JP4638891B2 - Transflective LCD - Google Patents

Transflective LCD Download PDF

Info

Publication number
JP4638891B2
JP4638891B2 JP2007052988A JP2007052988A JP4638891B2 JP 4638891 B2 JP4638891 B2 JP 4638891B2 JP 2007052988 A JP2007052988 A JP 2007052988A JP 2007052988 A JP2007052988 A JP 2007052988A JP 4638891 B2 JP4638891 B2 JP 4638891B2
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
crystal display
common
voltage signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007052988A
Other languages
Japanese (ja)
Other versions
JP2007241282A (en
Inventor
敬桓 林
振嘉 蘇
志明 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AU Optronics Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW95107474A external-priority patent/TWI326064B/en
Priority claimed from US11/432,157 external-priority patent/US7683988B2/en
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Publication of JP2007241282A publication Critical patent/JP2007241282A/en
Application granted granted Critical
Publication of JP4638891B2 publication Critical patent/JP4638891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は液晶表示器に関し、特に半透過型液晶表示器に関する。   The present invention relates to a liquid crystal display, and more particularly to a transflective liquid crystal display.

薄型、軽量また低消費電力の要求を満足させるため、現在の電気製品、たとえばノートパソコン、デジタルカメラ、プロジェクタなどの電気製品では、液晶表示器(LCD)が広く用いられている。一般に、液晶パネルは透過型、反射型また半透過型に分類される。透過型液晶表示器はバックライトモジュールを光源とし、反射型液晶表示器は外光を光源とし、半透過型液晶パネルはバックライトモジュールと外光の両方とも利用する。   In order to satisfy demands for thinness, light weight, and low power consumption, liquid crystal displays (LCDs) are widely used in current electrical products such as notebook computers, digital cameras, and projectors. In general, liquid crystal panels are classified into a transmissive type, a reflective type, and a transflective type. A transmissive liquid crystal display uses a backlight module as a light source, a reflective liquid crystal display uses external light as a light source, and a transflective liquid crystal panel uses both the backlight module and external light.

図10に示すように、従来のカラー液晶パネル1には二次元の画素10アレイが含まれている。各画素10はそれぞれ複数の副画素を有し、通常に赤、緑、および青の三原色がある。これら赤、緑、青の成分は、それぞれカラーフィルタによって表示される。図11は従来の半透過型液晶パネルの画素構造を示す平面図である。図12a、図12bは画素構造を示す断面図である。図11に示すように、一つの画素は三つの副画素12R、12G、12Bに分割され、各副画素は更に透過領域(TA)と反射領域(RA)に分割される。図12aに示すように、透過領域では、バックライトソースからの光が下基板30を通して画素領域に入り、液晶層、カラーフィルタR、上基板20を順次通過する。反射領域では、上基板20の上方からの光が上基板20、カラーフィルタR、液晶層を順次通過してから、反射層あるいは反射電極52で反射される。あるいは、図12bに示すように、反射領域の一部に対応する無色フィルタ(Non−Color Filter、NCF)を上基板20の表面に形成することも可能である。   As shown in FIG. 10, the conventional color liquid crystal panel 1 includes a two-dimensional pixel 10 array. Each pixel 10 has a plurality of subpixels, and usually has three primary colors of red, green, and blue. These red, green, and blue components are displayed by color filters, respectively. FIG. 11 is a plan view showing a pixel structure of a conventional transflective liquid crystal panel. 12a and 12b are cross-sectional views showing the pixel structure. As shown in FIG. 11, one pixel is divided into three subpixels 12R, 12G, and 12B, and each subpixel is further divided into a transmission region (TA) and a reflection region (RA). As shown in FIG. 12a, in the transmissive region, light from the backlight source enters the pixel region through the lower substrate 30, and sequentially passes through the liquid crystal layer, the color filter R, and the upper substrate 20. In the reflection region, light from above the upper substrate 20 sequentially passes through the upper substrate 20, the color filter R, and the liquid crystal layer, and then is reflected by the reflective layer or the reflective electrode 52. Alternatively, as shown in FIG. 12 b, a colorless filter (Non-Color Filter, NCF) corresponding to a part of the reflection region can be formed on the surface of the upper substrate 20.

また、従来の技術によれば、各画素には液晶層の光学特性を制御する別の層、例えば素子層50と、1〜2枚の電極層が含まれる。素子層50に設けられる透明電極54とカラーフィルタに設けられる共通電極25は、透過領域の液晶層の光学特性を制御する素子であり、反射電極52と共通電極25は、反射領域の液晶層の光学特性を制御する素子である。共通電極25はコモンライン(Common Line)に接続される。素子層50は一般に下基板30の上に形成され、ゲートライン31、32、データライン21−24(図11に示す)、複数のトランジスタ、保護層(図に示さない)を含む。ゲートラインの信号電流が流れた後、副画素の電荷を保存するため、素子層50の中には保存容量が設けられている。図13は透過領域と反射領域を有する従来の副画素(m、n)の等価回路図を示す説明図である。図13において、第一液晶容量CLC1は透明電極54と共通電極25の間にある液晶層の容量であり、第二液晶容量CLC2は反射電極52と共通電極25の間にある液晶層の容量であり、Cは保存容量であり、COMはコモンラインである。そのほか、従来の液晶パネルは更にλ/4板と偏光子を含む。 Further, according to the conventional technique, each pixel includes another layer for controlling the optical characteristics of the liquid crystal layer, for example, the element layer 50 and one or two electrode layers. The transparent electrode 54 provided in the element layer 50 and the common electrode 25 provided in the color filter are elements for controlling the optical characteristics of the liquid crystal layer in the transmissive region, and the reflective electrode 52 and the common electrode 25 are provided in the liquid crystal layer in the reflective region. It is an element that controls optical characteristics. The common electrode 25 is connected to a common line (Common Line). The element layer 50 is generally formed on the lower substrate 30 and includes gate lines 31 and 32, data lines 21-24 (shown in FIG. 11), a plurality of transistors, and a protective layer (not shown). After the gate line signal current flows, a storage capacitor is provided in the element layer 50 in order to store the charge of the sub-pixel. FIG. 13 is an explanatory diagram showing an equivalent circuit diagram of a conventional subpixel (m, n) having a transmissive region and a reflective region. In FIG. 13, the first liquid crystal capacitance C LC1 is the capacitance of the liquid crystal layer between the transparent electrode 54 and the common electrode 25, and the second liquid crystal capacitance C LC2 is the liquid crystal layer between the reflective electrode 52 and the common electrode 25. a capacitance, C 1 is the storage, COM is common line. In addition, the conventional liquid crystal panel further includes a λ / 4 plate and a polarizer.

単間隙(single gap)の半透過型液晶パネルは、透過領域の透過率(V−T曲線)と反射領域の反射率(V−R曲線)がピーク値に達する電圧範囲が相違するという欠点がある。図14に示すように、V−R曲線は電圧2.8Vにピーク値が現れ、V−T曲線は電圧3.7V〜5Vをピーク区間とする。言い換えれば、透過率が高いときの反射率は低い。   The single gap transflective liquid crystal panel has a drawback that the voltage range in which the transmittance (VT curve) of the transmissive region and the reflectance (VR curve) of the reflective region reach the peak value is different. is there. As shown in FIG. 14, the VR curve has a peak value at a voltage of 2.8V, and the VT curve has a voltage range of 3.7V to 5V as a peak interval. In other words, the reflectance when the transmittance is high is low.

従来の技術は、反射領域の間隙を透過領域の間隙の約半分にするという二重間隙の構造を利用して、上記問題を改善する。二重間隙の設計は理論的には有効であるが、製造プロセスが複雑なため実現しにくい。その他の試みとして、たとえば、反射領域と透過領域の電圧レベルを制御するか、あるいは誘電層を介して反射電極を塗布することも提案された。例えば、容量を用いて、透過領域の電圧レベルと関係する反射領域の電圧レベルを減少させることが可能である。図15に示すように、CLC2には独立容量Cが電気的に直列接続されている。この場合、コモンラインの電圧レベルVCOM1に関係する反射電極の電圧レベルは下記式1で算出できる。そのうちVdataはデータラインの電圧レベルを示す。
[式1]

Figure 0004638891
The prior art improves the above problem by utilizing a double gap structure in which the gap in the reflective region is about half the gap in the transmissive region. Although the double gap design is theoretically effective, it is difficult to realize due to the complicated manufacturing process. Other attempts have been proposed, for example, to control the voltage levels in the reflective and transmissive regions or to apply reflective electrodes via a dielectric layer. For example, the capacitance can be used to reduce the voltage level in the reflective region relative to the voltage level in the transmissive region. As shown in FIG. 15, independent capacitance C C is electrically connected in series to the C LC2. In this case, the voltage level of the reflective electrode related to the voltage level V COM1 of the common line can be calculated by the following formula 1. Among them, V data indicates the voltage level of the data line.
[Formula 1]
Figure 0004638891

図16aに示すように、上記比率C/(CLC2 +C)を調節すれば、反射率曲線のピーク値を高電圧方向に移動させ、透過率曲線と一致させることができる。そうすると、高透過率に伴う低反射率の現象は回避できる。 As shown in FIG. 16a, by adjusting the ratio C C / (C LC2 + C C ), the peak value of the reflectance curve can be moved in the high voltage direction to match the transmittance curve. Then, the phenomenon of low reflectance accompanying high transmittance can be avoided.

しかしながら、透過率が電圧2.2Vから急増するにもかかわらず、反射率は電圧2.8Vになるまでは高くならない。図16bに示すように、低光度区間における透過率と反射率が一致しないため、透過率のガンマカーブ(gamma Curve)と反射率のガンマカーブも一致しなくなる。図16bを参照する。図16bはガンマレベルの関数とされる透過率と反射率間の関係を示す説明図である。透過率と反射率のガンマカーブ間の不一致は、半透過型液晶パネルの画質を低下させる原因である。   However, although the transmittance increases rapidly from the voltage of 2.2V, the reflectance does not increase until the voltage reaches 2.8V. As shown in FIG. 16b, since the transmittance and the reflectance in the low light intensity section do not match, the transmittance gamma curve does not match the reflectance gamma curve. Refer to FIG. FIG. 16b is an explanatory diagram showing the relationship between transmittance and reflectance, which is a function of gamma level. The discrepancy between the gamma curves of transmittance and reflectance is a cause of degrading the image quality of the transflective liquid crystal panel.

したがって、本発明は、前記透過率と反射率のガンマカーブ間の不一致を低減させる方法の提供を課題とする。   Accordingly, an object of the present invention is to provide a method for reducing the mismatch between the gamma curves of the transmittance and the reflectance.

この発明は画質を改善できる半透過型液晶パネルを提供することを課題とする。   It is an object of the present invention to provide a transflective liquid crystal panel that can improve image quality.

そこで、本発明者は従来の技術に見られる欠点に鑑みて鋭意研究を重ねた結果、下記の装置によって、本発明の課題が解決される点に着眼し、かかる知見に基づき本発明を完成させた。
以下、この発明について具体的に説明する。
Therefore, as a result of intensive studies in view of the drawbacks found in the prior art, the present inventor has focused on the point that the problems of the present invention can be solved by the following apparatus, and completed the present invention based on such knowledge. It was.
The present invention will be specifically described below.

請求項1に記載の半透過型液晶表示器は、データ信号を送信する複数のデータラインと、駆動信号を提供する複数のゲートラインと、複数の画素とを含む半透過型液晶表示器においては、前記複数の画素はいずれも、ゲートラインの駆動信号に応じてデータラインのデータ信号を導通させるスイッチユニットと、第一共通電圧信号を提供する第一共通電極と、第二共通電圧信号を提供する第二共通電極と、スイッチユニットに電気的に接続され、導通したデータ信号と第一共通電圧信号に基づいて画素中の液晶層を駆動する画素電極と、第一共通電極に電気的に接続される第一端と画素電極に電気的に接続される第二端を有する第一液晶容量と、画素電極に電気的に接続される第一端と、第二端を有する独立容量と、第二共通電極に電気的に接続される第一端と独立容量の第二端に接続される第二端を有する調整容量と、第一共通電極に電気的に接続される第一端と独立容量の第二端に接続される第二端を有し、導通したデータ信号、第一共通電圧信号、及び第二共通電圧信号に基づいて前記液晶層を駆動する第二液晶容量とを含み、前記第一液晶容量および前記第二液晶容量の一方は、実質的に透明物質で形成される2つの電極端を有し、前記第一液晶容量および前記第二液晶容量の他方は、実質的に透明物質で形成される第一電極端と、反射物質で形成される第二電極端とを含む。前記調整容量は、透過率と反射率のガンマカーブ間の不一致を低減させ、画質を改善するために設けられる。 Transflective liquid crystal display device according to claim 1 includes a plurality of data lines for transmitting data signals, a plurality of gate lines to provide a drive signal, in the transflective liquid crystal display device including a plurality of pixels Each of the plurality of pixels provides a switch unit that conducts a data signal of a data line according to a driving signal of a gate line, a first common electrode that provides a first common voltage signal, and a second common voltage signal A second common electrode that is electrically connected to the switch unit and electrically connected to the first common electrode and a pixel electrode that drives the liquid crystal layer in the pixel based on the conductive data signal and the first common voltage signal A first liquid crystal capacitor having a second end electrically connected to the pixel electrode, a first end electrically connected to the pixel electrode, an independent capacitor having a second end, Electrically to two common electrodes An adjustment capacitor having a second end connected to the first end connected to the second end of the independent capacitor; a first end electrically connected to the first common electrode; and a second end connected to the second end of the independent capacitor. that has a second end, conducting the data signals, the first common voltage signal, and look including a second liquid crystal capacitor for driving the liquid crystal layer based on the second common voltage signal, wherein the first liquid crystal capacitor and the One of the second liquid crystal capacitors has two electrode ends formed of a substantially transparent material, and the other of the first liquid crystal capacitor and the second liquid crystal capacitor is formed of a substantially transparent material. One electrode end and a second electrode end formed of a reflective material are included . The adjustment capacitor is provided to reduce the mismatch between the gamma curves of the transmittance and the reflectance and improve the image quality.

請求項2に記載の半透過型液晶表示器は、請求項1における各画素の第一液晶容量に並列接続される保存容量を含む。 The transflective liquid crystal display according to claim 2 includes a storage capacitor connected in parallel to the first liquid crystal capacitor of each pixel in claim 1.

請求項3に記載の半透過型液晶表示器は、請求項1における各画素の第二液晶容量に並列接続される保存容量を含む。 According to a third aspect of the present invention, the transflective liquid crystal display includes a storage capacitor connected in parallel to the second liquid crystal capacitor of each pixel in the first aspect.

請求項に記載の半透過型液晶表示器は、請求項1における第二共通電圧信号を提供する電源と、前記ゲートラインの駆動信号に応じて、前記各画素の第二共通電極を電源に電気的に接続させる増設スイッチユニットとを含む。 According to a fourth aspect of the present invention, there is provided a transflective liquid crystal display that uses the power supply for providing the second common voltage signal according to the first aspect and the second common electrode of each pixel as a power supply according to the driving signal for the gate line. Including an extension switch unit to be electrically connected.

請求項に記載の半透過型液晶表示器は、請求項1における各画素の第二共通電極に電気的に接続され、第二共通電極の電圧を安定させる追加容量を含む。 Transflective liquid crystal display device according to claim 5 is electrically connected to the second common electrode of each pixel in claim 1, comprising the additional capacity to stabilize the voltage of the second common electrode.

請求項に記載の半透過型液晶表示器は、請求項における追加容量は、第二共通電極に電気的に接続される第一端と、第一共通電極に電気的に接続される第二端とを含む。 According to a sixth aspect of the present invention , in the transflective liquid crystal display according to the fifth aspect, the additional capacitor according to the fifth aspect includes a first end electrically connected to the second common electrode and a first end electrically connected to the first common electrode. Including two ends.

請求項に記載の半透過型液晶表示器は、請求項における第一共通電圧信号と第二共通電圧信号がいずれも、一定した電圧信号または交流電圧信号である。 Transflective liquid crystal display device according to claim 7, both the first common voltage signal and the second common voltage signal in the claims 4, a constant voltage signal or alternating voltage signal.

請求項に記載の半透過型液晶表示器は、請求項における第一共通電圧信号と第二共通電圧信号が180度の位相差を有する交流電圧信号である。 The transflective liquid crystal display according to claim 8 is an AC voltage signal in which the first common voltage signal and the second common voltage signal in claim 4 have a phase difference of 180 degrees.

請求項に記載の半透過型液晶表示器は、請求項における第一共通電圧信号と第二共通電圧信号が同じ位相を有する交流電圧信号である。 The transflective liquid crystal display according to claim 9 is an AC voltage signal in which the first common voltage signal and the second common voltage signal in claim 4 have the same phase.

請求項10に記載の半透過型液晶表示器は、請求項における第二共通電圧信号が一定した電圧信号である。 The transflective liquid crystal display according to claim 10 is a voltage signal in which the second common voltage signal in claim 4 is constant.

請求項11に記載の半透過型液晶表示器は、請求項1における第一液晶容量の第一端は第一透明電極を含み、第二端は第二透明電極を含み、前記第二液晶容量の第一端は透明電極を含み、第二端は反射電極を含む。 Transflective liquid crystal display device according to claim 11, the first end of the first liquid crystal capacitor in claim 1 includes a first transparent electrode, the second end comprises a second transparent electrode, the second liquid crystal capacitor The first end includes a transparent electrode and the second end includes a reflective electrode.

請求項12に記載の半透過型液晶表示器は、請求項11における第二共通電圧信号を提供する電源と、前記ゲートラインの駆動信号に応じて、前記各画素の第二共通電極を電源に電気的に接続させる増設スイッチユニットと、前記第二共通電極に電気的に接続され、第二共通電極の電圧を安定させる追加容量とを含む。 The transflective liquid crystal display according to claim 12 is a power source for providing a second common voltage signal according to claim 11 and a second common electrode of each pixel as a power source according to a driving signal for the gate line. An expansion switch unit to be electrically connected, and an additional capacitor electrically connected to the second common electrode and stabilizing the voltage of the second common electrode.

技術1の液晶表示器の画質を改善する方法は、第一面と、相対の第二面を有する液晶層と、液晶層の第一面に形成される共通電極とを含む液晶表示器において、共通電圧を前記共通電極に機能的に印加し、前記液晶表示器は複数の画素を有し、少なくとも部分の画素は液晶層の第二面に形成される第一電極を有する第一領域と、第一電極に隣接する液晶層の第二面に形成される第二電極を有する第二領域とを含み、第一電圧を第一電極に機能的に印加して、液晶層の第一領域に介して第一電圧の関数とされる第一光学透過率と、第二電圧を第二電極に機能的に印加して、液晶層の第二領域に介して第二電圧の関数とされる第二光学透過率において、前記第一光学透過率と前記第二光学透過率はそれぞれ低透過区間と高透過区間である液晶表示器の画質を改善する方法であって、第一電圧に対して第二電圧を調整し、実質的に第二光学透過率の高透過区間を第一光学透過率の高透過区間と一致させ、第二光学透過率の低透過区間と第一光学透過率の低透過区間間の不一致を残すステップと、電荷保存容量に介して共通電圧と違い電圧を前記第二電極に提供して、第二光学透過率の低透過区間と第一光学透過率の低透過区間間の不一致を低減させるステップとを含む。 A method for improving the image quality of the liquid crystal display of the first technology is a liquid crystal display including a first surface, a liquid crystal layer having a relative second surface, and a common electrode formed on the first surface of the liquid crystal layer. A common voltage is functionally applied to the common electrode, the liquid crystal display has a plurality of pixels, and at least a portion of the pixels has a first region having a first electrode formed on the second surface of the liquid crystal layer; A second region having a second electrode formed on a second surface of the liquid crystal layer adjacent to the first electrode, and functionally applying a first voltage to the first electrode, A first optical transmittance that is a function of the first voltage via the second electrode and a second voltage that is functionally applied to the second electrode and a second voltage that is a function of the second voltage via the second region of the liquid crystal layer. Liquid crystal display in which the first optical transmittance and the second optical transmittance are a low transmission section and a high transmission section, respectively, in two optical transmissions The second voltage is adjusted with respect to the first voltage, the high transmission section of the second optical transmittance is substantially matched with the high transmission section of the first optical transmittance, Leaving a mismatch between the low transmission interval of the two optical transmittances and the low transmission interval of the first optical transmittance, and providing a voltage to the second electrode, unlike the common voltage, via the charge storage capacitance, Reducing the discrepancy between the low transmission interval of the transmission and the low transmission interval of the first optical transmission.

技術2の液晶表示器の画質を改善する方法は、技術1における第一電極は透過電極を有し、前記第二電極は反射電極を含む。 In the method 2 for improving the image quality of the liquid crystal display of the technique 2, the first electrode in the technique 1 includes a transmissive electrode, and the second electrode includes a reflective electrode.

技術3の液晶表示器の画質を改善する方法は、技術1における第一光学透過率が前記第一領域の透過電極に介する液晶層の透過率と等しい、前記第二光学透過率が前記第二領域の反射電極に反射する液晶層の反射率と等しい。 In the method 3 for improving the image quality of the liquid crystal display of the technique 3, the first optical transmittance in the technique 1 is equal to the transmittance of the liquid crystal layer through the transmissive electrode in the first region, and the second optical transmittance is the second optical transmittance. It is equal to the reflectance of the liquid crystal layer that reflects to the reflective electrode in the region.

技術4の液晶表示器の画質を改善する方法は、技術2における第一電圧がデータ信号である。 In the technique 4 for improving the image quality of the liquid crystal display, the first voltage in the technique 2 is a data signal.

技術5の液晶表示器の画質を改善する方法は、技術4における第二領域がデータ信号に電気的に接続される第一端と、反射電極に機能的に接続される第二端とを有する電荷保存容量を含み、前記第二電圧信号が電荷容量の第二端の電圧信号である。 The method 5 for improving the image quality of the liquid crystal display of technology 5 has a first end where the second region in technology 4 is electrically connected to the data signal and a second end functionally connected to the reflective electrode. A charge storage capacitor is included, and the second voltage signal is a voltage signal at the second end of the charge capacitor.

技術6の液晶表示器の画質を改善する方法は、データ信号を送信する複数のデータラインと、駆動信号を提供する複数のゲートラインと、複数の画素とを含む液晶表示器において、前記複数の画素はいずれも、ゲートラインの駆動信号に応じてデータラインのデータ信号を導通させるスイッチユニットと、第一液晶容量と、第二液晶容量と、スイッチユニットに接続される前記第一液晶容量の第一端とを含む液晶表示器の画質を改善する方法であって、 前記各の画素において、スイッチユニットと第二液晶容量の第一端間に電気的に接続れるステップと、前記第一液晶容量の第二端と第二液晶容量の第二端に第一共通電圧信号印加するステップと、第二液晶容量の第一端と第電圧信号間に調整容量を電気的に接続れるステップとを含む。 A method for improving the image quality of a liquid crystal display according to a sixth aspect is a liquid crystal display including a plurality of data lines for transmitting a data signal, a plurality of gate lines for providing a driving signal, and a plurality of pixels. Each of the pixels includes a switch unit that conducts a data signal of the data line in accordance with a drive signal of the gate line, a first liquid crystal capacitor, a second liquid crystal capacitor, and a first liquid crystal capacitor connected to the switch unit. An image quality of a liquid crystal display including one end, wherein each of the pixels is electrically connected between a switch unit and a first end of a second liquid crystal capacitor, and the first liquid crystal capacitor Applying a first common voltage signal to the second end of the second liquid crystal capacitor and the second end of the second liquid crystal capacitor, and electrically connecting an adjustment capacitor between the first end of the second liquid crystal capacitor and the first voltage signal. .

技術7の液晶表示器の画質を改善する方法は、技術6における方法により、更に、保存容量を第一液晶容量に電気的に並列接続されるステップを含む。 The method 7 for improving the image quality of the liquid crystal display of the technology 7 further includes the step of electrically connecting the storage capacitor to the first liquid crystal capacitor in parallel with the method of the technology 6 .

技術8の液晶表示器の画質を改善する方法は、技術6における方法により、更に、保存容量を第二液晶容量に電気的に並列接続されるステップを含む。 The method for improving the image quality of the liquid crystal display according to the technique 8 further includes the step of electrically connecting the storage capacitor to the second liquid crystal capacitor in parallel with the method according to the technique 6 .

技術9の液晶表示器の画質を改善する方法は、技術6における方法により、更に、増設スイッチユニットを前記調整容量と電源間に機能的に接続され、ゲートラインの駆動信号に応じて、前記増設スイッチユニットに介して電源の第二共通電圧信号を調整容量に提供させるステップを含む。 The method of improving the image quality of the liquid crystal display of the technology 9 is the same as the method of the technology 6 , and further, an expansion switch unit is functionally connected between the adjustment capacitor and the power source, and the expansion is performed according to the drive signal of the gate line. Including providing the regulated capacitance with a second common voltage signal of the power supply via the switch unit.

技術10の液晶表示器の画質を改善する方法は、技術9における方法により、更に、追加容量を前記増設スイッチユニットに電気的に接続され、第二共通電極の電圧を安定させるステップを含む。 The method for improving the image quality of the liquid crystal display of the technology 10 further includes the step of electrically connecting an additional capacitor to the additional switch unit and stabilizing the voltage of the second common electrode by the method of the technology 9 .

本発明は半透過型液晶表示器に調整容量を設け、透過率と反射率曲線の不一致を低減させることで、透過率と反射率のガンマカーブ間の不一致を低減させ、半透過型液晶パネルの画質を改善する。   In the present invention, an adjustment capacitor is provided in the transflective liquid crystal display, and the mismatch between the transmittance and the reflectance curve is reduced, thereby reducing the mismatch between the gamma curve of the transmittance and the reflectance. Improve image quality.

図1を参照する。図1はこの発明による副画素セグメントの等価回路を示す説明図である。従来の技術による半透過型液晶と同じように、この発明による副画素セグメント(m、n)は、スイッチユニットmth
SWを介して第nゲートラインと第mデータラインで制御される透過領域と反射領域を有する。当該副画素セグメントは更にコモンラインCOM1に接続される共通電極を含む。反射領域における液晶層の光学特性は、反射電極と共通電極によって制御される。保存容量Cは、ゲートラインの信号電流が流れた後、副画素セグメントの電荷を保存する。
Please refer to FIG. FIG. 1 is an explanatory diagram showing an equivalent circuit of a sub-pixel segment according to the present invention. As with the semi-transmissive liquid crystal according to the prior art, the sub-pixel segment according to the invention (m, n), the switch unit m th
A transmission region and a reflection region are controlled by the nth gate line and the mth data line through the SW. The subpixel segment further includes a common electrode connected to the common line COM1. The optical characteristics of the liquid crystal layer in the reflective region are controlled by the reflective electrode and the common electrode. Storage C 1, after the signal current of the gate line flows, stores the charge of the sub-pixel segment.

本発明の液晶表示器は、データ信号を送信する複数のデータラインと、駆動信号を提供する複数のゲートラインと、複数の画素とを含む液晶表示器においては、前記複数の画素はいずれも、ゲートラインの駆動信号に応じてデータラインのデータ信号を導通させるスイッチユニットmth
SWと、第一共通電圧信号を提供する第一共通電極COM1と、第二共通電圧信号を提供する第二共通電極COM2と、スイッチユニットmth SWに電気的に接続され、導通したデータ信号と第一共通電圧信号に基づいて画素中の液晶層を駆動する画素電極102と、第一共通電極COM1に電気的に接続される第一端と画素電極102に電気的に接続される第二端を有する第一液晶容量CLC1と、画素電極102に電気的に接続される第一端と、第二端を有する独立容量Cと、第二共通電極COM2に電気的に接続される第一端と独立容量Cの第二端に接続される第二端を有する調整容量Cと、第一共通電極COM1に電気的に接続される第一端と独立容量Cの第二端に接続される第二端を有し、導通したデータ信号、第一共通電圧信号、及び第二共通電圧信号に基づいて前記液晶層を駆動する第二液晶容量CLC2とを含む。前記調整容量Cは、透過率と反射率のガンマカーブ間の不一致を低減させ、画質を改善するために設けられる。
The liquid crystal display of the present invention is a liquid crystal display including a plurality of data lines for transmitting a data signal, a plurality of gate lines for providing a driving signal, and a plurality of pixels. Switch unit m th for conducting the data signal of the data line according to the drive signal of the gate line
SW, a first common electrode COM1 that provides a first common voltage signal, a second common electrode COM2 that provides a second common voltage signal, and a conductive data signal electrically connected to the switch unit m th SW A pixel electrode 102 for driving the liquid crystal layer in the pixel based on the first common voltage signal, a first end electrically connected to the first common electrode COM1, and a second end electrically connected to the pixel electrode 102. a first liquid crystal capacitor C LC1 having a first end which is electrically connected to the pixel electrode 102, an independent capacitor C C having a second end, the first being electrically connected to the second common electrode COM2 a regulating capacitor C 2 having a second end connected to the second end of the independent capacitance C C to the end, the second end of the independent capacitance C C and the end which is electrically connected to the first common electrode COM1 A connected data signal having a second end connected, the first And a second liquid crystal capacitor CLC2 for driving the liquid crystal layer based on one common voltage signal and a second common voltage signal. The adjusting capacitance C 2 is a discrepancy between the gamma curve of the transmittance and the reflectance is reduced, is provided to improve the image quality.

前記各画素の第一液晶容量CLC1に並列接続される保存容量Cを含む。なお、前記第一液晶容量CLC1は実質的に透明物質で形成される2つの電極端を有し、前記第二液晶容量CLC2は実質的に透明物質で形成される第一電極端と、反射物質で形成される第二電極端とを含む。即ち、第一液晶容量CLC1の第一端は第一透明電極(図12aに示す共通電極25の部分)を含み、第二端は第二透明電極(図12aに示す透明電極54)を含み、前記第二液晶容量CLC2の第一端は透明電極(図12aに示す共通電極25の部分)を含み、第二端は反射電極(図12aに示す反射電極52)を含む。あるいは、前記第二液晶容量CLC2は実質的に透明物質で形成される2つの電極端を有し、前記第一液晶容量CLC1は実質的に透明物質で形成される第一端と、反射物質で形成される第二端とを含む。 Including storage C 1 connected in parallel the First liquid crystal capacitor C LC1 of the pixels. The first liquid crystal capacitor C LC1 has two electrode ends formed of a substantially transparent material, and the second liquid crystal capacitor C LC2 is formed of a first electrode end formed of a substantially transparent material. And a second electrode end formed of a reflective material. That is, the first end of the first liquid crystal capacitor CLC1 includes the first transparent electrode (the portion of the common electrode 25 shown in FIG. 12a), and the second end includes the second transparent electrode (the transparent electrode 54 shown in FIG. 12a). The first end of the second liquid crystal capacitor CLC2 includes a transparent electrode (a portion of the common electrode 25 shown in FIG. 12a), and the second end includes a reflective electrode (the reflective electrode 52 shown in FIG. 12a). Alternatively, the second liquid crystal capacitor C LC2 has two electrode ends formed of a substantially transparent material, the first liquid crystal capacitor C LC1 includes a first end formed of a substantially transparent material, and a reflective And a second end formed of the material.

図1に示すように、第一液晶容量CLC1は透明電極と共通電極の間にある液晶層の容量であり、第二液晶容量CLC2は反射電極と共通電極の間にある液晶層の容量である。CLC2に直列接続される独立容量Cは、反射領域の反射率曲線を高電圧方向に移動させ、高透過率に伴う低反射率の現象を防止する効果がある。調整容量Cは反射電極ともう1本のコモンラインnthCOM2との間に接続され、透過率のガンマカーブと反射率のガンマカーブ間の不一致を低減させる。調整容量Cを利用する場合、コモンライン電圧VCOM1に関係する反射電極の電圧レベルは下記式2で算出される。
[式2]

Figure 0004638891
図1に示すCOM3の電圧レベルはCOM1の電圧レベルと同じようにしても良いし、COM1の電圧レベルと異なるようにしても良い。 As shown in FIG. 1, the first liquid crystal capacitance C LC1 is a capacitance of the liquid crystal layer between the transparent electrode and the common electrode, and the second liquid crystal capacitance C LC2 is a capacitance of the liquid crystal layer between the reflection electrode and the common electrode. It is. The independent capacitor C C connected in series with C LC2 has the effect of moving the reflectance curve of the reflective region in the high voltage direction and preventing the phenomenon of low reflectance associated with high transmittance. Adjustment capacitor C 2 is connected between a common line n th COM2 of another one and the reflection electrode, thereby reducing the mismatch between the gamma curve of the gamma curve and the reflectance of the transmittance. When using an adjustment capacitance C 2, the voltage level of the reflective electrode relating to common line voltage V COM1 is calculated by the following equation 2.
[Formula 2]
Figure 0004638891
The voltage level of COM3 shown in FIG. 1 may be the same as the voltage level of COM1, or may be different from the voltage level of COM1.

図2はコモンラインCOM2の第n電圧信号VCOM2を示し、図に示す破線部分は基準電圧レベルVREFを示す。コモンラインCOM1のVCOM1信号とVCOM2源信号はいずれも交流信号である。VCOM1信号はデータラインnのデータ信号と180度の位相差を有し、VCOM2源信号はデータラインnのデータ信号と同じ位相を有する。コモンラインCOM2は浮遊電極であるので、VCOM2源信号の波形はVCOM1信号と駆動モードによって決められる。たとえば、駆動モードがライン反転であれば、図2に示すようにVCOM2信号の波形は矩形波となる。負電圧フレームにおいて、VCOM2信号は一般に負電位であるが、その振幅変動はVCOM1信号の波形に従って変動する。その後、第nゲートラインが再びオンにされることにより正電圧フレームに入ると、第n電圧信号VCOM2はリフレッシュされ、負から正に極性が変わる。第n電圧信号VCOM2の波形は次のフレームに入るまでは変わらない。 Figure 2 shows a first n voltage signals V COM2 common line COM2, broken-line part shown in the figure shows a reference voltage level V REF. The V COM1 signal and the V COM2 source signal of the common line COM1 are both AC signals. The V COM1 signal has a 180 degree phase difference with the data signal on data line n, and the V COM2 source signal has the same phase as the data signal on data line n. Since the common line COM2 is a floating electrode, the waveform of the V COM2 source signal is determined by the V COM1 signal and the drive mode. For example, if the drive mode is line inversion, the waveform of the V COM2 signal is a rectangular wave as shown in FIG. In the negative voltage frame, the V COM2 signal is generally a negative potential, but its amplitude fluctuations vary according to the waveform of the V COM1 signal. Thereafter, when the positive voltage frame is entered by turning on the nth gate line again, the nth voltage signal VCOM2 is refreshed and changes its polarity from negative to positive. The waveform of the nth voltage signal VCOM2 does not change until the next frame is entered.

前記計算式に示すように、CとCの値を調節すれば、半透過型液晶パネルの画質を改善できる。たとえば、CとCの値は下記の式で求められる。
[式3]

Figure 0004638891
ΔA_COM= 3Vとする場合(ΔA_COMはVCOM1とVCOM2間の振幅差の絶対値である)、反射率曲線と透過率曲線は図3aに示すように一致している。図3aに示すように、電圧4.0Vにおいて反射率曲線のピーク値は透過率曲線のピーク区間と重なり、電圧2V〜4Vの区間においては、反射率曲線と透過率曲線の傾きが近い。指数=2.2、つまりT=(n/64)2.2の64レベル透過率ガンマカーブを基にすれば、図3bに示すような反射率ガンマカーブが得られる。図に示すように、透過率ガンマカーブと反射率ガンマカーブ間の不一致は大きく低減されている。 As shown in the equation, by adjusting the values of C C and C 2, it can improve the quality of the semi-transmissive liquid crystal panel. For example, the values of C C and C 2 are obtained by the following formula.
[Formula 3]
Figure 0004638891
If the ΔA_COM = 3V (ΔA_COM is the absolute value of the amplitude difference between V COM1 and V COM2), the transmittance curve and the reflectivity curve is consistent as shown in Figure 3a. As shown in FIG. 3a, the peak value of the reflectance curve overlaps with the peak section of the transmittance curve at a voltage of 4.0V, and the slope of the reflectance curve and the transmittance curve is close in the section of voltage 2V to 4V. Based on a 64-level transmittance gamma curve with index = 2.2, ie T = (n / 64) 2.2 , a reflectance gamma curve as shown in FIG. 3b is obtained. As shown in the figure, the discrepancy between the transmittance gamma curve and the reflectance gamma curve is greatly reduced.

図2に示す第n電圧信号VCOM2はスイング型表示器の画素反転効果を実現させるために利用される。このようなスイング型の第n電圧信号VCOM2は、図4に示す駆動モードの回路に適する。図4に示すように、本発明の液晶表示器は、第二共通電圧信号を提供する電源と、前記ゲートラインの駆動信号に応じて、前記各画素の第二共通電極COM2を電源に電気的に接続させる増設スイッチユニットnth
SWとを含む。また、第二共通電極COM2に電気的に接続され、第二共通電極COM2の電圧を安定させる追加容量nth comを含む。前記追加容量nth comは、第二共通電極COM2に電気的に接続される第一端と、第一共通電極COM1(COM4)に電気的に接続される第二端とを含む。調整容量Cは増設スイッチユニットnth
SWに介して共通電圧源COM2に電気的に接続され、第n電圧信号VCOM2を受信する。図4に示すCOM1、COM3、COM4は同じにしても良いし、異なるようにしても良い。従来、表示領域外に設けられるたった一つのスイッチユニットのみが、ラインnの全体に第n電圧信号VCOM2を提供する装置として利用される。また、第二共通電極nthCOM2の電圧信号を安定させる装置として、スイッチユニットnth
SWに電気的に接続される共通容量CCOMが用いられる。図1と図4に示すように、副画素セグメントの反射領域と透過領域は一つの保存容量Cを共用する。もっとも、図5に示すように、副画素セグメントに保存容量CST1(図1のC)とCST2を設け、それぞれ反射領域と透過領域の電荷を保存させることも可能である。そのほか、図2に示すスイング型信号の代わりに、図6に示すような一定した電圧信号VCOM2を使用することも可能である。
The nth voltage signal VCOM2 shown in FIG. 2 is used to realize the pixel inversion effect of the swing type display. Such a swing type n-th voltage signal VCOM2 is suitable for the drive mode circuit shown in FIG. As shown in FIG. 4, the liquid crystal display according to the present invention includes a power source for providing a second common voltage signal and a second common electrode COM2 of each pixel as a power source according to a driving signal for the gate line. Expansion switch unit n th to be connected to
SW. Further, an additional capacitor n th C com that is electrically connected to the second common electrode COM2 and stabilizes the voltage of the second common electrode COM2 is included. The additional capacitor n th C com includes a first end electrically connected to the second common electrode COM2, and a second end electrically connected to the first common electrode COM1 (COM4). Adjusting capacitance C 2 is added switch unit n th
The nth voltage signal VCOM2 is received by being electrically connected to the common voltage source COM2 via SW. The COM1, COM3, and COM4 shown in FIG. 4 may be the same or different. Conventionally, only one switch unit provided outside the display area is used as a device for providing the nth voltage signal VCOM2 to the entire line n. Further, as a device for stabilizing the voltage signal of the second common electrode n th COM2, the switch unit n th
A common capacitor C COM electrically connected to SW is used. As shown in FIGS. 1 and 4, the reflection region and the transmission region of the sub-pixel segments share one storage C 1. However, as shown in FIG. 5, it is also possible to provide storage capacitors C ST1 (C 1 in FIG. 1 ) and C ST2 in the sub-pixel segment so as to store the charges in the reflective region and the transmissive region, respectively. In addition, a constant voltage signal VCOM2 as shown in FIG. 6 can be used instead of the swing type signal shown in FIG.

図7に示すように、この発明の別の実施例として、スイング型の第n電圧信号VCOM2と、一定したVCOM1を同時に利用することができる。あるいは図8に示すように、この発明の別の実施例として、VCOM1とVCOM2とデータラインnの信号の位相差を180度にし、VCOM1とVCOM2の位相を同じにすることも可能である。 As shown in FIG. 7, as another embodiment of the present invention, a swing-type n-th voltage signal V COM2 and a constant V COM1 can be used simultaneously. Alternatively, as shown in FIG. 8, as another embodiment of the present invention, it is possible to set the phase difference between the signals of V COM1 and V COM2 and the data line n to 180 degrees and to make the phases of V COM1 and V COM2 the same. It is.

前記調整容量は、製造プロセスの複雑さを増やすことなく、アクティブマトリックス半透過型液晶表示器(AM TRLCD)の透過率ガンマカーブと反射率ガンマカーブを一致させることができる。図9に示すように、調整容量は、下基板にコモンラインCOM2を増設することで形成され、CとCは浮遊金属層で形成される。 The adjustment capacitor can match the transmittance gamma curve and the reflectance gamma curve of an active matrix transflective liquid crystal display (AM TRLCD) without increasing the complexity of the manufacturing process. As shown in FIG. 9, adjustment capacitor is formed by adding a common line COM2 on the lower substrate, C C and C 2 are formed in the floating metal layer.

本発明の液晶表示器の画質を改善する方法は、第一面と、相対の第二面を有する液晶層と、液晶層の第一面に形成される共通電極とを含む液晶表示器において、共通電圧を前記共通電極に機能的に印加し、前記液晶表示器は複数の画素を有し、少なくとも部分の画素は液晶層の第二面に形成される第一電極を有する第一領域と、第一電極に隣接する液晶層の第二面に形成される第二電極を有する第二領域とを含み、第一電圧を第一電極に機能的に印加して、液晶層の第一領域に介して第一電圧の関数とされる第一光学透過率と、第二電圧を第二電極に機能的に印加して、液晶層の第二領域に介して第二電圧の関数とされる第二光学透過率において、前記第一光学透過率と前記第二光学透過率はそれぞれ低透過区間と高透過区間である液晶表示器の画質を改善する方法であって、第一電圧に対して第二電圧を調整し、実質的に第二光学透過率の高透過区間を第一光学透過率の高透過区間と一致させ、第二光学透過率の低透過区間と第一光学透過率の低透過区間間の不一致を残すステップと、電荷保存容量に介して共通電圧と違い電圧を前記第二電極に提供して、第二光学透過率の低透過区間と第一光学透過率の低透過区間間の不一致を低減させるステップとを含む。   A method for improving the image quality of a liquid crystal display according to the present invention is a liquid crystal display including a first surface, a liquid crystal layer having a relative second surface, and a common electrode formed on the first surface of the liquid crystal layer. A common voltage is functionally applied to the common electrode, the liquid crystal display has a plurality of pixels, and at least a portion of the pixels has a first region having a first electrode formed on the second surface of the liquid crystal layer; A second region having a second electrode formed on a second surface of the liquid crystal layer adjacent to the first electrode, and functionally applying a first voltage to the first electrode, A first optical transmittance that is a function of the first voltage via the second electrode and a second voltage that is functionally applied to the second electrode and a second voltage that is a function of the second voltage via the second region of the liquid crystal layer. Liquid crystal display in which the first optical transmittance and the second optical transmittance are a low transmission section and a high transmission section, respectively, in two optical transmissions The second voltage is adjusted with respect to the first voltage, the high transmission section of the second optical transmittance is substantially matched with the high transmission section of the first optical transmittance, Leaving a mismatch between the low transmission interval of the two optical transmittances and the low transmission interval of the first optical transmittance, and providing a voltage to the second electrode, unlike the common voltage, via the charge storage capacitance, Reducing the discrepancy between the low transmission interval of the transmission and the low transmission interval of the first optical transmission.

以上はこの発明の好ましい実施例であって、この発明の実施の範囲を限定するものではない。よって、当業者のなし得る修正、もしくは変更であって、この発明の精神の下においてなされ、この発明に対して均等の効果を有するものは、いずれも本発明の特許請求の範囲に属するものとする。   The above are preferred embodiments of the present invention, and do not limit the scope of the present invention. Therefore, any modifications or changes that can be made by those skilled in the art, which are made within the spirit of the present invention and have an equivalent effect on the present invention, shall belong to the scope of the claims of the present invention. To do.

この発明による副画素セグメントの等価回路を示す説明図である。It is explanatory drawing which shows the equivalent circuit of the subpixel segment by this invention. ゲートライン信号とデータライン信号に関係する両コモンラインの信号を示すタイミング図である。FIG. 5 is a timing diagram showing signals of both common lines related to a gate line signal and a data line signal. この発明の副画素セグメントにおいて、透過率(T)、反射率(R)と印加電圧(V)間の関係を示す説明図である。In the subpixel segment of this invention, it is explanatory drawing which shows the relationship between the transmittance | permeability (T), a reflectance (R), and an applied voltage (V). この発明において、ガンマレベルの関数とされる透過率と反射率間の関係を示す説明図である。In this invention, it is explanatory drawing which shows the relationship between the transmittance | permeability used as a function of a gamma level, and a reflectance. この発明の半透過型液晶表示器の等価回路におけるCOM2の駆動電圧回路を示す説明図である。It is explanatory drawing which shows the drive voltage circuit of COM2 in the equivalent circuit of the transflective liquid crystal display of this invention. この発明の別の実施例による副画素セグメントの等価回路を示す説明図である。It is explanatory drawing which shows the equivalent circuit of the subpixel segment by another Example of this invention. この発明の別の実施例によるCOM2の信号を示すタイミング図である。FIG. 6 is a timing diagram showing signals of COM2 according to another embodiment of the present invention. この発明の別の実施例によるCOM1とCOM2の信号を示すタイミング図である。FIG. 6 is a timing diagram showing signals COM1 and COM2 according to another embodiment of the present invention. この発明の別の実施例によるCOM1とCOM2の信号を示すタイミング図である。FIG. 6 is a timing diagram showing signals COM1 and COM2 according to another embodiment of the present invention. この発明による半透過型液晶表示器の副画素セグメントにおける下基板の層構造を示す断面図である。It is sectional drawing which shows the layer structure of the lower board | substrate in the subpixel segment of the transflective liquid crystal display by this invention. 従来の液晶表示器を示す説明図である。It is explanatory drawing which shows the conventional liquid crystal display. 従来の半透過型液晶表示器の画素構造を示す平面図である。It is a top view which shows the pixel structure of the conventional transflective liquid crystal display. 図11に示す画素における反射光束と透過光束を示す断面図である。It is sectional drawing which shows the reflected light beam and the transmitted light beam in the pixel shown in FIG. 他の従来の半透過型液晶表示器の画素における反射光束と透過光束を示す断面図である。It is sectional drawing which shows the reflected light beam and the transmitted light beam in the pixel of another conventional transflective liquid crystal display. 半透過型液晶表示器の中の副画素セグメントの等価回路を示す説明図である。It is explanatory drawing which shows the equivalent circuit of the subpixel segment in a transflective liquid crystal display. 従来の単間隙の半透過型液晶パネルにおいて、透過率(T)、反射率(R)と印加電圧(V)間の関係を示す説明図である。In the conventional single-gap transflective liquid crystal panel, it is explanatory drawing which shows the relationship between the transmittance | permeability (T), reflectance (R), and applied voltage (V). 半透過型液晶表示器の中の副画素セグメントの等価回路を示す説明図である。It is explanatory drawing which shows the equivalent circuit of the subpixel segment in a transflective liquid crystal display. 反射領域の容量によりV−R曲線がシフトされた状態で、透過率(T)、反射率(R)と印加電圧(V)間の関係を示す説明図である。It is explanatory drawing which shows the relationship between the transmittance | permeability (T), a reflectance (R), and an applied voltage (V) in the state where the VR curve was shifted by the capacity | capacitance of the reflective area | region. ガンマレベルの関数とされる透過率と反射率間の関係を示す説明図である。It is explanatory drawing which shows the relationship between the transmittance | permeability used as a function of a gamma level, and a reflectance.

符号の説明Explanation of symbols

1 カラー液晶パネル
10 画素
12R、12G、12B 副画素
20 上基板
21、22、23、24 データライン
25 共通電極
30 下基板
31,32 ゲートライン
50 素子層
52 反射電極
54 透明電極
102 画素電極
LC1 第一液晶容量
LC2 第二液晶容量
独立容量
保存容量
調整容量
ST1 保存容量
ST2 保存容量
COM 共通電極
COM1 第一共通電極
COM2 第二共通電極
COM3 第三共通電極
COM4 第四共通電極
TA 透過領域
RA 反射領域
th SW スイッチユニット
th SW 増設スイッチユニット
th com 追加容量
DESCRIPTION OF SYMBOLS 1 Color liquid crystal panel 10 Pixel 12R, 12G, 12B Subpixel 20 Upper board | substrate 21, 22, 23, 24 Data line 25 Common electrode 30 Lower board | substrate 31 and 32 Gate line 50 Element layer 52 Reflective electrode 54 Transparent electrode 102 Pixel electrode C LC1 1st liquid crystal capacity C LC2 2nd liquid crystal capacity C C independent capacity C 1 storage capacity C 2 adjustment capacity C ST1 storage capacity C ST2 storage capacity COM common electrode COM1 first common electrode COM2 second common electrode COM3 third common electrode COM4 first Four common electrodes TA Transmission area RA Reflection area m th SW Switch unit n th SW Additional switch unit n th C com Additional capacity

Claims (12)

データ信号を送信する複数のデータラインと、駆動信号を提供する複数のゲートラインと、複数の画素とを含む半透過型液晶表示器において、前記複数の画素はいずれも、ゲートラインの駆動信号に応じてデータラインのデータ信号を導通させるスイッチユニットと、第一共通電圧信号を提供する第一共通電極と、第二共通電圧信号を提供する第二共通電極と、スイッチユニットに電気的に接続され、導通したデータ信号と第一共通電圧信号に基づいて画素中の液晶層を駆動する画素電極と、第一共通電極に電気的に接続される第一端と画素電極に電気的に接続される第二端を有する第一液晶容量と、画素電極に電気的に接続される第一端と、第二端を有する独立容量と、第二共通電極に電気的に接続される第一端と独立容量の第二端に接続される第二端を有する調整容量と、第一共通電極に電気的に接続される第一端と独立容量の第二端に接続される第二端を有し、導通したデータ信号、第一共通電圧信号、及び第二共通電圧信号に基づいて前記液晶層を駆動する第二液晶容量とを含み、
前記第一液晶容量および前記第二液晶容量の一方は、実質的に透明物質で形成される2つの電極端を有し、前記第一液晶容量および前記第二液晶容量の他方は、実質的に透明物質で形成される第一電極端と、反射物質で形成される第二電極端とを含むことを特徴とする半透過型液晶表示器。
In a transflective liquid crystal display including a plurality of data lines for transmitting a data signal, a plurality of gate lines for providing a driving signal, and a plurality of pixels, each of the plurality of pixels serves as a driving signal for the gate line. In response, the switch unit electrically conducting the data signal of the data line, the first common electrode providing the first common voltage signal, the second common electrode providing the second common voltage signal, and the switch unit are electrically connected. A pixel electrode for driving a liquid crystal layer in the pixel based on the conducted data signal and the first common voltage signal; a first end electrically connected to the first common electrode; and a pixel electrode electrically connected to the pixel electrode A first liquid crystal capacitor having a second end; a first end electrically connected to the pixel electrode; an independent capacitor having a second end; and a first end electrically connected to the second common electrode. Connected to the second end of the capacity A regulated capacitor having a second end, a first end electrically connected to the first common electrode, and a second end connected to the second end of the independent capacitor, the conducting data signal, the first common look including a second liquid crystal capacitor for driving the liquid crystal layer based on the voltage signal, and a second common voltage signal,
One of the first liquid crystal capacitor and the second liquid crystal capacitor has two electrode ends formed of a substantially transparent material, and the other of the first liquid crystal capacitor and the second liquid crystal capacitor is substantially A transflective liquid crystal display comprising a first electrode end formed of a transparent material and a second electrode end formed of a reflective material .
前記半透過型液晶表示器は、更に、前記各画素の第一液晶容量に並列接続される保存容量を含むことを特徴とする請求項1に記載の半透過型液晶表示器。 The transflective liquid crystal display device further includes a transflective liquid crystal display device according to claim 1, characterized in that it comprises a storage capacitance connected in parallel to the first liquid crystal capacitor of each pixel. 前記半透過型液晶表示器は、更に、前記各画素の第二液晶容量に並列接続される保存容量を含むことを特徴とする請求項1に記載の半透過型液晶表示器。 The transflective liquid crystal display device further includes a transflective liquid crystal display device according to claim 1, characterized in that it comprises a storage capacitance connected in parallel to the second liquid crystal capacitor of each pixel. 前記半透過型液晶表示器は更に、第二共通電圧信号を提供する電源と、前記ゲートラインの駆動信号に応じて、前記各画素の第二共通電極を電源に電気的に接続させる増設スイッチユニットとを含むことを特徴とする請求項1に記載の半透過型液晶表示器。  The transflective liquid crystal display further includes a power supply for providing a second common voltage signal, and an additional switch unit for electrically connecting the second common electrode of each pixel to the power supply in accordance with a drive signal for the gate line. The transflective liquid crystal display according to claim 1, comprising: 前記半透過型液晶表示器は更に、前記各画素の第二共通電極に電気的に接続され、第二共通電極の電圧を安定させる追加容量を含むことを特徴とする請求項1記載の半透過型液晶表示器。  The transflective liquid crystal display according to claim 1, further comprising an additional capacitor electrically connected to the second common electrode of each pixel and stabilizing the voltage of the second common electrode. Type liquid crystal display. 前記追加容量は、第二共通電極に電気的に接続される第一端と、第一共通電極に電気的に接続される第二端とを含むことを特徴とする請求項5記載の半透過型液晶表示器。  6. The transflective according to claim 5, wherein the additional capacitor includes a first end electrically connected to the second common electrode and a second end electrically connected to the first common electrode. Type liquid crystal display. 前記第一共通電圧信号と第二共通電圧信号はいずれも、一定した電圧信号または交流電圧信号であることを特徴とする請求項4に記載の半透過型液晶表示器。  5. The transflective liquid crystal display according to claim 4, wherein each of the first common voltage signal and the second common voltage signal is a constant voltage signal or an AC voltage signal. 前記第一共通電圧信号と第二共通電圧信号は180度の位相差を有する交流電圧信号であることを特徴とする請求項4に記載の半透過型液晶表示器。  5. The transflective liquid crystal display according to claim 4, wherein the first common voltage signal and the second common voltage signal are alternating voltage signals having a phase difference of 180 degrees. 前記第一共通電圧信号と第二共通電圧信号は同じ位相を有する交流電圧信号であることを特徴とする請求項4に記載の半透過型液晶表示器。  5. The transflective liquid crystal display according to claim 4, wherein the first common voltage signal and the second common voltage signal are alternating voltage signals having the same phase. 前記第二共通電圧信号は一定した電圧信号であることを特徴とする請求項4に記載の半透過型液晶表示器。  5. The transflective liquid crystal display according to claim 4, wherein the second common voltage signal is a constant voltage signal. 前記第一液晶容量の第一端は第一透明電極を含み、第二端は第二透明電極を含み、前記第二液晶容量の第一端は透明電極を含み、第二端は反射電極を含むことを特徴とする請求項1に記載の半透過型液晶表示器。  The first end of the first liquid crystal capacitor includes a first transparent electrode, the second end includes a second transparent electrode, the first end of the second liquid crystal capacitor includes a transparent electrode, and the second end includes a reflective electrode. The transflective liquid crystal display according to claim 1, further comprising: 前記半透過型液晶表示器は更に、第二共通電圧信号を提供する電源と、前記ゲートラインの駆動信号に応じて、前記各画素の第二共通電極を電源に電気的に接続させる増設スイッチユニットと、前記第二共通電極に電気的に接続され、第二共通電極の電圧を安定させる追加容量とを含むことを特徴とする請求項11に記載の半透過型液晶表示器。  The transflective liquid crystal display further includes a power source for providing a second common voltage signal, and an additional switch unit for electrically connecting the second common electrode of each pixel to the power source in accordance with the driving signal of the gate line. The transflective liquid crystal display according to claim 11, further comprising: an additional capacitor electrically connected to the second common electrode and stabilizing the voltage of the second common electrode.
JP2007052988A 2006-03-06 2007-03-02 Transflective LCD Active JP4638891B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW95107474A TWI326064B (en) 2006-03-06 2006-03-06 Liquid crystal display
US11/432,157 US7683988B2 (en) 2006-05-10 2006-05-10 Transflective liquid crystal display with gamma harmonization

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010190043A Division JP2011022590A (en) 2006-03-06 2010-08-26 Transflective liquid crystal display

Publications (2)

Publication Number Publication Date
JP2007241282A JP2007241282A (en) 2007-09-20
JP4638891B2 true JP4638891B2 (en) 2011-02-23

Family

ID=38586821

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007052988A Active JP4638891B2 (en) 2006-03-06 2007-03-02 Transflective LCD
JP2010190043A Pending JP2011022590A (en) 2006-03-06 2010-08-26 Transflective liquid crystal display

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010190043A Pending JP2011022590A (en) 2006-03-06 2010-08-26 Transflective liquid crystal display

Country Status (1)

Country Link
JP (2) JP4638891B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495203B1 (en) * 2008-06-24 2015-02-25 삼성디스플레이 주식회사 Method of driving a liquid crystal display apparatus, array substrate, method of manufacturing the array substrate and liquid crystal display apparatus having the same
CN112489596B (en) * 2019-09-12 2022-03-25 北京小米移动软件有限公司 Display module, electronic equipment and display method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179371A (en) * 1994-12-26 1996-07-12 Matsushita Electric Ind Co Ltd Thin film transistor liquid crystal display device and its driving method
JP2003057639A (en) * 2001-08-22 2003-02-26 Nec Corp Liquid crystal display device
JP2005250085A (en) * 2004-03-04 2005-09-15 Sharp Corp Liquid crystal display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222836A (en) * 2002-01-30 2003-08-08 Matsushita Electric Ind Co Ltd Active matrix type liquid crystal display device
JP2003270654A (en) * 2002-03-19 2003-09-25 Kyocera Corp Liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179371A (en) * 1994-12-26 1996-07-12 Matsushita Electric Ind Co Ltd Thin film transistor liquid crystal display device and its driving method
JP2003057639A (en) * 2001-08-22 2003-02-26 Nec Corp Liquid crystal display device
JP2005250085A (en) * 2004-03-04 2005-09-15 Sharp Corp Liquid crystal display device

Also Published As

Publication number Publication date
JP2011022590A (en) 2011-02-03
JP2007241282A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
US8427414B2 (en) Transflective liquid crystal display with gamma harmonization
US9411206B2 (en) Liquid crystal display
US7576720B2 (en) Transflective liquid crystal display
JP4374007B2 (en) Method for improving image quality of transflective liquid crystal display device, and transflective liquid crystal display device
US7286192B2 (en) Transflective liquid crystal display
US8803777B2 (en) Display apparatus and method of driving the same
TWI444978B (en) Liquid crystal display
US7760419B2 (en) Electrophoretic display device
US7920113B2 (en) Array panel and method of driving the same
KR101046929B1 (en) Liquid crystal display
CN1885399A (en) Liquid crystal display device and method of driving the same
KR102160122B1 (en) Liquid crystal display
US7782425B2 (en) OCB mode liquid crystal display and a driving method of the same
KR20040013785A (en) Method and apparatus for driving liquid crystal display
US20080204615A1 (en) Liquid crystal display and method thereof
JP4638891B2 (en) Transflective LCD
US8436955B2 (en) Liquid crystal display having pairs of power source supply lines and a method for forming the same
KR102223494B1 (en) Liquid crystal display
KR100538330B1 (en) Liquid crystal display and driving method thereof
KR101112561B1 (en) Liquid crsytal display
KR20050118812A (en) Liquid crystal panel and liquid crystal display having the same
CN100462828C (en) Active element array substrate, its pixel structure and its drive method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4638891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250