JP4636917B2 - Sample holding device, sample detection apparatus and sample detection method using the same - Google Patents

Sample holding device, sample detection apparatus and sample detection method using the same Download PDF

Info

Publication number
JP4636917B2
JP4636917B2 JP2005091565A JP2005091565A JP4636917B2 JP 4636917 B2 JP4636917 B2 JP 4636917B2 JP 2005091565 A JP2005091565 A JP 2005091565A JP 2005091565 A JP2005091565 A JP 2005091565A JP 4636917 B2 JP4636917 B2 JP 4636917B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
antenna
transmission line
sample
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005091565A
Other languages
Japanese (ja)
Other versions
JP2006275592A5 (en
JP2006275592A (en
Inventor
亮治 黒坂
健明 井辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005091565A priority Critical patent/JP4636917B2/en
Publication of JP2006275592A publication Critical patent/JP2006275592A/en
Publication of JP2006275592A5 publication Critical patent/JP2006275592A5/ja
Application granted granted Critical
Publication of JP4636917B2 publication Critical patent/JP4636917B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、電磁波を用いて検体を検出するための技術に関し、特に、伝送線路内での電磁波の伝搬状態の変化から検体の検知を行う装置とその方法に関する。   The present invention relates to a technique for detecting a specimen using electromagnetic waves, and more particularly to an apparatus and method for detecting a specimen from a change in the propagation state of electromagnetic waves in a transmission line.

近年ミリ波からテラヘルツ波(30GHz〜30THz)を発生、検出する手段が開発されたのに伴い、テラヘルツ波を利用した技術が注目されている。例えば、テラヘルツ波の応用分野としてX線に変わる安全な透視検査装置としてイメージングを行う技術、物質内部の吸収スペクトルや複素誘電率を調べて結合状態を調べる分光技術、生体分子の解析技術などの検体と非接触の検査技術として注目され開発されている。非特許文献1には、空間光学系で物質にテラヘルツ波を照射し、物質を透過したテラヘルツ波を検出する技術が開示されている。
Chemical Physics Letters 332 (2000) 389−395
In recent years, with the development of means for generating and detecting terahertz waves (30 GHz to 30 THz) from millimeter waves, technology using terahertz waves has attracted attention. For example, specimens such as a technique for imaging as a safe fluoroscopic inspection device that changes to X-rays as an application field of terahertz waves, a spectroscopic technique for examining a binding state by examining an absorption spectrum and a complex dielectric constant inside a substance, and a biomolecule analysis technique It has been attracting attention and developed as a non-contact inspection technology. Non-Patent Document 1 discloses a technique for irradiating a substance with a terahertz wave using a spatial optical system and detecting the terahertz wave transmitted through the substance.
Chemical Physics Letters 332 (2000) 389-395

一方、検体検知技術として、装置自体の小型化や検体自体の入手の困難性等で、微量な検体でしか装置を動かせない場合が想定され、そのような場合でも十分な検知感度が要求されている。しかし、非特許文献1の技術では、検体は一定量以上必要であり、微量な検体を検知する場合には、十分な検知感度を得ることが難しいことがある。   On the other hand, sample detection technology is assumed to be able to move the device only with a very small amount of sample due to downsizing of the device itself or difficulty in obtaining the sample itself. Even in such a case, sufficient detection sensitivity is required. Yes. However, in the technique of Non-Patent Document 1, a certain amount or more of the sample is necessary, and it may be difficult to obtain sufficient detection sensitivity when detecting a small amount of sample.

そこで本発明は、微量な検体でも十分な検知感度を得るための検体保持用のデバイス、それを用いた検体検出装置及び検体検出方法を提供するものである。   Therefore, the present invention provides a sample holding device for obtaining sufficient detection sensitivity even with a small amount of sample, a sample detection apparatus and a sample detection method using the device.

そこで本発明のデバイスは、上記目的を解決するため、基板と、30GHzから30THzの周波数領域内の電磁波が空間から入射するための入力アンテナと、前記入力アンテナからの電磁波を伝搬するための伝送線路と、前記伝送線路からの電磁波を空間に放射するための出力アンテナと、検体が保持され、且つ検体と前記伝送線路を伝搬する電磁波とを相互作用させるための検体保持部と、を備え、前記入力アンテナと前記伝送線路と前記出力アンテナとが、基板に接続して形成されており、前記入力アンテナに入射する電磁波の偏波面と前記出力アンテナから放射する電磁波の偏波面とが、異なるように構成されていることを特徴とするTherefore, in order to solve the above-described object, the device of the present invention has a substrate, an input antenna for allowing electromagnetic waves in a frequency range of 30 GHz to 30 THz to enter from space, and a transmission line for propagating the electromagnetic waves from the input antenna. And an output antenna for radiating electromagnetic waves from the transmission line to space, and a specimen holding unit for holding the specimen and causing the specimen to interact with the electromagnetic waves propagating through the transmission line, The input antenna, the transmission line, and the output antenna are formed to be connected to a substrate so that the plane of polarization of electromagnetic waves incident on the input antenna and the plane of polarization of electromagnetic waves radiated from the output antenna are different. It is configured .

本発明によれば、伝送線路中に電磁波を閉じ込めることにより、効率的に検体と電磁波を相互作用させることが可能になり、微量な検体でも検知することが可能になる。   According to the present invention, by confining an electromagnetic wave in a transmission line, it is possible to efficiently interact the specimen and the electromagnetic wave, and even a very small amount of specimen can be detected.

そこで、本発明では、上記目的を達成するために、以下のように構成される。   Therefore, the present invention is configured as follows in order to achieve the above object.

検体保持用のデバイスとしは、電磁波を伝送するための伝送線路と、検体を前記伝送線路に保持するための検体保持部と、空間から電磁波を入力するための空間結合器と、前記伝送線路を伝搬してきた前記電磁波を空間に出力するための空間結合器とを備え、空間から電磁波を入力するための前記空間結合器が前記伝送線路と接続しているものである。   A device for holding a sample includes a transmission line for transmitting electromagnetic waves, a sample holding unit for holding a sample in the transmission line, a spatial coupler for inputting electromagnetic waves from space, and the transmission line. A spatial coupler for outputting the propagated electromagnetic wave to the space, and the spatial coupler for inputting the electromagnetic wave from the space is connected to the transmission line.

ここで、空間結合器とは、空間から効率よく電磁波を入射する、もしくは空間に効率よく電磁波を放射する機能を持つものである。例えば、アンテナや表面プラズモンを用いた結合器がある。アンテナは、マイクロストリップラインの幅を変えることでも形成することが可能であり、その形状は正方形、長方形、円形、楕円形等必要に応じて設計可能である。伝送線路としは、マイクロストリップラインやコプレーナーラインがあり、Au、Ag、Cu、Pt等の導電材料で形成されることが好ましい。また、伝送線路が途中で90度に曲がっているとさらに好ましい。検体は、固体、液体だけでなく、電磁波と相互作用できるほどの高圧ガスを検体保持部に保持すれば気体でも可能である。検体保持部とは、前述の検体を保持する部分であり、伝送線路中に存在することが好ましいが、電磁波は伝送線路の中だけでなく外にも広がっているため、検体保持部を伝送線路近傍に設けてもよい。または、検体自身を伝送線路の上に貼り付けてる形態でも、電磁波の伝搬特性の変化が生じる効果が見込まれる。例えば図4に示すように、絶縁物質からなる検体保持32の中央に空隙33を設け、その空隙部分に検体を滴下して、伝送線路と接触させつつ、検体を保持する。   Here, the spatial coupler has a function of efficiently entering electromagnetic waves from space or emitting electromagnetic waves efficiently into space. For example, there are couplers using antennas and surface plasmons. The antenna can also be formed by changing the width of the microstrip line. The shape of the antenna can be designed as necessary, such as a square, a rectangle, a circle, and an ellipse. Transmission lines include microstrip lines and coplanar lines, and are preferably formed of a conductive material such as Au, Ag, Cu, or Pt. Further, it is more preferable that the transmission line is bent at 90 degrees in the middle. The specimen can be not only solid and liquid, but also gas if high-pressure gas that can interact with electromagnetic waves is held in the specimen holder. The specimen holding part is a part for holding the specimen described above, and is preferably present in the transmission line. However, since the electromagnetic wave spreads not only in the transmission line but also outside, the specimen holding part is used as the transmission line. You may provide in the vicinity. Or the effect which the change of the propagation characteristic of electromagnetic waves produces is anticipated also with the form which affixes specimen itself on a transmission line. For example, as shown in FIG. 4, a gap 33 is provided in the center of the specimen holder 32 made of an insulating material, and the specimen is dropped into the gap and held in contact with the transmission line.

また、検体検出装置としは、前述の検体保持用のデバイスと電磁波を発生するための発生部と電磁波を検出するための検出部とを備えている。検体保持部に保持された検体と伝送線路を伝搬する電磁波を相互作用させることによって、伝送線路での電磁波の伝搬状態を変化させ、その変化から検体を保持していない場合と比較して検体の検知を行う。さらに、検体検出装置に偏光フィルターを備えていることが好ましい。これにより、ノイズを除去できより精度のいい検出が可能になる。電磁波としは、周波数領域がミリ波〜テラヘルツ波(30GHz〜30THz)であるものを用いることが好ましい。電磁波を発生するための発生部は、光伝導素子を用いたもの、パラメトリック発生器、量子カスケードレーザ、後進行波管(BWO)などが考えられる。電磁波を検出するための検出部は、光伝導素子、EO結晶、ボロメーター、超伝導トンネル接合素子などが考えられる。偏光フィルタは、ある偏波面を持った電磁波とその電磁波と偏波面において90度傾いている電磁波を分離させる機能を持っている。例えば、ワイヤーグリッドを用いる。   The sample detection apparatus includes the above-described sample holding device, a generation unit for generating electromagnetic waves, and a detection unit for detecting electromagnetic waves. By interacting the electromagnetic wave propagating in the transmission line with the specimen held in the specimen holding part, the propagation state of the electromagnetic wave in the transmission line is changed, and the change of the specimen is compared with the case where the specimen is not held from the change. Perform detection. Furthermore, it is preferable that the specimen detection apparatus includes a polarizing filter. Thereby, noise can be removed and detection with higher accuracy is possible. As the electromagnetic wave, it is preferable to use one having a frequency range of millimeter wave to terahertz wave (30 GHz to 30 THz). Examples of the generator for generating electromagnetic waves include a photoconductive element, a parametric generator, a quantum cascade laser, and a backward traveling wave tube (BWO). As the detection unit for detecting electromagnetic waves, a photoconductive element, an EO crystal, a bolometer, a superconducting tunnel junction element, or the like can be considered. The polarizing filter has a function of separating an electromagnetic wave having a certain polarization plane and an electromagnetic wave inclined by 90 degrees in the polarization plane. For example, a wire grid is used.

一方の空間結合器の空間との結合効率の強い電磁波の偏波面が他の空間結合器の空間との結合効率の強い電磁波の偏波面とが異なることが好ましい。
または、空間結合器のうち、一方の空間結合器の空間との結合効率の強い電磁波の偏波面と他方の空間結合器の空間との結合効率の強い電磁波の偏波面とが90度異なることが好ましい。
It is preferable that the polarization plane of the electromagnetic wave having a strong coupling efficiency with the space of one spatial coupler is different from the polarization plane of the electromagnetic wave having a strong coupling efficiency with the space of the other spatial coupler.
Or, among the spatial couplers, the polarization plane of the electromagnetic wave having a strong coupling efficiency with the space of one spatial coupler and the polarization plane of the electromagnetic wave having a strong coupling efficiency with the space of the other spatial coupler may differ by 90 degrees. preferable.

以下に電磁波としてテラヘルツ波を用いての検体検知装置の実施形態について図1を用いてより具体的に説明する。本発明は当然これらの実施例に限定されるものではない。検体検知装置は、電磁波を伝送するための伝送線路4と、少なくとも2つの空間結合器3、6と、検体を伝送線路に保持しておく為の検体保持部5とを有し、2つの空間結合器において、一方の空間結合器3に電磁波2を空間から入力し、他方の空間結合器6から電磁波7を空間へ出力する検体保持用のデバイスと電磁波発生部1と偏光フィルタ8と電磁波検出部9からなる。   Hereinafter, an embodiment of the specimen detection apparatus using a terahertz wave as an electromagnetic wave will be described more specifically with reference to FIG. Of course, the present invention is not limited to these examples. The sample detection apparatus includes a transmission line 4 for transmitting electromagnetic waves, at least two spatial couplers 3 and 6, and a sample holding unit 5 for holding the sample on the transmission line. In the coupler, an electromagnetic wave 2 is input to one spatial coupler 3 from the space, and a specimen holding device that outputs the electromagnetic wave 7 from the other spatial coupler 6 to the space, the electromagnetic wave generator 1, the polarizing filter 8, and the electromagnetic wave detection It consists of part 9.

検体保持用のデバイスにおいて空間結合器は、電磁波の入出力としての役割を持つ。伝送線路上には検体保持機構である検体保持部5がある。検体保持部5の構成は、検体と電磁波を安定して相互作用させる事が出来れば何でも良く、例えば図4に示すように、絶縁物質からなる検体保持32の中央に空隙33を設け、その空隙部分に検体を滴下して、伝送線路と接触させつつ、検体を保持する。電磁波発生部から検体保持用のデバイスの一方の空間結合器にテラヘルツ波を入射して、伝送線路で伝搬させた後、他方の空間結合器から放射させ、偏光フィルタによって出力部分の空間結合器から放射された電磁波と前記電磁波と偏波面が90度異なる電磁波を分離して、出力部分の空間結合器から放射された電磁波を電磁波検出装置にて検出する。検体保持部にて、電磁波と検体が相互作用し、電磁波の伝搬損失、位相遅延、特有の吸収スペクトルの変化等の電磁波の伝搬特性の変化を抽出することによって、検体の特性(誘電率など)を検知することができる。本実施例では、特に両方の空間結合器の空間との結合効率の強い電磁波の偏波面をずらすように構成している。これは、出力部分の空間結合器から放射された電磁波の偏波を入力電磁波における入力部分の空間結合器や伝送線路からの反射による電磁波ノイズの偏波に対してずらすことである。これによって、反射による電磁波ノイズを除去でき、混信を防ぐことができる。つまり、出力部分の空間結合器から放射された電磁波とノイズを識別でき、S/Nが向上することにより、微量な検体と電磁波との相互作用も検知できるようになる。   In the sample holding device, the spatial coupler has a role as an input / output of electromagnetic waves. On the transmission line, there is a sample holder 5 which is a sample holding mechanism. The configuration of the sample holder 5 is not particularly limited as long as the sample and the electromagnetic wave can stably interact with each other. For example, as shown in FIG. 4, a gap 33 is provided in the center of the sample holder 32 made of an insulating material. The specimen is held while the specimen is dropped onto the portion and brought into contact with the transmission line. A terahertz wave is incident on one of the spatial couplers of the specimen holding device from the electromagnetic wave generation unit, propagates on the transmission line, and then radiates from the other spatial coupler, and is output from the spatial coupler of the output portion by the polarizing filter. The radiated electromagnetic wave is separated from the electromagnetic wave and the electromagnetic wave whose polarization plane is different by 90 degrees, and the electromagnetic wave radiated from the spatial coupler of the output portion is detected by the electromagnetic wave detection device. The specimen holding part extracts the changes in the propagation characteristics of the electromagnetic wave, such as the propagation loss of the electromagnetic wave, the phase delay, and the change in the characteristic absorption spectrum. Can be detected. In this embodiment, the polarization planes of electromagnetic waves having strong coupling efficiency with the spaces of both space couplers are particularly shifted. This is to shift the polarization of the electromagnetic wave radiated from the spatial coupler of the output part with respect to the polarization of the electromagnetic wave noise caused by reflection from the spatial coupler or transmission line of the input part in the input electromagnetic wave. Thereby, electromagnetic wave noise due to reflection can be removed, and interference can be prevented. That is, the electromagnetic wave radiated from the spatial coupler at the output portion can be distinguished from the noise, and the S / N is improved so that the interaction between the minute amount of the specimen and the electromagnetic wave can be detected.

本発明による第2の実施例は図2で説明する。本発明に用いる検体検知装置において検体保持用のデバイスには、高抵抗Si基板13の上にグランド面として金属を蒸着した後、高周波絶縁材料14が塗布してある。高周波絶縁材料としては、BCB(ベンゾシクロブテン)、ポリイミド、ポリシランなど様々な物質が考えられる。高周波絶縁材料の上に空間結合器であるパッチアンテナ15a、15b、伝送線路であるマイクロストリップライン17などの金属ラインをパターニングで作製する。方法は、高周波絶縁材料の上にフォトレジストを塗布する。露光、現像を行い、フォトレジストをパターニングして、ベークする。金属(チタン、金の積層構造など)を蒸着し、リフトオフによってフォトレジストを剥離させる。伝送線路、パッチアンテナが形成される後に、絶縁体物質によって、塗布、ベーク、エッチングを経て、検体保持部18を形成する。   A second embodiment according to the present invention is illustrated in FIG. In the specimen detection device used in the present invention, a high-frequency insulating material 14 is applied to the specimen holding device after vapor-depositing a metal on the high-resistance Si substrate 13 as a ground plane. As the high-frequency insulating material, various substances such as BCB (benzocyclobutene), polyimide, and polysilane are conceivable. Metal lines such as patch antennas 15a and 15b as space couplers and a microstrip line 17 as a transmission line are formed on the high-frequency insulating material by patterning. The method applies a photoresist over a high frequency insulating material. Exposure and development are performed, and the photoresist is patterned and baked. Metal (titanium, gold laminated structure, etc.) is deposited, and the photoresist is peeled off by lift-off. After the transmission line and the patch antenna are formed, the specimen holding unit 18 is formed by coating, baking, and etching using an insulating material.

図4に検体保持部を図示する。空隙部に検体を滴下する事によって、検体を保持する。なお、安定して電磁波と相互作用できれば良いので検体保持機構はこの形態に限るものではない。このようにして素子が完成する。パッチアンテナの典型的な大きさはテラヘルツ波の波長オーダーとしておよそ100μm、伝送線路の長さは伝送線路での電磁波の損失を考慮しておよそ1mmとする。伝送線路の幅は高周波絶縁材料の厚み、高周波絶縁材料の誘電率の3つの数値から伝送線路のインピーダンスの値を設定し、パッチアンテナとインピーダンスマッチングを達成するように調整する。図3のようにインピーダンスマッチングを達成するために、パッチアンテナ22に切り込み23を入れても良い。またアンテナからの放射分布を狭くするために、アンテナ中央にスリット16a、16bを設けても良い。このようにテラヘルツ波を伝搬させる機能だけを持つ素子とする事で、交換部である検体保持用のデバイスのコストを下げる事が出来る。   FIG. 4 illustrates the sample holder. The specimen is held by dropping the specimen into the gap. Note that the specimen holding mechanism is not limited to this form as long as it can interact with electromagnetic waves stably. In this way, the device is completed. The typical size of the patch antenna is about 100 μm as the wavelength order of the terahertz wave, and the length of the transmission line is about 1 mm in consideration of the loss of electromagnetic waves in the transmission line. The width of the transmission line is adjusted so as to achieve impedance matching with the patch antenna by setting the impedance value of the transmission line from three values of the thickness of the high-frequency insulating material and the dielectric constant of the high-frequency insulating material. In order to achieve impedance matching as shown in FIG. 3, a cut 23 may be made in the patch antenna 22. In order to narrow the radiation distribution from the antenna, a slit 16a, 16b may be provided in the center of the antenna. By using an element having only the function of propagating the terahertz wave in this way, the cost of the specimen holding device as the exchange unit can be reduced.

実施例2においては図2のように伝送線路を曲げている。これは以下の理由による。テラヘルツ波は1THzにおいては波長が約300μmであり、光ほどの空間分解能、光束直進性は無い。アンテナのサイズがおよそ100μmであり、テラヘルツ波をアンテナ部分に集光して照射できない可能性がある。その時に、出力部分のアンテナからの放射と、入力部分に入射出来なかった(伝送線路や入力部分のアンテナからの)反射によるノイズと混信する恐れがある。パッチアンテナからの放射の電磁波の偏波方向は伝送線路(給電点)とパッチアンテナの中央部分を結んだ方向であり、伝送線路部分で90度曲げて予め電磁波の偏波方向を90度ずらしておけば、先のノイズと混信する事が無くなる。この混信を防止している事によって、光学系において、テラヘルツ波の光軸調整が容易になり、光学系の簡略化を達成する事が出来る。またノイズと混信を防ぐ事によって、S/Nが向上し、より微量な検体と電磁波の相互作用も検知する事が出来るようになる。   In the second embodiment, the transmission line is bent as shown in FIG. This is due to the following reason. The terahertz wave has a wavelength of about 300 μm at 1 THz and does not have spatial resolution and light beam straightness as light. The size of the antenna is about 100 μm, and there is a possibility that the terahertz wave cannot be condensed and irradiated on the antenna portion. At that time, there is a risk of interference from radiation from the antenna at the output portion and noise due to reflection (from the transmission line or the antenna at the input portion) that could not be incident on the input portion. The direction of polarization of the electromagnetic wave radiated from the patch antenna is the direction connecting the transmission line (feeding point) and the central portion of the patch antenna. The transmission line part is bent 90 degrees and the polarization direction of the electromagnetic wave is shifted 90 degrees in advance. If you do, there will be no interference with the previous noise. By preventing this interference, the optical axis of the terahertz wave can be easily adjusted in the optical system, and simplification of the optical system can be achieved. Further, by preventing noise and interference, the S / N is improved, and it becomes possible to detect a smaller amount of the interaction between the specimen and the electromagnetic wave.

テラヘルツ波発生装置10からパッチアンテナ15aに入射したテラヘルツ波は伝送線路を伝搬して、検体保持部18によって保持された検体と相互作用した後、パッチアンテナ15bから放射され、偏光フィルタ19を経た後テラヘルツ波検出装置20にて検出される。テラヘルツ波の発生の例として、光伝導素子と光パルスを用いた方法がある。構成を図6に示す。光伝導素子は、光伝導膜52の上にアンテナ構造53を設けた構成になっている。光伝導膜52にはキャリアの移動度が高く、キャリアの寿命が短く、耐電圧の高い材質(例えばLT−GaAs)が使用される。アンテナ構造53が有するギャップ部分54にDCバイアス電圧56を印加した状態で、ギャップ部分に光パルス57(フェムト秒レーザー)を照射するとテラヘルツパルス55が放射される。   After the terahertz wave incident on the patch antenna 15 a from the terahertz wave generation device 10 propagates through the transmission line and interacts with the sample held by the sample holding unit 18, the terahertz wave is emitted from the patch antenna 15 b and passes through the polarization filter 19. It is detected by the terahertz wave detection device 20. As an example of generation of a terahertz wave, there is a method using a photoconductive element and an optical pulse. The configuration is shown in FIG. The photoconductive element has a configuration in which an antenna structure 53 is provided on a photoconductive film 52. The photoconductive film 52 is made of a material having a high carrier mobility, a short carrier life, and a high withstand voltage (for example, LT-GaAs). When a DC bias voltage 56 is applied to the gap portion 54 of the antenna structure 53 and the gap portion is irradiated with an optical pulse 57 (femtosecond laser), a terahertz pulse 55 is emitted.

偏光フィルタの例としてはワイヤグリッドなどが考えられる。これは細い金属のワイヤの線を一定の間隔で周期的に配列したものであり、金属ワイヤ線間の間隔をテラヘルツ波の波長よりも充分短い距離(〜30μm)にすると、金属ワイヤ線と垂直な方向に偏波面を持つ電磁波は透過し、金属ワイヤ線と垂直な方向に偏波面を持つ電磁波は金属に吸収され、透過しない。この機能を利用して、それぞれ90度偏波面が異なる電磁波を分離する事が出来る。   A wire grid etc. can be considered as an example of a polarizing filter. This is a thin metal wire line periodically arranged at regular intervals. When the distance between metal wire lines is sufficiently shorter than the wavelength of the terahertz wave (up to 30 μm), it is perpendicular to the metal wire lines. Electromagnetic waves having a polarization plane in any direction are transmitted, and electromagnetic waves having a polarization plane in a direction perpendicular to the metal wire are absorbed by the metal and do not transmit. Using this function, it is possible to separate electromagnetic waves having different 90-degree polarization planes.

つまり出力部分の空間結合器からの電磁波の偏波面をワイヤグリッドの金属ワイヤ線と垂直な方向になるようにワイヤグリッドを配置する事で、出力部分の空間結合器からの電磁波と前記電磁波と偏波面において90度傾いている電磁波の分離を行う事が出来る。   In other words, by arranging the wire grid so that the plane of polarization of the electromagnetic wave from the spatial coupler of the output portion is perpendicular to the metal wire line of the wire grid, the electromagnetic wave from the spatial coupler of the output portion and the electromagnetic wave are polarized. It is possible to separate electromagnetic waves inclined by 90 degrees on the wavefront.

本発明の第3の実施例を図5に示す。図5は高周波絶縁材料の上のパターンのみを示している。実施例1、2との重複する部分の説明は省略している。図の様に出力部分の空間結合器に43のプリントダイポールアンテナを用いる。伝送線路と間隙を経て、プリントダイポールアンテナを設ける。プリントダイポールアンテナの長さLはおよそ100μmとして、間隙を給電点としてプリントダイポールアンテナが共振構造となりLを半波長とするような波長付近の帯域の電磁波がプリントダイポールアンテナから放射される。この際にも放射された電磁波は、伝送線路や入力部分の空間結合器からの反射によるノイズと偏波が90度異なっており、偏光フィルタを使用する事でノイズとの混信を防ぐという効果が期待できる。これによって、実施例1と同じように光学系において、テラヘルツ波の光軸調整が容易になり、光学系の簡略化を達成する事が出来る。またノイズと混信を防ぐ事によって、S/Nが向上し、より微量な検体と電磁波の相互作用も検知する事が出来るようになる。   A third embodiment of the present invention is shown in FIG. FIG. 5 shows only the pattern on the high frequency insulating material. The description of the overlapping parts with the first and second embodiments is omitted. As shown in the figure, 43 printed dipole antennas are used for the spatial coupler of the output portion. A printed dipole antenna is provided through the transmission line and the gap. The length L of the printed dipole antenna is about 100 μm, and the printed dipole antenna has a resonance structure with the gap as a feeding point, and an electromagnetic wave in a band near the wavelength where L is a half wavelength is radiated from the printed dipole antenna. Also in this case, the radiated electromagnetic wave is 90 degrees different from the noise caused by reflection from the transmission line and the spatial coupler of the input part, and the effect of preventing interference with noise by using a polarizing filter. I can expect. As a result, the optical axis of the terahertz wave can be easily adjusted in the optical system as in the first embodiment, and the simplification of the optical system can be achieved. Further, by preventing noise and interference, the S / N is improved, and it becomes possible to detect a smaller amount of the interaction between the specimen and the electromagnetic wave.

本発明における1つの検体検知装置に関する実施の形態Embodiment relating to one specimen detection apparatus in the present invention 第1実施例の検体検知装置の全体図Overall view of the sample detection apparatus of the first embodiment アンテナの拡大図Enlarged view of antenna 伝送線路における検体保持部を示した図The figure which showed the sample holding part in a transmission line 第2実施例の検体検知装置のパターン図Pattern diagram of the sample detection apparatus of the second embodiment 光伝導素子によるテラヘルツ波発生の模式図Schematic diagram of terahertz wave generation by photoconductive element

符号の説明Explanation of symbols

1、10 電磁波(テラヘルツ波)発生装置
2、7、11、12 電磁波(テラヘルツ波)
3、6 空間結合器
13 基板
14 高周波絶縁材料
15a、15b、22、41 パッチアンテナ
16a、16b スリット
4、17、21、31、42、51 伝送線路
5、18、32 検体保持部
8、19 偏光フィルタ
9、20 電磁波(テラヘルツ波)検出装置
23 切れ込み
33 空隙部
43 プリントダイポールアンテナ
52 光伝導膜
53 ダイポールアンテナ
54 ギャップ部分
55 テラヘルツパルス
56 バイアス電圧
57 光パルス(フェムト秒レーザー)
1, 10 Electromagnetic wave (terahertz wave) generator 2, 7, 11, 12 Electromagnetic wave (terahertz wave)
3, 6 Spatial coupler 13 Substrate 14 High-frequency insulating material 15a, 15b, 22, 41 Patch antenna 16a, 16b Slit 4, 17, 21, 31, 42, 51 Transmission line 5, 18, 32 Specimen holder 8, 19 Polarization Filters 9 and 20 Electromagnetic wave (terahertz wave) detector 23 Notch 33 Air gap 43 Printed dipole antenna 52 Photoconductive film 53 Dipole antenna 54 Gap portion 55 Terahertz pulse 56 Bias voltage 57 Optical pulse (femtosecond laser)

Claims (5)

基板と、
30GHzから30THzの周波数領域内の電磁波が空間から入射するための入力アンテナと、
前記入力アンテナからの電磁波を伝搬するための伝送線路と、
前記伝送線路からの電磁波を空間に放射するための出力アンテナと、
検体が保持され、且つ検体と前記伝送線路を伝搬する電磁波とを相互作用させるための検体保持部と、を備え、
前記入力アンテナと前記伝送線路と前記出力アンテナとが、基板に接続して形成されており、
前記入力アンテナに入射する電磁波の偏波面と前記出力アンテナから放射する電磁波の偏波面とが、異なるように構成されていることを特徴とするデバイス。
A substrate,
An input antenna for an electromagnetic wave in a frequency range from 30 GHz to 30 THz to enter from a space;
A transmission line for propagating electromagnetic waves from the input antenna ;
An output antenna for radiating electromagnetic waves from the transmission line to space;
A sample holding unit for holding the sample and causing the sample to interact with the electromagnetic wave propagating through the transmission line,
The input antenna , the transmission line, and the output antenna are formed connected to a substrate ,
A device configured such that a plane of polarization of an electromagnetic wave incident on the input antenna is different from a plane of polarization of an electromagnetic wave radiated from the output antenna .
前記伝送線路を90度曲げることによって、前記入力アンテナに入射する電磁波の偏波面と前記出力アンテナから放射する電磁波の偏波面とが90度異なるように構成されていることを特徴とする請求項に記載のデバイス。 By bending 90 degrees the transmission line, according to claim wherein the input enters the antenna electromagnetic wave polarization plane of the radiating from the polarization plane and the output antenna is characterized that you have been configured differently 90 degrees The device according to 1 . 前記出力アンテナをプリントダイポールアンテナで構成することによって、前記入力アンテナに入射する電磁波の偏波面と前記出力アンテナから放射する電磁波の偏波面とが90度異なるように構成されていることを特徴とする請求項に記載のデバイス。 By configuring the output antenna in printed dipole antenna, the polarization of an electromagnetic wave radiated from the polarization plane and the output antenna of the electromagnetic wave incident on the input antenna, and features that you have been configured differently 90 degrees The device of claim 1 . 請求項1乃至のいずれか1項に記載のデバイスと、
前記入力アンテナに入射する電磁波を発生させるための発生部と、
前記出力アンテナから放射される電磁波を検出するための検出部とを備えることを特徴とする検体検知装置。
A device according to any one of claims 1 to 3 ,
A generator for generating an electromagnetic wave incident on the input antenna ;
And a detection unit for detecting electromagnetic waves radiated from the output antenna .
請求項1乃至のいずれか1項に記載のデバイスと、
前記出力アンテナから放射される電磁波を、異なる偏波面を有する電磁波ごとに分離するための偏光フィルタとを備えることを特徴とする検体検知装置。
A device according to any one of claims 1 to 3 ,
A specimen detection apparatus comprising: a polarization filter for separating the electromagnetic wave radiated from the output antenna for each electromagnetic wave having different polarization planes.
JP2005091565A 2005-03-28 2005-03-28 Sample holding device, sample detection apparatus and sample detection method using the same Expired - Fee Related JP4636917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091565A JP4636917B2 (en) 2005-03-28 2005-03-28 Sample holding device, sample detection apparatus and sample detection method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091565A JP4636917B2 (en) 2005-03-28 2005-03-28 Sample holding device, sample detection apparatus and sample detection method using the same

Publications (3)

Publication Number Publication Date
JP2006275592A JP2006275592A (en) 2006-10-12
JP2006275592A5 JP2006275592A5 (en) 2008-06-19
JP4636917B2 true JP4636917B2 (en) 2011-02-23

Family

ID=37210527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091565A Expired - Fee Related JP4636917B2 (en) 2005-03-28 2005-03-28 Sample holding device, sample detection apparatus and sample detection method using the same

Country Status (1)

Country Link
JP (1) JP4636917B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035618B2 (en) * 2006-12-05 2012-09-26 独立行政法人理化学研究所 Detection method and detection apparatus using electromagnetic wave
JP4928249B2 (en) * 2006-12-20 2012-05-09 キヤノン株式会社 Detection device
JP4958278B2 (en) * 2007-03-13 2012-06-20 キヤノン株式会社 Inspection device
JP4859250B2 (en) * 2007-08-31 2012-01-25 キヤノン株式会社 Distance adjustment apparatus and method for inspection object, inspection apparatus and method
JP6477693B2 (en) * 2014-05-14 2019-03-06 コニカミノルタ株式会社 Detection device and method of manufacturing the same
JP6395049B2 (en) * 2014-12-24 2018-09-26 大日本印刷株式会社 Inspection method and inspection apparatus for detecting adhering matter adhering to an object

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121355A (en) * 2001-10-10 2003-04-23 Tochigi Nikon Corp Sample information-acquiring method and terahertz light apparatus
JP2004061455A (en) * 2002-07-31 2004-02-26 Communication Research Laboratory Physical property measuring apparatus and method by terahertz electromagnetic wave for powder
JP2005017644A (en) * 2003-06-25 2005-01-20 Canon Inc High frequency electric signal controller and sensing system
JP2005020304A (en) * 2003-06-25 2005-01-20 Canon Inc High frequency electric signal controller and sensing system
JP2006145512A (en) * 2004-11-17 2006-06-08 Semiconductor Res Found Measuring instrument for detecting substance contained in fluid with high sensitivity and measuring method using it
JP2006300925A (en) * 2005-03-24 2006-11-02 Canon Inc Inspection device using electromagnetic wave
JP2008509391A (en) * 2004-08-04 2008-03-27 インテル・コーポレーション Method and system for detecting biomolecular binding using terahertz radiation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121355A (en) * 2001-10-10 2003-04-23 Tochigi Nikon Corp Sample information-acquiring method and terahertz light apparatus
JP2004061455A (en) * 2002-07-31 2004-02-26 Communication Research Laboratory Physical property measuring apparatus and method by terahertz electromagnetic wave for powder
JP2005017644A (en) * 2003-06-25 2005-01-20 Canon Inc High frequency electric signal controller and sensing system
JP2005020304A (en) * 2003-06-25 2005-01-20 Canon Inc High frequency electric signal controller and sensing system
JP2008509391A (en) * 2004-08-04 2008-03-27 インテル・コーポレーション Method and system for detecting biomolecular binding using terahertz radiation
JP2006145512A (en) * 2004-11-17 2006-06-08 Semiconductor Res Found Measuring instrument for detecting substance contained in fluid with high sensitivity and measuring method using it
JP2006300925A (en) * 2005-03-24 2006-11-02 Canon Inc Inspection device using electromagnetic wave

Also Published As

Publication number Publication date
JP2006275592A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP5419411B2 (en) Terahertz wave generator
Bolivar et al. Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies
EP1864111B1 (en) Inspection apparatus using terahertz waves
JP3913253B2 (en) Optical semiconductor device and manufacturing method thereof
Song et al. Handbook of terahertz technologies: devices and applications
JP4636917B2 (en) Sample holding device, sample detection apparatus and sample detection method using the same
KR101308234B1 (en) Electromagnetic device with integral non-linear component
JP4732201B2 (en) Sensing device using electromagnetic waves
US7681434B2 (en) Sensing device
JP5735545B2 (en) Device for analyzing samples using radiation in the terahertz frequency range
US20100033709A1 (en) Integrated terahertz antenna and transmitter and/or receiver, and a method of fabricating them
JP3950820B2 (en) High frequency electric signal control device and sensing system
JP4975000B2 (en) Electromagnetic wave generating element, electromagnetic wave integrated element, and electromagnetic wave detecting device
EP1801939B1 (en) Infrared light emitting device, infrared light detecting device, time-domain pulsed spectrometer apparatus, and infrared light emitting method
JP4726212B2 (en) Sensing device
Bitzer et al. Terahertz near-field imaging of metallic subwavelength holes and hole arrays
JPH10104171A (en) Optical system and object inspecting method using the same
Khiabani Modelling, design and characterisation of terahertz photoconductive antennas
JP2008122306A (en) Specimen analyzer and specimen analytical method
Ríos et al. A bow-tie photoconductive antenna using a low-temperature-grown GaAs thin-film on a silicon substrate for terahertz wave generation and detection
Shahriar et al. Enhanced directive terahertz radiation emission from a horn antenna-coupled W/Fe/Pt spintronic film stack
Chen et al. A study of FSS in terahertz range for polarization modulation purpose
US9722126B2 (en) Photoconductive device, measurement apparatus, and manufacturing method
EP2781908A1 (en) Periodic structure and measurement method employing same
Didi et al. Study and design of the Terahertz antenna array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees