品の製造方法。
Superimposing a stencil having a through hole pattern penetrating the upper surface and the lower surface on a workpiece positioned in a horizontal posture to bring the lower surface of the stencil close to the workpiece;
A step you pressure supplying plastic material to the through hole pattern of the stencil,
A roller rotated by a rotating machine is moved along one surface of the workpiece, and at the same time, the roller is rotated in a forward direction with respect to a direction in which the roller moves, and is swung along a circumferential surface of the roller. a step of squeegee, the rotating machine is pushed filled pre Symbol thermoplastic material by pressing the workpiece by the reaction force of the torque for rotating the roller,
Generating a differential pressure across the stencil so that the air pressure on the upper surface side of the stencil is higher than the lower surface side;
The manufacturing method of the electronic component characterized by including.
ワークピースを高さ調整可能なアライメントテーブルに水平姿勢で位置決めするステップと、
前記アライメントテーブルに位置決めされた前記ワークピースの上方に、上面及び下面を貫く通孔パターンを有する孔版を水平姿勢で支持するステップと、
前記アライメントテーブルの高さ調整を行うことにより、前記ワークピースに前記孔版の下面を近接させるステップと、
前記孔版の通孔パターンに可塑性材料を加圧供給するステップと、
回転機によって回転されるローラを前記ワークピースの一面に沿って移動させると同時に、前記ローラが移動する方向に対して前進する方向に前記ローラを回転させ、前記ローラの周面に沿って旋回するスキージを、前記回転機が前記ローラを回転させるトルクの反力によって前記ワークピースに押し付けることにより前記可塑性材料を押込充填するステップと、
前記孔版の下面側の気圧が前記上面側より高くなるように、前記孔版を隔てて差圧を発生させるステップと、
を含むことを特徴とする電子部品の製造方法。
Positioning the workpiece in a horizontal position on a height-adjustable alignment table;
Supporting a stencil having a through hole pattern penetrating the upper surface and the lower surface in a horizontal position above the workpiece positioned on the alignment table;
Adjusting the height of the alignment table to bring the lower surface of the stencil closer to the workpiece; and
A step you pressure supplying plastic material to the through hole pattern of the stencil,
A roller rotated by a rotating machine is moved along one surface of the workpiece, and at the same time, the roller is rotated in a forward direction with respect to a direction in which the roller moves, and is swung along a circumferential surface of the roller. a step of squeegee, the rotating machine is pushed filled pre Symbol thermoplastic material by pressing the workpiece by the reaction force of the torque for rotating the roller,
Generating a differential pressure across the stencil so that the pressure on the lower surface side of the stencil is higher than the upper surface side;
The manufacturing method of the electronic component characterized by including.
前記アライメントテーブルの高さ調整を行うことにより、前記ワークピースを前記孔版の下方へ離反させるステップを含む請求項2に記載の電子部品の製造方法。   The method of manufacturing an electronic component according to claim 2, further comprising a step of separating the workpiece downward from the stencil by adjusting a height of the alignment table. 前記孔版の上面側の気圧又は前記下面側の気圧の少なくとも一方を大気圧又は真空圧に設定する請求項1乃至3の何れかに記載の電子部品の製造方法。   4. The method of manufacturing an electronic component according to claim 1, wherein at least one of the atmospheric pressure on the upper surface side of the stencil and the atmospheric pressure on the lower surface side is set to atmospheric pressure or vacuum pressure. 前記可塑性材料が前記ワークピースを絶縁封止する樹脂である請求項1乃至4の何れかに記載の電子部品の製造方法。   The method for manufacturing an electronic component according to claim 1, wherein the plastic material is a resin for insulatingly sealing the workpiece. 前記可塑性材料が半田バンプを形成する半田ペーストである請求項1乃至4の何れかに記載の電子部品の製造方法。 Method of manufacturing an electronic component according to claim 1乃Optimum 4 wherein the plastic material is a solder paste to form solder bumps.
JP2008074937A 2004-01-14 2008-03-24 Manufacturing method of electronic parts Active JP4644266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074937A JP4644266B2 (en) 2004-01-14 2008-03-24 Manufacturing method of electronic parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004007002 2004-01-14
JP2008074937A JP4644266B2 (en) 2004-01-14 2008-03-24 Manufacturing method of electronic parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004329980A Division JP4152375B2 (en) 2004-01-14 2004-11-15 Electronic component printing device

Publications (2)

Publication Number Publication Date
JP2008205489A JP2008205489A (en) 2008-09-04
JP4644266B2 true JP4644266B2 (en) 2011-03-02

Family

ID=35348903

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008074933A Active JP4644265B2 (en) 2004-01-14 2008-03-24 Manufacturing method of electronic parts
JP2008074937A Active JP4644266B2 (en) 2004-01-14 2008-03-24 Manufacturing method of electronic parts
JP2008074930A Active JP4644264B2 (en) 2004-01-14 2008-03-24 Electronic component manufacturing equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008074933A Active JP4644265B2 (en) 2004-01-14 2008-03-24 Manufacturing method of electronic parts

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008074930A Active JP4644264B2 (en) 2004-01-14 2008-03-24 Electronic component manufacturing equipment

Country Status (2)

Country Link
JP (3) JP4644265B2 (en)
CN (2) CN101195295A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120282767A1 (en) * 2011-05-05 2012-11-08 Stmicroelectronics Pte Ltd. Method for producing a two-sided fan-out wafer level package with electrically conductive interconnects, and a corresponding semiconductor package
CN102909953A (en) * 2011-08-01 2013-02-06 浙江工正科技发展有限公司 PCB (Printed Circuit Board) printer
CN102615419B (en) * 2012-04-06 2014-04-16 江苏科技大学 Dry cooling device and cooling method for friction stir welding seam
CN103287083A (en) * 2013-06-25 2013-09-11 苏州金科信汇光电科技有限公司 Horizontal walking connection plate device of full-automation wheel-type printer
CN107031180B (en) * 2017-04-11 2019-02-26 京东方科技集团股份有限公司 A kind of ink-jet printing apparatus and its method for organic encapsulation layer
GB2582635B (en) * 2019-03-28 2021-12-29 Archipelago Tech Group Ltd Device, method, and assembly for loading nozzles with fluid
CN114851697B (en) * 2022-05-30 2024-04-12 曲面超精密光电(深圳)有限公司 Slit roller selective printing device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001030647A (en) * 1999-07-19 2001-02-06 Fujitsu General Ltd Mask structure for printing
JP2001160684A (en) * 1999-12-01 2001-06-12 Matsushita Electric Ind Co Ltd Apparatus and method for manufacturing multilayer wiring board
JP2002280734A (en) * 2001-03-21 2002-09-27 Matsushita Electric Ind Co Ltd Paste filling method and paste filling device
JP2003205594A (en) * 2002-01-15 2003-07-22 Noda Screen:Kk Vacuum printing equipment
JP2003257654A (en) * 2001-12-25 2003-09-12 Hitachi Ltd Image display device and method of manufacturing the device
JP2003265210A (en) * 2002-03-18 2003-09-24 Mine Shokai:Kk Pendant base body for adorning by combination
JP2003300302A (en) * 2002-04-09 2003-10-21 Newlong Seimitsu Kogyo Co Ltd Screen printing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244856A (en) * 1988-03-26 1989-09-29 Sony Corp Thick film screen printing machine
US5232651A (en) * 1989-12-11 1993-08-03 Japan Rec Co., Ltd. Method of sealing electric parts mounted on electric wiring board with resin composition
JPH08168203A (en) * 1994-12-13 1996-06-25 Meidensha Corp Rotating electric machine
JPH1034878A (en) * 1996-07-17 1998-02-10 Saitama Nippon Denki Kk Cream solder printing squeegee device and printing method
JP3824292B2 (en) * 2000-02-21 2006-09-20 千住金属工業株式会社 High viscosity material printing equipment
JP2001232765A (en) * 2000-02-22 2001-08-28 Ishikawa Seisakusho Ltd Apparatus for inspecting printed matter in corrugated board box manufacturing machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001030647A (en) * 1999-07-19 2001-02-06 Fujitsu General Ltd Mask structure for printing
JP2001160684A (en) * 1999-12-01 2001-06-12 Matsushita Electric Ind Co Ltd Apparatus and method for manufacturing multilayer wiring board
JP2002280734A (en) * 2001-03-21 2002-09-27 Matsushita Electric Ind Co Ltd Paste filling method and paste filling device
JP2003257654A (en) * 2001-12-25 2003-09-12 Hitachi Ltd Image display device and method of manufacturing the device
JP2003205594A (en) * 2002-01-15 2003-07-22 Noda Screen:Kk Vacuum printing equipment
JP2003265210A (en) * 2002-03-18 2003-09-24 Mine Shokai:Kk Pendant base body for adorning by combination
JP2003300302A (en) * 2002-04-09 2003-10-21 Newlong Seimitsu Kogyo Co Ltd Screen printing method

Also Published As

Publication number Publication date
JP4644265B2 (en) 2011-03-02
CN1695940A (en) 2005-11-16
CN101195295A (en) 2008-06-11
JP2008211226A (en) 2008-09-11
JP4644264B2 (en) 2011-03-02
JP2008219023A (en) 2008-09-18
CN100460208C (en) 2009-02-11
JP2008205489A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4152375B2 (en) Electronic component printing device
JP4644266B2 (en) Manufacturing method of electronic parts
US6506332B2 (en) Filling method
US6454154B1 (en) Filling device
JP2003535465A (en) Filling device
US6519824B2 (en) Electric wiring forming system
KR101215813B1 (en) Method of manufacturing multi-layer circuit board having through via hole filled with conductive material, apparatus for filling through via hole with conductive material, and method of using the same
JP3885205B2 (en) Screen printing machine
TW201519718A (en) Paste printing apparatus and paste printing method
WO2001093647A2 (en) Filling method
JP5464087B2 (en) Conductive material filling equipment
TWI478253B (en) Micro-bump forming device
WO2021210211A1 (en) Method for manufacturing printed board
JP5560779B2 (en) Method for manufacturing multilayer circuit board with through via filled with conductive material
KR100797710B1 (en) Squeegee device for printing variety solder paste
JP4195757B2 (en) Screen printing method and printing machine
CN210351802U (en) Wet process pad pasting device
JP2003133723A (en) Conductive paste packing method and device
JP2009253110A (en) Adhesive injecting device
JP2007296695A (en) Filling method of paste

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101203

R150 Certificate of patent or registration of utility model

Ref document number: 4644266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250