JPS6291003A - Non-reversible transmission element - Google Patents

Non-reversible transmission element

Info

Publication number
JPS6291003A
JPS6291003A JP23038985A JP23038985A JPS6291003A JP S6291003 A JPS6291003 A JP S6291003A JP 23038985 A JP23038985 A JP 23038985A JP 23038985 A JP23038985 A JP 23038985A JP S6291003 A JPS6291003 A JP S6291003A
Authority
JP
Japan
Prior art keywords
magnet
magnetic
plate
magnetic field
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23038985A
Other languages
Japanese (ja)
Inventor
Kojin Sagara
相良 行人
Tadashi Hashimoto
忠士 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP23038985A priority Critical patent/JPS6291003A/en
Publication of JPS6291003A publication Critical patent/JPS6291003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

PURPOSE:To obtain the titled element having simple and small-sized structure and to attain fine adjustment of a magnetic field by fitting a magnetic plate having a larger diameter than that of a magnet to a face opposite to a ferrite element of the magnet. CONSTITUTION:The magnet flux 33 perpendicular to the plate within the outer diameter range of the magnet 20 coming from the plate face 29a of the magnetic plate 29 among the magnetic flux of the magnet 20 is effective parallel magnetic flux and gives a magnetic field to ferrite element 18, 19. The magnetic plate circumferences 29b causing leakage magnetic flux is cut off partially shown in hatched lines to adjust the entire magnetic field fed to the ferrite element optionally from the magnet 20 via the magnetic plate 29. Thus, the tolerance of the outer diameter of the magnet is relaxed to some degree, the manufacture and assembling of the non-reversing transmission element are facilitated and a screw type adjusting mechanism required for a conventional element is not required.

Description

【発明の詳細な説明】 (産業上の利用分vf) 本発明は、アイソレータあるいはサーキュレータ等非可
逆伝送素子に関し、特にケース内に収容されたフェライ
ト素子に印加する磁界の調整機能を備えた非可逆伝送素
子に関する。
Detailed Description of the Invention (Industrial Application Vf) The present invention relates to a non-reciprocal transmission element such as an isolator or a circulator, and particularly relates to a non-reciprocal transmission element such as an isolator or a circulator, and in particular a non-reciprocal transmission element having a function of adjusting a magnetic field applied to a ferrite element housed in a case. Regarding transmission elements.

(従来技術) ケース内に一対のフェライト素子を近接させて対向配置
し、この一対の組み合された7エライト素子の片側に永
久磁石(マグネット)を配置して該フェライト素子に磁
界を加え、前記一対のフェライト素子からリード線をケ
ースの入出力端子へ引き出すようにした形式のアイソレ
ータやサーキュレータ−において、フェライト素子に加
える磁界の強さを変えるためて、従来、マグネットを位
置調整可能に保持し、マグネット−フェライト素子間の
間隔を変えて磁界の調整を行うことが提案されている。
(Prior art) A pair of ferrite elements are disposed close to each other and facing each other in a case, and a permanent magnet is placed on one side of the pair of combined 7-elite elements to apply a magnetic field to the ferrite element. In isolators and circulators in which lead wires are drawn from a pair of ferrite elements to the input/output terminals of a case, in order to change the strength of the magnetic field applied to the ferrite elements, a magnet is conventionally held in an adjustable position. It has been proposed to adjust the magnetic field by changing the spacing between the magnet and ferrite elements.

第4図は従来の磁界調整機構付のアイソレータの概略的
な縦断面図である。ケース21内に一対のフェライト素
子18.19が互いに対面して取り付けられ、各フェラ
イト素子からリード線26.27が引き出されてケース
の入出力端子に接続されている。このフェライト素子に
対向した位置で、ケース21に、調整ねじ30が螺合さ
れ、この調整ねじ30の先端に、フェライト素子is 
、19に靜磁界を加えるマグネット31が固着され、調
整ねじ30をケース外から操作してマグネット31とフ
ェライト素子との間隔を変え、フェライト素子に加わる
磁界を調整する。
FIG. 4 is a schematic vertical sectional view of a conventional isolator with a magnetic field adjustment mechanism. A pair of ferrite elements 18, 19 are mounted inside the case 21 facing each other, and lead wires 26, 27 are drawn out from each ferrite element and connected to input/output terminals of the case. An adjustment screw 30 is screwed into the case 21 at a position facing the ferrite element, and the ferrite element is attached to the tip of the adjustment screw 30.
, 19 is fixed to a magnet 31 that applies a quiet magnetic field, and an adjustment screw 30 is operated from outside the case to change the distance between the magnet 31 and the ferrite element to adjust the magnetic field applied to the ferrite element.

(発明が解決しようとする問題点) 上述した従来のねじ式調整構造は組付後も外部から簡単
な工具で調整ねじの調整操作を行うことができる利点が
あるものの、構造が煩雑で形も大きくなり、部品数も多
くなり、またねじ調整によるマグネットの位置変化のみ
では調整範囲の制限があり、正確かつ充分な磁界調整、
微調整が得られないという欠点があった。さらにマグネ
ットがねじ機構で保持される関係から、マグネットの位
置が不確実で安定した性能が得られ難い。またマグネツ
B−固定する形式のものでは、組付時の磁界調整は非常
に困難である。
(Problems to be Solved by the Invention) Although the above-mentioned conventional screw type adjustment structure has the advantage that the adjustment screw can be adjusted from the outside with a simple tool after assembly, the structure is complicated and the shape is small. It is larger and requires more parts, and the adjustment range is limited by changing the position of the magnet only by adjusting the screws, making it difficult to accurately and sufficiently adjust the magnetic field.
The drawback was that fine adjustment was not possible. Furthermore, since the magnet is held by a screw mechanism, the position of the magnet is uncertain, making it difficult to obtain stable performance. In addition, with the magnet B-fixing type, it is very difficult to adjust the magnetic field during assembly.

(問題点を解決するための手段) 本発明は、ケ・−ス内に一対のフェライト素子が配置さ
れ該フェライト素子に対向して配置されたマグネットに
より該フェライト素子に磁界を加えるようにした非可逆
伝送素子において、前記1グネツトのフェライト素子対
向面に該マグネットよりも大径で被剛性のよいヂ磁性根
を固着し、前記磁性板の隅部を削り取って該磁性板から
の漏れ磁束を調整するようにしたものである。
(Means for Solving the Problems) The present invention provides a non-contact device in which a pair of ferrite elements are arranged in a case, and a magnetic field is applied to the ferrite elements by a magnet arranged opposite to the ferrite elements. In the reversible transmission element, a dimagnetic root having a larger diameter and better rigidity than the magnet is fixed to the facing surface of the one magnet ferrite element, and a corner of the magnetic plate is shaved off to adjust leakage magnetic flux from the magnetic plate. It was designed to do so.

(実施例) 次に、本発明を、図面を参照しながら実施例について説
明する。
(Example) Next, the present invention will be described with reference to the drawings.

第1図は、本発明の実施例に係る非可逆伝送素子の概略
的な縦断面図である。また第2図は、本発明による非可
逆伝送素子においてマグネットの磁界の調整を行う状態
を示した磁性板およびマグネットの側面図、第3図は本
発明に係るマグネットの磁性板側からみた端面図である
。ケース11内に一対のフェライト素子18.19がわ
ずかな間隔で対向[−で配置、固定され、各々のフェラ
イト素子18.19の対向面から−・対のリード線26
.27が引き出され、ケース11の入出力端子17.2
8に接続され、また前記ケース内に、これらのフェライ
ト素子18.19に磁界を加えるためのマグネット20
が配置されることは、第4図で説明した従来例と同じで
ある。しかし本発明では1図示の如く、マグネット20
の端面即ち前記フェライト素子に対向した面に、該マグ
ネットの外径dよりも大径の磁性板29(外径D)が固
着されている。磁性板29はりグネット20の中心に対
しほぼ同芯状に固着され、これによって磁性板29はマ
グネット20の外周部より外側へ張り出している。
FIG. 1 is a schematic vertical cross-sectional view of a non-reciprocal transmission element according to an embodiment of the present invention. Furthermore, FIG. 2 is a side view of a magnetic plate and a magnet showing a state in which the magnetic field of the magnet is adjusted in the irreversible transmission element according to the present invention, and FIG. 3 is an end view of the magnet according to the present invention as seen from the magnetic plate side. It is. A pair of ferrite elements 18, 19 are arranged and fixed in the case 11 facing each other with a slight interval, and a pair of lead wires 26 are connected from the opposing surfaces of each ferrite element 18, 19.
.. 27 is pulled out, and the input/output terminal 17.2 of the case 11
8 and also within the case is a magnet 20 for applying a magnetic field to these ferrite elements 18, 19.
The arrangement is the same as in the conventional example explained in FIG. However, in the present invention, as shown in FIG.
A magnetic plate 29 (outer diameter D) having a larger diameter than the outside diameter d of the magnet is fixed to the end face of the magnet, that is, the face facing the ferrite element. The magnetic plate 29 is fixed approximately concentrically to the center of the magnet 20, so that the magnetic plate 29 protrudes outward from the outer periphery of the magnet 20.

マグネット20による磁束は、第2図に示すように、磁
性板29の板面29aから該磁性板の周部29bVcか
け℃広がって発生する。このうち磁性板29の板面29
aから出る該板面に垂直でかつマグネット20の外径範
囲に相当する磁束33は平行な有効磁束となり、フェラ
イト素子18゜19(第1図)に磁界を与える。磁性板
290周部近傍から出る磁束34は放射状に広がり、そ
の一部分は前記フェライト素子にかかるが、他の一部分
は該フェライト素子て対して有効な磁束とならず、いわ
ゆる漏れ磁束となる。ここでこの漏れ磁束の発生する磁
性板周部29bを部分的に、同図の斜線部分の如く、削
り落すことにより、マグネット20から磁性板29を経
てフェライト素子に加わる全体の磁界を任意に調整する
ことができる。第2図の斜線部分のように、磁性板29
0周部を全周にわたって削り、磁性板29の表面から出
る有効磁束33の範囲および強さを変えたり、あるいは
第3図のように磁性板29の稜部の一部35を切り欠い
て他の部分から発生する磁束の強さを加減する。
As shown in FIG. 2, the magnetic flux generated by the magnet 20 is generated by spreading from the plate surface 29a of the magnetic plate 29 to the peripheral portion 29bVc of the magnetic plate. Of these, the plate surface 29 of the magnetic plate 29
The magnetic flux 33 that is perpendicular to the plate surface and that corresponds to the outer diameter range of the magnet 20, which comes out from the point a, becomes a parallel effective magnetic flux and provides a magnetic field to the ferrite elements 18 and 19 (FIG. 1). The magnetic flux 34 emitted from the vicinity of the periphery of the magnetic plate 290 spreads radially, and part of it is applied to the ferrite element, but the other part does not become an effective magnetic flux to the ferrite element, and becomes so-called leakage flux. By partially scraping off the magnetic plate peripheral part 29b where this leakage magnetic flux occurs, as shown in the shaded area in the figure, the entire magnetic field applied from the magnet 20 to the ferrite element via the magnetic plate 29 can be adjusted as desired. can do. As shown in the shaded area in Fig. 2, the magnetic plate 29
The range and strength of the effective magnetic flux 33 emitted from the surface of the magnetic plate 29 can be changed by cutting off the entire 0th circumference, or by cutting out a part 35 of the ridge of the magnetic plate 29 as shown in FIG. Adjust the strength of the magnetic flux generated from the part.

マグネットはその材質から機賊加工で一部を削り取るの
はきわめて困難であるが、磁性板は1例えば透磁率の大
きいパーマロイ等を用いルコトニより、切削が容易であ
り、組付時に実際にフェライト素子18.19にががる
磁界を測定しながら必要な磁束のかかる範囲、強さを定
めるように磁性板29の一部を切り落して磁界の調整2
行う。
Due to the material of the magnet, it is extremely difficult to remove part of it by pirates, but the magnetic plate is made of permalloy, which has high magnetic permeability, and is easier to cut than lucotoni, and when assembled, it is difficult to remove a part of the ferrite element. 18.19 Adjust the magnetic field by cutting off a part of the magnetic plate 29 to determine the range and strength of the required magnetic flux while measuring the magnetic field.
conduct.

(発明の効果) 以上説明したように本発明によれば、非可逆伝送素子の
フェライト素子に印加される磁束は、磁性板の部分的な
削り取りにより任意に調整できるので、マグネットの外
径等もある程度ラフな寸法にでき、非可逆伝送素子の製
造、組付けが容易となる。従来のようなねじ式の調整機
構が不要であリ、構造が簡素、小形となり、また磁界の
微調整が可能で安定した性能のよい非可逆伝送素子が得
られる。
(Effects of the Invention) As explained above, according to the present invention, the magnetic flux applied to the ferrite element of the irreversible transmission element can be adjusted arbitrarily by partially scraping off the magnetic plate. The dimensions can be made somewhat rough, making it easier to manufacture and assemble the irreversible transmission element. There is no need for a conventional screw type adjustment mechanism, the structure is simple and compact, and a non-reciprocal transmission element that allows fine adjustment of the magnetic field and is stable and has good performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る非可逆伝送素子の概略的
な縦断面図、第2図は本発明に係る非可逆伝送素子の磁
界調整を行う状態を示し念マグネットの側面図、第3図
は本発明に係るマグネットの磁性板側からみた端面図、
第4図は従来の磁界調整機構を備えた非可逆伝送素子の
縦断面図である。 11・・・ケース、     20・・・マグネット。 18.19・・・フェライト素子、 17.28・・・入出力端子、 29・・・磁性板、     33・・・有効磁束、3
4・・・漏れ磁束。
FIG. 1 is a schematic vertical cross-sectional view of a non-reciprocal transmission element according to an embodiment of the present invention, FIG. Figure 3 is an end view of the magnet according to the present invention as seen from the magnetic plate side;
FIG. 4 is a longitudinal sectional view of a non-reciprocal transmission element equipped with a conventional magnetic field adjustment mechanism. 11...Case, 20...Magnet. 18.19... Ferrite element, 17.28... Input/output terminal, 29... Magnetic plate, 33... Effective magnetic flux, 3
4...Leakage magnetic flux.

Claims (1)

【特許請求の範囲】[Claims] ケース内に一対のフェライト素子が配置され該フェライ
ト素子に対向して配置されたマグネットにより該フェラ
イト素子に磁界を加えるようにした非可逆伝送素子にお
いて、前記マグネツトのフェライト素子対向面に該マグ
ネットよりも大径の磁性板を固着したことを特徴とする
非可逆伝送素子。
In an irreversible transmission element in which a pair of ferrite elements are disposed in a case and a magnetic field is applied to the ferrite elements by a magnet disposed opposite to the ferrite elements, a surface of the magnet facing the ferrite element has a larger area than the magnet. An irreversible transmission element characterized by a large-diameter magnetic plate fixed to it.
JP23038985A 1985-10-16 1985-10-16 Non-reversible transmission element Pending JPS6291003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23038985A JPS6291003A (en) 1985-10-16 1985-10-16 Non-reversible transmission element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23038985A JPS6291003A (en) 1985-10-16 1985-10-16 Non-reversible transmission element

Publications (1)

Publication Number Publication Date
JPS6291003A true JPS6291003A (en) 1987-04-25

Family

ID=16907109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23038985A Pending JPS6291003A (en) 1985-10-16 1985-10-16 Non-reversible transmission element

Country Status (1)

Country Link
JP (1) JPS6291003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0490690U (en) * 1990-12-25 1992-08-07
JP2007214608A (en) * 2006-02-07 2007-08-23 Hitachi Metals Ltd Nonreciprocal circuit element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0490690U (en) * 1990-12-25 1992-08-07
JP2007214608A (en) * 2006-02-07 2007-08-23 Hitachi Metals Ltd Nonreciprocal circuit element

Similar Documents

Publication Publication Date Title
JPH036099A (en) Mounting structure of electronic equipment
US4675629A (en) Noise filter
US2824219A (en) Piezoelectric crystal assembly
JPS6291003A (en) Non-reversible transmission element
JPS6291002A (en) Method of adjusting magnetic field of non-reversible transmission element
JP2565945B2 (en) Optical isolator
JPS62269401A (en) Suspend line
JPH04563Y2 (en)
JPH0332083Y2 (en)
JPH0246083Y2 (en)
US6118352A (en) Microwave component comprising gyromagnetic material exposed to adjustable magnetic field strength
JPH0715262Y2 (en) Microphone unit mounting structure
CN214153149U (en) Circular device
KR810001420Y1 (en) Microwave circuit device
JPH0735443Y2 (en) Waveguide type non-reciprocal circuit device
GB588370A (en) Improvements in or relating to electron discharge devices
JPH0311922Y2 (en)
JPS596521B2 (en) micro ha filter
JPH0567934A (en) Diode limiter
JPH0543521Y2 (en)
JPS61202905U (en)
JPH0451601A (en) Case for high frequency amplifier
JPS62271Y2 (en)
JPH10294605A (en) Mount case for drop-in isolator
JPH0227601Y2 (en)