TWI326064B - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
TWI326064B
TWI326064B TW95107474A TW95107474A TWI326064B TW I326064 B TWI326064 B TW I326064B TW 95107474 A TW95107474 A TW 95107474A TW 95107474 A TW95107474 A TW 95107474A TW I326064 B TWI326064 B TW I326064B
Authority
TW
Taiwan
Prior art keywords
electrode
liquid crystal
pole
voltage signal
capacitor
Prior art date
Application number
TW95107474A
Other languages
Chinese (zh)
Other versions
TW200735004A (en
Inventor
Ching Huan Lin
Jenn Jia Su
Chin Ming Chang
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW95107474A priority Critical patent/TWI326064B/en
Priority to JP2007052988A priority patent/JP4638891B2/en
Publication of TW200735004A publication Critical patent/TW200735004A/en
Application granted granted Critical
Publication of TWI326064B publication Critical patent/TWI326064B/en
Priority to JP2010190043A priority patent/JP2011022590A/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

l326〇64 玖、發明說明: . 【發明所屬之技術領域】 本發明涉及一種液晶顯示器’尤其是指一種半穿透半反射式液晶顯示 器。 【先前技術】BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display, particularly to a transflective liquid crystal display. [Prior Art]

液晶顯示器(Liquid Crystal Display,LCD) —般可以分爲反射式 (reflective)液晶顯示器、穿透式(transmissive)液晶顯示器及半穿透半反 w 射式(transflective )液晶顯示器。反射式LCD是指光源由面板前方進入LCD 内,並且經由内部的一反射表面(如鋁金屬)反射以讓使用者能觀看到LCD 的顯示晝面,其優點是極爲省電,但是在較暗的場合看不到顯示幕的内容 且對比度較差。穿透式LCD通常具有一設置於液晶單元後方的背光源,用 以發射入射光線,入射光線選擇性地穿越液晶單元之後,於LCD的前方顯 示畫面。穿透式LCD適合在室内環境光較暗時使用,但由於背光源的存在 而功耗增加,且在強環境光下顯示品質較差。半穿透半反射式LCD則是同 9 時利用反射式及穿透式顯示畫面的顯示器,當外部光線足夠時就用外部光 源,不足時可使时絲,它是兼具省f和具獅光線的方式,尤其適合 應用於手機、個人數位助理器等具液晶顯示功能的電子產品上。 請參照第1圖所示之習知技術,彩色液晶顯示面板】具有一個呈現二 維陣列77佈的像素單70 1Q,每-像素單元10均包括有複數個子像素單元, 通常爲分別控制紅(R)、綠⑹、藍⑻三原色的子像素單元,該等RGB ^色的齡效果找線通過桃紋⑽赴的絲。帛2圖係揭示傳 1326064 統半反射轉透式LCD之像素單元結構之平哪,而第Μ _第3B圖則 ^ 2 個辦元可分爲三 個子像素單元im、如及⑽,每—子像素單元均被分成穿透區域(ta) 及反射區域(RA)。請參照第3Α圖所示,在穿透區域(ΤΑ),來自於背光 源的光線(如箭號所示)穿過下基板30到達穿透區域(ΤΑ),並依次穿過液 晶層〇iquid ciystal layer)、彩色滤光片R及上基板2〇;在反射區域㈣, 進入反親域(TB)的鎌(如舰卿)韻由反射層或電極%反射之前, 需要先穿過-上基板2〇、彩色濾如Μ液晶層L部分反射區域可 以選擇由一非彩色遽光片(NCF)遮蓋,如第3β圖所示。 正如習知技術所示,爲控制液晶顯示器的光學特性,每一像素單元設 置包括元件層50及-個或兩個電極層。舉例來說,形成於元件層5〇上的 透明電極54可以與形成於上基板20上的共用電極(C_on electrode)22共 同控制位於穿透區域(TA)内的液晶層之光學特性。同樣地,位於反射區 域⑽内的液晶層之光學特性是由反射電極52和共用電極^共同予以 控制。共用電極22係連接至„_共用線(未圖示)上。元件層%是沉積在 下基板3〇上,其主要包括有掃描線31與幻、資料線21-24(如第2圖所示)、 電晶體雜護層(未圖示> 進―步來說,在树層%上通常還會形成有 儲存電容,讀鱗上的信舰驗描魏,該鱗電料㈣來保持子 像素單元上的電荷。具有穿透區域和反域的典型的子像素單元(m,n) 之等效電路可參考第4圖所示。在第4圖中,c如主要是指位於透明電極 54與共用電極22之_液晶層之電容,‘主_倾反射電極S2與 共用電極22之間的液晶層之電容,Ci是指儲存電容,c〇m則是指共用線。 在習知技術中,液晶顯示面板還具有一 1/4波片piate) 及一偏光板(polarizer)。 傳統的半反射半穿駐LCD的像素_般會包含村輕與反射區。假 設穿透區的平均間隙為dt ’反射區的平均間隙為&,當於融時的主要 問題在於:穿透區域之穿透雜反龍域之反射率胡―轉電壓值時並 不能同時達到各自的峰值々第5圖所示,以㈣t為例,v_r鱗(反射 率曲線)的峰值歧在電壓爲潰處,而ν·τ曲線(穿透率曲線)的峰值 之扁平區域則出現在電壓爲3.7祝處,亦即當穿透率達到其較高值時,反 射率反而呈倒置狀態。 在習知技術中,這種反射率倒置的問題可以藉由精確地控制間隙咖、 dt的叹at來改善,其巾在反射區域之随大致是穿透區域之間隙的一半。 然而’雖然雙間隙設計在理論上是纽的,但實社由於製程複雜而很難 達到所要的效果。業界還嘗試用其他方法去改善反射率倒置的問題;例如, 通過控制位於穿透區域與反射區域上的電壓值及糊絕縣锻製反射電極 等方法《 ^言之’反縣域之電壓仙對於穿透區域之電隸可以通過— 電容來降低;如第6圖所示,將一獨立電容Cc串聯至液晶電容—上,藉 此反射電極相對於共用線之電壓值可以表示爲: 1326064 vCLC2=vcc-vcom=^__(w 請參閲第7A圖及第7B圖。第7A圖係f知像素資料%血與透明液晶 電容&之夾差電壓乂⑽之關係圖,帛7β圖係習知透明液晶電容‘ 與反射液晶電容CLC2的在不同工作電虔時與穿透率與反射率之關係圖,其 中縱轴表tf穿透率與反射率,鄕表示騎資料與電| v_之電 壓差。從第6A®中可以觀察到,當夾差電塵達到外時,穿透光強度(穿 透率)幾乎達到最大值,而反光強度(反射率)則約等於〇.2。雖然當夹差 電磨達到4v時,穿透率與反射率都上升到最大值,但是在夹差電壓為5v 時反射率又下降至〇·6。換言之,在夾差電壓較大時(也就是像素資料呈高 灰階時),反射率曲線之半週波(如帛7B圖之範圍A所示)較窄,峰值的電壓 容忍度較小而不易掌控。同樣地,依據第7C圖所示G^a絲,在第必 階訊號時,穿透率幾乎達到0.5,但是反射率卻幾乎等於〇。換言之,透射 光經過透明液晶單元之後的亮度與反射光經過反射液晶單元之後的亮度是 不相同的,即在同-X作電壓辦,透射光與反射柄透光率不相同,且 灰階變化率也不同。 有鑑於上述習知技術所遇到的問題,實有必要對半反射半穿透式[CD 作進一步的改進,以提高其顯示品質。 【發明内容】 本發明之主要目的在紐供-種半穿透半反射式液晶顯㈣,其反射 光與穿透光之透光強度相協調,並能提高顯示品質。 9 1326064 依據本發明之上述目的,本發明提供一種半穿透半反射式液晶顯示 .器’其包含複數個資料線、複數個掃描線’以及複數個像素單元,該複數 個掃猫線係用來產生驅動訊號,該複數個資料線係用來產生像素資料。每 一像素單元包含一第一開關單元,用來於接收一掃描線之驅動訊號時,導 通一資料線之像素資料;一第一電極,用來提供一第一電壓訊號;一第二 電極,用來提供一第二電壓訊號;一第一液晶控制電容,其一極電連接於 • 該第一電極,另一極電連接於該第一開關單元,用來依據該像素資料以及 該第一電壓訊號驅動其内的液晶分子;一感應電容,包含一第一極以及一 第一極,該第一極電連接於該第一開關單元;一調制電容,其一極電連接 於該第二電極,另一極連接於該感應電容之第二極;以及一第二液晶電容, 其極電連接於該感應電谷之第二極,另一極電連接於該第一電極,用來 依據該像素資料、該第一電壓訊號以及該第二電壓訊號驅動其内的液晶分 .子0 【實施方式】 請參閱第8圖及第9圖,第8圖係本發明之像素單元1〇〇之等效電路 圖。複數條掃描線(gate line)與複數條資料線(dataIine)交錯之間形成像 素單元100,第9圖係像素單元100之結構剖面圖。每一像素單元_中形 成有第-液晶電谷以及-第二液晶電容,兩液晶電容為兩電極間包含有一 液晶層所形成。第-液晶電容之兩極皆由透明電極所形成,而第二液晶電 容之-極包含-具高反射率之電極所形成,另__酬為透㈣極。在本實 1326064 施例中’第-液晶電容係透明液晶電容&,其用來控制半穿透半反射顯 •不器之穿透區内液晶分子的轉動方向。第二液晶電容係、反射液晶電容 .—’日其用來控制半穿透半反射顯㈣之反射區峨晶分子的轉動方向。透 明,晶電容Clci的—極係透過一開關單元吟sw連接,泣本實施例中開 關單7C係以;I觀晶體加以實現),另-酬與電極⑺Mi相連接;反 射液晶電谷CLC2的一極係與第一電極c〇M1相連接,另一極則連接至一感 應電容Cc之-極,並亦同時連接至調制電容&之一極,感應電容&的另 •-極係透過開關單元ISW與資料線mth_data line相連接,而調制電容& 的另-極賴第二 c〇M2鱗接。此外,還可以設置—儲存電容心1 用來降低外界雜訊的干擾,猶存電容CsTi係與透赚晶電容C⑽並聯, 其-極與開關單元連接,另—極鄕三電極COM3相連,其巾⑺奶與 COM3可為同一電位,也可為不同電位。 請一併參閱第10圖,第10圖係像素單元1〇〇運作時,像素資料電壓 ® Vdata、第一電壓訊號V_1、第二電壓訊號v_以及調整前後施加於反 射液晶電容之電壓Vcc之時序圖,圖中虚線爲一參考準位。當掃描至第η 條掃描線(nth—gate line)時,掃描線nth_gate iine會送出一掃描訊號以使開 關單元rrith一SW開啓,此時,像素資料vdata經由資料線mth_data line通過 開關單元mth_SW傳送至節點1〇2。此時,透明液晶電容cLC1之夾差電壓 VCLC1係為像素資料電壓Vdata以及第一電壓訊號COM1之電壓差,而反射 液晶電容CLC2之夾差電壓VCLC2則會受到感應電容Cc以及調制電容C2的 影響,使得夾差電壓VCLC2不僅與像素資料電壓vdata和第一電壓訊號VC0M1 11 1326064 有關,同時也受到第二電壓訊號vC0M2的影響。依據克希荷夫電流定律 (KirchhofTs Current Law),節點 104 之淨電流為: (Vcc-Vdata) t Vcc-VC0M1 , Vcc-Vc〇M2 l i i SCcA liquid crystal display (LCD) can be generally classified into a reflective liquid crystal display, a transmissive liquid crystal display, and a transflective liquid crystal display. Reflective LCD means that the light source enters the LCD from the front of the panel and is reflected by an internal reflective surface (such as aluminum metal) to allow the user to view the display surface of the LCD. The advantage is that it is extremely power-saving, but is darker. The content of the display screen is not visible at the occasion and the contrast is poor. A transmissive LCD typically has a backlight disposed behind the liquid crystal cell for emitting incident light that selectively traverses the liquid crystal cell to display a picture in front of the LCD. The transmissive LCD is suitable for use when the indoor environment is dark, but the power consumption increases due to the presence of the backlight, and the display quality is poor under strong ambient light. The transflective LCD is a display that uses the reflective and transmissive display at the same time. It uses an external light source when the external light is sufficient. When it is insufficient, it can be used for the time. It is both a provincial f and a lion. The way of light is especially suitable for electronic products with liquid crystal display functions such as mobile phones and personal digital assistants. Referring to the prior art shown in FIG. 1 , the color liquid crystal display panel has a pixel sheet 70 1Q that presents a two-dimensional array 77. Each pixel unit 10 includes a plurality of sub-pixel units, which are generally controlled by red ( The sub-pixel units of the three primary colors of R), green (6), and blue (8), and the RGB-color age effect finding lines pass through the silk of the peach pattern (10).帛2 diagram reveals the structure of the pixel unit structure of the 1326064 unified semi-reflective transflective LCD, and the third 第 _ 3B diagram ^ 2 units can be divided into three sub-pixel units im, such as and (10), each— The sub-pixel units are each divided into a penetration area (ta) and a reflection area (RA). Referring to Figure 3, in the penetration area (ΤΑ), light from the backlight (as indicated by the arrow) passes through the lower substrate 30 to reach the penetration area (ΤΑ), and sequentially passes through the liquid crystal layer 〇iquid Ciystal layer), color filter R and upper substrate 2〇; in the reflection area (4), the enthalpy (such as the ship's) entering the anti-parent (TB) needs to pass through the upper layer before being reflected by the reflective layer or the electrode The portion of the substrate 2, the color filter, such as the liquid crystal layer L, may be selectively covered by a non-color calender (NCF), as shown in the third figure. As shown in the prior art, to control the optical characteristics of the liquid crystal display, each pixel unit arrangement includes an element layer 50 and one or two electrode layers. For example, the transparent electrode 54 formed on the element layer 5 can control the optical characteristics of the liquid crystal layer located in the penetration region (TA) together with the common electrode (C_on electrode) 22 formed on the upper substrate 20. Similarly, the optical characteristics of the liquid crystal layer located in the reflective region (10) are controlled by the reflective electrode 52 and the common electrode. The common electrode 22 is connected to a „_common line (not shown). The element layer % is deposited on the lower substrate 3〇, which mainly includes the scan line 31 and the phantom, data line 21-24 (as shown in FIG. 2). ), the transistor miscellaneous layer (not shown), in terms of step, the storage capacitor is usually formed on the tree layer %, the letter ship on the scale is inspected, and the scale material (four) is used to keep the sub The charge on the pixel unit. The equivalent circuit of a typical sub-pixel unit (m, n) having a transmissive area and an anti-domain can be referred to in Fig. 4. In Fig. 4, c is mainly located at the transparent electrode. 54, the capacitance of the liquid crystal layer of the common electrode 22, the capacitance of the liquid crystal layer between the main-dipping reflective electrode S2 and the common electrode 22, Ci means the storage capacitor, and c〇m means the common line. The liquid crystal display panel also has a 1/4 wave plate and a polarizer. The conventional semi-reflective half-receiving pixels of the LCD will generally include the village light and the reflection area. The average gap for the dt 'reflection zone is &, the main problem when melting is: the penetration of the penetrating region The reflection rate of the anti-dragon domain can not reach the peak value at the same time when the voltage value is turned. Figure 5 shows the peak of the v_r scale (reflectance curve) at the voltage, and ν· The flat region of the peak of the τ curve (penetration curve) appears at a voltage of 3.7, that is, when the transmittance reaches its higher value, the reflectivity is inverted. In the prior art, this The problem of reflectivity inversion can be improved by precisely controlling the sigh of dt, dt, which is half of the gap between the reflection areas and the penetration area. However, although the double gap design is theoretically new However, due to the complexity of the process, it is difficult to achieve the desired effect. The industry has also tried other methods to improve the problem of reflectivity inversion; for example, by controlling the voltage values located in the penetrating area and the reflecting area, The method of reflecting the electrode, etc., can be reduced by the capacitance of the anti-counterty region. As shown in Fig. 6, a separate capacitor Cc is connected in series to the liquid crystal capacitor to reflect The voltage value of the pole relative to the common line can be expressed as: 1326064 vCLC2=vcc-vcom=^__(w See Figure 7A and Figure 7B. Figure 7A shows the pixel data % blood and transparent liquid crystal capacitor & The relationship between the differential voltage 乂(10) and the relationship between the transmittance and the reflectivity of the reflective liquid crystal capacitor CLC2 and the reflective liquid crystal capacitor CLC2, wherein the vertical axis table tf penetrates Rate and reflectivity, 鄕 indicates the voltage difference between the riding data and the electricity | v_. It can be observed from the 6A® that when the trapping dust reaches the outside, the transmitted light intensity (penetration rate) almost reaches the maximum value. The reflection intensity (reflectance) is approximately equal to 〇.2. Although the penetration rate and the reflectance both rise to the maximum when the differential electric grinder reaches 4v, the reflectance drops to 〇 when the inter-grid voltage is 5v. · 6. In other words, when the clamping voltage is large (that is, when the pixel data is high gray scale), the half-cycle of the reflectance curve (as shown by the range A of the 帛7B diagram) is narrow, and the voltage tolerance of the peak is small and not easy. Take control. Similarly, according to the G^a filament shown in Fig. 7C, the transmittance is almost 0.5 at the first order signal, but the reflectance is almost equal to 〇. In other words, the brightness after the transmitted light passes through the transparent liquid crystal cell is different from the brightness of the reflected light after passing through the reflective liquid crystal cell, that is, in the same-X voltage, the transmitted light and the reflective handle have different transmittance, and the gray scale changes. The rate is also different. In view of the problems encountered by the above-mentioned prior art, it is necessary to further improve the semi-reflective and transflective [CD to improve its display quality. SUMMARY OF THE INVENTION The main object of the present invention is to provide a transflective liquid crystal display (4), which is coordinated with the transmitted light intensity of the transmitted light and can improve the display quality. According to the above object of the present invention, the present invention provides a transflective liquid crystal display device comprising a plurality of data lines, a plurality of scanning lines, and a plurality of pixel units, and the plurality of scanning cat lines are used. To generate a driving signal, the plurality of data lines are used to generate pixel data. Each of the pixel units includes a first switching unit for turning on pixel data of a data line when receiving a driving signal of a scan line; a first electrode for providing a first voltage signal; and a second electrode; Providing a second voltage signal; a first liquid crystal control capacitor, one pole electrically connected to the first electrode, and the other pole electrically connected to the first switch unit, according to the pixel data and the first The voltage signal drives the liquid crystal molecules therein; a sensing capacitor includes a first pole and a first pole, the first pole is electrically connected to the first switching unit; a modulation capacitor is electrically connected to the second An electrode connected to the second pole of the sensing capacitor; and a second liquid crystal capacitor electrically connected to the second pole of the sensing valley and the other pole electrically connected to the first electrode for The pixel data, the first voltage signal, and the second voltage signal drive the liquid crystals therein. [Embodiment] Please refer to FIG. 8 and FIG. 9 , and FIG. 8 is a pixel unit of the present invention. The equivalent circuit diagram. A pixel unit 100 is formed by interleaving a plurality of gate lines and a plurality of data lines, and a ninth diagram is a structural sectional view of the pixel unit 100. A first liquid crystal cell and a second liquid crystal capacitor are formed in each pixel unit _, and the two liquid crystal capacitors are formed by including a liquid crystal layer between the electrodes. Both poles of the first liquid crystal capacitor are formed by a transparent electrode, and the pole of the second liquid crystal capacitor is formed by an electrode having a high reflectivity, and the other is a (four) pole. In the embodiment of the present invention, the first liquid crystal capacitor transparent liquid crystal capacitor & is used to control the rotation direction of the liquid crystal molecules in the penetrating region of the transflective display. The second liquid crystal capacitor system and the reflective liquid crystal capacitor are used to control the rotation direction of the twin crystal molecules in the reflection region of the transflective display. Transparent, the capacitance of the crystal capacitor Clci is connected through a switching unit 吟sw, the switch is in the embodiment of the single 7C system; I view the crystal to achieve), the other is connected with the electrode (7) Mi; the reflective liquid crystal electric valley CLC2 One pole is connected to the first electrode c〇M1, and the other pole is connected to the - pole of a sensing capacitor Cc, and is also connected to one of the modulation capacitors & one, the sensing capacitor & The switching unit ISW is connected to the data line mth_data line, and the other of the modulation capacitors & In addition, it can also be set - the storage capacitor core 1 is used to reduce the interference of external noise, the capacitor CsTi is connected in parallel with the transparent crystal capacitor C (10), the - pole is connected with the switching unit, and the other is connected to the three electrodes COM3. The towel (7) milk and COM3 can be at the same potential or different potentials. Please refer to FIG. 10 together. FIG. 10 is a pixel data voltage V_, a first voltage signal V_1, a second voltage signal v_, and a voltage Vcc applied to the reflective liquid crystal capacitor before and after adjustment. Timing diagram, the dotted line in the figure is a reference level. When scanning to the nth-gate line, the scan line nth_gate iine sends a scan signal to turn on the switch unit rrith-SW. At this time, the pixel data vdata is transmitted through the switch unit mth_SW via the data line mth_data line. To node 1〇2. At this time, the differential voltage VCLC1 of the transparent liquid crystal capacitor cLC1 is the voltage difference between the pixel data voltage Vdata and the first voltage signal COM1, and the differential voltage VCLC2 of the reflective liquid crystal capacitor CLC2 is affected by the sensing capacitor Cc and the modulation capacitor C2. Therefore, the differential voltage VCLC2 is related not only to the pixel data voltage vdata and the first voltage signal VC0M1 11 1326064, but also to the second voltage signal vC0M2. According to KirchhofTs Current Law, the net current of node 104 is: (Vcc-Vdata) t Vcc-VC0M1 , Vcc-Vc〇M2 l i i SCc

SC LC2 sc, 其中節點104之電壓為Vce,S為頻率響應參數。 因此,節點 104 之電壓 Yrr= Cc'Vdata + 'Fcoui + ci'vc〇M2,SC LC2 sc, where the voltage of the node 104 is Vce, and S is a frequency response parameter. Therefore, the voltage of node 104 is Yrr = Cc'Vdata + 'Fcoui + ci'vc〇M2,

Cic2 + Cc + C】 所以反射液晶電容CLC2之夾差電壓 \V〇JC2\ = \VCC-Vc〇m\·. c + Cc + C2 X (Vdata ~ Vc〇Ml) + + c2 x(Vc〇M2 相較於習知技術,反射液晶電容CLC2之夹差電壓Vclc2在大於某一值 後’在同樣的像素倾電壓Vdata下會因為第二電壓訊號v_ 應而變 的比較小。 請參閱第UA圖、第11B圖以及第12圖,第UA圖係本發明像素資 料Vdata與透明液晶電容—之夾差電壓v⑽之關係圖。第ιΐβ圖係本 發明半穿透半反射式液晶齡H瓶射光鱗透光之穿透率曲線及反射率 曲線示意圖,圖中橫軸表示像素資料電壓與第—電壓訊號之電壓差,而縱 軸表示穿透率及反射率。由第11B圖可知,穿透與反射的曲線於約咖之 剛非常吻合,於4.3V也都能達到幾乎最高的效率。如第η圖所示,穿透 與反射的灰階變化曲線已相當協調, 此改善顯示品質。在第11A圖、 第11B圖以及第12圖中, Γ r r 弟一電壓訊號振幅VCOM2=0.5V,Cic2 + Cc + C] Therefore, the differential voltage of the reflective liquid crystal capacitor CLC2 is \V〇JC2\ = \VCC-Vc〇m\·. c + Cc + C2 X (Vdata ~ Vc〇Ml) + + c2 x(Vc〇 Compared with the prior art, the differential voltage Vclc2 of the reflective liquid crystal capacitor CLC2 is larger than a certain value. 'The same pixel tilt voltage Vdata will be smaller due to the second voltage signal v_. Please refer to the UA. FIG. 11B and FIG. 12 are diagrams showing the relationship between the pixel data Vdata of the present invention and the differential liquid crystal capacitor—the differential voltage v(10). The ιΐβ image is a transflective liquid crystal age H bottle of the present invention. Schematic diagram of the transmittance curve and reflectance curve of the scale light transmission, in which the horizontal axis represents the voltage difference between the pixel data voltage and the first voltage signal, and the vertical axis represents the transmittance and reflectance. As shown in FIG. 11B, the penetration The curve with reflection is very consistent with Joachim, and can achieve almost the highest efficiency at 4.3V. As shown in Figure η, the gray-scale curve of penetration and reflection is quite coordinated, which improves the display quality. In Fig. 11A, Fig. 11B and Fig. 12, Γrr is a voltage signal amplitude VCOM 2=0.5V,

C/( C+ ZC2+°2)=0-46 » C2/(Cc + C£c C 2 >0.32條件下,本實施例之 12 1326064 半穿透半反射式液晶顯示器之反射光與穿透光之透光強度隨工作電壓(亦即 .像素賴電壓vdata以及第—電壓職ve〇M1^電壓差)變化呈近似於-致 '的狀態。換言之’與第7A圖和第7B圖相較,第11B圖中,在同一工作電 壓下之反射光與穿透光的最大透光強度幾乎是同時上升到其最大值,而且 反射液晶電容與透職晶電容幾乎具有相同的臨界電壓(如第UA圖所示之 Vthreshdd)。除此之外,當像素電壓訊號呈高灰階時,本發明之半週波(第nB 圖之範圍B)係寬於習知技術之半週波(第7B圖所示之範圍A)。換言之,在 第7A圖中,像素電壓訊號Vdata越大時,反射液晶電容之夾差電壓 變化率較第11A圖之變化率亦越大(亦即第7A圖之直線c之斜率大於第 11A圖之直線D之斜率)’反射率曲線不再是在27v至π的區間内由〇陡 升至1 ’而是相對平缓地由2V至4V的區間内由〇上升至卜所以有利於 像素電壓階層的賴。總而言之,本發明之設計改善了 &>1/2Λ的半穿透 半反射式液晶器之顯示品質’從而解決習知的半穿透半反射式液晶顯 示器穿透與反射灰階變化不協調的缺陷。 南庄:t的是H極COM2所提供之第二電壓减¥瞻以及調制 電合C2和感應電容Ce之目的制來使得反射液晶電容—接收像素電屋 訊號Vdata時,能適度地縮小作用於反射液晶電容c如的電虔差。在第7 圖中’係用第二電愿訊號¥_之振幅為〇·5ν下模擬的結果,第二電觀 號V_的相位係與第—電壓訊號ν_ _位相反,其振幅由Q的大小 所決定。當第二電壓訊終__位鮮—電壓訊號¥__位爲同相 時亦屬於本發明之範嘴。除此之外,也可以將第二電墨訊號V_設定為 13 1326064 —定值。 請一併參閱第10圖及第13圖’第13圖係本發明之像素單元1〇〇與驅 動第一電壓訊號vc〇M2之開關單元之等效電路圖。當掃描線nth^gateline掃 描時,開關單元nth_SW、mth_SW會同時開啟,開關單元mth一^會導致像 素資料電壓導通至節點1〇2,在此同時,開關單元nth_sw的開啟導致第二 電壓訊號Vc〇M2由其電壓源110導通至第二電極nth__c〇M2。穩壓電容 nth_Cet)mS電連接於一第五電極c〇M5,一旦該開關單元sw關閉,而 對應之第二電極nth-COM2處於浮接狀態,其電位可透過穩壓電容 的感應而隨第一電壓訊號Vc〇mi的電位變化。 本實施例之開關單元nth_sw'因為其驅動時序與掃描線一致,所以可以 設置在每-像素單元丨⑻之中,或是設置在面板的外側,或是設置在閉極 顧動器(gate driver)之中。 本發明半穿透半反射式液晶顯示胃之第二實施财可採用如第 14圖所 丁之等效電路圖’圖中所示像素單元2⑻與前述第一實施例不同之處在於: 反射液電谷心的-極倾第—電極c〇M1相連接,另—極則連接至感 心電令Cc之極’並亦同時連接至調制電容&之一極及儲存電容c阳的 “儲存電谷cST2的另一極係連接至第四電極匚〇]^4上,其中C0M1、 M3與COM4可為同—電位,也可為不同電位。由於在顯示器中,金層 線”電極何奴騎彼此重^產轉應電容效應 ,因此可能會造成各 1326064 電容與所要的目標電壓值有過大的電壓誤差,所以選擇性地增設儲存電容 CST2可用來消除感應電容效應。 相較於先前技術,本發明半穿透半反射式液晶顯示器通過設置第二電 極、感應電容以及調制電容’並能夠對反射液晶電容(或穿透液晶電容) 之跨壓進行調制’從而使得在反射液晶電容(或穿透液晶電容)上能夠得 到理想的夾差電壓,即本發明反射光與穿透光之透光強度隨工作電壓變化 呈近似於一致的狀態,在同一工作電壓下之反射光與穿透光的最大透光強 度幾乎是1¾時上升到其最大值,藉此提高本發明半f透半反射歧晶顯示 器之顯不品質,從而改善習知單間隙半穿透半反射式液a顯示^之穿透與 反射灰階變化不協調的缺陷。 W上所述者鶴本發明之健實财^,舉凡㈣本紐術之人士援 依本發明之精神所作之等效修佩變化,皆涵蓋於後附之巾請專利範圍内。 【圖式簡單說明】 第1圖係繪示呈現二維陣列分佈的像素單元之彩色液晶顯示面板。 第2圖係揭示習知半反射半穿透式LCD之像素單元結構之平面圖。 第3A與3B圖係繪示像素單元結構之剖面圖。 第4圖係習知像素單元之等效電路圖。 第5圖係、f知單間辭反料穿妓lcd之紐區叙穿透率與反射 區域之反射率與工作電壓之關係圖。 1326064 第6圖剌知單_辭⑽半麟絲晶__料等效電路圖。 第从圖係習知像素資料廳、電|訊號ν_與透日月液晶電容一 之夾差電壓vCLC2之關係圖。 e2 第7B圖係習知透明液晶電容—、電舰與反射液晶電容一 的在不同工作電壓時與穿透率與反射率之關係圖。 2 第7c圖係習知Gamma2.2曲線在μ階的訊號分布時,穿透率及反射率 之關係圖。 第8圖係本發明半穿透半反射式液晶顯示器的像素單元之等效電路圖。 第9圖係本發明之像素單元之結構剖面圖。 第10圖係像素單元運作時,像素雜電壓、第二電_號以及調整前 後施加於反射液晶電容之電壓之時序圖。 第11A圖係本發明像素資料Vdata、第-電壓訊號v_與透明液晶電 容CLC2之夾差電壓VcLC2之關係圖。 第11B圖係本發明半穿透半反射式液晶顯示器的反射光與穿透光之透 光強度隨工作電壓變化的曲線圖。 第12圖係本發明Gamma2.2曲線在64階的訊號分布時,穿透率及反射 率之關係圖。 第13圖係本發明之像素單元與驅動第二電壓訊號之開關單元之等效電 路圖。 第14圖係本發明半穿透半反射式液晶顯示器之像素單元之第二實施例 之等效電路圖。 16 1326064 【主要元件符號說明】 像素單元 100、200 透明液晶電容 Clci 反射液晶電容 ClC2 感應電容 Cc 調制電容 c2 儲存電容 CsTl ' CsT2 第一電極 COM1 第二電極 COM2 掃描線 rith_gate line 資料線 mth_data line 穩壓電容 nth_Ccom 節點 102、104、106 開關單元 mth_SW、nth_SW 電壓源 110 17C/( C+ ZC2+°2)=0-46 » C2/(Cc + C£c C 2 > 0.32, the reflected light and transmitted light of the 12 1326064 transflective liquid crystal display of this embodiment The light transmission intensity changes in a state similar to the operating voltage (ie, the pixel voltage vdata and the voltage difference vV1M1^ voltage difference). In other words, compared with the 7A and 7B, In Fig. 11B, the maximum light transmission intensity of the reflected light and the transmitted light at the same working voltage rises to the maximum value at the same time, and the reflective liquid crystal capacitor has almost the same threshold voltage as the transmissive crystal capacitor (such as the UA). Vthreshdd shown in the figure. In addition, when the pixel voltage signal is high gray scale, the half cycle of the present invention (the range B of the nB map) is wider than the half cycle of the prior art (Fig. 7B) In the range of A), in other words, in Fig. 7A, when the pixel voltage signal Vdata is larger, the rate of change of the differential voltage of the reflective liquid crystal capacitor is larger than that of the 11A image (that is, the line c of Fig. 7A). The slope is greater than the slope of line D in Figure 11A. 'The reflectance curve is no longer steeply increased from 〇 to 27 in the interval of 27v to π. 'It is relatively flat from 2V to 4V in the interval from 〇 to Bu, which is beneficial to the pixel voltage level. In summary, the design of the present invention improves the &> 1/2 Λ transflective liquid crystal The display quality of the device' solves the defect that the conventional transflective liquid crystal display penetrates and reflects the gray-scale change of the reflection. Nanzhuang: t is the second voltage provided by the H-pole COM2 and the modulation The purpose of combining C2 and the sensing capacitor Ce is such that when the reflective liquid crystal capacitor-receiving the pixel house signal Vdata, the electric enthalpy difference acting on the reflective liquid crystal capacitor c can be appropriately reduced. In the seventh figure, the second electric device is used. The amplitude of the signal ¥_ is the result of the simulation under 〇·5ν. The phase of the second electrical observation V_ is opposite to the first voltage signal ν_ _, and its amplitude is determined by the magnitude of Q. When the second voltage is terminated The __ bit fresh-voltage signal ¥__ bit is also in the same phase of the invention. In addition, the second ink signal V_ can also be set to 13 1326064 - the value. Please refer to the same FIG. 10 and FIG. 13 'FIG. 13 are pixel units of the present invention. The equivalent circuit diagram of the switch unit for driving the first voltage signal vc〇M2. When the scan line nth^gateline scans, the switch units nth_SW and mth_SW are simultaneously turned on, and the switch unit mth_^ causes the pixel data voltage to be turned on to the node 1〇2 At the same time, the opening of the switching unit nth_sw causes the second voltage signal Vc〇M2 to be conducted by its voltage source 110 to the second electrode nth__c〇M2. The voltage stabilizing capacitor nth_Cet)mS is electrically connected to a fifth electrode c〇M5, once The switch unit sw is turned off, and the corresponding second electrode nth-COM2 is in a floating state, and its potential can be changed by the induction of the voltage stabilizing capacitor with the potential of the first voltage signal Vc〇mi. The switch unit nth_sw' of this embodiment can be disposed in each-pixel unit 丨 (8) because its driving timing is consistent with the scan line, or is disposed on the outside of the panel or in the gate driver. Among them. The second embodiment of the transflective liquid crystal display of the present invention can adopt the equivalent circuit diagram as shown in FIG. 14 'The pixel unit 2 (8) shown in the figure is different from the foregoing first embodiment in that: reflective liquid electricity Guxin's - extremely dip-electrode c〇M1 is connected, and the other pole is connected to the sensible electrocardiograph Cc's pole' and is also connected to the modulation capacitor & one pole and the storage capacitor c-yang "storage valley The other pole of cST2 is connected to the fourth electrode 匚〇]^4, wherein C0M1, M3 and COM4 can be the same potential, or can be different potentials. Since in the display, the gold layer "electrode" Re-production of the capacitor effect, so it may cause excessive voltage error between each 1326064 capacitor and the desired target voltage value, so the selective addition of storage capacitor CST2 can be used to eliminate the induced capacitance effect. Compared with the prior art, the transflective liquid crystal display of the present invention can modulate the voltage across the reflective liquid crystal capacitor (or the liquid crystal capacitor) by providing a second electrode, a sensing capacitor, and a modulation capacitor ' The reflective liquid crystal capacitor (or penetrating liquid crystal capacitor) can obtain the ideal clip voltage, that is, the light transmission intensity of the reflected light and the transmitted light of the present invention is approximately uniform with the change of the working voltage, and the reflection is performed at the same working voltage. The maximum light transmission intensity of light and transmitted light rises to its maximum value at almost 13⁄4, thereby improving the apparent quality of the semi-f transflective crystal display of the present invention, thereby improving the conventional single-gap transflective The liquid a shows a defect that the penetration of the reflection and the reflection of the gray scale are not coordinated. The above-mentioned person's health and wealth in the invention, the equivalent of the changes in the spirit of the invention, are included in the patent scope of the attached towel. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram showing a color liquid crystal display panel in which pixel units of a two-dimensional array are distributed. Figure 2 is a plan view showing the structure of a pixel unit of a conventional semi-reflective transflective LCD. 3A and 3B are cross-sectional views showing the structure of a pixel unit. Figure 4 is an equivalent circuit diagram of a conventional pixel unit. Fig. 5 is a diagram showing the relationship between the reflectivity of the new area and the reflectance of the reflected area and the operating voltage. 1326064 Fig. 6 剌 单 _ _ (10) half lin silk crystal __ material equivalent circuit diagram. The figure is a diagram showing the relationship between the pixel data hall, the electric signal ν_ and the differential voltage vCLC2 of the transparent liquid crystal capacitor. E2 Figure 7B is a plot of the relationship between transmittance and reflectivity at different operating voltages for conventional transparent liquid crystal capacitors, electric ships and reflective liquid crystal capacitors. 2 Figure 7c is a plot of the transmittance and reflectivity of the conventional Gamma2.2 curve at the time-order distribution of the signal. Figure 8 is an equivalent circuit diagram of a pixel unit of a transflective liquid crystal display of the present invention. Figure 9 is a cross-sectional view showing the structure of a pixel unit of the present invention. Fig. 10 is a timing chart of the pixel mixed voltage, the second electric_number, and the voltage applied to the reflective liquid crystal capacitor before and after the adjustment of the pixel unit. Fig. 11A is a diagram showing the relationship between the pixel data Vdata, the first voltage signal v_ and the differential voltage VcLC2 of the transparent liquid crystal capacitor CLC2 of the present invention. Fig. 11B is a graph showing the transmittance of reflected light and transmitted light of the transflective liquid crystal display of the present invention as a function of operating voltage. Fig. 12 is a graph showing the relationship between the transmittance and the reflectance of the Gamma 2.2 curve of the present invention at the 64th order signal distribution. Figure 13 is an equivalent circuit diagram of the pixel unit of the present invention and the switching unit for driving the second voltage signal. Figure 14 is an equivalent circuit diagram of a second embodiment of a pixel unit of a transflective liquid crystal display of the present invention. 16 1326064 [Description of main component symbols] Pixel unit 100, 200 Transparent liquid crystal capacitor Clci Reflective liquid crystal capacitor ClC2 Inductive capacitor Cc Modulation capacitor c2 Storage capacitor CsTl ' CsT2 First electrode COM1 Second electrode COM2 Scan line rith_gate line Data line mth_data line Capacitor nth_Ccom node 102, 104, 106 switching unit mth_SW, nth_SW voltage source 110 17

Claims (1)

1326064 拾、申請專利範圍: 1. 一種液晶顯示器,包含: 複數條資料線’用來傳送像素資料; 複數條掃描線,用來傳送驅動訊號;以及 複數個像素單元’每一像素單元包含: 一第一開關單元,用來於接收一掃描線之驅動訊號時,導通一資 • 料線之像素資料; 一第一電極,用來提供一第一電壓訊號; 一第二電極,用來提供一第二電壓訊號; 一第一液晶電容’其一極電連接於該第一電極,另一極電連接於 該第一開關單元’用來依據該像素資料以及該第一電壓訊號驅 動其内的液晶分子; —感應電容’包含—第—極以及-第二極,該第-極f連接於該 _ 帛-開關單元; 調制電谷,其-極電連接於該第二電極,另一極連接於該感應 電容之第二極;以及 ―第三液晶電容,其—極電連接於賊應電容之第二極另一極 電連接於該第-電極’用來依據該像素資料、該第一電塵訊號 以及該第二電壓訊號驅動其内的液晶分子。 2. ^__第1項所㈣晶咖,㈣含-第-儲存電 -冬電連接於該第一開關單元,另一極電連接於一第三電極, 該第三電極用來提供一第三電壓訊號。. =申請專概圍第1項所述之液晶顯示器,其另包含—第二儲存電 '/、極電連接於該感應電容之第二極,另—極電連接於一第四電 極,該第四電極用來提供一第四電壓訊號。 如申請專利範圍第1項所述之液晶顯示器,其中該第一液晶電容之兩 端各由透明電極所形成’而該第二液晶電容之一極包含一具高反射率 之電極,另一極則包含透明電極。 如申請專利範圍第1項所述之液晶顯示器,其另包含: 一電壓源,用來產生該第二電極之電壓訊號;以及 -第二開關單元,一極連接於該電壓源,另一極連接於該第二電極, 用來接收該掃插線之驅動訊號時’產生導通該第二電屋訊號至該第 二電極。 如申請專利範圍第5項所述之液晶顯示器 其一極電連接於一第五電極,另一 穩定該第二電極之電壓訊號。 其另包含一第五儲存電容, 極電連接於該第二開關單元 ,用於 ㈣1 ’該第_電壓訊號與該第二 電壓訊號係為交流訊號。 如申請專利範圍第7項所述之液晶顯㈣,其中該第―電壓訊號係與 該第二電壓訊號同相。 ,其中該第-電壓訊號係與 該第二電壓訊號互為反相。 1326064 10. 如申請專利範圍第1項所述之液晶顯示器,其中該第一電壓訊號為一 直流訊號。 11. 如申請專利範圍第1項所述之液晶顯示器,其中該第二電壓訊號係一 直流訊號。 201326064 Picking up, patent application scope: 1. A liquid crystal display comprising: a plurality of data lines 'for transmitting pixel data; a plurality of scanning lines for transmitting driving signals; and a plurality of pixel units' each pixel unit comprising: a first switching unit configured to: when receiving a driving signal of a scan line, turn on pixel data of a material line; a first electrode for providing a first voltage signal; and a second electrode for providing a first electrode a second voltage signal; a first liquid crystal capacitor 'one pole electrically connected to the first electrode, and the other pole electrically connected to the first switch unit' for driving the pixel data according to the pixel data and the first voltage signal a liquid crystal molecule; the sensing capacitor 'comprising a first pole and a second pole, the first pole f being connected to the _ 帛-switching unit; modulating the electric valley, the pole is electrically connected to the second electrode, and the other pole Connected to the second pole of the sensing capacitor; and a third liquid crystal capacitor, the pole is electrically connected to the second pole of the capacitor and the other pole is electrically connected to the first electrode to be used according to the pixel Materials, dust the first electrical signal and the second voltage signal driving the liquid crystal molecules therein. 2. ^__ Item 1 (4) Crystal Coffee, (4) Including - First - Storage Electricity - Winter Electricity is connected to the first switching unit, and the other pole is electrically connected to a third electrode, the third electrode is used to provide a The third voltage signal. The liquid crystal display of the first aspect of the present invention, further comprising: a second storage device, the second electrode is electrically connected to the second electrode of the sensing capacitor, and the other electrode is electrically connected to a fourth electrode. The fourth electrode is used to provide a fourth voltage signal. The liquid crystal display of claim 1, wherein both ends of the first liquid crystal capacitor are formed by a transparent electrode, and one of the second liquid crystal capacitors comprises a high reflectivity electrode and the other pole Then contains a transparent electrode. The liquid crystal display of claim 1, further comprising: a voltage source for generating a voltage signal of the second electrode; and - a second switching unit, one pole connected to the voltage source and the other pole Connecting to the second electrode, when receiving the driving signal of the sweeping line, 'generating the second electric house signal to the second electrode. The liquid crystal display according to claim 5, wherein one pole is electrically connected to a fifth electrode, and the other is stabilized by the voltage signal of the second electrode. The second storage capacitor is further connected to the second switching unit for (4) 1 'the _ voltage signal and the second voltage signal are alternating current signals. The liquid crystal display (4) of claim 7, wherein the first voltage signal is in phase with the second voltage signal. The first voltage signal and the second voltage signal are mutually inverted. The liquid crystal display of claim 1, wherein the first voltage signal is a direct current signal. 11. The liquid crystal display of claim 1, wherein the second voltage signal is a direct current signal. 20
TW95107474A 2006-03-06 2006-03-06 Liquid crystal display TWI326064B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW95107474A TWI326064B (en) 2006-03-06 2006-03-06 Liquid crystal display
JP2007052988A JP4638891B2 (en) 2006-03-06 2007-03-02 Transflective LCD
JP2010190043A JP2011022590A (en) 2006-03-06 2010-08-26 Transflective liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95107474A TWI326064B (en) 2006-03-06 2006-03-06 Liquid crystal display

Publications (2)

Publication Number Publication Date
TW200735004A TW200735004A (en) 2007-09-16
TWI326064B true TWI326064B (en) 2010-06-11

Family

ID=45074314

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95107474A TWI326064B (en) 2006-03-06 2006-03-06 Liquid crystal display

Country Status (1)

Country Link
TW (1) TWI326064B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI395032B (en) * 2008-11-17 2013-05-01 Au Optronics Corp Pixel structure of a transflective liquid crystal display panel and method of making the same
TWI408660B (en) * 2009-06-05 2013-09-11 Hannstar Display Corp Liquid crystal display apparatus and driving method thereof
TWI408662B (en) * 2009-06-19 2013-09-11 Hannstar Display Corp Transflective liquid crystal display

Also Published As

Publication number Publication date
TW200735004A (en) 2007-09-16

Similar Documents

Publication Publication Date Title
JP3564704B2 (en) Active matrix type liquid crystal display device and driving method thereof
US8803777B2 (en) Display apparatus and method of driving the same
CN101231434B (en) Array panel and drive method thereof
KR101348755B1 (en) Display device and method of the same
CN100578329C (en) Liquid crystal display device, pixel structure and driving method thereof
US20090058779A1 (en) Liquid crystal display element, method of driving the same, and electronic paper including the same
CN100365480C (en) Single-isolation transflective LCD
US7268765B2 (en) Method of color image display for a field sequential liquid crystal display device
JP5290419B2 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, television receiver
CN1636236A (en) Liquid crystal device operable in two modes
US8982023B2 (en) Array substrate and display device having the same
US8232952B2 (en) Display element, method of driving the same, and electronic paper including the same
CN106773176A (en) Visual angle changeable liquid crystal display device and driving method
US20090225107A1 (en) Display element, electronic paper including the same, electronic terminal apparatus including the same, display system including the same, and method of processing image in display element
US9183804B2 (en) Display with wide view angle
JPWO2008023415A1 (en) Liquid crystal display element, driving method thereof, and electronic paper including the same
JP2011112727A (en) Reflective display device and control circuit for the same
TWI326064B (en) Liquid crystal display
WO2007116447A1 (en) Drive method and display device of display element
US20110261091A1 (en) Display device and computer readable medium
CN201222151Y (en) Liquid crystal display device and pixel structure thereof
CN100389357C (en) LCD device
TW200919053A (en) Active device array substrate, pixel structure thereof and driving method thereof
KR20060083643A (en) Liquid crystal display
TWI408660B (en) Liquid crystal display apparatus and driving method thereof