JP4631099B2 - Infrared irradiation wine and its production equipment - Google Patents

Infrared irradiation wine and its production equipment Download PDF

Info

Publication number
JP4631099B2
JP4631099B2 JP2001012639A JP2001012639A JP4631099B2 JP 4631099 B2 JP4631099 B2 JP 4631099B2 JP 2001012639 A JP2001012639 A JP 2001012639A JP 2001012639 A JP2001012639 A JP 2001012639A JP 4631099 B2 JP4631099 B2 JP 4631099B2
Authority
JP
Japan
Prior art keywords
infrared
wine
irradiated
pulsed light
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001012639A
Other languages
Japanese (ja)
Other versions
JP2002209571A (en
Inventor
洌 加藤
詠子 高岡
宏治 石井
和司 豊田
孝信 古川
Original Assignee
株式会社石井鐵工所
洌 加藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社石井鐵工所, 洌 加藤 filed Critical 株式会社石井鐵工所
Priority to JP2001012639A priority Critical patent/JP4631099B2/en
Publication of JP2002209571A publication Critical patent/JP2002209571A/en
Application granted granted Critical
Publication of JP4631099B2 publication Critical patent/JP4631099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、酸化を防止し、かつ腐敗をも防止した赤外線照射ワインおよびそのワインの製造装置に関するものである。
【0002】
【従来の技術】
ワインの酸化および腐敗を防止するため、葡萄の破砕から瓶詰めまでのワインの各製造工程において酸化防止の抗酸化剤、例えば亜硫酸塩を添加し、長期間にわたるワインの高品質保持を図っていた。
【0003】
また、酒の短期醸成や殺菌、あるいは水の活性化などを目的にして、赤外線放電ランプから照射される赤外線あるいは遠赤外線放射体、例えば遠赤外線セラミックスなどから放射される遠赤外線を酒等に照射する方法の赤外線照射技術が考えられている。
【0004】
【発明が解決しようとする課題】
上記亜硫酸塩を添加するワインは、その亜硫酸塩添加工程において、毒性を有する亜硫酸の取り扱いに細心の注意が必要である。そして、亜硫酸を添加したワインは飲用した際にアレルギーや過敏症等の健康阻害問題を惹起する恐れがある。なお、国内においては、ワイン中の亜硫酸塩残留濃度を350ppm以下に抑えるよう法的規制が設けられている。
【0005】
また、上記赤外線照射の従来技術は、幅広い波長が含まれた連続波の遠赤外線、例えば特開平8−196262号公報に開示された発明では3μmから25μmの遠赤外線を用いて行うようにしているためにあまり大きな効果は期待できず、二次的に発生する問題、例えば被照射物に含まれる水分やアルコール分等が遠赤外線照射によって加熱しやすく、被照射物を高温変質させてしまう問題等の、未だ解決すべき多くの課題を残していた。
【0006】
この発明は上述した従来の技術が内在する問題等の課題を解決するためになされたものであって、より有効なる波長範囲の赤外線を、より効率的に用いてワインに照射し、酸化を防止するとともに腐敗をも防止し、かつ長期間にわたる高品質保持を可能にした赤外線照射ワインおよびその製造装置を提供するものである。
【0007】
【課題を解決するための手段】
この発明に係る赤外線照射ワインは、酸化防止剤が添加されていないワインに波長範囲5.1μmから6.4μmの赤外線パルス光を照射したものである。
【0008】
また、この発明に係る赤外線照射ワインの製造装置は、高速くり返し発振型炭酸ガスレーザーの第二次高調波である5.1μmから5.9μm波長範囲のパルス光を発生する赤外線発生装置を用いて酸化防止剤が添加されていないワインに前記パルス光を照射するものである。
【0009】
また、この発明に係る赤外線照射ワインの製造装置は、高速くり返し発振型炭酸ガスレーザーで励起したアンモニアレーザーの第二次高調波である6.4μm波長のパルス光を発生する赤外線発生装置を用いて酸化防止剤が添加されていないワインに前記パルス光を照射するものである。
【0010】
また、この発明に係る赤外線照射ワインの製造装置は、赤外線放電管により5.1μmから6.4μm波長範囲のインコヒーレントなパルス光を発生する赤外線発生装置を用いて酸化防止剤が添加されていないワインに前記パルス光を照射するものである。
【0011】
【発明の実施の形態例】
この発明に係る赤外線照射ワインおよびその製造装置の実施形態例について図を参照し説明する。図1は、所定波長、つまり波長範囲5.1μmから6.4μmの赤外線パルス光を被照射ワインに照射して製造する赤外線照射ワインおよびその製造装置を説明するために一部簡略化して示したブロック線図である。
【0012】
図中符号1は、波長範囲5.1μmから6.4μmの赤外線パルス光を発生する赤外線発生装置、2は赤外線を照射して処理する被照射ワインである。
【0013】
赤外線照射ワインを製造するために、被照射ワイン2に照射する所定波長の赤外線パルス光は、炭酸ガスレーザー等のレーザー発振装置を用いた赤外線発生装置1から得られる高調波のパルス光、若しくは赤外線ランプのような赤外線放電管や遠赤外線放射体等を用いて、例えばフラッシュランプの如く電気回路的にパルス光を得る方式、あるいはシャッターによる断続で機械的に断続光的なパルス光を得る方式等で形成された赤外線発生装置1から得られるパルス光等が用いられる。
なお、この発明に係る赤外線照射ワインにおいては、その製造に用いられる赤外線発生装置1そのものの構成を何ら特定しているものではない。
【0014】
赤外線照射ワインを製造するために、処理する被照射ワイン2に照射する赤外線パルス光の波長範囲は、ワインに各種波長の赤外線を照射して実験的に求め得たものであり、ワインの酸化を防止し、かつワインの腐敗防止に、より有効な波長範囲が5.1μmから6.4μmの波長域に存在していた。
この波長域には、被照射ワイン2に含まれている水分及びアルコール分の赤外線吸収バンド(約3μm近辺)、および被照射ワイン2に含まれているアルコール分の赤外線吸収バンド(約7μm近辺)が含まれていないことから、被照射ワイン2の赤外線照射ワインが赤外線照射によって加熱され高温変質する問題から開放されている。
【0015】
なお、6μm波長域付近に、水分の赤外線吸収バンドが存在しているが、この赤外線吸収バンド1の赤外線光は、1光子当たりのエネルギーが大きい上記赤外線吸収バンド(約3μm近辺)の赤外線光と比較して1光子当たりのエネルギーが約1/2と小さいために、加熱条件が緩和される(加熱に寄与するエネルギーは小さくなる)ので、高温変質問題は生じ難い。
また、実験によれば、被照射ワイン2に照射する赤外線パルス光の波長5.1μm未満および6.4μmを越える波長域では、ワインの酸化防止および腐敗防止において、照射効果は全く得られず、被照射ワイン2の高温変質問題が生じ易い。
【0016】
また、ワインの酸化防止および腐敗防止に適用する赤外線は、次に示す問題等から、反応が低い赤外線の連続波に比べてパルス光の方が、より適している。その第1の問題は、短時間に高出力をくり返すパルス光の照射に比べて入射熱量が多くなりやすい連続波の赤外線は被照射ワイン2の高温化を招きやすい点、その第2の問題は、連続波の赤外線はパルス光の赤外線に比べて被照射ワイン2へのエネルギー的な照射効率が極端に低下する点等を内在しているからである。
【0017】
そして、この被照射ワイン2に照射する赤外線パルス光は、被照射ワイン2の性状によって採用すべき赤外線パルス光が異なるものではあるが、尖頭出力(ピーク出力)は1平方センチメートルあたり約100W(ワット)から約100kW(キロワット)、パルス幅は10ns(ナノセカント)から200ns(ナノセカント)、周波数は10kHz(キロヘルツ)から100kHz(キロヘルツ)の範囲の中から選択すれば、酸化防止および腐敗防止を図る被照射ワイン2の性状に、より適した条件の赤外線パルス光が見つけられる。
【0018】
なお、赤外線パルス光の照射適用時間について追述すると、周波数一定の赤外線パルス光にあっても長時間照射すれば、被照射ワイン2への入射熱量が過多となって被照射部分が沸騰し変質する高温問題を惹起しやすく、他方周波数一定の赤外線パルス光の短時間照射は、酸化防止および腐敗防止の効果を発現させるためのエネルギー不足問題を生じさせやすいので、被照射ワイン2の性状や赤外線発生装置1の能力、例えばパルス持続時間やパルス繰り返し数等を勘案して、より適した赤外線パルス光の照射時間を適用すべきである。
【0019】
【実施例】
製造後の亜硫酸無添加の白ワインおよび赤ワインを被照射ワイン2の試験体とし、図1に示した装置で所定波長の赤外線パルス光を照射して製造する赤外線照射ワインの事例について、その時間経過とともに変化する試験体の酸化状況を、赤外線パルス光を照射していない未処理の試験体の変化と比較して説明する。
【0020】
酸化の状況は、酸化還元電位計を用いて測定した試験体の酸化還元電位差の変化、および紫外・可視分光光度計を用いて測定した試験体の吸光度の変化によってそれぞれ評価した。
【0021】
(1)酸化還元電位差の変化について:
図2は、白ワインの酸化還元電位変化の推移事例の一例を示したものである。この赤外線照射白ワインの試験体は、亜硫酸無添加白ワインに対して波長5.3μm、平均入射エネルギー0.4W(ワット)の赤外線パルス光を10分間照射したものである。
赤外線照射後24時間経過した時点での赤外線照射白ワインの試験体酸化還元電位は、同じく24時間経過した未処理の試験体(赤外線パルス光を照射していない亜硫酸無添加白ワイン)の酸化還元電位よりも24mV(ミリボルト)電位が低く、風味も劣化していなかった。それに対して、未処理の試験体の酸化速度は約1.5倍も大きく、ワイン本来の風味が損なわれていたことから、亜硫酸無添加白ワインに対し、波長5.3μmの赤外線を適切な条件で照射することにより酸化抑制効果が得られることを確認した。
【0022】
また、24時間経過後も、経過日数と共に赤外線パルス光を照射した試験体と未処理の試験体との酸化還元電位の差は徐々に拡大した。そして、風味の保持の点においても赤外線パルス光を照射した亜硫酸無添加白ワインの試験体は未処理の試験体に比べて顕著な効果があった。
なお、詳述は省略するが、亜硫酸無添加の赤ワインを試験体にして行った事例においても、上記と同傾向の酸化抑制効果が得られることを確認した。
【0023】
そして、上記と同傾向の酸化抑制効果は、アンモニアレーザーの第二次高調波である6.4μm赤外線パルス光でも得られたが、8.7μmから11.8μmで発振する炭酸ガスレーザーの基本波や同じ炭酸ガスレーザーの第二次高調波(例えば9.2714μmの第二次高調波4.636μm)、第三次高調波(例えば10.5910μmの第三次高調波3.530μm及び9.2714μmの第三次高調波3.090μm)といった短い波長の赤外線パルス光では、このような結果は全く得られなかった。
【0024】
(2)吸光度の変化について:
酸化に伴って生ずるワインの色調変化(褐変)を紫外・可視分光光度計によって吸光度の変化により測定(透過度を計測)した。
亜硫酸無添加赤ワインに対して波長5.3μm、照射エネルギー0.25W(ワット)の赤外線パルス光を16分間照射した試験体の例では、赤外線を照射した試験体の7日経過時点における波長0.65μm可視光の透過度が初期値より48%直線的に低下したのに対して、同じく7日経過した未処理(赤外線を照射していない亜硫酸無添加赤ワイン)の試験体では63%の低下を示し、約1.3倍以上の透過度変化が観察された。
【0025】
その後も、長期間にわたる測定によれば、赤外線パルス光を照射した試験体と未処理の試験体との透過度の差は徐々に大きくなっていくことからしても、波長5.3μmの赤外線パルス光を照射した亜硫酸無添加の赤ワインは、赤外線パルス光を照射していない亜硫酸無添加の赤ワインに比べて、酸化による褐変の抑制効果が顕著であることが判明した。
【0026】
なお、詳述を省略するが、亜硫酸無添加白ワインの試験体に対して、同じく波長5.3μmの赤外線パルス光を照射した試験体の事例においても、上記と同傾向の酸化抑制効果が得られることを確認した。
また、波長4.8μm以下と波長9.27μm以上の赤外線パルス光を照射したものにあっては、上記のような際立った褐変抑制効果は全く認められなかった。
【0027】
ところで、上記実施例における赤外線パルス光照射用の赤外線発生装置1は、次に示す3種の赤外線発生装置1を用いた。
その第1の赤外線発生装置1は、高速くり返し発振型炭酸ガスレーザーで発生させた赤外線パルス光の基本波をセレン化亜鉛(ZnSe)製のビーム・スプリッター(図示省略)でカットし、第二次高調波、例えば波長5.3μmの赤外線パルス光だけを取り出す装置である。
【0028】
その第2の赤外線発生装置1は、高速くり返し発振型炭酸ガスレーザーで励起したアンモニアレーザーの基本波、および吸収されなかった炭酸ガスレーザーの基本波をセレン化亜鉛(ZnSe)製のビーム・スプリッター(図示省略)でカットし、波長6.4μmの赤外線パルス光だけを取り出す装置である。
【0029】
その第3の赤外線発生装置1は、赤外線放電管を用いて発生させた赤外線パルス光(波長1μmから10μm)を複屈折フィルター(図示省略)でカットし所定波長(5.1μmから6.4μm)が混在したパルス光、つまりインコヒーレントな赤外線パルス光を得る装置である。
【0030】
上記第1の赤外線発生装置1は透明性の高い(赤外線の透過性が良い)ワインの赤外線照射ワイン製造に適し、第2の赤外線発生装置1はワイン酵母の加温熟成補助などをも合わせて期待するワインの赤外線照射ワイン製造に適し、第3の赤外線発生装置1は変換効率が第1の赤外線発生装置1、第2の赤外線発生装置1に比較して約1/2になるものの、比較的安価に製作することができるため大量処理用の普及品製造装置に適する。
【0031】
被照射ワイン2には、例えばワインへの入力エネルギー0.4W(ワット)で6分から16分の間、あるいは0.25W(ワット)で10分から25分の間、赤外線パルス光を照射することによって上述した実施例の酸化抑制効果を確認しているが、前述しているように、赤外線パルス光の最適な照射条件は、被照射ワインの種類や赤外線発生装置1の性能相違等により適宜決定し、採用されるべきである。
【0032】
また、上記実施例における赤外線照射ワインの成果は、幅広い波長が含まれた赤外線ランプから照射される連続波の赤外線、あるいは遠赤外線セラミックスから放射される幅広い波長が含まれた赤外線の従来の赤外線照射方式が、酸化および腐敗の抑制に有効な波長の赤外線出力が必然的に小さくなるのに対し、所定波長(5.1μmから6.4μm)の酸化および腐敗の抑制に最も有効な赤外線をより強く集光してくり返し照射される結果から得られたものである。
【0033】
ところで、所定波長(5.1μmから6.4μm)の赤外線パルス光を照射した被照射ワイン2の温度上昇は、従来の赤外線照射方式に比べて小さいものではあるが、被照射ワイン2を冷却しながら所定波長の赤外線パルス光照射を行うようにすれば、被照射ワイン2の赤外線照射ワインが高温変質する心配をより一層減らすことができる。なお、ワインの熟成補助や殺菌などの赤外線加温効果をも含めて得ようとする場合には、その目的に適した温度確保ができるように温度調整制御しながら所定波長(5.1μmから6.4μm)の赤外線パルス光を照射する。
【0034】
【発明の効果】
上記詳述した通り、波長範囲5.1μmから6.4μmの赤外線パルス光を酸化防止剤が添加されていないワインに照射した赤外線照射ワインは、より効率的に酸化が防止されるとともに腐敗をも防止され、かつ長期間にわたる高品質保持を可能にしたワインとなる。
【0035】
高速くり返し発振型炭酸ガスレーザーの第二次高調波である5.1μmから5.9μm波長範囲のパルス光を発生する赤外線発生装置を用いた赤外線照射ワインの製造装置においては、ワインの中でも透明性の高いワインに適した赤外線照射ワインの製造装置となる。
【0036】
高速くり返し発振型炭酸ガスレーザーで励起したアンモニアレーザーの第二次高調波である6.4μm波長のパルス光を発生する赤外線発生装置を用いた赤外線照射ワインの製造装置においては、ワイン酵母の加温熟成補助などをも合わせて期待するワインの処理に適した赤外線照射ワインの製造装置となる。
【0037】
赤外線照射ワインの製造装置に用いる赤外線発生装置を、赤外線放電管を用いて5.1μmから6.4μm波長範囲のパルス光を発生する装置とするものにあっては、比較的安価に製作することができるため、大量処理用の普及品に適した赤外線照射ワインの製造装置とすることができる。
【0038】
【図面の簡単な説明】
【図1】この発明に係る赤外線照射ワインの製造装置を説明するために一部簡略化して示したブロック線図である。
【図2】白ワインの酸化還元電位変化の推移事例の一例を示したグラフ図である。
【符号の説明】
1 赤外線発生装置
2 被照射ワイン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an infrared irradiation wine that prevents oxidation and also prevents spoilage and an apparatus for producing the wine.
[0002]
[Prior art]
In order to prevent wine oxidation and spoilage, antioxidants such as sulfites are added in each wine production process from crushing to bottling to maintain high quality wine over a long period of time.
[0003]
Also, for the purpose of short-term brewing and sterilization of liquor, or activation of water, irradiate alcohol with far infrared rays emitted from infrared discharge lamps or far infrared radiators such as far infrared ceramics. Infrared irradiation technology is considered.
[0004]
[Problems to be solved by the invention]
The wine to which the above sulfite is added requires careful attention to the handling of toxic sulfite in the sulfite addition step. In addition, wine containing sulfurous acid may cause health problems such as allergies and hypersensitivity when consumed. In Japan, there are legal regulations to limit the residual concentration of sulfite in wine to 350 ppm or less.
[0005]
The prior art of the above infrared irradiation is performed using a continuous wave far infrared ray including a wide range of wavelengths, for example, a far infrared ray of 3 μm to 25 μm in the invention disclosed in JP-A-8-196262. Therefore, problems that occur secondarily, such as moisture and alcohol contained in the irradiated object, are easily heated by far-infrared irradiation, causing the irradiated object to be altered at high temperatures, etc. However, there were still many issues to be solved.
[0006]
The present invention was made to solve the problems such as the problems inherent in the prior art described above, and irradiates wine more efficiently using infrared rays in a more effective wavelength range to prevent oxidation. In addition, the present invention provides an infrared irradiation wine and an apparatus for producing the same, which can prevent spoilage and maintain high quality over a long period of time.
[0007]
[Means for Solving the Problems]
The infrared irradiation wine according to the present invention is obtained by irradiating a wine to which an antioxidant is not added with infrared pulsed light having a wavelength range of 5.1 μm to 6.4 μm.
[0008]
Moreover, the infrared irradiation wine manufacturing apparatus according to the present invention uses an infrared generator that generates pulsed light in the wavelength range of 5.1 μm to 5.9 μm, which is the second harmonic of a high-speed repetitive oscillation type carbon dioxide laser. The pulse light is irradiated to wine to which no antioxidant is added.
[0009]
In addition, the infrared irradiation wine manufacturing apparatus according to the present invention uses an infrared generator that generates pulsed light having a wavelength of 6.4 μm, which is the second harmonic of an ammonia laser excited by a high-speed repetitive oscillation type carbon dioxide laser. The pulse light is irradiated to wine to which no antioxidant is added.
[0010]
In addition, the infrared irradiation wine manufacturing apparatus according to the present invention uses an infrared generator that generates incoherent pulsed light in the wavelength range of 5.1 μm to 6.4 μm by an infrared discharge tube, and no antioxidant is added. The wine is irradiated with the pulsed light.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of an infrared irradiation wine and its manufacturing apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a partly simplified view for explaining an infrared irradiated wine manufactured by irradiating an irradiated wine with an infrared pulsed light having a predetermined wavelength, that is, a wavelength range of 5.1 μm to 6.4 μm. It is a block diagram.
[0012]
In the figure, reference numeral 1 denotes an infrared generator that generates infrared pulsed light having a wavelength range of 5.1 μm to 6.4 μm, and reference numeral 2 denotes irradiated wine that is processed by irradiation with infrared rays.
[0013]
In order to produce an infrared irradiated wine, the infrared pulsed light of a predetermined wavelength irradiated to the irradiated wine 2 is a harmonic pulsed light obtained from the infrared generator 1 using a laser oscillation device such as a carbon dioxide laser, or an infrared ray. Using an infrared discharge tube such as a lamp, a far-infrared radiator, etc., for example, a method of obtaining pulsed light in an electric circuit, such as a flash lamp, or a method of obtaining intermittently pulsed light mechanically by intermittently using a shutter, etc. The pulsed light etc. which are obtained from the infrared ray generator 1 formed by the above are used.
In addition, in the infrared irradiation wine which concerns on this invention, the structure of the infrared generator 1 itself used for the manufacture is not specified at all.
[0014]
In order to produce infrared irradiated wine, the wavelength range of the infrared pulsed light irradiated to the irradiated wine 2 to be processed was obtained experimentally by irradiating the wine with various wavelengths of infrared rays. In addition, a more effective wavelength range exists in the wavelength range of 5.1 μm to 6.4 μm for preventing wine from being spoiled.
In this wavelength range, an infrared absorption band (about 3 μm) of water and alcohol contained in the irradiated wine 2 and an infrared absorption band (about 7 μm) of alcohol contained in the irradiated wine 2 Therefore, it is freed from the problem that the infrared irradiated wine of the irradiated wine 2 is heated by infrared irradiation and deteriorated at high temperature.
[0015]
An infrared absorption band of moisture exists in the vicinity of the 6 μm wavelength region. The infrared light of the infrared absorption band 1 is the same as the infrared light of the infrared absorption band (around 3 μm) having a large energy per photon. In comparison, since the energy per photon is as small as about ½, the heating conditions are relaxed (energy contributing to heating is reduced), so that the high temperature alteration problem hardly occurs.
In addition, according to the experiment, in the wavelength range of less than 5.1 μm and more than 6.4 μm of the infrared pulsed light irradiating the irradiated wine 2, the irradiation effect is not obtained at all in preventing oxidation and decay of the wine, High temperature alteration problems of the irradiated wine 2 are likely to occur.
[0016]
In addition, pulsed light is more suitable for infrared rays applied for wine oxidation prevention and anti-corruption because of the following problems and the like, compared to infrared continuous waves with low response. The first problem is that the continuous wave infrared ray, whose amount of incident heat tends to be larger than that of pulsed light that repeats high output in a short time, tends to cause the temperature of the irradiated wine 2 to increase, and the second problem. This is because the continuous wave infrared ray inherently has a point that the energy irradiation efficiency to the irradiated wine 2 is extremely lower than that of the pulsed light infrared ray.
[0017]
The infrared pulsed light irradiated to the irradiated wine 2 is different from the infrared pulsed light to be adopted depending on the properties of the irradiated wine 2, but the peak output (peak output) is about 100 W per square centimeter (watts). ) To about 100 kW (kilowatt), pulse width of 10 ns (nanosecond) to 200 ns (nanosecond), and frequency selected from the range of 10 kHz (kilohertz) to 100 kHz (kilohertz) Infrared pulsed light with conditions more suitable for the properties of wine 2 can be found.
[0018]
In addition, the irradiation application time of the infrared pulse light will be described. If the infrared pulse light having a constant frequency is irradiated for a long time, the amount of heat incident on the irradiated wine 2 becomes excessive and the irradiated portion boils and changes its quality. It is easy to cause a high temperature problem. On the other hand, short-time irradiation of infrared pulsed light with a constant frequency is likely to cause an energy shortage problem to exhibit the effect of preventing oxidation and anti-corruption. In consideration of the capability of the apparatus 1, such as the pulse duration and the number of pulse repetitions, a more suitable irradiation time of infrared pulse light should be applied.
[0019]
【Example】
Time course of an example of an infrared irradiation wine manufactured by irradiating an infrared pulsed light having a predetermined wavelength with the apparatus shown in FIG. The oxidation state of the test body that changes with the comparison will be described in comparison with the change of the untreated test body that was not irradiated with the infrared pulse light.
[0020]
The state of oxidation was evaluated by the change in the redox potential difference of the test specimen measured using the redox potentiometer and the change in the absorbance of the test specimen measured using the ultraviolet / visible spectrophotometer.
[0021]
(1) Change in redox potential difference:
FIG. 2 shows an example of transition of the redox potential change of white wine. This infrared irradiated white wine specimen was obtained by irradiating white wine with no sulfite added with infrared pulsed light having a wavelength of 5.3 μm and an average incident energy of 0.4 W (watts) for 10 minutes.
The redox potential of the test specimen of infrared irradiated white wine after 24 hours from the infrared irradiation is the redox potential of an untreated test specimen (white wine without addition of sulfite which has not been irradiated with infrared pulse light). The potential was 24 mV (millivolt) lower than the potential, and the flavor was not deteriorated. On the other hand, the oxidation rate of the untreated specimen was about 1.5 times larger, and the original flavor of the wine was impaired. Therefore, an infrared ray having a wavelength of 5.3 μm was appropriately applied to white wine without sulfite. It was confirmed that an oxidation inhibiting effect was obtained by irradiation under conditions.
[0022]
In addition, even after 24 hours, the difference in oxidation-reduction potential between the test specimen irradiated with the infrared pulse light and the untreated specimen gradually increased with the elapsed days. And also in terms of maintaining the flavor, the test sample of white wine added with no sulfite irradiated with infrared pulse light had a remarkable effect as compared with the untreated test sample.
In addition, although detailed description is omitted, it was confirmed that an oxidation suppression effect having the same tendency as described above was obtained even in a case where red wine without sulfite was used as a test specimen.
[0023]
The oxidation suppression effect of the same tendency as described above was obtained with the 6.4 μm infrared pulsed light that is the second harmonic of the ammonia laser, but the fundamental wave of the carbon dioxide laser that oscillates from 8.7 μm to 11.8 μm. And second harmonics (for example, 9.2714 μm second harmonic 4.636 μm) and third harmonics (for example, 10.5910 μm third harmonics 3.530 μm and 9.2714 μm) of the same carbon dioxide laser. Such a result was not obtained at all with an infrared pulse light having a short wavelength such as the third harmonic of 3.090 μm.
[0024]
(2) Change in absorbance:
The change in the color tone (browning) of wine caused by oxidation was measured by measuring the absorbance (transmittance) with an ultraviolet / visible spectrophotometer.
In the example of the test specimen irradiated with infrared pulsed light having a wavelength of 5.3 μm and an irradiation energy of 0.25 W (Watts) for red wine not added with sulfite for 16 minutes, a wavelength of 0. While the transmittance of visible light of 65 μm decreased linearly by 48% from the initial value, the untreated (red sulfite-free red wine not irradiated with infrared rays) that had passed for 7 days also had a decrease of 63%. As shown, a transmittance change of about 1.3 times or more was observed.
[0025]
Even after that, according to the measurement over a long period of time, the difference in transmittance between the specimen irradiated with the infrared pulsed light and the untreated specimen gradually increases, so that the infrared having a wavelength of 5.3 μm It has been found that the red wine added with no sulfite irradiated with pulsed light has a remarkable effect of suppressing browning due to oxidation, compared with the red wine added with no sulfite without irradiated with infrared pulsed light.
[0026]
Although not described in detail, the same oxidation suppression effect as described above was obtained even in the case of a test sample that was irradiated with infrared pulsed light having a wavelength of 5.3 μm on a test sample of white wine without addition of sulfite. It was confirmed that
Further, in the case of irradiation with infrared pulsed light having a wavelength of 4.8 μm or less and a wavelength of 9.27 μm or more, the remarkable browning suppression effect as described above was not recognized at all.
[0027]
By the way, the infrared generator 1 for infrared pulse light irradiation in the said Example used the three types of infrared generators 1 shown next.
The first infrared ray generator 1 cuts a fundamental wave of infrared pulsed light generated by a high-speed repetitive oscillation type carbon dioxide laser with a beam splitter (not shown) made of zinc selenide (ZnSe), It is a device that extracts only harmonics, for example, infrared pulsed light having a wavelength of 5.3 μm.
[0028]
The second infrared ray generator 1 is a beam splitter made of zinc selenide (ZnSe) that converts the fundamental wave of an ammonia laser excited by a high-speed repetitive oscillation type carbon dioxide laser and the fundamental wave of an unabsorbed carbon dioxide laser (ZnSe). It is a device that cuts out only the infrared pulse light having a wavelength of 6.4 μm.
[0029]
The third infrared ray generator 1 cuts infrared pulsed light (wavelength 1 μm to 10 μm) generated using an infrared discharge tube with a birefringence filter (not shown) and has a predetermined wavelength (5.1 μm to 6.4 μm). Is a device that obtains pulsed light mixed with, that is, incoherent infrared pulsed light.
[0030]
The first infrared ray generator 1 is suitable for the production of infrared-irradiated wine of highly transparent (highly transparent infrared rays) wine, and the second infrared ray generator 1 is also equipped with warming and aging assistance for wine yeast. It is suitable for the production of wine that is expected to be irradiated with infrared rays. The third infrared ray generator 1 has a conversion efficiency of about ½ that of the first infrared ray generator 1 and the second infrared ray generator 1. Since it can be manufactured at a reasonable cost, it is suitable for a popular product manufacturing apparatus for mass processing.
[0031]
For example, by irradiating the irradiated wine 2 with infrared pulsed light at an input energy of 0.4 W (watts) to the wine for 6 to 16 minutes or at 0.25 W (watts) for 10 to 25 minutes. Although the oxidation suppression effect of the above-described embodiment has been confirmed, as described above, the optimum irradiation condition of the infrared pulsed light is appropriately determined depending on the type of wine to be irradiated, the performance difference of the infrared generator 1 and the like. Should be adopted.
[0032]
In addition, the result of the infrared irradiation wine in the above embodiment is the conventional infrared irradiation of a continuous wave infrared ray radiated from an infrared lamp containing a wide range of wavelengths or an infrared ray containing a wide range of wavelengths radiated from a far infrared ceramic. The method inevitably reduces the infrared output of wavelengths that are effective in suppressing oxidation and decay, whereas the infrared light that is most effective in suppressing oxidation and decay of a predetermined wavelength (5.1 μm to 6.4 μm) is stronger. It was obtained from the result of focused and repeatedly irradiated.
[0033]
By the way, although the temperature rise of the irradiated wine 2 irradiated with infrared pulsed light having a predetermined wavelength (5.1 μm to 6.4 μm) is smaller than that of the conventional infrared irradiation method, the irradiated wine 2 is cooled. However, if irradiation with infrared pulsed light having a predetermined wavelength is performed, it is possible to further reduce the fear that the infrared irradiated wine of the irradiated wine 2 will be altered by high temperatures. In addition, when an infrared heating effect such as wine ripening assistance and sterilization is to be obtained, a predetermined wavelength (5.1 μm to 6 μm) is controlled while controlling the temperature so as to ensure a temperature suitable for the purpose. .4 μm) of infrared pulsed light.
[0034]
【The invention's effect】
As described in detail above, infrared irradiated wine irradiated with infrared pulsed light having a wavelength range of 5.1 μm to 6.4 μm to a wine to which no antioxidant is added is more efficiently prevented from being oxidized and rotted. It is a wine that has been prevented and has been capable of maintaining high quality over a long period of time.
[0035]
In an infrared irradiation wine production apparatus using an infrared generator that generates pulsed light in the wavelength range of 5.1 μm to 5.9 μm, which is the second harmonic of a high-speed repetitive oscillation type carbon dioxide laser, it is transparent among wines. Infrared irradiated wine production equipment suitable for high-quality wine.
[0036]
In an infrared irradiation wine manufacturing apparatus using an infrared generator that generates a 6.4 μm wavelength pulsed light that is a second harmonic of an ammonia laser excited by a high-speed repetitive oscillation type carbon dioxide laser, It becomes an infrared irradiation wine manufacturing apparatus suitable for wine processing that is expected with aging assistance.
[0037]
Infrared generators used in the production equipment for infrared irradiation wine should be manufactured at a relatively low cost for devices that generate pulsed light in the wavelength range of 5.1 μm to 6.4 μm using an infrared discharge tube. Therefore, it can be set as the manufacturing apparatus of the infrared irradiation wine suitable for the popular article for mass processing.
[0038]
[Brief description of the drawings]
FIG. 1 is a partially simplified block diagram for explaining an apparatus for producing infrared-irradiated wine according to the present invention.
FIG. 2 is a graph showing an example of a transition example of the redox potential change of white wine.
[Explanation of symbols]
1 Infrared generator 2 Irradiated wine

Claims (4)

酸化防止剤が添加されていないワインに波長範囲5.1μmから6.4μmの赤外線パルス光を照射することを特徴とする赤外線照射ワイン。An infrared irradiation wine characterized by irradiating a wine to which an antioxidant is not added with infrared pulsed light having a wavelength range of 5.1 μm to 6.4 μm. 高速くり返し発振型炭酸ガスレーザーの第二次高調波である5.1μmから5.9μm波長範囲のパルス光を発生する赤外線発生装置を用いて酸化防止剤が添加されていないワインに前記パルス光を照射することを特徴とする赤外線照射ワインの製造装置。Using an infrared generator that generates pulsed light in the wavelength range of 5.1 μm to 5.9 μm, which is the second harmonic of a high-speed repetitive oscillation type carbon dioxide laser, the pulsed light is applied to wine to which no antioxidant is added. Irradiated wine manufacturing apparatus characterized by irradiating. 高速くり返し発振型炭酸ガスレーザーで励起したアンモニアレーザーの第二次高調波である6.4μm波長のパルス光を発生する赤外線発生装置を用いて酸化防止剤が添加されていないワインに前記パルス光を照射することを特徴とする赤外線照射ワインの製造装置。Using an infrared generator that generates pulsed light with a wavelength of 6.4 μm, which is the second harmonic of an ammonia laser excited by a high-speed repetitive oscillation type carbon dioxide laser, the pulsed light is applied to wine to which no antioxidant is added. Irradiated wine manufacturing apparatus characterized by irradiating. 赤外線放電管により5.1μmから6.4μm波長範囲のパルス光を発生する赤外線発生装置を用いて酸化防止剤が添加されていないワインに前記パルス光を照射することを特徴とする赤外線照射ワインの製造装置。An infrared-irradiated wine characterized by irradiating wine to which no antioxidant is added using an infrared generator that generates pulsed light in a wavelength range of 5.1 μm to 6.4 μm by an infrared discharge tube Manufacturing equipment.
JP2001012639A 2001-01-22 2001-01-22 Infrared irradiation wine and its production equipment Expired - Fee Related JP4631099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001012639A JP4631099B2 (en) 2001-01-22 2001-01-22 Infrared irradiation wine and its production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001012639A JP4631099B2 (en) 2001-01-22 2001-01-22 Infrared irradiation wine and its production equipment

Publications (2)

Publication Number Publication Date
JP2002209571A JP2002209571A (en) 2002-07-30
JP4631099B2 true JP4631099B2 (en) 2011-02-16

Family

ID=18879620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001012639A Expired - Fee Related JP4631099B2 (en) 2001-01-22 2001-01-22 Infrared irradiation wine and its production equipment

Country Status (1)

Country Link
JP (1) JP4631099B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085415A1 (en) * 2004-03-04 2005-09-15 Kaneka Corporation Novel transformant and process for producing polyester by using the same
JP2007236442A (en) * 2006-03-06 2007-09-20 Matsushita Electric Ind Co Ltd Sterilization method
WO2008035502A1 (en) * 2006-09-23 2008-03-27 Mikio Kuzuu Method of producing processed food
JP5120836B2 (en) * 2007-06-14 2013-01-16 独立行政法人酒類総合研究所 Liquor production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219077A (en) * 1985-07-17 1987-01-27 Ishikawa Tadashi Method of aging sake
JPH11276152A (en) * 1998-12-25 1999-10-12 Toru Hino Distilling apparatus for distilled liquor and production of distilled liquor
JP2001095556A (en) * 1999-10-01 2001-04-10 Toru Hino Brewing method using ultrasonic wave and infrared ray
JP2002523037A (en) * 1998-08-21 2002-07-30 ニコラウ・アサナシオス Method for improving the quality of alcoholic beverages by using electromagnetic waves

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219077A (en) * 1985-07-17 1987-01-27 Ishikawa Tadashi Method of aging sake
JP2002523037A (en) * 1998-08-21 2002-07-30 ニコラウ・アサナシオス Method for improving the quality of alcoholic beverages by using electromagnetic waves
JPH11276152A (en) * 1998-12-25 1999-10-12 Toru Hino Distilling apparatus for distilled liquor and production of distilled liquor
JP2001095556A (en) * 1999-10-01 2001-04-10 Toru Hino Brewing method using ultrasonic wave and infrared ray

Also Published As

Publication number Publication date
JP2002209571A (en) 2002-07-30

Similar Documents

Publication Publication Date Title
Sun et al. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water
US20140105784A1 (en) Ultraviolet treatment device
Dadsetan et al. Effect of CO2 laser radiation on the surface properties of polyethylene terephthalate
TWI413561B (en) Method for processing with laser and laser processing device
FR2482459A1 (en) METHOD FOR STERILIZATION BY DISCHARGE FLASH LAMP
EP0464688A1 (en) Method for destruction of toxic substances with ultraviolet radiation
Berthe et al. The generation of laser shock waves in a water-confinement regime with 50 ns and 150 ns XeCl excimer laser pulses
JPH03505159A (en) How to preserve food
Suemori et al. Effects of light irradiation on bleaching by a 3.5% hydrogen peroxide solution containing titanium dioxide
JP2007521819A (en) Methods for controlling microorganisms in packaged foods
JP4631099B2 (en) Infrared irradiation wine and its production equipment
WO2009119061A1 (en) Printing apparatus and printing method using the same
Belikov et al. Comparative study of the 3um laser action on different hard tooth tissue samples using free running pulsed Er-doped YAG, YSGG, YAP and YLF lasers
WO2016112326A1 (en) System and method for inhibiting radiative emission of a laser-sustained plasma source
JP2009081235A (en) Characteristic control method for n-type oxide semiconductor
JP4106682B2 (en) Fruit juice beverage with improved antioxidant capacity, method for producing fruit juice beverage, apparatus for producing fruit juice beverage, wine with improved antioxidant capacity, wine production method, wine production apparatus
EP3632216A1 (en) Sterilization method and sterilization device
US20030044311A1 (en) Applications for use of pulsed light
UA73370C2 (en) Method for laser coagulation of blood vessels
Amosov et al. Optical breakdown of quartz glass by XeF laser radiation
Ichimura et al. Formation of hot hexafluorobenzene in the 193 nm photolysis
EP2368441B1 (en) Method and device for accelerated fermentation and aging of alcoholic drinks
US11626276B1 (en) Reflector for intense pulse light device
Sinha et al. Photo-stability of laser dye solutions under Copper-vapour-laser excitation
JPH1110101A (en) Photorinsing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

R150 Certificate of patent or registration of utility model

Ref document number: 4631099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees