JP2006145512A - Measuring instrument for detecting substance contained in fluid with high sensitivity and measuring method using it - Google Patents

Measuring instrument for detecting substance contained in fluid with high sensitivity and measuring method using it Download PDF

Info

Publication number
JP2006145512A
JP2006145512A JP2004365024A JP2004365024A JP2006145512A JP 2006145512 A JP2006145512 A JP 2006145512A JP 2004365024 A JP2004365024 A JP 2004365024A JP 2004365024 A JP2004365024 A JP 2004365024A JP 2006145512 A JP2006145512 A JP 2006145512A
Authority
JP
Japan
Prior art keywords
terahertz
fluid
measuring
terahertz wave
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004365024A
Other languages
Japanese (ja)
Inventor
Junichi Nishizawa
Tetsuro Sasaki
哲朗 佐々木
潤一 西澤
Original Assignee
Semiconductor Res Found
財団法人半導体研究振興会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Res Found, 財団法人半導体研究振興会 filed Critical Semiconductor Res Found
Priority to JP2004365024A priority Critical patent/JP2006145512A/en
Publication of JP2006145512A publication Critical patent/JP2006145512A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring instrument for detecting and quantifying a substance in a fluid with high detection sensitivity in terahertz spectral measurement, and a measuring method using it. <P>SOLUTION: This terahertz spectrometric instrument is constituted so that a fluid to be measured is introduced into a terahertz measuring fluid cell 1, the component in the fluid to be measured is separated by a filter 2 and the filter is irradiated with a frequency variable irradiation terahertz wave 4 to detect the transmitted terahertz wave 5, reflected terahertz wave or scattered terahertz wave from the filter to obtain a terahertz spectrum. By analyzing the measuring result of this measuring instrument, the detection or quantification of a very small amount of the component in the fluid to be measured is enabled. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はテラヘルツ電磁波利用にかかわる。  The present invention relates to the use of terahertz electromagnetic waves.
液体や気体のような流体中の含有物質を同定・定量するための従来方法としては、主にGC−MS(ガスクロマトグラフ質量分析装置)、LC−MS(液体クロマトグラフ質量分析計)、FT−IR(フーリエ変換赤外分光光度計)などが用いられる。  Conventional methods for identifying and quantifying contained substances in fluids such as liquids and gases are mainly GC-MS (gas chromatograph mass spectrometer), LC-MS (liquid chromatograph mass spectrometer), FT- IR (Fourier transform infrared spectrophotometer) or the like is used.
しかしながら、これらは対象物質の重量や分極特性などの物性に起因する本質的な原因、あるいは共存物質による検出阻害などによる原因により、その測定法ごとに測定可能な物質が制限される。また微量の物質を高感度に測定するためには、測定試料を適当な形状あるいは状態にするための煩雑な前処理が必要であり、測定に時間を要するという欠点があった。  However, these substances limit the substances that can be measured for each measurement method due to intrinsic causes due to physical properties such as the weight and polarization characteristics of the target substance, or causes due to detection inhibition by coexisting substances. Moreover, in order to measure a very small amount of a substance with high sensitivity, a complicated pretreatment for making the measurement sample into an appropriate shape or state is necessary, and there is a drawback that it takes time for the measurement.
例えば近赤外線や中赤外線を用いるFT−IRで水中に含まれる物質の検出を行う場合、水自身による吸収が大きいために、その測定は難しい。本発明は従来法では同定・定量できなかった流体中の物質の検出を、高感度に行う手法を提供するものである。  For example, when a substance contained in water is detected by FT-IR using near-infrared light or mid-infrared light, the measurement is difficult because of the large absorption by water itself. The present invention provides a technique for detecting a substance in a fluid that could not be identified and quantified by a conventional method with high sensitivity.
生体を構成する分子や大気中に含まれるガス分子など、各種分子の固有振動周波数はテラヘルツ帯に存在する。このテラヘルツ領域での吸収スペクトルを測定すれば、物質の同定や組成分析に用いることができる。テラヘルツ波の透過率あるいは反射率強度の波長依存性から物質の特定を行うテラヘルツ分光測定が行われている。テラヘルツ波は紙やプラスチックなど可視光や赤外光では透過できない多くの材料物質も透過可能であり、このようなテラヘルツ波発生装置を用いた分光計測装置は非破壊測定で、任意の測定対象を高分解能、かつ広い周波数帯域に渡って吸収スペクトルを得ることができる。  The natural vibration frequency of various molecules such as molecules constituting a living body and gas molecules contained in the atmosphere exists in the terahertz band. If an absorption spectrum in this terahertz region is measured, it can be used for substance identification and composition analysis. Terahertz spectroscopic measurement is performed to identify a substance from the wavelength dependence of the transmittance or reflectance intensity of terahertz waves. Terahertz waves can also pass through many materials such as paper and plastic that cannot be transmitted by visible light or infrared light. Spectrometers using such terahertz wave generators are non-destructive and can be used for any measurement object. An absorption spectrum can be obtained over a wide frequency band with high resolution.
波長可変テラヘルツ分光光源として、例えば半導体GaP結晶内のポラリトンモードを利用したテラヘルツ波発生装置が知られている。すなわち、GaP結晶にポンプ光およびシグナル光を、角度位相整合条件を満たすように微小角度をつけて入射し、差周波発生によりコヒーレントなテラヘルツ波を発生する。ポンプ光およびシグナル光をインジェクションシーディング技術、あるいはエタロン挿入などによって線幅を狭くすることにより、得られるテラヘルツ波の線幅も狭く、更に大出力が得られ、分光装置に適する光源となる。  As a wavelength tunable terahertz spectroscopic light source, for example, a terahertz wave generator using a polariton mode in a semiconductor GaP crystal is known. That is, the pump light and the signal light are incident on the GaP crystal at a minute angle so as to satisfy the angle phase matching condition, and a coherent terahertz wave is generated by the difference frequency generation. By narrowing the line width of the pump light and the signal light by injection seeding technology or etalon insertion, the line width of the obtained terahertz wave is narrowed and a higher output can be obtained, which is a light source suitable for a spectroscopic device.
この光源を分光装置に用いれば、近距離から遠距離まで任意の位置にある物質の計測や、長い距離に連続的に存在する物質の計測、非常に薄い密度で存在する物質の検出などに有効である。  If this light source is used in a spectroscopic device, it is effective for measuring substances at arbitrary positions from short to long distances, measuring substances that exist continuously at long distances, and detecting substances that exist at very low density. It is.
液体や気体あるいは超臨界等の流体中に含まれる微量含有物を、その構成体の大きさあるいは化学結合の性質によって分離・凝縮し、分子判別の指紋領域であるテラヘルツ吸収を調べることによって、高感度に検出あるいは定量することができる。この方法は共存物の影響を少なくでき、物質を判別するのに適している。  By separating and condensing trace contents contained in fluids such as liquids, gases, and supercritical fluids depending on the size of the constituents or the nature of chemical bonds, and by examining the terahertz absorption, which is the fingerprint region for molecular discrimination, Sensitivity can be detected or quantified. This method can reduce the influence of coexisting substances and is suitable for discriminating substances.
一般に血液検査によって、疾患の有無を検査するのに広く使われている。例えば、コレステロール・中性脂肪量から動脈硬化を、空腹時血糖から糖尿病を診断するほか、細菌感染症、貧血、黄疽などを検査することができる。また、血性反応によりウィルス性肝炎、梅毒などを検査している。しかしながら、検査対象となる血液中に含まれるたんぱく質やウイルス、糖などはそれぞれおおよそ1〜1000ppm程度(例>ヘモグロビン標準値:11〜17g/dl)と微量である。また、薬物中毒やドーピング検査のためには、血液あるいは尿中の薬物を高感度に検出する必要がある。  In general, blood tests are widely used to check for the presence of disease. For example, arteriosclerosis can be diagnosed from cholesterol / neutral fat content, diabetes can be diagnosed from fasting blood glucose, and bacterial infection, anemia, jaundice, etc. can be examined. He also tests for viral hepatitis, syphilis, etc. based on bloody reactions. However, the amount of proteins, viruses, sugars, and the like contained in the blood to be examined is about 1 to 1000 ppm (eg, hemoglobin standard value: 11 to 17 g / dl), which is a trace amount. For drug poisoning and doping tests, it is necessary to detect drugs in blood or urine with high sensitivity.
図1は分級法の一例としての膜分離の種類による分離可能な大きさの目安と、生体分子や微生物の大きさの例を示した。このグラフからわかるように、限外濾過、精密濾過などの膜分離で、血液中のたんぱく質とウイルス、糖をそれぞれ分離することができる。図2(a)に示すような濾過フィルタ2を含むテラヘルツ測定用流体セル1で、濾過フィルタ2の孔径を1μm程度に設定すれば、血液を流した場合にそれぞれ大きさが7〜8μm、6〜25μm程度の赤血球や白血球6は透過できずに、濾過フィルタ2に蓄積する。これに対して大きさが1〜100nm程度の大きさの糖やたんぱく質は透過する。よって、この濾過フィルタをポリエチレンやテフロンなどのテラヘルツ透過率の高い材質で作成し、この濾過フィルタ2に対しテラヘルツ透過あるいは反射測定を行えば、赤血球・白血球などの積算量が高感度に、かつリアルタイム計測可能になる。また赤血球・白血球の分子状態がテラヘルツ吸収分光スペクトルに現れるので、血球の構造異常も同時に診断可能である。  FIG. 1 shows an example of the size that can be separated according to the type of membrane separation as an example of the classification method, and the sizes of biomolecules and microorganisms. As can be seen from this graph, protein, virus, and sugar in blood can be separated by membrane separation such as ultrafiltration and microfiltration. In the terahertz measurement fluid cell 1 including the filtration filter 2 as shown in FIG. 2A, if the pore size of the filtration filter 2 is set to about 1 μm, the size is 7 to 8 μm and 6 respectively when blood is passed. Red blood cells and white blood cells 6 of about ˜25 μm cannot pass through and accumulate in the filtration filter 2. In contrast, sugars and proteins having a size of about 1 to 100 nm are transmitted. Therefore, if this filtration filter is made of a material having high terahertz transmittance such as polyethylene or Teflon, and terahertz transmission or reflection measurement is performed on this filtration filter 2, the accumulated amount of red blood cells, white blood cells, etc. is highly sensitive and real time. It becomes possible to measure. In addition, since the molecular state of erythrocytes and leukocytes appears in the terahertz absorption spectrum, it is possible to simultaneously diagnose structural abnormalities of blood cells.
このとき膜分離に用いた濾過フィルタ2を血液流路から取出したのちに、その濾過フィルタ2上で濃縮された成分について、テラヘルツ分光スペクトルから、その物質の特定および定量することも可能である。流路より取出した濾過フィルタ2は自然乾燥、真空乾燥、真空加熱乾燥あるいは冷凍乾燥法により乾燥させてもよい。そのほか、濾過フィルタ2の種類を適当に選択することにより、グルコース、コレステロール、ウイルス抗原、ウイルス抗体、尿酸などを分離し、これらを定量的に且つ高感度に計測できる。  At this time, after the filtration filter 2 used for membrane separation is taken out from the blood flow path, it is possible to identify and quantify the substance from the terahertz spectrum for the components concentrated on the filtration filter 2. The filtration filter 2 taken out from the flow path may be dried by natural drying, vacuum drying, vacuum heat drying or freeze drying. In addition, glucose, cholesterol, virus antigens, virus antibodies, uric acid, and the like can be separated and appropriately measured with high sensitivity by appropriately selecting the type of filtration filter 2.
流体中の微量物質が濾過フィルタ2において濾過されずに凝集するとき、均一に凝集せずに局在すると検出の失敗、あるいは定量を誤る可能性がある。これを避けるために、図2(b)に示すように、流体(血液)流路方向3は濾過フィルタ2に対して垂直でありながら、照射テラヘルツ波4照射方向と45°ずらす構成とすれば、透過テラヘルツ波5あるいは反射テラヘルツ波7の強度の周波数依存性から微量物質の分析が可能となる。流体中の微量物質を濾過フィルタ2において均一に凝集するために、濾過直前に攪拌器を設置してもよい。  When trace substances in the fluid are aggregated without being filtered in the filtration filter 2, if they are localized without agglomeration uniformly, there is a possibility that detection may fail or erroneous determination may be made. In order to avoid this, as shown in FIG. 2B, the fluid (blood) flow path direction 3 is perpendicular to the filtration filter 2 but is shifted by 45 ° from the irradiation terahertz wave 4 irradiation direction. From the frequency dependence of the intensity of the transmitted terahertz wave 5 or the reflected terahertz wave 7, it is possible to analyze a trace substance. In order to agglomerate trace substances in the fluid uniformly in the filtration filter 2, a stirrer may be installed immediately before the filtration.
実施例1と同様に尿検査においても、テラヘルツ分光の高感度検出を用いることができる。一般的に尿に対する検査項目としては、肝機能障害検出の指標となる「尿蛋白質」、腎機能障害検出の指標となる「尿クレアチニン」や糖尿病の指標となる「尿糖」定量検出などの診断があり、これらの値は標準でおおよそ10〜200ppm程度である。また、薬物中毒やドーピング検査のためには、血液あるいは尿中の薬物を高感度に検出する必要がある。  As in the first embodiment, high-sensitivity detection using terahertz spectroscopy can be used in urinalysis. In general, urine test items include “urine protein”, an indicator for detecting liver dysfunction, “urine creatinine”, an indicator for detecting renal dysfunction, and “urine sugar”, a quantitative indicator for diabetes. These values are about 10 to 200 ppm as a standard. For drug poisoning and doping tests, it is necessary to detect drugs in blood or urine with high sensitivity.
尿検査では、時間の経過と共に細菌の繁殖や塩類の析出の問題があるので、採尿後速やかに検査される必要がある。このために便器の排水に設置されていれば、排尿時に毎回リアルタイムで検査することができる。図3のように、便器10につながる排水配管に多段に濾過フィルタ12を含むテラヘルツ測定用流体セル11を設け、各段の濾過フィルタ12で分子の大きさごとに濾過されるようにすれば、ここを尿が通過するときに尿蛋白質16、尿クレアチニン17、尿糖18などに分離・凝集することができる。この濾過フィルタ2を、その分離・凝集物と共にテラヘルツ分光測定で、透過テラヘルツ波15を検出することにより、高感度に含有物を検出・定量することができる。特に入射テラヘルツ波14を濾過フィルタ12の面に対し垂直に入射すれば、光路上の被測定物質の量を多くすることができるので、より高感度の測定が可能となる。  In the urine test, there is a problem of bacterial growth and salt precipitation with the passage of time, so it is necessary to test immediately after collecting urine. For this reason, if it is installed in the toilet drainage, it can be inspected in real time every time urination. As shown in FIG. 3, if the terahertz measurement fluid cell 11 including the filtration filter 12 is provided in multiple stages on the drainage pipe connected to the toilet 10, and the filtration filter 12 of each stage is filtered for each molecular size, When urine passes there, it can be separated and aggregated into urine protein 16, urine creatinine 17, urine sugar 18, and the like. By detecting the transmitted terahertz wave 15 by terahertz spectroscopic measurement of the filtration filter 2 together with the separated / aggregated substance, it is possible to detect and quantify the contained substance with high sensitivity. In particular, if the incident terahertz wave 14 is incident perpendicularly to the surface of the filtration filter 12, the amount of the substance to be measured on the optical path can be increased, so that measurement with higher sensitivity is possible.
環境中に存在する微量物質(有機化合物粒子、大気イオンクラスター、溶液中の微量物質など)の計測は、有害物質のモニタリングや未規制物質の同定のために重要な技術である。例えば、大気中に含まれる排気ガス成分COx、SOx、NOxなどの高感度検出は環境汚染調査のために望まれている。これらの気体分子や浮遊粒子状物質は、基準濃度が例えば「1日平均値0.04ppm以下」のような基準表記法となっており、実際の計測では更にそれ以下の濃度検出が必要となっている。また例えば、シックハウス症候群の原因とされる揮発性有機化合物(VOC:Volatile Organic Compounds)であるホルムアルデヒドガスや、タバコ煙中に多く含まれるアセトアルデヒドガス、アンモニアガス、硫化水素ガス等は、住環境調査のためその高感度な検出や除去方法の開発が望まれている。更に燃焼ガスや臭気物質、クリーンルーム中の有機物など、微量有機ガスの高感度な分析の要求も強く、これまではほとんど問題にならないレベルであったものをより感度よく正確に同定・定量することが望まれるようになってきている。  Measurement of trace substances present in the environment (organic compound particles, atmospheric ion clusters, trace substances in solution, etc.) is an important technology for monitoring harmful substances and identifying unregulated substances. For example, highly sensitive detection of exhaust gas components COx, SOx, NOx, etc. contained in the atmosphere is desired for environmental pollution investigations. For these gas molecules and suspended particulate matter, the standard concentration is a standard notation such as “daily average value of 0.04 ppm or less”, and in actual measurement, it is necessary to detect a concentration lower than that. ing. In addition, for example, formaldehyde gas, which is a volatile organic compound (VOC) that is a cause of sick house syndrome, acetaldehyde gas, ammonia gas, hydrogen sulfide gas, etc. contained in a lot of tobacco smoke are Therefore, development of a highly sensitive detection and removal method is desired. In addition, there is a strong demand for highly sensitive analysis of trace organic gases, such as combustion gases, odorous substances, and organic substances in clean rooms. It is becoming desirable.
ガス分子の回転振動はテラヘルツ周波数領域に存在するので、テラヘルツ吸収スペクトルを測定すると急峻で周期的な吸収線が明瞭に検出されることになる。流体が気体であっても実施例1のような1段あるいは実施例2のような多段構造で、膜分離することができる。すなわちガス分子の大きさによって、ふるいわけが可能である。  Since rotational vibrations of gas molecules exist in the terahertz frequency region, steep and periodic absorption lines are clearly detected when the terahertz absorption spectrum is measured. Even if the fluid is a gas, the membrane can be separated by a single stage as in the first embodiment or a multistage structure as in the second embodiment. That is, sifting is possible depending on the size of the gas molecules.
例えば、高分子膜を熱分解することによってピンホールのない緻密な分子ふるい炭素膜ができ、高い選択透過性が得られる。ポリイミドフィルムを1000℃で熱処理することによって、4Å前後の超微細孔を有する炭素膜が得られ、この炭素膜の気体透過特性はHやCO分子がより大きなN分子の各々1000倍、100倍以上速く透過することが知られている。このような微孔炭素膜22を使い、図4のようなテラヘルツ測定用大気測定セル21を構成し、測定対象大気23を流することにより、COやその他の大気中微量物質26の分子は、大気の成分であるNやOから分離することができ、ここにテラヘルツ分光測定を適用すれば、高感度な物質の検出・定量が可能となる。テフロンやポリエチレンなどのテラヘルツ波透過性の高い材質で作成されたフィルタあるいは流路管などによって、流体中の物質を分級・凝集し、この構造体ごとテラヘルツ分光測定することにより、微量ガスの定量感度を上げることが可能となり、かつ容易で測定時間を短くすることができる。For example, by thermally decomposing a polymer membrane, a dense molecular sieving carbon membrane free from pinholes can be obtained, and high selective permeability can be obtained. By heat-treating the polyimide film at 1000 ° C., a carbon film having ultrafine pores of about 4 mm is obtained, and the gas permeation characteristics of this carbon film are each 1000 times that of N 2 molecules having larger H 2 and CO 2 molecules, It is known to transmit 100 times faster. By using such a microporous carbon film 22 to form a terahertz measurement atmospheric measurement cell 21 as shown in FIG. 4 and flowing the measurement target air 23, molecules of CO 2 and other atmospheric trace substances 26 are It can be separated from N 2 and O 2 which are atmospheric components, and if terahertz spectroscopy is applied here, highly sensitive substances can be detected and quantified. Quantitative sensitivity of trace gases by classifying and aggregating substances in a fluid with a filter or channel tube made of a material with high terahertz wave permeability such as Teflon or polyethylene, and measuring the structure together with terahertz spectroscopy The measurement time can be increased and the measurement time can be shortened easily.
分級法として膜分離のほかに、静電場内での帯電粒子の電気移動度がその粒径と帯電数により異なることを利用した静電分級法や、拡散速度の差を利用した透析やクロマトグラフィーやイオン交換、蒸気圧差を利用した蒸留や、相変化を利用した凍結濃縮や、溶解度差を利用した吸収・溶媒抽出や、質量差を利用した遠心分離などの方法を用いてもよい。また測定対象がHやOなど対称性が高い分子の場合、このままでは赤外活性にならない。そこで、プラズマを用いて活性化し、ラジカル水素と水素の組合せの分子を形成することにより赤外活性な構造ができ、これを計測することで微量検出・定量が行うことができる。As a classification method, in addition to membrane separation, an electrostatic classification method using the electric mobility of charged particles in an electrostatic field varies depending on the particle size and the number of charges, and dialysis and chromatography using the difference in diffusion rate. Alternatively, methods such as distillation using ion exchange, vapor pressure difference, freeze concentration using phase change, absorption / solvent extraction using solubility difference, and centrifugation using mass difference may be used. Further, when the object to be measured is a highly symmetric molecule such as H 2 or O 2 , it does not become infrared active as it is. Therefore, activation is performed using plasma to form an infrared active structure by forming a combination of radical hydrogen and hydrogen, and trace detection and quantification can be performed by measuring this.
図5(a)に示すように流体流路管30中に気体冷却用バッフル32を設置し、測定対象流体31を流す。含有成分の融点がバッフル温度以下であればそこで液化し、分離・凝集されることになる。更に凝固点以下のバッフル温度であれば固化する。これらの吸着された流体中微量物質33をテラヘルツ分光測定することにより、気体中含有物を高感度に検出・定量することができる。この方法では、必ずしも気相あるいは液相でテラヘルツ帯に吸収がある必要がなく、固相で吸収が見られればよい。  As shown in FIG. 5A, a gas cooling baffle 32 is installed in the fluid flow path pipe 30 to flow the measurement target fluid 31. If the melting point of the contained component is lower than the baffle temperature, it will be liquefied and separated / aggregated there. Further, if the baffle temperature is below the freezing point, it solidifies. By measuring these adsorbed trace substances 33 in the fluid by terahertz spectroscopy, the contents in the gas can be detected and quantified with high sensitivity. In this method, it is not always necessary to absorb in the terahertz band in the gas phase or the liquid phase, and it is sufficient that absorption is observed in the solid phase.
バッフル32の材質が金属である場合、入射テラヘルツ波34に対する反射テラヘルツ波35を測定すればよい。  When the material of the baffle 32 is a metal, the reflected terahertz wave 35 with respect to the incident terahertz wave 34 may be measured.
気体中の含有物が、固体結晶状態での格子振動のみがテラヘルツ帯に吸収があるような場合には、冷却バッフル温度を冷却装置36で調整し、ガス流速を適当に選択することで、結晶性よく結晶成長させればよい。この方法では、測定終了後に再びバッフル32を加熱し、凝集した液体あるいは固体分子を蒸発・脱離させれば、何度でも再使用も可能である。  When the content in the gas is such that only the lattice vibration in the solid crystal state is absorbed in the terahertz band, the cooling baffle temperature is adjusted by the cooling device 36, and the gas flow rate is appropriately selected, so that the crystal Crystal growth should be good. In this method, if the baffle 32 is heated again after the measurement is completed, and the aggregated liquid or solid molecules are evaporated and desorbed, it can be reused any number of times.
表面積の拡大で収率を高めることができる。図5(b)に示すように表面に多数のフィンをつける、あるいは冷却部を多数の毛細管構造としてもよい。  The yield can be increased by increasing the surface area. As shown in FIG. 5B, a large number of fins may be attached to the surface, or the cooling part may have a large number of capillary structures.
図6のように、ステンレスや銅などの金属製あるいは内面金属コーティング流体流路管41中に濾過フィルタ42を配置した構造とする。ここに測定対象流体43を流し、分子量の差から選択的に分級し、被測定対象微量物質47を捕獲する。ここに入射テラヘルツ波44を配管中に導入すると、テラヘルツ波は発散することなく配管中を管壁で反射しつつ進み、濾過フィルタ42及び被測定対象微量物質47を透過した後、管路端面から出力されるので、検出器を出力端面に密接してテラヘルツ波出力を全て受光するようにすれば、高感度な測定が可能となる。特に対象物質の粒子がテラヘルツ波波長と同程度である場合には散乱テラヘルツ波46の影響が現れてくるが、この構成では配管がテラヘルツ波の導波路の役割も兼ねて集光するためにテラヘルツ波の損失が少なく、よりいっそうの高感度が得られる。もちろんこのときフィルタは多段であってもかまわない。  As shown in FIG. 6, a filter 42 is arranged in a fluid channel pipe 41 made of a metal such as stainless steel or copper or an inner metal coating. The measurement target fluid 43 is flowed here, and selectively classified from the difference in molecular weight, and the measurement target trace substance 47 is captured. When the incident terahertz wave 44 is introduced into the pipe here, the terahertz wave does not diverge and proceeds while being reflected by the pipe wall through the pipe wall, and after passing through the filter 42 and the trace substance 47 to be measured, from the pipe end face. Therefore, if the detector is brought into close contact with the output end face so as to receive all of the terahertz wave output, highly sensitive measurement can be performed. In particular, when the particles of the target substance have the same wavelength as the terahertz wave, the influence of the scattered terahertz wave 46 appears. In this configuration, since the piping also serves as a terahertz wave waveguide, the terahertz wave is collected. There is little wave loss and even higher sensitivity can be obtained. Of course, the filter may be multistage at this time.
金属やガラスなどの基板あるいはその他の固体粒子や粉末などの表面に気体を流すと、その表面で特定の物質の吸着が起こる。例えば、シリカゲルの吸湿作用はシリカゲル表面に多く存在する水酸基(−OH基)が水分子を水素結合で吸着することによることは広く知られている。水素結合などの比較的弱い結合は、テラヘルツ帯に振動となる。測定対象含有物質そのものではなく、その物質が基板等のある物質の間で結合する水素結合や吸着の分子間力を検出することで、その物質の検出が可能となる。図7に示すように、吸着させる基板51に対し、水素結合53で結合している被測定対象分子52の吸着前後で、透過テラヘルツ分光測定あるいは反射テラヘルツ分光測定を適用することにより、対象分子そのもののテラヘルツ波吸収や、対象分子の吸着状態によるテラヘルツ波吸収スペクトルから、対象物質の検出・同定が可能となる。  When a gas is flowed on the surface of a substrate such as metal or glass or other solid particles or powder, adsorption of a specific substance occurs on the surface. For example, it is well known that the hygroscopic action of silica gel is due to the fact that hydroxyl groups (-OH groups) that are present on the silica gel surface adsorb water molecules by hydrogen bonds. A relatively weak bond such as a hydrogen bond vibrates in the terahertz band. The substance can be detected by detecting not the substance to be measured itself but the hydrogen bond or intermolecular force of adsorption between the substances such as the substrate. As shown in FIG. 7, the target molecule itself is applied to the substrate 51 to be adsorbed by applying transmission terahertz spectroscopy measurement or reflection terahertz spectroscopy measurement before and after adsorption of the molecule to be measured 52 bonded by the hydrogen bond 53. The target substance can be detected and identified from the terahertz wave absorption and the terahertz wave absorption spectrum of the target molecule adsorbed.
膜分離の種類による分離可能な大きさの目安と生体分子や微生物の大きさの例を示す図である。  It is a figure which shows the example of the magnitude | size of separable magnitude | size by the kind of membrane separation, and the magnitude | size of a biomolecule or a microorganism. 膜分離による血液成分分離テラヘルツ分光測定を示す図である。  It is a figure which shows the blood component isolation | separation terahertz spectroscopy measurement by membrane separation. 膜分離を用いたテラヘルツ分光測定の尿検査への応用を示す図である。  It is a figure which shows the application to the urine test | inspection of the terahertz spectroscopy measurement using membrane separation. 膜分離による大気中微量成分のテラヘルツ分光測定を示す図である。  It is a figure which shows the terahertz spectroscopy measurement of the trace component in air | atmosphere by membrane separation. 冷却バッフルを用いて流体中微量物質を凝集させるテラヘルツ分光測定を示す図である。  It is a figure which shows the terahertz spectroscopy measurement which aggregates the trace amount substance in a fluid using a cooling baffle. 導波管中で散乱テラヘルツ波を集光するテラヘルツ分光測定を示す図である。  It is a figure which shows the terahertz spectroscopy measurement which condenses a scattered terahertz wave in a waveguide. 表面分子吸着の結合に対するテラヘルツ分光測定を示す図である。  It is a figure which shows the terahertz spectroscopy measurement with respect to the coupling | bonding of surface molecule adsorption.
符号の説明Explanation of symbols
1…テラヘルツ測定用流体セル
2…濾過フィルタ
3…血液
4…入射テラヘルツ波
5…透過テラヘルツ波
6…赤血球や白血球
7…反射テラヘルツ波
10…便器
11…テラヘルツ測定用流体セル
12…濾過フィルタ
13…測定対象流体(尿)
14…入射テラヘルツ波
15…透過テラヘルツ波
16…尿蛋白質
17…尿クレアチニン
18…尿糖
21…テラヘルツ測定用大気分析セル
22…微孔炭素膜
23…測定対象大気
24…入射テラヘルツ波
25…透過テラヘルツ波
26…大気中微量物質
27…反射テラヘルツ波
30…流体流路管
31…測定対象流体
32…バッフル
33…吸着された流体中微量物質
34…入射テラヘルツ波
35…反射テラヘルツ波
36…冷却装置
37…冷却フィン
41…金属製あるいは内面金属コーティング流体流路管
42…濾過フィルタ
43…測定対象流体
44…入射テラヘルツ波
45…透過テラヘルツ波
46…散乱テラヘルツ波
47…被測定対象微量物質
51…基板
52…被測定対象分子
53…水素結合
54…入射テラヘルツ波
55…透過テラヘルツ波
56…反射テラヘルツ波
DESCRIPTION OF SYMBOLS 1 ... Terahertz measurement fluid cell 2 ... Filtration filter 3 ... Blood 4 ... Incident terahertz wave 5 ... Transmission terahertz wave 6 ... Red blood cell and leukocyte 7 ... Reflection terahertz wave 10 ... Toilet 11 ... Terahertz measurement fluid cell 12 ... Filtration filter 13 ... Fluid to be measured (urine)
DESCRIPTION OF SYMBOLS 14 ... Incident terahertz wave 15 ... Transmission terahertz wave 16 ... Urine protein 17 ... Urine creatinine 18 ... Urine sugar 21 ... Terahertz measurement atmospheric analysis cell 22 ... Microporous carbon film 23 ... Measurement object atmosphere 24 ... Incident terahertz wave 25 ... Transmission terahertz Wave 26 ... Trace substance 27 in the atmosphere 27 ... Reflected terahertz wave 30 ... Fluid flow channel 31 ... Fluid to be measured 32 ... Baffle 33 ... Trace substance 34 in adsorbed fluid ... Incident terahertz wave 35 ... Reflected terahertz wave 36 ... Cooling device 37 ... cooling fin 41 ... metal or inner surface metal coating fluid flow pipe 42 ... filtration filter 43 ... measurement target fluid 44 ... incident terahertz wave 45 ... transmission terahertz wave 46 ... scattered terahertz wave 47 ... measurement target trace substance 51 ... substrate 52 ... molecule to be measured 53 ... hydrogen bond 54 ... incident terahertz wave 55 ... transmitted terahertz wave 56 ... anti Terahertz waves

Claims (4)

  1. テラヘルツ波を用いた測定に関し、範囲を限定することもできるテラヘルツ波周波数掃引、または少なくとも一つ以上の任意の単一周波数を指定したテラヘルツ波を照射する機能を有し、少なくとも流体中の含有物を選択分離する構造と、分離された含有物に照射したテラヘルツ波の少なくとも透過波強度から、物性同定あるいは物質定量あるいは組成分析を行うことを特徴とする測定装置および方法。  Regarding the measurement using terahertz waves, the terahertz wave frequency sweep that can limit the range, or the function of irradiating terahertz waves with at least one arbitrary single frequency specified, and at least the contents in the fluid A device and method for performing physical property identification, substance quantification, or composition analysis based on a structure for selectively separating and at least transmitted wave intensity of terahertz waves irradiated on the separated inclusions.
  2. 請求項1における流体中の含有物の選択分離が、物質間の粒子の大きさ、あるいは質量、あるいは静電引力、あるいは拡散速度、あるいは蒸気圧、あるいは相変化の差による分離であることを特徴とする測定装置および方法。  The selective separation of inclusions in the fluid according to claim 1 is a separation based on a difference in particle size, mass, electrostatic attraction, diffusion rate, vapor pressure, or phase change between substances. Measuring device and method.
  3. 請求項1または2において、流体中の含有物を、少なくとも局在させない構造を有することを特徴とする測定装置および方法。  3. The measuring apparatus and method according to claim 1, wherein the measuring apparatus has a structure that does not at least localize inclusions in the fluid.
  4. 請求項1または2または3において、照射テラヘルツ波の少なくとも散乱波を、集光する構造を持つことを特徴とする測定装置および方法。  4. The measuring apparatus and method according to claim 1, wherein the measuring apparatus has a structure for collecting at least scattered waves of the irradiated terahertz wave.
JP2004365024A 2004-11-17 2004-11-17 Measuring instrument for detecting substance contained in fluid with high sensitivity and measuring method using it Pending JP2006145512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004365024A JP2006145512A (en) 2004-11-17 2004-11-17 Measuring instrument for detecting substance contained in fluid with high sensitivity and measuring method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004365024A JP2006145512A (en) 2004-11-17 2004-11-17 Measuring instrument for detecting substance contained in fluid with high sensitivity and measuring method using it

Publications (1)

Publication Number Publication Date
JP2006145512A true JP2006145512A (en) 2006-06-08

Family

ID=36625364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004365024A Pending JP2006145512A (en) 2004-11-17 2004-11-17 Measuring instrument for detecting substance contained in fluid with high sensitivity and measuring method using it

Country Status (1)

Country Link
JP (1) JP2006145512A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275592A (en) * 2005-03-28 2006-10-12 Canon Inc Device for holding specimen, specimen detector using same, and specimen detection method
JP2007071610A (en) * 2005-09-06 2007-03-22 Canon Inc Sensing device and sensing method
JP2008164594A (en) * 2006-12-05 2008-07-17 Canon Inc Detecting method using electromagnetic wave, and detection device
JP2008197081A (en) * 2007-02-15 2008-08-28 Junichi Nishizawa Detection and analysis method for substance in living body or excreted from living body
JP2010169658A (en) * 2008-12-25 2010-08-05 Canon Inc Analysis apparatus
JP2010249564A (en) * 2009-04-13 2010-11-04 Nippon Telegr & Teleph Corp <Ntt> Solubility spectrometry and solubility spectrometric device
JP2012154718A (en) * 2011-01-25 2012-08-16 Fujitsu Ltd Spectral analysis method and sampling unit for spectral analysis
JP2013024639A (en) * 2011-07-19 2013-02-04 Murata Mfg Co Ltd Method for measuring measured object
JP2016080430A (en) * 2014-10-14 2016-05-16 住友電気工業株式会社 Photoprobe and measuring apparatus
WO2016208048A1 (en) * 2015-06-26 2016-12-29 株式会社日立製作所 Gas analysis device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104171A (en) * 1996-09-09 1998-04-24 Lucent Technol Inc Optical system and object inspecting method using the same
JP2001141567A (en) * 1999-11-10 2001-05-25 Japan Science & Technology Corp Infrared spectroscope
JP2001511882A (en) * 1996-01-12 2001-08-14 ミネソタ マイニング アンド マニュファクチャリング カンパニー Spectroscopy sample holder
JP2003121360A (en) * 2001-10-11 2003-04-23 Mitsubishi Heavy Ind Ltd Method and apparatus for measuring micro constituent using laser beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001511882A (en) * 1996-01-12 2001-08-14 ミネソタ マイニング アンド マニュファクチャリング カンパニー Spectroscopy sample holder
JPH10104171A (en) * 1996-09-09 1998-04-24 Lucent Technol Inc Optical system and object inspecting method using the same
JP2001141567A (en) * 1999-11-10 2001-05-25 Japan Science & Technology Corp Infrared spectroscope
JP2003121360A (en) * 2001-10-11 2003-04-23 Mitsubishi Heavy Ind Ltd Method and apparatus for measuring micro constituent using laser beam

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636917B2 (en) * 2005-03-28 2011-02-23 キヤノン株式会社 Sample holding device, sample detection apparatus and sample detection method using the same
JP2006275592A (en) * 2005-03-28 2006-10-12 Canon Inc Device for holding specimen, specimen detector using same, and specimen detection method
JP2007071610A (en) * 2005-09-06 2007-03-22 Canon Inc Sensing device and sensing method
JP2008164594A (en) * 2006-12-05 2008-07-17 Canon Inc Detecting method using electromagnetic wave, and detection device
JP2008197081A (en) * 2007-02-15 2008-08-28 Junichi Nishizawa Detection and analysis method for substance in living body or excreted from living body
JP2010169658A (en) * 2008-12-25 2010-08-05 Canon Inc Analysis apparatus
US8698085B2 (en) 2008-12-25 2014-04-15 Canon Kabushiki Kaisha Analysis apparatus
JP2010249564A (en) * 2009-04-13 2010-11-04 Nippon Telegr & Teleph Corp <Ntt> Solubility spectrometry and solubility spectrometric device
JP2012154718A (en) * 2011-01-25 2012-08-16 Fujitsu Ltd Spectral analysis method and sampling unit for spectral analysis
JP2013024639A (en) * 2011-07-19 2013-02-04 Murata Mfg Co Ltd Method for measuring measured object
JP2016080430A (en) * 2014-10-14 2016-05-16 住友電気工業株式会社 Photoprobe and measuring apparatus
WO2016208048A1 (en) * 2015-06-26 2016-12-29 株式会社日立製作所 Gas analysis device
JPWO2016208048A1 (en) * 2015-06-26 2017-08-03 株式会社日立製作所 Gas analyzer

Similar Documents

Publication Publication Date Title
Hanf et al. Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis
Sun et al. Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis
Cyrys et al. Comparison between different traffic-related particle indicators: elemental carbon (EC), PM 2.5 mass, and absorbance
US9658196B2 (en) Gas collection and analysis system with front-end and back-end pre-concentrators and moisture removal
Allouch et al. Transportable, fast and high sensitive near real-time analyzers: Formaldehyde detection
Shen et al. Rapid flu diagnosis using silicon nanowire sensor
Burtscher Physical characterization of particulate emissions from diesel engines: a review
JP5080494B2 (en) Assay devices, methods and reagents
Li et al. Nanoelectromechanical resonator arrays for ultrafast, gas-phase chromatographic chemical analysis
Rattray et al. Taking your breath away: metabolomics breathes life in to personalized medicine
US6300638B1 (en) Modular probe for total internal reflection fluorescence spectroscopy
JP2603611B2 (en) Method and apparatus for optically identifying species parameters in liquid analytes
Jiang et al. Microfluidic whole-blood immunoassays
Nylander et al. Gas detection by means of surface plasmon resonance
JP5341519B2 (en) Gas analysis
US7724373B2 (en) Sub-micron surface plasmon resonance sensor systems
CN101449135B (en) Polarization based interferometric detector
Lu et al. High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water
US8174700B2 (en) Portable and cartridge-based surface plasmon resonance sensing systems
Lee et al. NutriPhone: a mobile platform for low-cost point-of-care quantification of vitamin B 12 concentrations
JP2016502077A (en) Portable breath volatile organic compound analyzer and its unit
Quinn et al. Development and application of surface plasmon resonance-based biosensors for the detection of cell–ligand interactions
JP4549985B2 (en) Microfluidic device having SPR detection capability
US7710566B2 (en) Method and apparatus for photoacoustic measurements
Lu et al. A device for sampling and determination of total particulate mercury in ambient air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110210

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110527