JPS6291002A - Method of adjusting magnetic field of non-reversible transmission element - Google Patents

Method of adjusting magnetic field of non-reversible transmission element

Info

Publication number
JPS6291002A
JPS6291002A JP23038885A JP23038885A JPS6291002A JP S6291002 A JPS6291002 A JP S6291002A JP 23038885 A JP23038885 A JP 23038885A JP 23038885 A JP23038885 A JP 23038885A JP S6291002 A JPS6291002 A JP S6291002A
Authority
JP
Japan
Prior art keywords
magnetic
magnet
plate
magnetic field
magnetic plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23038885A
Other languages
Japanese (ja)
Inventor
Kojin Sagara
相良 行人
Tadashi Hashimoto
忠士 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP23038885A priority Critical patent/JPS6291002A/en
Publication of JPS6291002A publication Critical patent/JPS6291002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

PURPOSE:To obtain the titled element having simple and small-sized structure and to attain fine adjustment of a magnetic field by fixing a magnetic plate having a large diameter than that of a magnet to a face opposite to a ferrite element of the magnet, cutting corners of the magnetic plate so as to adjust the leakage magnetic flux from the magnetic plate. CONSTITUTION:The magnetic flux 33 perpendicular to a plate face coming from the plate face 29a of the magnetic plate 29 and corresponding to that within an outer diameter range of the magnet 20 among the magnetic flux from the magnet 20 becomes parallel effective magnetic flux and gives a magnetic field to ferrite elements 18, 19. A magnetic plate circumference 29b generating leakage magnetic flux is cut off partially as hatched lines to adjust the entire magnetic field fed to the ferrite element via the magnetic plate 29 from the magnet 20 optionally. The surrounding to the magnetic plate 29 is cut off over the entire circumference to change the range and intensity of the effective magnetic flux 33 coming from the surface of the magnetic plate 29 or a part 35 of the ridge of the magnetic plate 29 is notched to adjust the intensity of the magnetic flux generated from the other parts.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アイソレータあるいは?−キュレータ等非可
逆伝送素子に関し、特にケース内で収容されたフェライ
ト素子に印加する磁界の調整方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is an isolator or ? -Regarding irreversible transmission elements such as curators, and particularly relating to a method of adjusting a magnetic field applied to a ferrite element housed in a case.

(従来技術) ケース内に一対のフェライト素子を近接させて対向配置
し、この一対の組み合されたフェライト素子の片側に永
久磁石(マグネット)全配置して該フェライト素子に磁
界を加え、前記一対のフェライト素子からリード線をケ
ースの入出力端子へ引き出すようにしな形式のアイソレ
ータやサーキュレータ−において、フェライト素子に加
える磁界の強さを変えるために、従来、マグネットを位
置調整可能に保持し、マグネット−フェライト素子間の
間隔を変えて磁界の調整を行うことが提案されている。
(Prior art) A pair of ferrite elements are disposed close to each other and facing each other in a case, and a permanent magnet is placed on one side of the pair of combined ferrite elements to apply a magnetic field to the ferrite element. In order to change the strength of the magnetic field applied to the ferrite element in isolators and circulators in which lead wires are drawn out from the ferrite element to the input/output terminals of the case, conventionally, magnets are held in an adjustable position to change the strength of the magnetic field applied to the ferrite element. - It has been proposed to adjust the magnetic field by changing the spacing between ferrite elements.

第4図は従来の磁界調整方法付のアイソレータの概略的
な縦断面図である。ケース21内に一対のフェライト素
子18.19が互いに対面して取り付けられ、各フェラ
イト素子からリード線26.27が引き出されてケース
の入出力端子に接続されている。このフェライト素子て
対向した位置で、ケース21に、調整ねじ30が螺合さ
れ、この調整ねじ30の先端に、フェライト素子18.
19に静磁界を加えるマグネット31が固着され、調整
ねじ30をケース外から操作してマグネット31とフェ
ライト素子との間隔を変え、フェライト素子に加わる磁
界を調整する。
FIG. 4 is a schematic longitudinal sectional view of an isolator with a conventional magnetic field adjustment method. A pair of ferrite elements 18, 19 are mounted inside the case 21 facing each other, and lead wires 26, 27 are drawn out from each ferrite element and connected to input/output terminals of the case. An adjustment screw 30 is screwed into the case 21 at a position facing the ferrite element, and the ferrite element 18.
A magnet 31 that applies a static magnetic field is fixed to 19, and an adjustment screw 30 is operated from outside the case to change the distance between the magnet 31 and the ferrite element, thereby adjusting the magnetic field applied to the ferrite element.

(発明が解決しようとする問題点) 上述した従来のねじ式調整構造は組付後も外部から簡単
な工具で調整ねじの調整操作を行うことができる利点が
あるものの、構造が煩雑で形も大きくなり、部品数も多
くなり、またねじ調整によるマグネットの位置変化のみ
では調整範囲の制限があり、正確かつ充分な磁界調整、
微調整が得られないという欠点があった。さらにマグネ
ットがねじ機構で保持される関係から、マグネットの位
置が不確実で安定した性能が得られ難い。まなマグネッ
トを固定する形式のものでは、組付時の磁界調整は非常
に困難である。
(Problems to be Solved by the Invention) Although the above-mentioned conventional screw type adjustment structure has the advantage that the adjustment screw can be adjusted from the outside with a simple tool after assembly, the structure is complicated and the shape is small. It is larger and requires more parts, and the adjustment range is limited by changing the position of the magnet only by adjusting the screws, making it difficult to accurately and sufficiently adjust the magnetic field.
The drawback was that fine adjustment was not possible. Furthermore, since the magnet is held by a screw mechanism, the position of the magnet is uncertain, making it difficult to obtain stable performance. In the case of a type in which a magnet is fixed, it is very difficult to adjust the magnetic field during assembly.

(問題点を解決するための手段) 本発明に係る非可逆伝送素子の磁界調整方法は、ケース
内に一対のフェライト素子が配置され該フェライト素子
に対向して配置されたマグネットにより該フェライト素
子に磁界を加えるようにした非可逆伝送素子において、
前記マグネットのフェライト素子対向面に該マグネット
よりも大径の磁性板を固着し、前記磁性板の隅部を削り
取って該磁性板からの漏れ磁束を調整するようにしたも
のである。
(Means for Solving the Problems) A magnetic field adjustment method for a non-reciprocal transmission element according to the present invention includes a pair of ferrite elements arranged in a case, and a magnet arranged opposite to the ferrite elements. In an irreversible transmission element that applies a magnetic field,
A magnetic plate having a larger diameter than the magnet is fixed to the surface of the magnet facing the ferrite element, and the corners of the magnetic plate are shaved off to adjust leakage magnetic flux from the magnetic plate.

(実施例) 次に、本発明を、図面を参照しながら実施例について説
明する。
(Example) Next, the present invention will be described with reference to the drawings.

第1図は、本発明の方法を実施する場合に適用される非
可逆伝送素子の概略的な縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view of a non-reciprocal transmission element applied when carrying out the method of the present invention.

また第2図は本発明による磁界調整方法によってリグネ
ットの磁界の調整を行う状態を示した磁性板およびマグ
ネットの側面図、第3図は本発明に係るマグネットの磁
性板側からみた端面図である。
Further, FIG. 2 is a side view of a magnetic plate and a magnet showing a state in which the magnetic field of the lignet is adjusted by the magnetic field adjustment method according to the present invention, and FIG. 3 is an end view of the magnet according to the present invention as seen from the magnetic plate side. .

ケース11内に一対のフェライト素子18.19がわず
かな間隔で対向して配置、固定され、各々のフェライト
素子18.19の対向面から一対のリード線26.27
が引き出され、ケース11の入出力端子17.28に接
続され、また前記ケース内に、これらのフェライト素子
18.19に磁界を加えるためのマグネット20が配置
されることは、第4図で説明した従来例と同じである。
A pair of ferrite elements 18, 19 are arranged and fixed in opposition to each other at a small interval in the case 11, and a pair of lead wires 26, 27 are connected from the opposing surfaces of each ferrite element 18, 19.
It is explained in FIG. 4 that the ferrite elements 18 and 19 are pulled out and connected to the input/output terminals 17 and 28 of the case 11, and that a magnet 20 for applying a magnetic field to these ferrite elements 18 and 19 is arranged inside the case. This is the same as the conventional example.

しかし本発明では、図示の如く、マグネット20の端面
即ち前記フェライト素子に対向した面に、該マグネット
の外径dよりも大径の磁性板29(外径D)が固着され
ている。磁性板29はマグネット20の中心に対しほぼ
同芯状に固着され、これによって磁性板29はマグネッ
ト20の外周部より外側へ張り出している。
However, in the present invention, as shown in the figure, a magnetic plate 29 (outer diameter D) having a larger diameter than the outside diameter d of the magnet is fixed to the end surface of the magnet 20, that is, the surface facing the ferrite element. The magnetic plate 29 is fixed approximately concentrically to the center of the magnet 20, so that the magnetic plate 29 protrudes outward from the outer periphery of the magnet 20.

マグネツ)20による磁束は、第2図に示すように、磁
性板29の板面29aから該磁性板の周部29bにかけ
て広がって発生する。このうち磁性板29の板面29a
から出る該板面に垂直でかつマグネット20の外径範囲
に相当する磁束33は平行な有効磁束となり、フェライ
ト素子18゜19(第1図)に磁界を与える。磁性板2
9の周部近傍から出る磁束34は放射状に広がり、その
一部分は前記フェライト素子にかかるが、他の一部分は
該フェライト素子に対して有効な磁束とならず、いわゆ
る漏れ磁束となる。ここでこの漏れ磁束の発生する磁性
板周部29bを部分的に、同図の斜線部分の如く、削り
落すことにより、マグネット20から磁性板29′t−
経てフェライト素子に加わる全体の磁界を任意に調整す
ることができる。第2図の斜線部分のように、磁性板2
9の局部を全周にわたって削り、磁性板290表面から
出る有効磁束33の範囲および強さを変えたり、あるい
は第3図のように磁性板29の稜部の一部35を切り欠
いて他の部分から発生する磁束の強さを加減する。
As shown in FIG. 2, the magnetic flux generated by the magnet 20 spreads from the plate surface 29a of the magnetic plate 29 to the circumference 29b of the magnetic plate. Among these, the plate surface 29a of the magnetic plate 29
The magnetic flux 33 which is perpendicular to the plate surface and corresponds to the outer diameter range of the magnet 20 becomes a parallel effective magnetic flux and provides a magnetic field to the ferrite elements 18 and 19 (FIG. 1). Magnetic plate 2
The magnetic flux 34 emitted from the vicinity of the periphery of the magnetic flux 34 spreads radially, and part of it is applied to the ferrite element, but the other part does not become an effective magnetic flux to the ferrite element, and becomes so-called leakage flux. Here, the magnetic plate 29't-
The entire magnetic field applied to the ferrite element can be adjusted as desired. As shown in the shaded area in Figure 2, the magnetic plate 2
9 over the entire circumference to change the range and strength of the effective magnetic flux 33 emitted from the surface of the magnetic plate 290, or as shown in FIG. Adjust the strength of the magnetic flux generated from the part.

マグネットはその材質から機械加工で一部を削り取るの
はきわめて困難であるが、磁性板は1例えば透磁率の大
きいパーマロイ等を用いることにより、切削が容易であ
り、組付時に実際にフェライト素子18.19にかかる
磁界を測定しながら必要な磁束のかかる範囲1強さを定
めるように磁性板29の一部を切り落して磁界の調整を
行う。
It is extremely difficult to cut off a part of the magnet by machining due to its material, but the magnetic plate 1 is easy to cut by using, for example, permalloy with high magnetic permeability, and when assembled, the ferrite element 18 can actually be removed. While measuring the magnetic field applied to .19, the magnetic field is adjusted by cutting off a part of the magnetic plate 29 so as to determine the strength of the range 1 where the necessary magnetic flux is applied.

(発明の効果) 以上説明したように本発明によれば、非可逆伝送素子の
フェライト素子に印加される磁束は、磁性根の部分的な
削り取りにより任意に調整できるので、マグネットの外
径等もある程度ラフな寸法にでき、非可逆伝送素子の製
造、組付けが容易となる。従来のようなねじ式の調整機
構が不要であり、構造が簡素、小形となり、また磁界の
微調整が可能で安定した性能のよい非可逆伝送素子が得
られる。
(Effects of the Invention) As explained above, according to the present invention, the magnetic flux applied to the ferrite element of the irreversible transmission element can be arbitrarily adjusted by partially scraping off the magnetic roots, so that the outer diameter of the magnet etc. The dimensions can be made somewhat rough, making it easier to manufacture and assemble the irreversible transmission element. There is no need for a conventional screw-type adjustment mechanism, the structure is simple and compact, and the magnetic field can be finely adjusted, making it possible to obtain a non-reciprocal transmission element with stable performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に適用される非可逆伝送素子の概略的な
縦断面図、第2図は本発明の磁界調整方法によりマグネ
ットの磁界調整を行う状態を示したマグネットの側面図
、第3図は本発明に係るマグネットの磁性板側からみた
端面図、第4図は従来の磁界調整機構を備えた非可逆伝
送素子の縦断面図である。 11・・・ケース、     20・・・マグネット、
18.19・・・フェライト素子。 17.28・・・入出力端子、  29・・・磁性板。 33・・・有効磁束、   34・・・漏れ磁束。
FIG. 1 is a schematic vertical cross-sectional view of a non-reciprocal transmission element applied to the present invention, FIG. 2 is a side view of a magnet showing a state in which the magnetic field of the magnet is adjusted by the magnetic field adjustment method of the present invention, and FIG. The figure is an end view of the magnet according to the present invention as seen from the magnetic plate side, and FIG. 4 is a longitudinal sectional view of a non-reciprocal transmission element equipped with a conventional magnetic field adjustment mechanism. 11...Case, 20...Magnet,
18.19... Ferrite element. 17.28... Input/output terminal, 29... Magnetic plate. 33... Effective magnetic flux, 34... Leakage magnetic flux.

Claims (1)

【特許請求の範囲】[Claims] ケース内に一対のフェライト素子が配置され該フェライ
ト素子に対向して配置されたマグネットにより該フェラ
イト素子に磁界を加えるようにした非可逆伝送素子の磁
界調整方法において、前記マグネットのフェライト素子
対向面に該マグネットよりも大径の磁性板を固着し、前
記磁性板の隅部を削り取つて該磁性板からの漏れ磁束を
調整することを特徴とする非可逆伝送素子の磁界調整方
法。
In a magnetic field adjustment method for an irreversible transmission element in which a pair of ferrite elements are arranged in a case and a magnetic field is applied to the ferrite elements by a magnet arranged opposite to the ferrite elements, a surface of the magnet facing the ferrite elements is A method for adjusting a magnetic field of an irreversible transmission element, characterized by fixing a magnetic plate having a larger diameter than the magnet, and adjusting leakage magnetic flux from the magnetic plate by cutting off corners of the magnetic plate.
JP23038885A 1985-10-16 1985-10-16 Method of adjusting magnetic field of non-reversible transmission element Pending JPS6291002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23038885A JPS6291002A (en) 1985-10-16 1985-10-16 Method of adjusting magnetic field of non-reversible transmission element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23038885A JPS6291002A (en) 1985-10-16 1985-10-16 Method of adjusting magnetic field of non-reversible transmission element

Publications (1)

Publication Number Publication Date
JPS6291002A true JPS6291002A (en) 1987-04-25

Family

ID=16907091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23038885A Pending JPS6291002A (en) 1985-10-16 1985-10-16 Method of adjusting magnetic field of non-reversible transmission element

Country Status (1)

Country Link
JP (1) JPS6291002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017904A (en) * 2001-07-04 2003-01-17 Murata Mfg Co Ltd Irreversible circuit device and communication unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017904A (en) * 2001-07-04 2003-01-17 Murata Mfg Co Ltd Irreversible circuit device and communication unit
JP4639540B2 (en) * 2001-07-04 2011-02-23 株式会社村田製作所 Non-reciprocal circuit device and communication device

Similar Documents

Publication Publication Date Title
JPH0968675A (en) High-performance small-sized optical isolator using faraday rotator
JPS6291002A (en) Method of adjusting magnetic field of non-reversible transmission element
JPS6291003A (en) Non-reversible transmission element
US4857871A (en) Magnetic field-tunable filter with plural section housing and method of making the same
JPH1140430A (en) Magnetic core and inductance device
JP2565945B2 (en) Optical isolator
JPS5810336Y2 (en) Magnetizer for circulator
JPH02155450A (en) Magnetizing device for assembling small-sized motor
US6118352A (en) Microwave component comprising gyromagnetic material exposed to adjustable magnetic field strength
JPS6241255Y2 (en)
JPH0387814A (en) Optical isolator
JPS596521B2 (en) micro ha filter
JPH01253302A (en) Non-reversible circuit element
JPH0828915B2 (en) Low-leakage speaker
JPH06291516A (en) Coaxial circulator
JPH0348901U (en)
JPH0332083Y2 (en)
JPH079326Y2 (en) Reed relay
JPH0451601A (en) Case for high frequency amplifier
JPH07170112A (en) Magnetostatic wave device
JPS62140502A (en) Drop-in isolator
JPS5893913U (en) optical isolator
JPH0823212A (en) Irreversible circuit element
JPS58111504U (en) Triple plate line type circulator
JPS5834352U (en) Beam deflection magnet power supply for ion implanter