JP4640628B2 - Precipitation hardened martensitic steel with excellent cold workability and high fatigue strength - Google Patents

Precipitation hardened martensitic steel with excellent cold workability and high fatigue strength Download PDF

Info

Publication number
JP4640628B2
JP4640628B2 JP2001000970A JP2001000970A JP4640628B2 JP 4640628 B2 JP4640628 B2 JP 4640628B2 JP 2001000970 A JP2001000970 A JP 2001000970A JP 2001000970 A JP2001000970 A JP 2001000970A JP 4640628 B2 JP4640628 B2 JP 4640628B2
Authority
JP
Japan
Prior art keywords
less
steel
fatigue strength
cold workability
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001000970A
Other languages
Japanese (ja)
Other versions
JP2002206147A (en
Inventor
悦夫 藤田
利弘 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001000970A priority Critical patent/JP4640628B2/en
Publication of JP2002206147A publication Critical patent/JP2002206147A/en
Application granted granted Critical
Publication of JP4640628B2 publication Critical patent/JP4640628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加工性と高強度且つ高疲労強度が共に要求される部材、部品、例えば板ばね、コイルばね、フラッパーバルブ、ダイヤフラム、メタルガスケット等に用いることが可能な優れた冷間加工性と高い疲労強度をもつ析出硬化型マルテンサイト系鋼に関するものである。
【0002】
【従来の技術】
従来、ばね材等の高強度を必要とされる部材、部品には、加工硬化型オーステナイト系ステンレス鋼や、析出硬化型系マルテンサイト系鋼が使用されてきた。
例えばJIS SUS301に代表される加工硬化型オーステナイト系ステンレス鋼は、溶体化処理された状態でオーステナイト相を呈し、その後の冷間圧延で加工誘起マルテンサイト相を生成させて高強度を得ようとするものである。
その強度は冷間加工量やマルテンサイト量に依存するが、冷間加工のみで所望の強度に精度良く調整するのは難しく、また冷間加工率を大きくするほど材料の異方性が増すとともに靭性も低下するものである。
【0003】
一方、析出硬化型マルテンサイト系鋼は、Cu、Al、Ti等の析出硬化に寄与する元素を添加したり、C、Nを積極添加したしたりして、時効処理により硬化させるものであり、時効処理前の硬さが加工硬化型オーステナイト系ステンレス鋼に比して低く、打ち抜き加工性や成形加工性に優れている。
また、時効処理後には析出硬化により高強度化され、優れた疲労特性及び靭性を維持する。この特徴を活用し、各種バネ材料等として広範な分野で使用されている。
【0004】
【発明が解決しようとする課題】
上述した析出硬化型マルテンサイト系鋼の使用分野が多岐にわたるに伴って、バネをはじめとして、薄板化等用途に応じた要求が強くなってきている。この薄板化に対応するために、時効処理前の硬さが低く冷間加工性が良好であり、介在物が微細で疲労特性に優れた高強度鋼が要求されるようになった。
そこで本発明者等は、上述した析出硬化型マルテンサイト系鋼について、種々の検討を行なった。
【0005】
先ず、Cu添加により析出硬化を狙ったものとして、JIS SUS630が代表的である。JIS SUS630は、溶体化処理後の時効処理により硬化を図るものであるが、引張強さが1400MPa程度と低く、高い疲労強度が要求される用途での使用では、強度が十分ではない。
次に、Alを添加することにより析出硬化を狙ったものとして、Alが1%程度添加されているJIS SUS631が代表的である。JIS SUS631は、溶体化処理に次ぐ冷間加工によりマルテンサイト相を生成し、時効処理によってNi-Al系化合物を析出させることによって硬度を高くするものであり、引張強さが1800MPa程度のかなり高強度のものが得られる。しかし、Alを一定量を超えて添加すると溶解時に粗大なAlの酸化物を生成させ、疲労強度を低下させる可能性がある。
【0006】
また、Tiを添加することにより析出硬化を狙ったものとして、ASTM XM−16が代表的である。ASTM XM−16は、時効処理によってNi−Ti系化合物の析出硬化を利用したものであり、JIS SUS631と同様に引張強さが1800MPa程度のかなり高強度のものが得られる。しかし、Tiを添加すると溶解時にTiの炭窒化物が生成し、疲労特性を著しく低減させる原因になる。
また、C、Nを積極添加する析出硬化型マルテンサイト系鋼では、CとNを合計で0.1%程度以上含有することによってマルテンサイト相の強度を増すが、マルテンサイト相そのものの強度が高いため、時効処理前の硬さがJIS SUS630およびJIS SUS631に比べ高く、成形加工性に劣るといった問題があった。
以上、説明する通り、従来から知られている析出硬化型マルテンサイト系鋼では、優れた冷間加工性と、高疲労強度を両立可能なものはなく、特に薄い板材の用途には適用が難しかった。
本発明の目的は、優れた冷間加工性と高い疲労強度を併せもつ析出硬化型マルテンサイト系鋼を提供することである。
【0007】
【課題を解決するための手段】
本発明者等は、優れた冷間加工性と高い疲労強度を併せもった析出硬化型マルテンサイト系鋼を得るために、種々の合金元素と、その適正な含有量を鋭意検討した結果、先ず、冷間加工性を良好にするため、C、Nを低減すれば、マルテンサイト相の硬さを低減して時効処理前の硬さを低くできるといった第一の知見を見出した。次に、高い疲労強度の実現として、溶解時に粗大な介在物が生成することにより疲労強度が低下しないようにAlの添加量を制限し、Tiを無添加としたうえで、時効処理後の強度が高くなるように種々検討した結果、本発明に到達した。
【0008】
すなわち本発明は、質量%にて、C;0.08%以下、N;0.08%以下、但しC、Nが合計で0.10%未満であり、Si;1.0を超え4.0%以下、Mn;5.0%以下、Ni;3.0〜14.0%、Cr;3.0〜14.0%、MoまたはWの1種または2種が、Mo+1/2Wで0.5〜5.0%以下、Cu;5.0%以下(0%を含む)、Al;0.3%以下(0%を含む)、O;0.005%以下、残部がFe及び不可避的不純物からなり、かつ(1)式で示されるA値が25以下であって、マルテンサイト相を体積%で50%以上含む優れた冷間加工性と高い疲労強度をもつ析出硬化型マルテンサイト系鋼である。
A=Ni+0.65Cr+0.98Mo+0.49W+1.05Mn+0.35Si+Cu+12.6(C+N)…(1)
A値は、それぞれの元素の含有量を質量%で計算。
(ただし、選択元素のうち無添加の元素はゼロとして計算)
【0009】
また本発明は、質量%にて、C;0.08%以下、N;0.08%以下、但しC、Nが合計で0.10%未満でありSi;1.0を超え4.0%以下、Mn;3.0%以下、Ni;3.0〜14.0%、Cr;3.0〜14.0%、MoまたはWの1種または2種が、Mo+1/2Wで0.5〜5.0%以下、Cu;5.0%以下(0%を含む)、Al;0.3%以下(0%を含む)、O;0.005%以下、、残部がFe及び不可避的不純物からなり、かつ(1)式で示されるA値が23以下であって、マルテンサイト相を体積%で80%以上含む優れた冷間加工性と高い疲労強度をもつ析出硬化型マルテンサイト系鋼である。
A=Ni+0.65Cr+0.98Mo+0.49W+1.05Mn+0.35Si+Cu+12.6(C+N)…(1)
A値は、それぞれの元素の含有量を質量%で計算。
(ただし、選択元素のうち無添加の元素はゼロとして計算)
【0010】
好ましくは、上述の優れた冷間加工性と高い疲労強度をもつ析出硬化型マルテンサイト系に記載の鋼組成で、かつ(2)式で示されるH値が10以上である優れた冷間加工性と高い疲労強度をもつ析出硬化型マルテンサイト系鋼である。
H=Ni+0.98Mo+0.49W+0.35Si+Cu…(2)
H値は、それぞれの元素の含有量を質量%で計算。
(ただし、選択元素のうち無添加の元素はゼロとして計算)
【0013】
【発明の実施の形態】
上述しように、本発明の最大の特徴は、C、Nを低減したことにより、マルテンサイト相の硬さが低く、加工性が良好であること、および溶解時に粗大な介在物を生成するAlの添加量を制限し、Tiを無添加とすることで疲労特性を向上させたことにある。なお、本発明で言うTiを無添加にしたとは、ある特定の作用効果を望んで積極的に添加しないということであって、不可避的に含有される程度のTi量は無添加の範囲であることは言うまでもない。
以下に本発明を詳しく説明する。
【0014】
CおよびNは、マルテンサイト相を強化し、硬度を高くするため冷間加工性を悪くする原因になることから、CおよびNの単独での含有量はそれぞれ0.08%以下とした。但し、本発明において単独でのCとNを制限したのみでは、マルテンサイト相の硬さが加工性、打抜き性を容易にする、例えば480HV程度以下まで容易に低下させることが出来ないので、本発明ではCとNの含有量の合計を0.10%未満とした。
【0015】
Siは、時効処理において時効硬化を促進する作用があり、その作用を得るためには1.0%以下の添加では不十分である。しかし、4.0%を越えて添加してもより一層の向上効果がないことから、1.0%を超え4.0%以下とした。
Mnは、脱酸のため少量添加するが、その一方で、Mnはオーステナイト生成元素であり、過度に添加すると後述するNi当量の制御において係数が大きく、時効硬化に重要な元素であるNi、Mo、W、Si、Cu等の元素の添加量を抑えなければばらないという弊害が生じ、結果として時効処理において十分な高硬度が得られにくくなる。従って、Mn添加量を抑える必要があることから5.0%以下とした。好ましい添加量は3.0%以下である。
【0016】
Niは、時効処理において硬度を高めるのに非常に重要な元素であるため3.0%以上は必要であるが、NiもMnと同じくオーステナイト生成元素であり、14.0%を超えて添加するとオーステナイト相が安定になりすぎ、マルテンサイト変態が起こりにくくなるため3.0〜14.0%とした。
Crは、マルテンサイト相を得るために有効な元素であるが、3%より少ないとその効果が十分に得られず、時効処理のときに硬度を高くする効果が殆どみられない。また、過度に添加すると後述するNi当量を適量に保つのが困難となり、時効硬化に有効な元素の添加量を抑えなければばらないという弊害が生じるため、Crは3〜14.0%とした。更には、Cr添加量を抑えることで冷間加工性がより一層向上するので、好ましい範囲は3%以上、12.0%未満が良い。
【0017】
Moは、時効熱処理において硬度を高めるのに非常に有効な元素である。WもMoと同様、時効熱処理において硬度を高めるのに有効であるが、W単独ではその効果は小さく、Wを添加する場合は、Moの一部を当量のW(1/2Wが当量のMoに相当)で置換する形で0.5%以上添加する必要がある。
しかし、5.0%を越えて添加するとデルタフェライトを生成し、熱間加工性、冷間加工性を劣化させるので、0.5〜5.0%とした。
Cuは、Mo、W同様に少量添加することで時効熱処理において硬度を高めるのに効果的な元素であるが、Cuの作用はMoと同様であるため本発明鋼では、Mo含有量によっては、無添加(0%)としても良い。Cuを添加する場合、5.0%を超えて添加すると熱間加工性が劣化しやすいことから、Cuは5.0%以下(0%を含む)とした。
【0018】
Alは脱酸剤として少量添加するが0.3%を超えて添加すると溶解時に粗大な酸化物を形成し疲労特性や機械的特性に悪影響をおよぼすため、0.3%以下の範囲とし、無添加(0%)でも良い。
Oは、酸化物系介在物を形成して靭性、疲労強度を低下させる不純物元素であるので、0.005以下に制限した。
【0020】
お、不純物元素であるP、Sについては、通常の溶解工程で混入するレベルなら問題ないので特に規定はしないが、低い方が望ましく、Pは0.04%以下、Sは0.01%以下の範囲であれば、冷間加工性や疲労強度が著しく劣化することはない。
【0021】
本発明では、上述する各元素を、本発明で規定する範囲に調整した上で、次の関係式を満たさなければ、優れた冷間加工性と、優れた疲労強度の両立は出来ない。
具体的に説明すると、析出硬化に有効であるAlの添加量を制限し、Tiを無添加としていることから、時効処理により高強度を得るためには、時効析出が起こりやすい基地組織であるマルテンサイト相が一定量以上得られる組成に更に調整する必要があり、具体的には、母相のマルテンサイト相が固溶化処理に次ぐ冷間加工後に体積%で50%以上、好ましくは80%以上が容易に得られるような化学組成にするため、以下の関係式を用いて更に調整する。
【0022】
そのため本発明では、マルテンサイト変態のしやすさに関係するNi当量の適正化が必要である。
本発明で(1)式として示すA値は、本発明鋼のNi当量を示しており、この式のA値の大小がマルテンサイト相の生成し易さを左右する重要な指標である。A値は、マルテンサイト相の生成のし易さに影響する各元素の質量%に各元素の効果に応じてそれぞれ係数を付した値を足したものである。
実験の結果、本発明鋼では、このA値が25を越えるとマルテンサイト相が生成しにくくなり、固溶化処理して、70%以上の冷間加工を施してもマルテンサイト相の体積%が50%より低くなり、時効処理において十分な高硬度が得られにくくなることから、(1)式に示すA値を25以下とした。
より高強度とするためには、固溶化処理し、冷間加工後にマルテンサイト相が体積%で80%以上含まれることが望まれるため、A値は23以下が好ましい。
【0023】
なお、本発明で施す固溶化処理は、900〜1150℃の範囲で、3〜100分程度行うと良い。これは、析出元素を固溶させると同時に固溶化処理温度において、基地をオーステナイト相にするためである。固溶化処理後の冷却により、オーステナイト相をそのまま保つか、あるいは、一部マルテンサイト相が生成した2相組織となる。
【0024】
更に、固溶化処理後の冷却によりマルテンサイト相とオーステナイト相の2相組織とするか、あるいは、さらに冷間加工を行い、マルテンサイト量を増した後、時効処理により高強度を得るためには、時効析出に寄与するNi、Mo、W、Si、Cu量が、本発明鋼において規定した(2)式を満足することが好ましい。
(2)式に示すH値は、本発明鋼の時効処理における硬化し易さを検討し、各元素の効果に応じてそれぞれ係数を各元素の質量%に付した値を足したものである。この式のH値の大小が時効処理による硬化のし易さを左右する重要な指標である。必要とする用途が極めて高強度である場合、(2)式に示すHが10以上となることが望ましい。
【0025】
以上、説明する通り、本発明で規定する化学組成を満足する析出硬化型マルテンサイト系鋼を、固溶化処理し、冷間加工を行って、マルテンサイト相を体積%で50%以上に調整することができる。
なお、この固溶化処理して、冷間加工後の析出硬化型マルテンサイト系鋼を規定すると、以下のようになる。
質量%にて、C;0.08%以下、N;0.08%以下、但しC、Nが合計で0.10%未満であり、Si;1.0を超え4.0%以下、Mn;5.0%以下、Ni;3.0〜14.0%、Cr;3.0〜14.0%、MoまたはWの1種または2種が、Mo+1/2Wで0.5〜5.0%以下、Cu;5.0%以下(0%を含む)、Al;0.3%以下(0%を含む)、O;0.005%以下、残部が実質的にFeからなり、かつ(1)式で示されるA値が25以下であって、固溶化処理に次ぐ冷間加工後のマルテンサイト相を体積%で50%以上含むことを特徴とする優れた冷間加工性と高い疲労強度をもつ析出硬化型マルテンサイト系鋼。
【0026】
【実施例】
以下、実施例に基づいて本発明を説明する。
本発明鋼と比較鋼とをそれぞれ溶解し、10kgの鋼塊を得た。表1に化学組成を示す。
ここで、鋼No.〜10、13、14は本発明鋼であり、No.31〜34は組成、A値のいずれか、またはいくつかが本発明の限定範囲からはずれた比較鋼である。No.1〜4及び11、12は参考例である。
【0027】
【表1】

Figure 0004640628
【0028】
次に本発明合金鋼No.〜10、13、14と参考例No.1〜4及び11、12、および比較鋼No.31〜34の鋼を熱間鍛造、熱間圧延によって厚さ2mmの板材にし、1050℃×30分 空冷の固溶化処理を行なった。その後、10〜70%の圧下率で冷間圧延を施し、冷間圧延材を得た。
硬さについては、冷間加工した板の縦断面でビッカース硬さを測定することによって求めた。これらの結果を表2に示す。
【0029】
さらに、冷間圧延した板に450℃×1時間 空冷の時効処理を行ない、時効処理後の冷間圧延材からマルテンサイト相の体積量をX線回折法によって測定した。また、時効処理後の冷間圧延材から引張試験片を採取し、JIS Z 2241に示される方法で、常温引張試験を行った。また疲労強度は、時効処理後の冷間圧延材から、厚さ0.2mm、幅10mmの板状試験片を用い、曲げ角度±20°でスパン長さを種々に変えて、1000cpmの繰り返し曲げ疲労試験を行い、10の7乗回における疲労強度を求めた。表2に時効処理後のマルテンサイト相の体積量、引張強さおよび疲労強度を示す。
【0030】
【表2】
Figure 0004640628
【0031】
表2からわかるように、本発明鋼No.〜10、13、14はいずれも冷間圧延後のビッカース硬さが480HV以下を示し、冷間加工に好適な硬さを有していることが分かる。
また、時効処理後の引張強さは1800MPa以上を示し、かつ優れた疲労強度を有していることも分かる。
なかでも、H値が10以上であり、かつマルテンサイト量が80%以上の本発明鋼No.5およびNo.9、10、13、14では、時効処理後の引張強さが1850MPa以上、疲労強度が850MPa以上示している。
これに対して、比較鋼No.31〜34は、冷間圧延後の硬さが発明鋼に比べて高い、もしくは時効処理後の硬さが発明鋼に比べて低いことがわかる。特にA値およびマルテンサイト相量が規定した範囲から外れる比較鋼No.33、No.34は時効処理後の引張強さが低く、高硬度が得られない。
【0032】
以上の結果から分かるように、本発明合金鋼では、特に固溶化処理して、冷間加工後の硬さが低く、優れた冷間加工性を有していることが分かり、更に冷間での引抜や、曲げ、圧延、等の組成加工、或は打抜き等の加工性に優れることが分かる。
【0033】
なお、上述の実施例とは別に、本発明鋼を厚さ0.5mmに圧延した圧延材に、1050℃×30分 空冷の固溶化処理を行ない、冷間加工で0.12mmの薄板まで加工してみたところ、本発明鋼では割れ等の不良は確認できず、この0.12mmの薄板材に450℃×1時間 空冷の時効処理を行い、マルテンサイト相の体積量を測定してみたところ、マルテンサイト相の体積量は50%以上であった。
【0034】
さらに、本発明鋼に時効処理後に時効処理温度より低温で窒化処理を行なうか、あるいは、時効処理と兼ねて窒化処理を行なうと、約20〜40μmの窒化層を形成でき、窒化による表面圧縮残留応力の効果により、さらに疲労強度を300MPa程度上昇させることができる。
【0035】
【発明の効果】
以上説明したように、本発明の加工性が良好であり、高強度且つ優れた疲労特性を示す析出硬化型ステンレス鋼は、冷間加工性が良好でありかつ高強度を持つことから、製造が容易であり、かつ高い強度が要求される部材、部品、例えば板ばね、コイルばね、フラッパーバルブ、ダイヤフラム、メタルガスケット等に用いれば、薄板化等により使用量を減少し、更に寿命が向上し、工業上顕著な効果を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention has excellent cold workability that can be used for members and parts that require both workability and high strength and high fatigue strength, such as leaf springs, coil springs, flapper valves, diaphragms, and metal gaskets. those related to the precipitation hardenable martensitic steel with high fatigue strength.
[0002]
[Prior art]
Conventionally, work hardening type austenitic stainless steel and precipitation hardening type martensitic steel have been used for members and parts that require high strength such as spring materials.
For example, work-hardening austenitic stainless steel represented by JIS SUS301 exhibits an austenitic phase in a solution-treated state, and attempts to obtain a high strength by generating a work-induced martensite phase by subsequent cold rolling. Is.
Its strength depends on the amount of cold work and the amount of martensite, but it is difficult to adjust to the desired strength with just cold work, and the anisotropy of the material increases as the cold work rate increases. Toughness is also reduced.
[0003]
On the other hand, precipitation hardening type martensitic steel is an element that contributes to precipitation hardening such as Cu, Al, Ti, or by actively adding C, N, and is hardened by aging treatment, The hardness before aging treatment is lower than that of work hardening type austenitic stainless steel, and it is excellent in punching workability and moldability.
Further, after the aging treatment, the strength is increased by precipitation hardening, and excellent fatigue characteristics and toughness are maintained. Utilizing this feature, it is used in various fields as various spring materials.
[0004]
[Problems to be solved by the invention]
As the application fields of the precipitation hardening type martensitic steels described above are diversified, demands according to applications such as springs and thinner plates are becoming stronger. In order to cope with this thinning, a high strength steel having low hardness before aging treatment and good cold workability, fine inclusions and excellent fatigue properties has been demanded.
Therefore, the present inventors conducted various studies on the precipitation hardening type martensitic steel described above.
[0005]
First, JIS SUS630 is a representative example of precipitation hardening by adding Cu. JIS SUS630 is intended to harden by aging treatment after solution treatment, but its tensile strength is as low as about 1400 MPa, and its strength is not sufficient for use in applications requiring high fatigue strength.
Next, as a target for precipitation hardening by adding Al, JIS SUS631 to which Al is added at about 1% is representative. JIS SUS631 generates martensite phase by cold working after solution treatment and increases the hardness by precipitating Ni-Al compounds by aging treatment, and has a tensile strength of about 1800 MPa. A strong one is obtained. However, if Al is added in excess of a certain amount, a coarse Al oxide may be formed at the time of dissolution, which may reduce fatigue strength.
[0006]
In addition, ASTM XM-16 is a typical example of precipitation hardening by adding Ti. ASTM XM-16 utilizes precipitation hardening of a Ni-Ti compound by aging treatment, and has a tensile strength of about 1800 MPa as in JIS SUS631. However, when Ti is added, Ti carbonitrides are produced during dissolution, which causes a significant reduction in fatigue characteristics.
Further, in precipitation hardening type martensitic steel to which C and N are positively added, the strength of the martensite phase is increased by containing about 0.1% or more of C and N in total, but the strength of the martensite phase itself is increased. Since the hardness is high, the hardness before aging treatment is higher than that of JIS SUS630 and JIS SUS631, and there is a problem that molding processability is inferior.
As described above, there is no conventionally known precipitation hardening type martensitic steel that can achieve both excellent cold workability and high fatigue strength, and it is difficult to apply to thin plate materials. It was.
An object of the present invention is to provide a precipitation hardening martensitic steel having both excellent cold workability and high fatigue strength.
[0007]
[Means for Solving the Problems]
In order to obtain a precipitation hardening type martensitic steel having both excellent cold workability and high fatigue strength, the present inventors have intensively studied various alloy elements and their proper contents. In order to improve the cold workability, the inventors have found the first finding that if C and N are reduced, the hardness of the martensite phase can be reduced and the hardness before aging treatment can be reduced. Next, in order to realize high fatigue strength, the amount of Al added is limited so that fatigue strength does not decrease due to the formation of coarse inclusions during melting, and Ti is not added, and strength after aging treatment As a result of various studies to increase the value, the present invention has been achieved.
[0008]
That is, according to the present invention, in mass%, C: 0.08% or less, N: 0.08% or less, provided that C and N are less than 0.10% in total, Si; 0% or less, Mn; 5.0% or less, Ni; 3.0 to 14.0%, Cr; 3.0 to 14.0%, one or two of Mo or W is 0 at Mo + 1 / 2W 5 to 5.0% or less, Cu; 5.0% or less (including 0%), Al; 0.3% or less (including 0%), O; 0.005% or less, the balance being Fe and inevitable Precipitation hardened martensite, which has excellent cold workability and high fatigue strength, which is composed of mechanical impurities and has an A value represented by the formula (1) of 25 or less and a martensite phase content of 50% or more by volume. It is a system steel.
A = Ni + 0.65Cr + 0.98Mo + 0.49W + 1.05Mn + 0.35Si + Cu + 12.6 (C + N) (1)
A value is calculated by mass% for the content of each element.
(However, calculation is made assuming that no additive element is selected among the selected elements)
[0009]
Further, in the present invention, in mass%, C: 0.08% or less, N: 0.08% or less, provided that C and N are less than 0.10% in total, Si; % Or less, Mn: 3.0% or less, Ni: 3.0 to 14.0%, Cr: 3.0 to 14.0%, one or two of Mo or W is Mo + 1 / 2W and is 0.00. 5 to 5.0% or less, Cu; 5.0% or less (including 0%), Al; 0.3% or less (including 0%), O; 0.005% or less, the balance being Fe and inevitable Precipitation hardened martensite, which has excellent cold workability and high fatigue strength, which is composed of mechanical impurities and has an A value of 23 or less represented by the formula (1) and containing a martensite phase of 80% by volume or more. It is a system steel.
A = Ni + 0.65Cr + 0.98Mo + 0.49W + 1.05Mn + 0.35Si + Cu + 12.6 (C + N) (1)
A value is calculated by mass% for the content of each element.
(However, calculation is made assuming that no additive element is selected among the selected elements)
[0010]
Preferably, the steel composition described in the precipitation hardening martensite system having the above-described excellent cold workability and high fatigue strength, and the excellent cold work whose H value represented by the formula (2) is 10 or more It is a precipitation hardening martensitic steel with high fatigue strength.
H = Ni + 0.98Mo + 0.49W + 0.35Si + Cu (2)
H value is calculated by mass% for the content of each element.
(However, calculation is made assuming that no additive element is selected among the selected elements)
[0013]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the greatest feature of the present invention is that by reducing C and N, the hardness of the martensite phase is low, the workability is good, and Al that generates coarse inclusions when dissolved. The amount of addition is limited, and the fatigue characteristics are improved by adding no Ti. In the present invention, the addition of Ti means that it is not actively added in the hope of a specific effect, and the amount of Ti that is inevitably contained is within the range of no addition. Needless to say.
The present invention is described in detail below.
[0014]
Since C and N strengthen the martensite phase and increase the hardness, causing cold workability to deteriorate, the content of C and N alone was set to 0.08% or less, respectively. However, only by limiting C and N alone in the present invention, the hardness of the martensite phase cannot easily be reduced to, for example, about 480 HV or less, which facilitates workability and punchability. In the invention, the total content of C and N is less than 0.10%.
[0015]
Si has an action of promoting age hardening in the aging treatment, and addition of 1.0% or less is insufficient to obtain the action. However, even if added over 4.0%, there is no further improvement effect, so over 1.0% was made 4.0% or less.
Mn is added in a small amount for deoxidation. On the other hand, Mn is an austenite-forming element, and when added excessively, the coefficient is large in controlling the Ni equivalent described later, and Ni, Mo which are important elements for age hardening. , W, Si, Cu, and other elements have to be added in an adverse effect, and as a result, it becomes difficult to obtain a sufficiently high hardness in the aging treatment. Therefore, the Mn addition amount needs to be suppressed, so the content is made 5.0% or less. A preferable addition amount is 3.0% or less.
[0016]
Ni is a very important element for increasing hardness in aging treatment, so 3.0% or more is necessary, but Ni is also an austenite-forming element like Mn, and if added over 14.0%, the austenite phase is stable. Therefore, the martensite transformation is less likely to occur, so the content was made 3.0 to 14.0%.
Cr is an effective element for obtaining the martensite phase, but if it is less than 3%, the effect cannot be sufficiently obtained, and the effect of increasing the hardness during the aging treatment is hardly observed. Further, if added excessively, it becomes difficult to maintain an appropriate amount of Ni equivalent to be described later, and there is an adverse effect that the amount of element effective for age hardening must be suppressed. Therefore, Cr is made 3 to 14.0%. Furthermore, since the cold workability is further improved by suppressing the Cr addition amount, the preferred range is 3% or more and less than 12.0%.
[0017]
Mo is an extremely effective element for increasing the hardness in the aging heat treatment. W, like Mo, is effective in increasing the hardness in aging heat treatment, but the effect of W alone is small. When W is added, a part of Mo is equivalent to W (1 / 2W is equivalent to Mo. It is necessary to add 0.5% or more in the form of replacement with
However, if added over 5.0%, delta ferrite is formed and the hot workability and cold workability are deteriorated, so the content was made 0.5 to 5.0%.
Cu is an element effective for increasing the hardness in aging heat treatment by adding a small amount like Mo and W, but since the action of Cu is similar to Mo, in the steel of the present invention, depending on the Mo content, No additive (0%) may be used. When Cu is added over 5.0%, hot workability tends to deteriorate, so Cu was made 5.0% or less (including 0%).
[0018]
Al is added in a small amount as a deoxidizer, but if added over 0.3%, a coarse oxide is formed when dissolved and adversely affects fatigue properties and mechanical properties, so the range should be 0.3% or less, and no addition (0% )
O is an impurity element that forms oxide inclusions and lowers toughness and fatigue strength, so it was limited to 0.005 or less.
[0020]
Contact name, P is an impurity element, for S, although not particularly specified because no level if problems mixed in ordinary melting process, lower is preferable, P 0.04% is less, S is 0.01% If it is the following ranges, cold workability and fatigue strength will not deteriorate significantly.
[0021]
In the present invention, both the above-described cold workability and excellent fatigue strength cannot be achieved unless the following relational expressions are satisfied after adjusting each of the above-described elements to the range specified in the present invention.
Specifically, since the amount of Al that is effective for precipitation hardening is limited and Ti is not added, in order to obtain high strength by aging treatment, martensite, which is a base structure in which aging precipitation is likely to occur. It is necessary to further adjust the composition so that the site phase is obtained in a certain amount or more, specifically, the martensite phase of the parent phase is 50% or more by volume after cold working after the solution treatment, preferably 80% or more. Is further adjusted by using the following relational expression.
[0022]
Therefore, in the present invention, it is necessary to optimize the Ni equivalent related to the ease of martensitic transformation.
The A value shown in the present invention as the formula (1) indicates the Ni equivalent of the steel of the present invention, and the magnitude of the A value in this formula is an important index that determines the ease of formation of the martensite phase. The A value is obtained by adding a value obtained by adding a coefficient according to the effect of each element to the mass% of each element that affects the ease of formation of the martensite phase.
As a result of the experiment, in the steel of the present invention, when this A value exceeds 25, it becomes difficult to form a martensite phase, and the volume percent of the martensite phase is reduced even if it is subjected to solid solution treatment and cold work of 70% or more. Since it becomes lower than 50% and it becomes difficult to obtain a sufficiently high hardness in the aging treatment, the A value shown in the formula (1) is set to 25 or less.
In order to obtain higher strength, since it is desired that the martensite phase is contained by 80% or more by volume after solid solution treatment and cold working, the A value is preferably 23 or less.
[0023]
The solution treatment applied in the present invention is preferably performed at 900 to 1150 ° C. for about 3 to 100 minutes. This is to make the matrix austenite at the solution treatment temperature at the same time as dissolving the precipitated elements. By cooling after the solution treatment, the austenite phase is maintained as it is, or a two-phase structure in which a part of the martensite phase is generated is obtained.
[0024]
Furthermore, in order to obtain a high strength by aging treatment after increasing the amount of martensite by further cold working to increase the amount of martensite by forming a two-phase structure of martensite phase and austenite phase by cooling after solution treatment The amounts of Ni, Mo, W, Si, and Cu that contribute to aging precipitation preferably satisfy the formula (2) defined in the steel of the present invention.
The H value shown in the formula (2) is obtained by examining the easiness of hardening in the aging treatment of the steel of the present invention, and adding the value obtained by adding the coefficient to the mass% of each element according to the effect of each element. . The magnitude of the H value in this equation is an important index that determines the ease of hardening by aging treatment. When the required application is extremely high strength, it is desirable that H shown in the formula (2) is 10 or more.
[0025]
As described above, precipitation hardening type martensitic steel satisfying the chemical composition defined in the present invention is subjected to solution treatment, and cold work is performed to adjust the martensite phase to 50% or more by volume%. be able to.
The precipitation hardening type martensitic steel after cold working is defined as follows.
In mass%, C: 0.08% or less, N: 0.08% or less, provided that C and N are less than 0.10% in total, Si; more than 1.0 and 4.0% or less, Mn; 5.0% or less, Ni; 3.0 to 14.0 %, Cr: 3.0 to 14.0%, one or two of Mo or W is Mo + 1 / 2W, 0.5 to 5.0% or less, Cu; 5.0% or less (including 0%), Al; 0.3% or less ( (Including 0%), O; 0.005% or less, the balance being substantially Fe, and the A value represented by the formula (1) is 25 or less, and martensite after cold working following solution treatment Precipitation hardening martensitic steel with excellent cold workability and high fatigue strength characterized by containing 50% or more by volume.
[0026]
【Example】
Hereinafter, the present invention will be described based on examples.
The steel of the present invention and the comparative steel were melted to obtain a 10 kg steel ingot. Table 1 shows the chemical composition.
Here, Steel No. Nos. 5 to 10, 13, and 14 are steels of the present invention. 31 to 34 are comparative steels whose composition, A value, or some of them are out of the limited range of the present invention. No. 1-4, 11 and 12 are reference examples.
[0027]
[Table 1]
Figure 0004640628
[0028]
Next, the alloy steel No. 1 of the present invention. 5 to 10, 13, 14, and Reference Example No. 1-4 and 11 , 12 and comparative steel no. 31-34 steel was made into a plate material having a thickness of 2 mm by hot forging and hot rolling, and air-cooled solid solution treatment was performed at 1050 ° C. for 30 minutes. Thereafter, cold rolling was performed at a rolling reduction of 10 to 70% to obtain a cold rolled material.
About hardness, it calculated | required by measuring Vickers hardness in the longitudinal cross-section of the cold-worked board. These results are shown in Table 2.
[0029]
Further, the cold-rolled plate was air-cooled at 450 ° C. for 1 hour, and the volume of the martensite phase was measured by an X-ray diffraction method from the cold-rolled material after the aging treatment. In addition, a tensile test piece was collected from the cold-rolled material after the aging treatment, and a room temperature tensile test was performed by the method shown in JIS Z 2241. Fatigue strength is 1000cpm repeated bending fatigue using cold-rolled material after aging treatment, using plate-shaped test pieces with a thickness of 0.2mm and a width of 10mm, and varying the span length at a bending angle of ± 20 °. A test was conducted to determine the fatigue strength at 10 7 times. Table 2 shows the volume, tensile strength and fatigue strength of the martensite phase after aging treatment.
[0030]
[Table 2]
Figure 0004640628
[0031]
As can be seen from Table 2, steel No. 1 of the present invention. 5 to 10, 13, and 14 all show that the Vickers hardness after cold rolling is 480 HV or less, and has hardness suitable for cold working.
It can also be seen that the tensile strength after the aging treatment is 1800 MPa or more and has excellent fatigue strength.
Among them, the present steel No. 1 having an H value of 10 or more and a martensite amount of 80% or more . 5 and no. 9 , 10, 13, and 14 show a tensile strength after aging treatment of 1850 MPa or more and a fatigue strength of 850 MPa or more.
On the other hand, comparative steel No. Nos. 31 to 34 show that the hardness after cold rolling is higher than that of the inventive steel, or the hardness after aging treatment is lower than that of the inventive steel. In particular, comparative steel No. A and the martensite phase amount deviated from the specified range. 33, no. No. 34 has low tensile strength after aging treatment, and high hardness cannot be obtained.
[0032]
As can be seen from the above results, in the alloy steel of the present invention, it is found that the hardness after cold working is particularly low and the cold working property is low, and it has excellent cold workability. It can be seen that it is excellent in composition processing such as drawing, bending, rolling, etc., or workability such as punching.
[0033]
In addition to the above-mentioned examples, the steel sheet of the present invention rolled to a thickness of 0.5 mm was subjected to a solid solution treatment at 1050 ° C. for 30 minutes and cooled to a thin plate of 0.12 mm by cold working. As a result, it was not possible to confirm defects such as cracks in the steel of the present invention. The volume of the phase was 50% or more.
[0034]
Furthermore, when the steel according to the present invention is subjected to nitriding at a temperature lower than the aging temperature after aging treatment, or when nitriding is performed in combination with the aging treatment, a nitride layer of about 20 to 40 μm can be formed, and surface compression residual due to nitriding Due to the effect of stress, the fatigue strength can be further increased by about 300 MPa.
[0035]
【The invention's effect】
As described above, the precipitation hardenable stainless steel having good workability, high strength and excellent fatigue properties according to the present invention is manufactured because it has good cold workability and high strength. If used for easy and high strength members and parts such as leaf springs, coil springs, flapper valves, diaphragms, metal gaskets, etc., the amount of use is reduced by thinning, etc., and the life is further improved. It has a remarkable industrial effect.

Claims (3)

質量%にて、C;0.08%以下、N;0.08%以下、但しC、Nが合計で0.10%未満であり、Si;1.0を超え4.0%以下、Mn;5.0%以下、Ni;3.0〜14.0%、Cr;3.0〜14.0%、MoまたはWの1種または2種が、Mo+1/2Wで0.5〜5.0%以下、Cu;5.0%以下(0%を含む)、Al;0.3%以下(0%を含む)、O;0.005%以下、残部がFe及び不可避的不純物からなり、かつ(1)式で示されるA値が25以下であって、マルテンサイト相を体積%で50%以上含むことを特徴とする優れた冷間加工性と高い疲労強度をもつ析出硬化型マルテンサイト系鋼。
A=Ni+0.65Cr+0.98Mo+0.49W+1.05Mn+0.35Si+Cu+12.6(C+N)…(1)
A値は、それぞれの元素の含有量を質量%で計算。
(ただし、選択元素のうち無添加の元素はゼロとして計算)
In mass%, C: 0.08% or less, N: 0.08% or less, provided that C and N are less than 0.10% in total, Si; more than 1.0 and 4.0% or less, Mn 5.0% or less, Ni; 3.0 to 14.0%, Cr; 3.0 to 14.0%, one or two of Mo or W are 0.5 to 5. Mo + 1 / 2W. 0% or less, Cu; 5.0% or less (including 0%), Al; 0.3% or less (including 0%), O; 0.005% or less, the balance being Fe and inevitable impurities, The precipitation hardening type martensite having excellent cold workability and high fatigue strength characterized in that the A value represented by the formula (1) is 25 or less and the martensite phase is contained by 50% or more by volume. Steel.
A = Ni + 0.65Cr + 0.98Mo + 0.49W + 1.05Mn + 0.35Si + Cu + 12.6 (C + N) (1)
A value is calculated by mass% for the content of each element.
(However, calculation is made assuming that no additive element is selected among the selected elements)
質量%にて、C;0.08%以下、N;0.08%以下、但しC、Nが合計で0.10%未満であり、Si;1.0を超え4.0%以下、Mn;3.0%以下、Ni;3.0〜14.0%、Cr;3.0〜14.0%、MoまたはWの1種または2種が、Mo+1/2Wで0.5〜5.0%以下、Cu;5.0%以下(0%を含む)、Al;0.3%以下(0%を含む)、O;0.005%以下、残部がFe及び不可避的不純物からなり、かつ(1)式で示されるA値が23以下であって、マルテンサイト相を体積%で80%以上含むことを特徴とする優れた冷間加工性と高い疲労強度をもつ析出硬化型マルテンサイト系鋼。
A=Ni+0.65Cr+0.98Mo+0.49W+1.05Mn+0.35Si+Cu+12.6(C+N)…(1)
A値は、それぞれの元素の含有量を質量%で計算。
(ただし、選択元素のうち無添加の元素はゼロとして計算)
In mass%, C: 0.08% or less, N: 0.08% or less, provided that C and N are less than 0.10% in total, Si; more than 1.0 and 4.0% or less, Mn 3.0% or less, Ni; 3.0 to 14.0%, Cr; 3.0 to 14.0%, and one or two of Mo or W is 0.5 to 5. Mo + 1 / 2W. 0% or less, Cu; 5.0% or less (including 0%), Al; 0.3% or less (including 0%), O; 0.005% or less, the balance being Fe and inevitable impurities, The precipitation hardening type martensite having excellent cold workability and high fatigue strength characterized in that the A value represented by the formula (1) is 23 or less and the martensite phase is contained by 80% or more by volume. Steel.
A = Ni + 0.65Cr + 0.98Mo + 0.49W + 1.05Mn + 0.35Si + Cu + 12.6 (C + N) (1)
A value is calculated by mass% for the content of each element.
(However, calculation is made assuming that no additive element is selected among the selected elements)
(2)式で示されるH値が10以上であることを特徴とする請求項1または2に記載の優れた冷間加工性と高い疲労強度をもつ析出硬化型マルテンサイト系鋼。
H=Ni+0.98Mo+0.49W+0.35Si+Cu…(2)
H値は、それぞれの元素の含有量を質量%で計算。
(ただし、選択元素のうち無添加の元素はゼロとして計算)
The precipitation hardened martensitic steel having excellent cold workability and high fatigue strength according to claim 1 or 2, wherein the H value represented by the formula (2) is 10 or more.
H = Ni + 0.98Mo + 0.49W + 0.35Si + Cu (2)
H value is calculated by mass% for the content of each element.
(However, calculation is made assuming that no additive element is selected among the selected elements)
JP2001000970A 2001-01-09 2001-01-09 Precipitation hardened martensitic steel with excellent cold workability and high fatigue strength Expired - Fee Related JP4640628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001000970A JP4640628B2 (en) 2001-01-09 2001-01-09 Precipitation hardened martensitic steel with excellent cold workability and high fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001000970A JP4640628B2 (en) 2001-01-09 2001-01-09 Precipitation hardened martensitic steel with excellent cold workability and high fatigue strength

Publications (2)

Publication Number Publication Date
JP2002206147A JP2002206147A (en) 2002-07-26
JP4640628B2 true JP4640628B2 (en) 2011-03-02

Family

ID=18869660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001000970A Expired - Fee Related JP4640628B2 (en) 2001-01-09 2001-01-09 Precipitation hardened martensitic steel with excellent cold workability and high fatigue strength

Country Status (1)

Country Link
JP (1) JP4640628B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901519B2 (en) * 2003-12-10 2011-03-08 Ati Properties, Inc. High strength martensitic stainless steel alloys, methods of forming the same, and articles formed therefrom
JP4775910B2 (en) * 2007-05-17 2011-09-21 日新製鋼株式会社 Austenitic stainless steel with excellent high temperature salt damage corrosion resistance
US7931758B2 (en) 2008-07-28 2011-04-26 Ati Properties, Inc. Thermal mechanical treatment of ferrous alloys, and related alloys and articles
EP4269627A1 (en) * 2020-12-24 2023-11-01 NIPPON STEEL Stainless Steel Corporation Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287635A (en) * 1993-03-31 1994-10-11 Nisshin Steel Co Ltd Production of stainless steel material with high proof stress and high strength, excellent in ductility and free from softening by welding
JPH0874006A (en) * 1994-09-08 1996-03-19 Nisshin Steel Co Ltd Precipitation hardening type stainless steel excellent in strength and twisting property
JPH0873931A (en) * 1994-09-08 1996-03-19 Nisshin Steel Co Ltd Production of precipitation hardening type stainless steel for spring excellent in strength and twisting characteristic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287635A (en) * 1993-03-31 1994-10-11 Nisshin Steel Co Ltd Production of stainless steel material with high proof stress and high strength, excellent in ductility and free from softening by welding
JPH0874006A (en) * 1994-09-08 1996-03-19 Nisshin Steel Co Ltd Precipitation hardening type stainless steel excellent in strength and twisting property
JPH0873931A (en) * 1994-09-08 1996-03-19 Nisshin Steel Co Ltd Production of precipitation hardening type stainless steel for spring excellent in strength and twisting characteristic

Also Published As

Publication number Publication date
JP2002206147A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
KR100682802B1 (en) Ultra-high strength metastable austenitic stainless steel containing Ti and a method of producing the same
KR101289518B1 (en) Austenite stainless steel sheet and method for producing same
KR20070086564A (en) Precipitation hardenable martensitic stainless steel
JP5308726B2 (en) Austenitic stainless steel sheet for press forming having a fine grain structure and method for producing the same
US20230279531A1 (en) Austenitic stainless steel and manufacturing method thereof
JP3550132B2 (en) Precipitation hardening type soft magnetic ferritic stainless steel
JP5291479B2 (en) Duplex stainless steel and steel and steel products using the same
JP4207137B2 (en) High hardness and high corrosion resistance stainless steel
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP5421611B2 (en) Stainless steel plate for age-hardening springs
JP4640628B2 (en) Precipitation hardened martensitic steel with excellent cold workability and high fatigue strength
JP4606113B2 (en) Austenitic stainless steel with high proportional limit stress and manufacturing method
JP2018178144A (en) Precipitation-hardened stainless steel having excellent hot workability
JP5100144B2 (en) Steel plate for spring, spring material using the same, and manufacturing method thereof
JP2002161343A (en) Precipitation-hardening type martensitic stainless-steel with high strength superior in corrosion resistance
JP2002105601A (en) High strength dual phase stainless steel and its production method
KR102448742B1 (en) Non-magnetic austenitic stainless steel
JP6111109B2 (en) Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same
JP4841308B2 (en) High-strength nonmagnetic stainless steel sheet and method for producing the same
JP2022155180A (en) Austenitic stainless steel and method for producing the same
JP2000129400A (en) Annealed martensitic stainless steel excellent in strength, toughness, and spring characteristic
JPH11140598A (en) High strength stainless steel strip with high spring limit value, and its production
JP2022535237A (en) Martensitic stainless steel alloy
JP2017078195A (en) High hardness stainless steel excellent in corrosion resistance and productivity
JP2000063947A (en) Manufacture of high strength stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees