JP4639540B2 - Non-reciprocal circuit device and communication device - Google Patents

Non-reciprocal circuit device and communication device Download PDF

Info

Publication number
JP4639540B2
JP4639540B2 JP2001203871A JP2001203871A JP4639540B2 JP 4639540 B2 JP4639540 B2 JP 4639540B2 JP 2001203871 A JP2001203871 A JP 2001203871A JP 2001203871 A JP2001203871 A JP 2001203871A JP 4639540 B2 JP4639540 B2 JP 4639540B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic pole
metal case
permanent magnets
isolator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001203871A
Other languages
Japanese (ja)
Other versions
JP2003017904A (en
Inventor
裕史 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001203871A priority Critical patent/JP4639540B2/en
Publication of JP2003017904A publication Critical patent/JP2003017904A/en
Application granted granted Critical
Publication of JP4639540B2 publication Critical patent/JP4639540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非可逆回路素子及び通信装置に関する。
【0002】
【従来の技術】
一般に、携帯電話等の移動用の通信装置に採用される集中定数型アイソレータは、信号を伝送方向にのみ通過させ、逆方向への伝送を阻止する機能を有している。このような集中定数型アイソレータは、永久磁石と、フェライト及びフェライトに配置された複数の中心電極とからなる中心電極組立体と、中心電極組立体と永久磁石を収容する金属ケース等を備えている。このアイソレータの電気的性能を向上させるために、従来より、フェライトを充分に覆う大きさの永久磁石が用いられていた。
【0003】
しかしながら、近年の通信装置の小型化、低背化に伴い、永久磁石を小さくすることが考えられている。また、近年、通信装置の高周波化も進んでいる。非可逆回路素子においては、高周波で動作させようとすると、それに伴って高い磁力を印加しなくてはならない。しかし、小型化、低背化のために永久磁石を小さくすると、所望周波数で動作させるために必要な磁界の強度が得にくくなる。また、フェライトに印加される磁場分布も悪くなり、その結果、特性(挿入損失等)が悪くなる。まして、図10に示す特開平6−260812号公報に記載のアイソレータ200のように、永久磁石209,210の両側の側面209b,210bを金属ケース205にそれぞれ当接した構造の場合には、永久磁石209,210の磁極面209a,210aの金属ケース205に近い部分(エッジ部)から出た磁力線がフェライト220に印加されず、金属ケース205に漏れてしまう。これは、空気より金属ケース205の方が透磁率が高いからである。これにより、フェライトに印加される磁場分布がより悪くなってしまう。なお、図10において、221は複数の中心電極を表面に設けた配線基板、212はアース板、Cは整合用コンデンサ素子である。
【0004】
このため、アイソレータ等の非可逆回路素子においては、図11に示すように、金属ケース235の内側面235aと永久磁石239,240の側面239b,240bとの間にそれぞれ隙間t1を等しく設けた構造が提案されている。このとき、永久磁石239,240の磁極面239a,240aの中心位置と中心電極組立体250の中心位置とは、略直線L上に配置されている。
【0005】
さらに、永久磁石239と永久磁石240の間の中心位置に、中心電極組立体250が配置されている。中心電極組立体250の中心位置から永久磁石239,240の磁極面239a,240aまでの距離はそれぞれ距離dである。
【0006】
以上の構成からなるアイソレータ231は、永久磁石239,240の磁極面239a,240aの縁部から出る磁力線が、金属ケース235に漏れず、直流磁界を中心電極組立体250に効率良く印加することができる。
【0007】
【発明が解決しようとする課題】
しかしながら、従来のアイソレータ231は、永久磁石239,240の中心位置と中心電極組立体250の中心位置とを略直線L上に配置するため、永久磁石239,240の側面239b,240bと金属ケース235の内側面235aとの間の隙間t1が等間隔になるようにしなければならない。
【0008】
一方、アイソレータ231自体の小型化が進んでおり、例えば、金属ケース235の内寸法W2=2.2mmに対して、永久磁石239,240の長さ寸法W1=2.0mmであると、隙間t1は僅か0.1mmとなる。このため、実際にアイソレータ231を組み立てる際、正確に左右0.1mmの隙間t1を設けて永久磁石239,240を金属ケース235内に配置することは非常に困難である。従って、アイソレータ231の組み立て作業性が悪く、かつ、永久磁石239,240の配置位置のばらつきも大きい。また、このばらつきにより、特性ばらつきも多くなり、この結果、製品の良品率も低下する問題がある。
【0009】
この不具合を解消するために、特開平11−308013号公報に記載のアイソレータのように、永久磁石を樹脂モールド等で位置決めすることが考えられる。しかし、この方法は、アイソレータを構成する部品点数が増え、生産に手間がかかり、製造コストが高くなるという問題がある。
【0010】
そこで、本発明の目的は、部品点数が少なく、組み立てが容易で、小型かつ高性能の非可逆回路素子及び通信装置を提供することにある。
【0011】
【課題を解決するための手段及び作用】
前記目的を達成するため、本発明に係る非可逆回路素子は、
(a)磁極面と前記磁極面に略垂直な側面とを有する第1永久磁石と、
(b)磁極面と前記磁極面に略垂直な側面とを有する第2永久磁石と、
(c)前記第1永久磁石の磁極面と前記第2永久磁石の磁極面との間に配置され、前記第1永久磁石から前記第2永久磁石に向かって形成される直流磁界が印加される、フェライトと前記フェライトに配置された複数の中心電極とで構成された中心電極組立体と、
(d)前記第1及び第2永久磁石の側面と平行であって互いに対向する第1内側面及び第2内側面と、前記第1及び第2永久磁石の磁極面と平行であって互いに対向する第3内側面及び第4内側面とを有し、前記第1永久磁石と前記第2永久磁石と前記中心電極組立体とを収容する金属ケースとを備え、
(e)前記第1及び第2永久磁石の磁極面の長辺長さは前記金属ケースの第3及び第4内側面の長辺長さより小さく、前記フェライトの長辺長さは前記第1及び第2永久磁石の磁極面の長辺長さより小さく、
(f)前記第1永久磁石の磁極面及び側面が前記金属ケースの第3内側面及び第1内側面に当接し、前記第2永久磁石の磁極面及び側面が前記金属ケースの第4内側面及び第2内側面に当接し、前記第1永久磁石の中心位置及び前記第2永久磁石の中心位置との間に前記中心電極組立体の中心位置が配置されていること、
を特徴とする。
【0012】
以上の構成により、金属ケースの第1〜第4内側面が、第1永久磁石と第2永久磁石を配置する際の基準面になり、第1永久磁石や第2永久磁石の側面をこの基準面に当接するだけで第1永久磁石と第2永久磁石が容易にかつ精度良く配置される。また、第1永久磁石の中心位置及び第2永久磁石の中心位置との間に中心電極組立体の中心位置が配置されているため、第1及び第2永久磁石の磁力線が最も強く出ているエッジ部がフェライトに近づき、フェライトは第1及び第2永久磁石から強力な直流磁界を印加されることになり、挿入損失特性が向上する。
【0013】
【発明の実施の形態】
以下に、本発明に係る非可逆回路素子及び通信装置の実施の形態について添付の図面を参照して説明する。なお、各実施形態において、同一部品及び同一部分には同じ符号を付し、重複した説明は省略する。
【0014】
[第1実施形態、図1〜図6]
本発明に係る非可逆回路素子の一実施形態の構成を示す分解斜視図を図1に示す。該非可逆回路素子1は、集中定数型アイソレータである。
【0015】
図1に示すように、アイソレータ1は、概略、金属ケース5と内部電気部品8と回路基板40等から構成されている。内部電気部品8は、概略、二つの永久磁石9,10と中心電極組立体13と整合用コンデンサ素子C1〜C4と抵抗素子Rとアース板30から構成されている。
【0016】
金属ケース5は、上壁5aと四つの側壁5bを有している。ここで、四つの側壁5bの対向する一組の内側面(長辺方向の内側面)を6a,6bとし、もう一組の対向する内側面を6c,6dとする(図2参照)。金属ケース5は金属板を打ち抜き、曲げ加工して形成される。
【0017】
二つの永久磁石9,10は、それぞれ略矩形状を有している。この永久磁石9は、磁極面9a,9bと磁極面9aに垂直な側面9c,9dを有する。同様に、永久磁石10は、磁極面10a,10bと磁極面10bに垂直な側面10c,10dを有する。
【0018】
回路基板40は、略矩形状の基板である。回路基板40の長辺方向の側面にはそれぞれ2分割されたスルーホール46が三つ形成され、短辺方向の側面には2分割されたスルーホール46が一つ形成されている。この回路基板40の上面41には、アース用電極パターン45、入力用電極パターン43及び出力用電極パターン44が形成されている。そして、電極パターン43〜45は、回路基板40の側面に形成されたスルーホール46を介して、下面42まで延在している。
【0019】
整合用コンデンサ素子C1〜C4は、上下面に接続用コンデンサ電極を有している。
【0020】
抵抗素子Rは、直方体の形状を有し、その左右には接続用電極を有している。
この抵抗素子Rは、整合用コンデンサ素子C1〜C4と略同じ厚みに設定される。
【0021】
アース板30は、直方体の形状を有している。アース板30は、銅板等から形成され、導通性を有する。このアース板30は、整合用コンデンサ素子C1〜C4と略同じ厚みに設定される。
【0022】
中心電極組立体13は、略矩形状のマイクロ波フェライト20と、絶縁体を被覆した二つの導線(例えば、銅線や銀線等)を交差角度が略90度になるように交差させてフェライト20の表面に巻回してなる中心電極21,22とで構成されている。
【0023】
以上の構成部品は、以下のようにして組み立てられる。回路基板40の上に、整合用コンデンサ素子C1〜C4、アース板30及び抵抗素子Rを載置し、はんだ付け等の方法により実装する。このとき、整合用コンデンサ素子C1,C2の下面の接続用コンデンサ電極は回路基板40の上面41に形成されているアース用電極パターン45に、整合用コンデンサ素子C3の下面の接続用コンデンサ電極は上面41に形成されている入力用電極パターン43に、整合用コンデンサ素子C4の下面の接続用コンデンサ電極は上面41に形成されている出力用電極パターン44に、それぞれはんだ付け等の方法によって電気的に接続する。
【0024】
抵抗素子Rは、回路基板40の非電極パターン部49に載置される。つまり、アース用電極パターン45と抵抗素子Rは、電気的に非接触状態である。
【0025】
次に、中心電極組立体13を整合用コンデンサ素子C1〜C4、抵抗素子R、アース板30の上に載置し、はんだ接合等の方法により実装する。このとき、中心電極21の一端が整合用コンデンサ素子C1,C3の上面の接続用コンデンサ電極と抵抗素子Rの一方の端子電極に電気的に接続される。中心電極22の一端が整合用コンデンサ素子C2,C4の上面の接続用コンデンサ電極及び抵抗素子Rの他端の端子電極に電気的に接続される。中心電極21,22の他端がアース板30に電気的に接続される。これにより、中心電極組立体13は、素子C1〜C4,Rやアース板30に固定される。
【0026】
次に、図2に示すように、二つの永久磁石9,10を金属ケース5内に貼着して、金属ケース5を回路基板40に被せる。このとき、永久磁石9,10は、それぞれ金属ケース5の側壁5bの内側面6a,6bを基準面にして偏在して配置される。つまり、永久磁石9の側面9dは金属ケース5の側壁5bの内側面6aに当接され、永久磁石10の側面10cは金属ケース5の側壁5bの内側面6bに当接される。永久磁石9,10の磁極面9b,10aは内側面6c,6dにそれぞれ当接される。ここで、例えば、金属ケース5の内寸法W2=2.2mm、永久磁石9,10の長さ寸法W1=2.0mmである。
【0027】
中心電極組立体13のフェライト20は、二つの永久磁石9,10の間の中心位置に、かつ、金属ケース5の内側面6a,6bからそれぞれ等距離の位置に配置される。従って、永久磁石9の中心線L1と永久磁石10の中心線L2とフェライト20の中心線L3は互いに平行にずれている。また、中心電極組立体13の中心位置から永久磁石9,10の磁極面9a,10bまでの距離はそれぞれ距離dである。このフェライト20には、永久磁石9の磁極面9aから永久磁石10の磁極面10bに向かって形成される直流磁界が印加される。なお、素子C1〜C4,Rやアース板30の厚みが略同じであるので、これら素子C1〜C4,Rの上面及びアース板30の上面はそれぞれ、回路基板40に対して略平行な同一面を構成する。従って、この同一面上に搭載される中心電極組立体13のフェライト20は、回路基板40に対して略垂直に配置することができる。
【0028】
さらに、金属ケース5と回路基板40のアース用電極パターン45とをはんだ付けによって接合する。こうして、図3に示すようなアイソレータ1が形成される。図4は図3に示したアイソレータ1の電気等価回路図である。
【0029】
なお、永久磁石9,10は、必ずしも金属ケース5の異なる内側面6a,6bにそれぞれ当接される必要はなく、例えば、図5に示すように、永久磁石9,10の側面9d,10dを同じ内側面6aに当接させたものであってもよい。
【0030】
以上のアイソレータ1は、金属ケース5の内側面6a,6b,6c,6dが、永久磁石9,10を配置する際の基準面になる。すなわち、内側面6a,6bが、永久磁石9の側面9c(又は9d)や永久磁石10の側面10c(又は10d)の当接基準面となる。さらに、内側面6c,6dが、永久磁石9の磁極面9bや永久磁石10の磁極面10aの当接基準面となる。従って、金属ケース5内に永久磁石9,10を容易にかつ精度良く配置することができる。この結果、永久磁石9,10の配置位置のばらつきがなくなるので、電気的特性のばらつきがなくなり、高性能なアイソレータ1が得られる。
【0031】
また、従来のアイソレータのように樹脂モールド等で永久磁石9,10を位置決めする必要がなくなるので、部品点数が少なく、組み立てが容易なアイソレータ1を得ることができ、その生産性及び良品率を向上させることができる。
【0032】
また、永久磁石9,10や金属ケース5のサイズを小さくしても、永久磁石9,10は、金属ケース5の内側面6a,6b,6c,6dを当接の基準面にしているので、金属ケース5内に永久磁石9,10を容易に配置することができる。
【0033】
さらに、永久磁石9,10を金属ケース5の内側面6a,6bに当接させて、内側面6a,6b側に片寄って配置させることにより、金属ケース5内の磁場分布を改善することができる。すなわち、永久磁石9,10の磁極面9a,10bのエッジ部eからは磁力線が最も強く出ている。永久磁石9,10を内側面6aや内側面6bに片寄らせることにより、この最も強く磁力線が出るエッジ部eが、図11に示した従来のアイソレータ231と比較して、フェライト20に近づく。この結果、フェライト20は永久磁石9,10から強力な直流磁界を印加されることになり、アイソレータ1の挿入損失特性を向上させることができる。
【0034】
図6は、永久磁石9,10の配置位置を変えた種々のアイソレータ1(試験体No1〜No4)の挿入損失を測定したグラフである。比較のため、図11に示した従来のアイソレータ231(試験体No5)の挿入損失も併せて記載している。永久磁石9,10をそれぞれ異なる内側面6a,6bに当接させた試験体No1,2のアイソレータ1の挿入損失は、試験体No5の従来のアイソレータ231の挿入損失に比べて、約0.2dB改善されている。また、永久磁石9,10を同じ内側面6a(又は6b)に当接させた試験体No3,4のアイソレータ1の挿入損失は、試験体No5の従来のアイソレータ231の挿入損失に比べて、約0.1〜0.15dB改善されている。
【0035】
[第2実施形態、図7及び図8]
図7に示すように、本第2実施形態では、整合用コンデンサ素子C1〜C4、抵抗素子R及び回路基板40の替わりに、これら素子C1〜C4,Rを内蔵したLTCC(Low Temperature Cofired Ceramic)多層基板50を用いたアイソレータ2を示す。
【0036】
LTCC多層基板50の上面には、アース用電極パターン45と接続用電極パターン51,52が形成されている。TLCC多層基板50の縁部には、それぞれ2分割されたスルーホール46を有した入力用外部電極パターン53、出力用外部電極パターン54及びアース用外部電極パターン55が設けられている。接続用電極パターン51,52は中心電極21,22の一端と接続し、アース用電極パターン45は中心電極21,22の他端と接続している。
【0037】
ここで、LTCC多層基板50は、低温焼結材料や低温焼成セラミックからなる層を、内部導体膜や内部抵抗膜を間に配置して、積層して形成されている。さらに、特定の層には、ビアホールが形成されており、LTCC多層基板50の内部で、内部導体膜や内部抵抗膜と電気的に接続して、抵抗素子R及び整合用コンデンサ素子C1〜C4からなる電気回路を形成している。
【0038】
図8に示すように、アイソレータ2は、多層基板50に中心電極組立体13が載置される。永久磁石9及び永久磁石10は、前記第1実施形態の図2のアイソレータ1と同様に、金属ケース5の内側面6a,6bに当接され、貼着されている。
【0039】
以上のアイソレータ2は、前記第1実施形態と同様の作用効果を奏する。さらに、LTCC多層基板50内に、整合用コンデンサ素子C1〜C4や抵抗素子Rを形成しているので、アイソレータ1に比べて、はんだ接合箇所を少なくすることができ、アイソレータ2の生産コストを安価にすることができる。
【0040】
[第3実施形態、図9]
本第3実施形態では、携帯電話を例にして、通信装置の実施の形態を説明する。
【0041】
図9は、携帯電話120のRF部分の電気回路ブロック図である。図9において、122はアンテナ素子、123はデュプレクサ、124,126は送信側電力増幅器、125は送信側段間用帯域通過フィルタ、127は送信側ミキサ、128は受信側低ノイズ増幅器、129は受信側段間用帯域通過フィルタ、130は受信側ミキサ、131はアイソレータ、132は電圧制御発振器(VCO)、133はローカル用帯域通過フィルタである。
【0042】
ここに、アイソレータ131として、前記第1実施形態及び第2実施形態のアイソレータ1,2を使用することができる。このアイソレータ1,2を実装することにより、低コストで高性能の携帯電話を実現することができる。
【0043】
[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の構成に変更することができる。例えば、中心電極21,22は、導線(断面形状が略円形状)のものに限るものではなく、金属箔(断面形状が平板形状)のものであっても良い。また、中心電極組立体13の形状は、矩形状の他に、円柱形状や変形角形状等任意である。また、永久磁石9,10の形状は、永久磁石の側面が金属ケースの内側面に当接できればよく、矩形状の他に、例えば、角が丸い矩形状や円形状や変形角形状であってもよい。
【0044】
また、アイソレータの他に、サーキュレータ等の各種非可逆回路素子にも本発明を適用することができる。
【0045】
【発明の効果】
以上の説明から明らかなように、本発明によれば、第1永久磁石の側面と磁極面及び第2永久磁石の側面と磁極面を、それぞれ金属ケースの互いに対向する第1〜第4内側面に当接させているので、第1永久磁石と第2永久磁石を金属ケースの内側面に容易に位置決めすることができる。従って、組み立てが容易な非可逆回路素子及び通信装置を得ることができる。
【0046】
さらに、第1永久磁石及び第2永久磁石の側面を金属ケースの第1及び第2内側面に当接させて、第1及び第2内側面側に片寄って配置させているので、金属ケース内の磁場分布を改善することができ、非可逆回路素子や通信装置の挿入損失特性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る非可逆回路素子の第1実施形態の分解斜視図。
【図2】図1に示した非可逆回路素子の金属ケースと永久磁石及びフェライトとの配置関係を示した模式平面図。
【図3】図1に示した非可逆回路素子の組み立て完成後の斜視図。
【図4】図3に示した非可逆回路素子の電気等価回路図。
【図5】図1に示した非可逆回路素子の変形例を示す、金属ケースと永久磁石及びフェライトとの配置関係を示した模式平面図。
【図6】図1、図5及び図11に示した非可逆回路素子と挿入損失の関係を示すグラフ。
【図7】本発明に係る非可逆回路素子の第2実施形態の分解斜視図。
【図8】図7に示した非可逆回路素子の金属ケースと永久磁石及びフェライトとの配置関係を示した模式平面図。
【図9】本発明に係る通信装置の一実施形態を示すブロック図。
【図10】従来の非可逆回路素子の一実施形態を示す垂直断面図。
【図11】従来の別の非可逆回路素子の金属ケースと永久磁石及びフェライトとの配置関係を示した模式平面図。
【符号の説明】
1,2…アイソレータ(非可逆回路素子)
5…金属ケース
5b…金属ケースの側壁
6a,6b…金属ケースの内側面
9,10…永久磁石
9a,9b,10a,10b…永久磁石の磁極面
9c,9d,10c,10d…永久磁石の側面
13…中心電極組立体
20…マイクロ波フェライト
21,22…中心電極
120…携帯電話(通信装置)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-reciprocal circuit device and a communication device.
[0002]
[Prior art]
In general, a lumped constant isolator employed in a mobile communication device such as a mobile phone has a function of allowing a signal to pass only in the transmission direction and preventing transmission in the reverse direction. Such a lumped constant type isolator includes a center electrode assembly composed of a permanent magnet and ferrite and a plurality of center electrodes arranged on the ferrite, a metal case for housing the center electrode assembly and the permanent magnet, and the like. . In order to improve the electrical performance of this isolator, a permanent magnet having a size that sufficiently covers ferrite has been used.
[0003]
However, it is considered that the permanent magnets are made smaller with the recent reduction in size and height of communication devices. In recent years, the frequency of communication devices has been increased. In a nonreciprocal circuit element, when it is intended to operate at a high frequency, a high magnetic force must be applied accordingly. However, if the permanent magnet is made small for size reduction and low profile, it becomes difficult to obtain the strength of the magnetic field necessary to operate at a desired frequency. In addition, the magnetic field distribution applied to the ferrite also deteriorates, and as a result, characteristics (such as insertion loss) deteriorate. Furthermore, in the case of a structure in which the side surfaces 209b and 210b on both sides of the permanent magnets 209 and 210 are in contact with the metal case 205 as in the isolator 200 described in Japanese Patent Laid-Open No. 6-260812 shown in FIG. Magnetic field lines coming out from portions (edge portions) of the magnetic pole surfaces 209 a and 210 a of the magnets 209 and 210 that are close to the metal case 205 are not applied to the ferrite 220 and leak to the metal case 205. This is because the metal case 205 has a higher magnetic permeability than air. Thereby, the magnetic field distribution applied to the ferrite becomes worse. In FIG. 10, reference numeral 221 denotes a wiring board provided with a plurality of center electrodes on the surface, 212 denotes a ground plate, and C denotes a matching capacitor element.
[0004]
Therefore, in the nonreciprocal circuit device such as an isolator, as shown in FIG. 11, a structure in which gaps t1 are equally provided between the inner surface 235a of the metal case 235 and the side surfaces 239b and 240b of the permanent magnets 239 and 240, respectively. Has been proposed. At this time, the center positions of the magnetic pole surfaces 239a and 240a of the permanent magnets 239 and 240 and the center position of the center electrode assembly 250 are arranged on a substantially straight line L.
[0005]
Further, the center electrode assembly 250 is disposed at the center position between the permanent magnet 239 and the permanent magnet 240. The distances from the center position of the center electrode assembly 250 to the magnetic pole faces 239a and 240a of the permanent magnets 239 and 240 are distances d, respectively.
[0006]
In the isolator 231 configured as described above, the magnetic lines of force that emerge from the edges of the magnetic pole faces 239a and 240a of the permanent magnets 239 and 240 do not leak to the metal case 235, and the DC magnetic field can be efficiently applied to the center electrode assembly 250. it can.
[0007]
[Problems to be solved by the invention]
However, in the conventional isolator 231, the center positions of the permanent magnets 239 and 240 and the center position of the center electrode assembly 250 are arranged on a substantially straight line L. Therefore, the side surfaces 239 b and 240 b of the permanent magnets 239 and 240 and the metal case 235 are arranged. The gap t1 between the inner side surface 235a and the inner side surface 235a must be equidistant.
[0008]
On the other hand, miniaturization of the isolator 231 itself is progressing. For example, when the length dimension W1 of the permanent magnets 239 and 240 is 2.0 mm with respect to the inner dimension W2 of the metal case 235 = 2.2 mm, the gap t1 Is only 0.1 mm. For this reason, when the isolator 231 is actually assembled, it is very difficult to accurately place the permanent magnets 239 and 240 in the metal case 235 by providing the left and right gaps t1 of 0.1 mm. Therefore, the assembling workability of the isolator 231 is poor, and the variation in the arrangement positions of the permanent magnets 239 and 240 is large. In addition, due to this variation, characteristic variation increases, and as a result, there is a problem that the yield rate of products is also reduced.
[0009]
In order to solve this problem, it is conceivable to position the permanent magnet with a resin mold or the like as in the isolator described in JP-A-11-308013. However, this method has a problem in that the number of parts constituting the isolator is increased, production takes time, and manufacturing costs are increased.
[0010]
Accordingly, an object of the present invention is to provide a non-reciprocal circuit device and a communication device that have a small number of components, are easy to assemble, and are small and have high performance.
[0011]
[Means and Actions for Solving the Problems]
In order to achieve the above object, a non-reciprocal circuit device according to the present invention comprises:
(A) a first permanent magnet having a magnetic pole surface and a side surface substantially perpendicular to the magnetic pole surface;
(B) a second permanent magnet having a magnetic pole surface and a side surface substantially perpendicular to the magnetic pole surface;
(C) A DC magnetic field is applied between the magnetic pole surface of the first permanent magnet and the magnetic pole surface of the second permanent magnet and formed from the first permanent magnet toward the second permanent magnet. A center electrode assembly comprising a ferrite and a plurality of center electrodes disposed on the ferrite;
(D) A first inner surface and a second inner surface that are parallel to and opposite to the side surfaces of the first and second permanent magnets, and a magnetic pole surface of the first and second permanent magnets and that are opposite to each other. A metal case for housing the first permanent magnet, the second permanent magnet, and the center electrode assembly, and a third inner surface and a fourth inner surface .
(E) The long side lengths of the magnetic pole surfaces of the first and second permanent magnets are smaller than the long side lengths of the third and fourth inner surfaces of the metal case, and the long side length of the ferrite is the first and second permanent magnets. Smaller than the long side length of the magnetic pole surface of the second permanent magnet,
(F) The magnetic pole surface and the side surface of the first permanent magnet are in contact with the third inner surface and the first inner surface of the metal case, and the magnetic pole surface and the side surface of the second permanent magnet are the fourth inner surface of the metal case. And the center position of the center electrode assembly is disposed between the center position of the first permanent magnet and the center position of the second permanent magnet.
It is characterized by.
[0012]
With the above configuration, the first to fourth inner side surfaces of the metal case serve as reference surfaces for arranging the first permanent magnet and the second permanent magnet, and the side surfaces of the first permanent magnet and the second permanent magnet are used as the reference surfaces. The first permanent magnet and the second permanent magnet can be easily and accurately arranged simply by contacting the surface. Further, since the center position of the center electrode assembly is arranged between the center position of the first permanent magnet and the center position of the second permanent magnet, the magnetic field lines of the first and second permanent magnets are most intense. The edge portion approaches the ferrite, and a strong DC magnetic field is applied to the ferrite from the first and second permanent magnets, and the insertion loss characteristic is improved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a nonreciprocal circuit device and a communication device according to the present invention will be described below with reference to the accompanying drawings. In each embodiment, the same parts and the same parts are denoted by the same reference numerals, and redundant description is omitted.
[0014]
[First Embodiment, FIGS. 1 to 6]
FIG. 1 is an exploded perspective view showing a configuration of an embodiment of a non-reciprocal circuit device according to the present invention. The nonreciprocal circuit device 1 is a lumped constant isolator.
[0015]
As shown in FIG. 1, the isolator 1 is roughly composed of a metal case 5, an internal electrical component 8, a circuit board 40, and the like. The internal electrical component 8 is generally composed of two permanent magnets 9 and 10, a center electrode assembly 13, matching capacitor elements C 1 to C 4, a resistance element R, and a ground plate 30.
[0016]
The metal case 5 has an upper wall 5a and four side walls 5b. Here, the set of inner side surfaces (inner side surfaces in the long side direction) of the four side walls 5b are 6a and 6b, and the other set of inner side surfaces are 6c and 6d (see FIG. 2). The metal case 5 is formed by punching and bending a metal plate.
[0017]
Each of the two permanent magnets 9 and 10 has a substantially rectangular shape. The permanent magnet 9 has magnetic pole surfaces 9a and 9b and side surfaces 9c and 9d perpendicular to the magnetic pole surface 9a. Similarly, the permanent magnet 10 has magnetic pole surfaces 10a and 10b and side surfaces 10c and 10d perpendicular to the magnetic pole surface 10b.
[0018]
The circuit board 40 is a substantially rectangular board. Three through holes 46 each divided into two are formed on the side surface in the long side direction of the circuit board 40, and one through hole 46 divided into two is formed on the side surface in the short side direction. An earth electrode pattern 45, an input electrode pattern 43, and an output electrode pattern 44 are formed on the upper surface 41 of the circuit board 40. The electrode patterns 43 to 45 extend to the lower surface 42 through through holes 46 formed on the side surface of the circuit board 40.
[0019]
The matching capacitor elements C1 to C4 have connection capacitor electrodes on the upper and lower surfaces.
[0020]
The resistance element R has a rectangular parallelepiped shape, and has connection electrodes on the left and right sides thereof.
The resistance element R is set to have substantially the same thickness as the matching capacitor elements C1 to C4.
[0021]
The ground plate 30 has a rectangular parallelepiped shape. The ground plate 30 is formed of a copper plate or the like and has electrical conductivity. The ground plate 30 is set to have substantially the same thickness as the matching capacitor elements C1 to C4.
[0022]
The center electrode assembly 13 is formed by crossing a substantially rectangular microwave ferrite 20 and two conductors (for example, a copper wire and a silver wire) coated with an insulator so that the crossing angle is approximately 90 degrees. The center electrodes 21 and 22 are wound around the surface of 20.
[0023]
The above components are assembled as follows. The matching capacitor elements C1 to C4, the ground plate 30 and the resistance element R are placed on the circuit board 40 and mounted by a method such as soldering. At this time, the connecting capacitor electrode on the lower surface of the matching capacitor elements C1 and C2 is connected to the ground electrode pattern 45 formed on the upper surface 41 of the circuit board 40, and the connecting capacitor electrode on the lower surface of the matching capacitor element C3 is connected to the upper surface. The connection capacitor electrode on the lower surface of the matching capacitor element C4 is electrically connected to the output electrode pattern 44 formed on the upper surface 41 by a method such as soldering. Connecting.
[0024]
The resistance element R is placed on the non-electrode pattern portion 49 of the circuit board 40. That is, the ground electrode pattern 45 and the resistance element R are in an electrically non-contact state.
[0025]
Next, the center electrode assembly 13 is placed on the matching capacitor elements C1 to C4, the resistance element R, and the ground plate 30, and mounted by a method such as solder bonding. At this time, one end of the center electrode 21 is electrically connected to the connection capacitor electrode on the upper surface of the matching capacitor elements C1 and C3 and one terminal electrode of the resistance element R. One end of the center electrode 22 is electrically connected to the connection capacitor electrode on the upper surface of the matching capacitor elements C2 and C4 and the terminal electrode at the other end of the resistance element R. The other ends of the center electrodes 21 and 22 are electrically connected to the ground plate 30. Accordingly, the center electrode assembly 13 is fixed to the elements C1 to C4, R and the ground plate 30.
[0026]
Next, as shown in FIG. 2, the two permanent magnets 9 and 10 are stuck in the metal case 5, and the metal case 5 is put on the circuit board 40. At this time, the permanent magnets 9 and 10 are arranged unevenly with the inner side surfaces 6a and 6b of the side wall 5b of the metal case 5 as reference surfaces. That is, the side surface 9 d of the permanent magnet 9 is in contact with the inner surface 6 a of the side wall 5 b of the metal case 5, and the side surface 10 c of the permanent magnet 10 is in contact with the inner surface 6 b of the side wall 5 b of the metal case 5. The magnetic pole surfaces 9b and 10a of the permanent magnets 9 and 10 are in contact with the inner side surfaces 6c and 6d, respectively. Here, for example, the inner dimension W2 of the metal case 5 is 2.2 mm, and the length dimension W1 of the permanent magnets 9 and 10 is 2.0 mm.
[0027]
The ferrite 20 of the center electrode assembly 13 is disposed at the center position between the two permanent magnets 9 and 10 and at the same distance from the inner side surfaces 6 a and 6 b of the metal case 5. Therefore, the center line L1 of the permanent magnet 9, the center line L2 of the permanent magnet 10, and the center line L3 of the ferrite 20 are shifted in parallel to each other. The distances from the center position of the center electrode assembly 13 to the magnetic pole surfaces 9a and 10b of the permanent magnets 9 and 10 are distances d. A DC magnetic field formed from the magnetic pole surface 9 a of the permanent magnet 9 toward the magnetic pole surface 10 b of the permanent magnet 10 is applied to the ferrite 20. Since the thicknesses of the elements C1 to C4 and R and the ground plate 30 are substantially the same, the upper surfaces of the elements C1 to C4 and R and the upper surface of the ground plate 30 are the same plane substantially parallel to the circuit board 40, respectively. Configure. Therefore, the ferrite 20 of the center electrode assembly 13 mounted on the same surface can be disposed substantially perpendicular to the circuit board 40.
[0028]
Further, the metal case 5 and the ground electrode pattern 45 of the circuit board 40 are joined by soldering. Thus, the isolator 1 as shown in FIG. 3 is formed. FIG. 4 is an electrical equivalent circuit diagram of the isolator 1 shown in FIG.
[0029]
The permanent magnets 9 and 10 do not necessarily have to be in contact with the different inner side surfaces 6a and 6b of the metal case 5, respectively. For example, as shown in FIG. It may be in contact with the same inner surface 6a.
[0030]
In the above isolator 1, the inner side surfaces 6 a, 6 b, 6 c, 6 d of the metal case 5 serve as reference surfaces when the permanent magnets 9, 10 are arranged. That is, the inner side surfaces 6a and 6b serve as contact reference surfaces for the side surface 9c (or 9d) of the permanent magnet 9 and the side surface 10c (or 10d) of the permanent magnet 10. Furthermore, the inner side surfaces 6 c and 6 d serve as reference contact surfaces for the magnetic pole surface 9 b of the permanent magnet 9 and the magnetic pole surface 10 a of the permanent magnet 10. Therefore, the permanent magnets 9 and 10 can be easily and accurately arranged in the metal case 5. As a result, since there is no variation in the arrangement positions of the permanent magnets 9 and 10, there is no variation in electrical characteristics, and a high-performance isolator 1 can be obtained.
[0031]
Further, since it is not necessary to position the permanent magnets 9 and 10 with a resin mold or the like as in the conventional isolator, the isolator 1 with a small number of parts and easy assembly can be obtained, and its productivity and yield rate are improved. Can be made.
[0032]
Even if the sizes of the permanent magnets 9 and 10 and the metal case 5 are reduced, the permanent magnets 9 and 10 use the inner side surfaces 6a, 6b, 6c, and 6d of the metal case 5 as reference surfaces for contact. The permanent magnets 9 and 10 can be easily arranged in the metal case 5.
[0033]
Furthermore, the magnetic field distribution in the metal case 5 can be improved by bringing the permanent magnets 9 and 10 into contact with the inner side surfaces 6a and 6b of the metal case 5 and offset from the inner side surfaces 6a and 6b. . That is, the lines of magnetic force are strongest from the edge portions e of the magnetic pole surfaces 9a and 10b of the permanent magnets 9 and 10. By shifting the permanent magnets 9 and 10 toward the inner side surface 6a and the inner side surface 6b, the edge portion e where the magnetic field lines appear most strongly approaches the ferrite 20 as compared with the conventional isolator 231 shown in FIG. As a result, a strong DC magnetic field is applied to the ferrite 20 from the permanent magnets 9 and 10, and the insertion loss characteristic of the isolator 1 can be improved.
[0034]
FIG. 6 is a graph obtained by measuring insertion loss of various isolators 1 (test bodies No1 to No4) in which the arrangement positions of the permanent magnets 9 and 10 are changed. For comparison, the insertion loss of the conventional isolator 231 (test body No. 5) shown in FIG. 11 is also shown. The insertion loss of the isolator 1 of the test bodies No. 1 and No. 2 in which the permanent magnets 9 and 10 are brought into contact with the different inner side surfaces 6a and 6b is about 0.2 dB compared to the insertion loss of the conventional isolator 231 of the test body No. 5. It has been improved. Further, the insertion loss of the isolator 1 of the test bodies No. 3 and 4 in which the permanent magnets 9 and 10 are brought into contact with the same inner side surface 6a (or 6b) is smaller than the insertion loss of the conventional isolator 231 of the test body No. 5. It is improved by 0.1 to 0.15 dB.
[0035]
[Second Embodiment, FIGS. 7 and 8]
As shown in FIG. 7, in the second embodiment, instead of the matching capacitor elements C1 to C4, the resistance element R, and the circuit board 40, LTCC (Low Temperature Combined Ceramic) incorporating these elements C1 to C4 and R is included. The isolator 2 using the multilayer substrate 50 is shown.
[0036]
An earth electrode pattern 45 and connection electrode patterns 51 and 52 are formed on the upper surface of the LTCC multilayer substrate 50. An input external electrode pattern 53, an output external electrode pattern 54, and an earth external electrode pattern 55 each having a through hole 46 divided into two are provided at the edge of the TLCC multilayer substrate 50. The connection electrode patterns 51 and 52 are connected to one end of the center electrodes 21 and 22, and the ground electrode pattern 45 is connected to the other end of the center electrodes 21 and 22.
[0037]
Here, the LTCC multilayer substrate 50 is formed by laminating layers made of a low-temperature sintered material or a low-temperature fired ceramic with an internal conductor film or an internal resistance film interposed therebetween. Furthermore, a via hole is formed in the specific layer, and is electrically connected to the internal conductor film and the internal resistance film inside the LTCC multilayer substrate 50, and from the resistance element R and the matching capacitor elements C1 to C4. An electric circuit is formed.
[0038]
As shown in FIG. 8, in the isolator 2, the center electrode assembly 13 is placed on the multilayer substrate 50. The permanent magnet 9 and the permanent magnet 10 are in contact with and stuck to the inner side surfaces 6a and 6b of the metal case 5 in the same manner as the isolator 1 of FIG. 2 of the first embodiment.
[0039]
The isolator 2 described above has the same operational effects as the first embodiment. Furthermore, since the matching capacitor elements C1 to C4 and the resistance element R are formed in the LTCC multilayer substrate 50, the number of solder joints can be reduced compared to the isolator 1, and the production cost of the isolator 2 is low. Can be.
[0040]
[Third Embodiment, FIG. 9]
In the third embodiment, an embodiment of a communication device will be described using a mobile phone as an example.
[0041]
FIG. 9 is an electric circuit block diagram of the RF portion of the mobile phone 120. In FIG. 9, 122 is an antenna element, 123 is a duplexer, 124 and 126 are transmission side power amplifiers, 125 is a band pass filter for transmission side stages, 127 is a transmission side mixer, 128 is a reception side low noise amplifier, and 129 is reception. The interstage side band pass filter, 130 is a receiving side mixer, 131 is an isolator, 132 is a voltage controlled oscillator (VCO), and 133 is a local band pass filter.
[0042]
Here, as the isolator 131, the isolators 1 and 2 of the first embodiment and the second embodiment can be used. By mounting the isolators 1 and 2, a high-performance mobile phone can be realized at low cost.
[0043]
[Other Embodiments]
The present invention is not limited to the above-described embodiment, and can be changed to various configurations within the scope of the gist of the present invention. For example, the center electrodes 21 and 22 are not limited to conductive wires (cross-sectional shape is substantially circular), but may be metal foils (cross-sectional shape is flat plate). In addition to the rectangular shape, the shape of the center electrode assembly 13 is arbitrary, such as a cylindrical shape or a deformed angular shape. Moreover, the shape of the permanent magnets 9 and 10 is not limited as long as the side surfaces of the permanent magnets can contact the inner surface of the metal case. In addition to the rectangular shape, for example, a rectangular shape with rounded corners, a circular shape, or a deformed angular shape. Also good.
[0044]
In addition to the isolator, the present invention can be applied to various nonreciprocal circuit elements such as a circulator.
[0045]
【The invention's effect】
As apparent from the above description, according to the present invention, the first to fourth inner surface side and the pole face and side surfaces and the pole surface of the second permanent magnet of the first permanent magnets, opposing each metal case Therefore, the first permanent magnet and the second permanent magnet can be easily positioned on the inner surface of the metal case. Therefore, an irreversible circuit element and a communication device that can be easily assembled can be obtained.
[0046]
Further, the side surfaces of the first permanent magnet and the second permanent magnet is brought into contact with the first and second inner surfaces of the metal case, since is arranged offset to the first and second inner surface, a metal case Thus, the insertion loss characteristics of the nonreciprocal circuit element and the communication device can be improved.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a first embodiment of a non-reciprocal circuit device according to the present invention.
2 is a schematic plan view showing an arrangement relationship between a metal case of the nonreciprocal circuit device shown in FIG. 1, a permanent magnet, and ferrite. FIG.
3 is a perspective view after the non-reciprocal circuit device shown in FIG. 1 is assembled. FIG.
4 is an electrical equivalent circuit diagram of the non-reciprocal circuit device shown in FIG. 3. FIG.
5 is a schematic plan view showing a positional relationship between a metal case, a permanent magnet, and ferrite, showing a modification of the non-reciprocal circuit device shown in FIG. 1. FIG.
6 is a graph showing the relationship between the non-reciprocal circuit device shown in FIGS. 1, 5 and 11 and insertion loss. FIG.
FIG. 7 is an exploded perspective view of a second embodiment of a non-reciprocal circuit device according to the present invention.
8 is a schematic plan view showing an arrangement relationship between a metal case of the non-reciprocal circuit device shown in FIG. 7, a permanent magnet, and ferrite.
FIG. 9 is a block diagram showing an embodiment of a communication apparatus according to the present invention.
FIG. 10 is a vertical sectional view showing an embodiment of a conventional non-reciprocal circuit device.
FIG. 11 is a schematic plan view showing an arrangement relationship between a metal case of another conventional nonreciprocal circuit device, a permanent magnet, and ferrite.
[Explanation of symbols]
1, 2 ... Isolator (non-reciprocal circuit element)
5 ... Metal case 5b ... Metal case side wall 6a, 6b ... Metal case inner side surface 9, 10 ... Permanent magnet 9a, 9b, 10a, 10b ... Permanent magnet magnetic pole surface 9c, 9d, 10c, 10d ... Permanent magnet side surface 13 ... Center electrode assembly 20 ... Microwave ferrite 21, 22 ... Center electrode 120 ... Mobile phone (communication device)

Claims (2)

磁極面と前記磁極面に略垂直な側面とを有する第1永久磁石と、
磁極面と前記磁極面に略垂直な側面とを有する第2永久磁石と、
前記第1永久磁石の磁極面と前記第2永久磁石の磁極面との間に配置され、前記第1永久磁石から前記第2永久磁石に向かって形成される直流磁界が印加される、フェライトと前記フェライトに配置された複数の中心電極とで構成された中心電極組立体と、
前記第1及び第2永久磁石の側面と平行であって互いに対向する第1内側面及び第2内側面と、前記第1及び第2永久磁石の磁極面と平行であって互いに対向する第3内側面及び第4内側面とを有し、前記第1永久磁石と前記第2永久磁石と前記中心電極組立体とを収容する金属ケースとを備え、
前記第1及び第2永久磁石の磁極面の長辺長さは前記金属ケースの第3及び第4内側面の長辺長さより小さく、前記フェライトの長辺長さは前記第1及び第2永久磁石の磁極面の長辺長さより小さく、
前記第1永久磁石の磁極面及び側面が前記金属ケースの第3内側面及び第1内側面に当接し、前記第2永久磁石の磁極面及び側面が前記金属ケースの第4内側面及び第2内側面に当接し、前記第1永久磁石の中心位置及び前記第2永久磁石の中心位置との間に前記中心電極組立体の中心位置が配置されていること、
を特徴とする非可逆回路素子。
A first permanent magnet having a magnetic pole surface and a side surface substantially perpendicular to the magnetic pole surface;
A second permanent magnet having a magnetic pole surface and a side surface substantially perpendicular to the magnetic pole surface;
A ferrite disposed between a magnetic pole surface of the first permanent magnet and a magnetic pole surface of the second permanent magnet, to which a DC magnetic field formed from the first permanent magnet toward the second permanent magnet is applied; A center electrode assembly composed of a plurality of center electrodes disposed on the ferrite;
A first inner surface and a second inner surface that are parallel to the side surfaces of the first and second permanent magnets and that face each other, and a third inner surface that is parallel to the magnetic pole surface of the first and second permanent magnets and face each other. A metal case having an inner side surface and a fourth inner side surface, and housing the first permanent magnet, the second permanent magnet, and the center electrode assembly;
The long side lengths of the magnetic pole surfaces of the first and second permanent magnets are smaller than the long side lengths of the third and fourth inner surfaces of the metal case, and the long side length of the ferrite is the first and second permanent magnets. Smaller than the long side length of the magnetic pole face of the magnet,
The magnetic pole surface and side surface of the first permanent magnet are in contact with the third inner surface and first inner surface of the metal case, and the magnetic pole surface and side surface of the second permanent magnet are the fourth inner surface and second surface of the metal case. contact with the inner surface, the center position of the center electrode assembly is arranged between the center position and the center position of the second permanent magnet of the first permanent magnet,
A nonreciprocal circuit device characterized by the above.
請求項に記載の非可逆回路素子を備えたことを特徴とする通信装置。A communication apparatus comprising the nonreciprocal circuit device according to claim 1 .
JP2001203871A 2001-07-04 2001-07-04 Non-reciprocal circuit device and communication device Expired - Fee Related JP4639540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001203871A JP4639540B2 (en) 2001-07-04 2001-07-04 Non-reciprocal circuit device and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001203871A JP4639540B2 (en) 2001-07-04 2001-07-04 Non-reciprocal circuit device and communication device

Publications (2)

Publication Number Publication Date
JP2003017904A JP2003017904A (en) 2003-01-17
JP4639540B2 true JP4639540B2 (en) 2011-02-23

Family

ID=19040433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001203871A Expired - Fee Related JP4639540B2 (en) 2001-07-04 2001-07-04 Non-reciprocal circuit device and communication device

Country Status (1)

Country Link
JP (1) JP4639540B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4175061A1 (en) * 2021-10-29 2023-05-03 TDK Corporation Non-reciprocal circuit element and communication apparatus having the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392413B2 (en) * 2010-09-15 2014-01-22 株式会社村田製作所 Composite electronic module
CN114759328A (en) * 2022-04-15 2022-07-15 北京无线电测量研究所 Microstrip isolator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291002A (en) * 1985-10-16 1987-04-25 Tdk Corp Method of adjusting magnetic field of non-reversible transmission element
JPH06260812A (en) * 1993-03-04 1994-09-16 Tokin Corp Nonreversible circuit element
JPH10270910A (en) * 1997-03-24 1998-10-09 Hitachi Metals Ltd Irreversible circuit element
JPH10270911A (en) * 1997-03-26 1998-10-09 Murata Mfg Co Ltd Irreversible circuit element and its mounting structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291002A (en) * 1985-10-16 1987-04-25 Tdk Corp Method of adjusting magnetic field of non-reversible transmission element
JPH06260812A (en) * 1993-03-04 1994-09-16 Tokin Corp Nonreversible circuit element
JPH10270910A (en) * 1997-03-24 1998-10-09 Hitachi Metals Ltd Irreversible circuit element
JPH10270911A (en) * 1997-03-26 1998-10-09 Murata Mfg Co Ltd Irreversible circuit element and its mounting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4175061A1 (en) * 2021-10-29 2023-05-03 TDK Corporation Non-reciprocal circuit element and communication apparatus having the same

Also Published As

Publication number Publication date
JP2003017904A (en) 2003-01-17

Similar Documents

Publication Publication Date Title
US6914496B2 (en) Center-electrode assembly and manufacturing method therefor, nonreciprocal circuit device and communication apparatus using the same
JP4345709B2 (en) Non-reciprocal circuit device, manufacturing method thereof, and communication device
US20060022766A1 (en) High frequency circuit module having non-reciprocal circuit element
JP4639540B2 (en) Non-reciprocal circuit device and communication device
JP4345254B2 (en) Non-reciprocal circuit device and communication device
JP2006211548A (en) Nonreciprocal circuit element and transmission/reception module employing this nonreciprocal circuit element
JPH11239009A (en) Band widening structure of irreversible circuit element
US7394330B2 (en) Non-reciprocal circuit element
JP3655583B2 (en) Non-reciprocal circuit element
JP4517326B2 (en) Non-reciprocal circuit device and wireless communication device using the same
JP3164029B2 (en) Non-reciprocal circuit device
JP3395748B2 (en) Non-reciprocal circuit device and communication device
JP4530165B2 (en) Non-reciprocal circuit device and communication device
JP3683220B2 (en) Non-reciprocal circuit element
JP3714220B2 (en) Non-reciprocal circuit device and communication device
US20030128078A1 (en) Small nonreciprocal circuit element that can be easily wired
JP2002164712A (en) Central electrode assembly and irreversible circuit device and communication apparatus
JP2006222880A (en) Irreversible circuit element
JP2004193904A (en) Two-port isolator and its manufacturing method and communication apparatus
KR20190101022A (en) Non-reciprocal Circuit Element
JP2006020052A (en) 2-port isolator
JP2006094289A (en) Nonreciprocal circuit element
JP2002246811A (en) Nonreciprocal circuit element and communication equipment
JP2002353706A (en) Center electrode assembly, irreversible circuit element and communication unit
JP2002246812A (en) Center electrode assembly and nonreciprocal circuit element and communication equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Ref document number: 4639540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees