JP2009081235A - Characteristic control method for n-type oxide semiconductor - Google Patents

Characteristic control method for n-type oxide semiconductor Download PDF

Info

Publication number
JP2009081235A
JP2009081235A JP2007248660A JP2007248660A JP2009081235A JP 2009081235 A JP2009081235 A JP 2009081235A JP 2007248660 A JP2007248660 A JP 2007248660A JP 2007248660 A JP2007248660 A JP 2007248660A JP 2009081235 A JP2009081235 A JP 2009081235A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
laser
type oxide
irradiated
femtosecond laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007248660A
Other languages
Japanese (ja)
Other versions
JP5311789B2 (en
JP2009081235A5 (en
Inventor
Masahiro Tsukamoto
雅裕 塚本
Nobuyuki Abe
信行 阿部
Masaya Takahashi
雅也 高橋
Kuniaki Otsuka
邦顕 大塚
Minoru Yoshida
実 吉田
Hitoshi Nakano
人志 中野
Masayuki Fujita
雅之 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuno Chemical Industries Co Ltd
Osaka University NUC
Institute for Laser Technology
Kinki University
Osaka Municipal Technical Research Institute
Original Assignee
Okuno Chemical Industries Co Ltd
Osaka University NUC
Institute for Laser Technology
Kinki University
Osaka Municipal Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuno Chemical Industries Co Ltd, Osaka University NUC, Institute for Laser Technology, Kinki University, Osaka Municipal Technical Research Institute filed Critical Okuno Chemical Industries Co Ltd
Priority to JP2007248660A priority Critical patent/JP5311789B2/en
Publication of JP2009081235A publication Critical patent/JP2009081235A/en
Publication of JP2009081235A5 publication Critical patent/JP2009081235A5/ja
Application granted granted Critical
Publication of JP5311789B2 publication Critical patent/JP5311789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel use of an n-type oxide semiconductor represented by titanium oxide by making good use of characteristics unique thereto. <P>SOLUTION: Disclosed is a characteristic control method for the n-type oxide semiconductor characterized in that the coating or molding of the n-type oxide semiconductor is irradiated with femtosecond laser light; and a characteristic control method for n-type oxide semiconductor characterized in that after the n-type oxide semiconductor is irradiated with femtosecond laser light by the method, the irradiating portion is irradiated with continuous wave laser light or pulse laser light of ≤1 ms in pulse interval to be put into the state before the irradiation with the femtosecond laser light. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レーザによるn型酸化物半導体の特性制御方法に関する。   The present invention relates to a method for controlling the characteristics of an n-type oxide semiconductor using a laser.

機能性セラミックスの一つとして酸化チタン(TiO2)が注目されている。酸化チタンは約400nm以下の紫外光領域の波長の光を照射する事によって、殺菌、有機物質の分解等に対して強い光触媒効果を示すことが知られている。ところが、これらの領域の光は、太陽光や蛍光灯などの日常的な光源の中に非常に僅かしか含まれていない。このため、光触媒に高い活性を必要とする場合にはブラックライト等の特殊な光源を使用する必要がある。 Titanium oxide (TiO 2 ) has attracted attention as one of functional ceramics. Titanium oxide is known to exhibit a strong photocatalytic effect against sterilization, decomposition of organic substances, and the like when irradiated with light having a wavelength in the ultraviolet region of about 400 nm or less. However, very little light in these areas is contained in everyday light sources such as sunlight and fluorescent lamps. For this reason, when the photocatalyst needs high activity, it is necessary to use a special light source such as black light.

また、酸化チタンに紫外線やX線を照射すると黒色化することが知られており、このような黒色化は、酸化チタンを光触媒や太陽電池として用いる際に、より広い波長域の光を有効に使うための手法として利用可能である(下記非特許文献1参照)。   In addition, it is known that when titanium oxide is irradiated with ultraviolet rays or X-rays, it becomes blackened. Such blackening effectively uses light in a wider wavelength range when titanium oxide is used as a photocatalyst or a solar cell. It can be used as a method for use (see Non-Patent Document 1 below).

この様に酸化チタンは、各種の用途に利用されているが、更に、その有用性を広げるために、新たな用途の開発が望まれる。
電気化学および工業物理化学(電気化学会発行)、69 [5]、p.324〜328(2001)
As described above, titanium oxide is used in various applications, and further development of new applications is desired in order to expand its usefulness.
Electrochemistry and industrial physical chemistry (published by the Electrochemical Society), 69 [5], p.324-328 (2001)

本発明の主な目的は、酸化チタンを代表とするn型酸化物半導体について、その特有の特性を利用して新たな用途を提供することである。   A main object of the present invention is to provide a new application of an n-type oxide semiconductor typified by titanium oxide by utilizing its unique characteristics.

本発明者は、上記した目的を達成すべく鋭意研究を重ねた結果、酸化チタンにフェムト秒レーザを照射する場合には、照射部分のみが黒色に変色して電気抵抗値が低下し、しかも皮膜自体には殆ど損傷が生じないことを見出した。そして、フェムト秒レーザの照射によって黒色化した部分に、連続波レーザ又はパルス間隔1ms以下のパルスレーザを照射する場合には、黒色化した部分が白色となり、電気抵抗値についても、フェムト秒レーザの照射前の値に戻るという驚くべき現象を見出した。本発明は、これらの知見に基づいて更に研究を重ねた結果完成されたものである。   As a result of intensive studies to achieve the above-described object, the present inventor, when irradiating a femtosecond laser to titanium oxide, only the irradiated part is changed to black, and the electric resistance value is lowered. It has been found that there is little damage to itself. When the continuous wave laser or the pulse laser with a pulse interval of 1 ms or less is irradiated to the blackened portion by the femtosecond laser irradiation, the blackened portion becomes white, and the electric resistance value is also the same as that of the femtosecond laser. The surprising phenomenon of returning to the value before irradiation was found. The present invention has been completed as a result of further research based on these findings.

即ち、本発明は、下記のn型酸化物半導体の特性制御方法を提供するものである。
1. n型酸化物半導体の皮膜又は成形体に対してフェムト秒レーザを照射することを特徴とするn型酸化物半導体の特性制御方法。
2. フェムト秒レーザの照射によって、照射部分のn型酸化物半導体の表面又は内部の特性が変化する上記項1に記載のn型酸化物半導体の特性制御方法。
3. フェムト秒レーザの照射によって、照射部分のn型酸化物半導体の表面又は内部の電気抵抗値が低下する上記項1に記載のn型酸化物半導体の特性制御方法。
4. フルーエンス0.05〜0.5J/cm2、パルス幅50〜1000fs、波長200〜1600nmのフェムト秒レーザを照射する上記項1〜3のいずれかに記載の方法。
5. 上記項1〜4のいずれかの方法によってn型酸化物半導体にフェムト秒レーザを照射した後、照射部分に、連続波レーザ又はパルス間隔1ms以下のパルスレーザを照射して、フェムト秒レーザの照射前の状態とすることを特徴とするn型酸化物半導体の特性制御方法。
6. n型酸化物半導体が酸化チタンである上記項1〜5のいずれかに記載の方法。
That is, the present invention provides the following n-type oxide semiconductor characteristic control method.
1. A method for controlling characteristics of an n-type oxide semiconductor, comprising irradiating a film or a molded body of the n-type oxide semiconductor with a femtosecond laser.
2. Item 2. The method for controlling the characteristics of an n-type oxide semiconductor according to Item 1, wherein the characteristics of the surface or the interior of the n-type oxide semiconductor at the irradiated portion are changed by irradiation with the femtosecond laser.
3. Item 2. The method for controlling the characteristics of an n-type oxide semiconductor according to Item 1, wherein the electrical resistance value of the surface or inside of the n-type oxide semiconductor at the irradiated portion is reduced by irradiation with the femtosecond laser.
4). Fluence 0.05~0.5J / cm 2, the pulse width 50~1000Fs, method according to any one of claim 1 to 3 for irradiating a femtosecond laser having a wavelength of 200 to 1600 nm.
5). After irradiating the femtosecond laser to the n-type oxide semiconductor according to any one of the above items 1 to 4, the irradiated portion is irradiated with a continuous wave laser or a pulsed laser having a pulse interval of 1 ms or less to irradiate the femtosecond laser. A method for controlling characteristics of an n-type oxide semiconductor, characterized by being in a previous state.
6). Item 6. The method according to any one of Items 1 to 5, wherein the n-type oxide semiconductor is titanium oxide.

本発明では、処理対象物としては、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウム等のn型半導体の性質を有する酸化物を用いる。これらのn型酸化物半導体は、ガラス基板、石英基板、プラスチックス基板等の各種の基板上に形成された皮膜であってもよく、或いは、n型酸化物半導体からなる成形体であってもよい。例えば、n型酸化物半導体を皮膜として用いる場合には、エアロゾルビームを基板に照射することによって基板上に形成された皮膜を用いることができる。   In the present invention, an oxide having properties of an n-type semiconductor such as titanium oxide, zinc oxide, tin oxide, or indium oxide is used as the object to be processed. These n-type oxide semiconductors may be films formed on various substrates such as a glass substrate, a quartz substrate, and a plastics substrate, or may be a molded body made of an n-type oxide semiconductor. Good. For example, when an n-type oxide semiconductor is used as a film, a film formed on the substrate by irradiating the substrate with an aerosol beam can be used.

本発明方法によれば、n型酸化物半導体に対してフェムト秒レーザを照射することによって、レーザ照射部分のみを黒色に変色させることができる。この黒色化現象は、n型酸化物半導体の内部に酸素欠陥が誘起されることに起因していると思われる。よって、黒色化した部分は、照射前の酸化物と比較すると各種の特性が異なるものとなり、フェムト秒レーザを照射した部分について、部分的に特性を制御して各種の機能を付与することができる。例えば、レーザ照射によって黒色化した部分は、電気抵抗値が大きく低下する。具体的な電気抵抗値は、レーザ照射条件などによって異なるが、非照射部分と比較すると、電気抵抗値を2桁以上低下させることができる。また、酸化チタンなどを被処理物とする場合に、黒色化した部分は、可視光応答型の光触媒として機能するものとなる。   According to the method of the present invention, by irradiating the n-type oxide semiconductor with a femtosecond laser, only the laser irradiated portion can be changed to black. This blackening phenomenon is considered to be caused by the induction of oxygen defects inside the n-type oxide semiconductor. Therefore, the blackened part has different characteristics compared to the oxide before irradiation, and the part irradiated with the femtosecond laser can be partially controlled to give various functions. . For example, the electrical resistance value of a portion blackened by laser irradiation is greatly reduced. Although the specific electric resistance value varies depending on the laser irradiation condition and the like, the electric resistance value can be reduced by two orders of magnitude or more as compared with the non-irradiated portion. Further, when titanium oxide or the like is used as an object to be processed, the blackened portion functions as a visible light responsive photocatalyst.

尚、フェムト秒レーザは、ピーク強度が極めて高く、パルス幅が短いために、照射部分以外の周囲部への熱影響がほとんどない。このため、照射部分以外の特性を変質させることなく、レーザ光を照射した部分のみ、部分的にn型酸化物半導体の特性を変化させることができる。   Note that the femtosecond laser has a very high peak intensity and a short pulse width, so there is almost no thermal influence on the surrounding area other than the irradiated area. For this reason, the characteristics of the n-type oxide semiconductor can be partially changed only in the portion irradiated with the laser light without changing the properties other than the irradiated portion.

また、n型酸化物半導体をガラス基板などのレーザの透過性の良い透明基板上に形成した場合には、n型酸化物半導体に対して直接レーザを照射する方法に代えて、基板側からフェムト秒レーザを照射してもよい。この方法によれば、基板との接触面について、外部雰囲気に接触させることなく、直接特性を制御することができる。この方法では、照射する部位は、n型酸化物半導体の表面に限らず、バルク内部でもよく、この場合には、バルク内部に抵抗値の低い部分を作製することができる。   In addition, when an n-type oxide semiconductor is formed on a transparent substrate having a high laser transmittance, such as a glass substrate, a method of directly irradiating the n-type oxide semiconductor with a laser can be used instead of a femto from the substrate side. A second laser may be irradiated. According to this method, it is possible to directly control the characteristics of the contact surface with the substrate without making contact with the external atmosphere. In this method, the portion to be irradiated is not limited to the surface of the n-type oxide semiconductor, but may be inside the bulk. In this case, a portion having a low resistance value can be formed inside the bulk.

フェムト秒レーザの照射条件については特に限定的ではなく、発振方法などについても特に限定されないが、例えば、フルーエンス0.05〜0.5J/cm2程度、パルス幅50〜1000fs程度、波長200〜1600nm程度のフェムト秒レーザを用いることができ、好ましくは、フルーエンス0.1〜0.2J/cm2程度、パルス幅50〜500fs程度、波長200〜1100nm程度のフェムト秒レーザを用いることができる。 Not particularly limited about the irradiation conditions of the femtosecond laser is not particularly limited for such oscillation method, for example, fluence 0.05~0.5J / cm 2 or so, about the pulse width 50~1000Fs, femto wavelength of approximately 200~1600nm A second laser can be used, and a femtosecond laser having a fluence of about 0.1 to 0.2 J / cm 2 , a pulse width of about 50 to 500 fs, and a wavelength of about 200 to 1100 nm can be preferably used.

また、レンズなどの集光器を用いてレーザビームを集光することによって、書き込み幅、即ち、n型酸化物半導体表面の黒色化させる部分の大きさを制御することができる。更に、レーザビームの焦点をn型酸化物半導体の内部に設定すれば、酸化物半導体の表面を変質させることなく、内部の物性を性御することが可能となる。   In addition, by focusing the laser beam using a condenser such as a lens, the writing width, that is, the size of the blackened portion of the n-type oxide semiconductor surface can be controlled. Further, if the focus of the laser beam is set inside the n-type oxide semiconductor, the internal physical properties can be controlled without altering the surface of the oxide semiconductor.

以上の方法によれば、例えば、酸化チタンなどのn型酸化物半導体に対して、レーザ光の照射部分についてのみ電気抵抗値を低下させることが可能であり、従って、照射部分に電気伝導性を付与することができる。この方法は、例えば、n型酸化物半導体からなる皮膜又は成形体に導電性回路を形成する方法として適用できる。また、同様に、本発明方法によれば、n型酸化物半導体からなる皮膜又は成形体に対して、任意の部分に局所的に電気伝導性を付与することができるので、例えば、コイル、コンデンサーなどの製造方法としても適用できる。また、導体回路を形成する際に、フェムト秒レーザの強度を変化させることによって、抵抗部分、コイル部分など含む任意の導体回路を形成することも可能である。   According to the above method, for example, for an n-type oxide semiconductor such as titanium oxide, it is possible to reduce the electrical resistance value only for the irradiated portion of the laser beam, and accordingly, the electrical conductivity is reduced in the irradiated portion. Can be granted. This method can be applied, for example, as a method for forming a conductive circuit on a film or molded body made of an n-type oxide semiconductor. Similarly, according to the method of the present invention, electrical conductivity can be locally imparted to an arbitrary portion of a film or molded body made of an n-type oxide semiconductor. It is applicable also as a manufacturing method. In forming a conductor circuit, it is also possible to form an arbitrary conductor circuit including a resistance portion, a coil portion, and the like by changing the intensity of the femtosecond laser.

上記した方法によってn型酸化物半導体のレーザ照射を行った部分の物性値(電気伝導性等)を変化させた後、この部分に連続波レーザ又はパルス間隔1ms以下のパルスレーザを照射することによって、レーザ光を照射した部分の物性値を、フェムト秒レーザの照射前の物性値に戻すことができる。例えば、酸化チタン膜にフェムト秒レーザを照射して照射部分を黒色化して部分に物性値(導電性など)を変化させた場合には、この部分に連続波レーザ又はパルス間隔1ms以下のパルスレーザを照射することによって黒色化された部分の色調を元の白色とすることができる。これは、フェムト秒レーザの照射によってn型酸化物半導体に酸素欠陥が生じ、連続波レーザ又はパルス間隔1ms以下のパルスレーザを照射することによって、酸素欠陥が消滅することによると思われる。これにより、フェムト秒レーザを照射して電気伝導性が上昇した部分について、フェムト秒レーザの照射前の電気伝導性に戻すことができる。   By changing the physical property value (electric conductivity, etc.) of the portion irradiated with the laser of the n-type oxide semiconductor by the method described above, this portion is irradiated with a continuous wave laser or a pulse laser having a pulse interval of 1 ms or less. The physical property value of the portion irradiated with the laser light can be returned to the physical property value before the irradiation with the femtosecond laser. For example, when a titanium oxide film is irradiated with a femtosecond laser to blacken the irradiated portion and change its physical property value (conductivity, etc.), a continuous wave laser or a pulse laser with a pulse interval of 1 ms or less is applied to this portion. The color tone of the blackened portion can be made the original white. This is presumably because oxygen defects are generated in the n-type oxide semiconductor by irradiation with the femtosecond laser, and the oxygen defects are eliminated by irradiation with a continuous wave laser or a pulse laser having a pulse interval of 1 ms or less. Thereby, it is possible to return to the electrical conductivity before the irradiation of the femtosecond laser for the portion where the electrical conductivity is increased by the irradiation of the femtosecond laser.

連続波レーザ及びパルスレーザの発振方式は特に限定されず、例えば半導体レーザ、YAGレーザ、ファイバーレーザ等を用いることができる。これらのレーザの波長は、例えば、200〜1600nm程度、好ましくは800〜1100nm程度とすればよく、強度は100〜100,000W/cm2程度、好ましくは5000〜50000W/cm2程度とすればよい。 The oscillation method of the continuous wave laser and the pulse laser is not particularly limited, and for example, a semiconductor laser, a YAG laser, a fiber laser, or the like can be used. Wavelength of these lasers, for example, about 200 to 1600 nm, preferably may be about 800 to 1100 nm, strength 100~100,000W / cm 2, preferably about may be set to 5000~50000W / cm 2 approximately.

図1は、本発明によるフェムト秒レーザ照射による部分的特性制御(黒色パターンの書き込み)と連続波レーザ又はパルス間隔1ms以下のパルスレーザの照射による復元工程(黒色パターンの消去)を模式的に示す図面である。この方法によれば、フェムト秒レーザによって、導体回路パターンなどの微細なパターンを書き込むことができ、その後、ファイバーレーザなどの連続波レーザ又はパルス間隔1ms以下のパルスレーザの照射によって書き込み部分を部分的に消去することができる。この方法によれば、同一の酸化チタン皮膜を再利用して、異なる回路パターンを形成することが可能となる。また、この様なレーザビームを用いた書き込みと消去を組み合わせて用いることによって、微細なパターンを容易に形成できる。   FIG. 1 schematically shows a partial characteristic control (writing black pattern) by femtosecond laser irradiation and a restoration process (erasing black pattern) by irradiation with a continuous wave laser or a pulse laser having a pulse interval of 1 ms or less according to the present invention. It is a drawing. According to this method, a fine pattern such as a conductor circuit pattern can be written by a femtosecond laser, and then a writing portion is partially irradiated by irradiation with a continuous wave laser such as a fiber laser or a pulse laser having a pulse interval of 1 ms or less. Can be erased. According to this method, different circuit patterns can be formed by reusing the same titanium oxide film. Further, by using a combination of writing and erasing using such a laser beam, a fine pattern can be easily formed.

本発明方法によれば、n型酸化物半導体にフェムト秒レーザを照射する方法によって、該酸化物皮膜自体をほとんど損傷することなく、照射部分についてのみ電気的特性などの各種物性を制御することができる。更に、フェムト秒レーザを照射した部分に連続波レーザ又はパルス間隔1ms以下のパルスレーザを照射することによって、フェムト秒レーザの照射前の状態とすることが可能であり、この部分にフェムト秒レーザを照射することによって、再度、部分的な物性制御を行うことができる。   According to the method of the present invention, various physical properties such as electrical characteristics can be controlled only for the irradiated portion by irradiating the n-type oxide semiconductor with a femtosecond laser without damaging the oxide film itself. it can. Further, by irradiating the femtosecond laser with a continuous wave laser or a pulse laser with a pulse interval of 1 ms or less, it is possible to obtain a state before the femtosecond laser irradiation. By irradiating, partial physical property control can be performed again.

よって、本発明の方法は、酸化チタンなどのn型酸化物半導体を被処理物として、導電性回路、コンデンサー、コイルなどを形成する方法として非常に有用性が高い方法である。   Therefore, the method of the present invention is very useful as a method for forming a conductive circuit, a capacitor, a coil, or the like using an n-type oxide semiconductor such as titanium oxide as an object to be processed.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
(1)酸化チタン皮膜の形成
被処理物とする酸化チタン皮膜は、酸化チタン粉末とHeガスからなるエアロゾルビームをガラス基板に吹き付けることによって形成した。エアロゾルビームによる酸化チタン膜形成システムの概略図を図2に示す。
Example 1
(1) Formation of Titanium Oxide Film A titanium oxide film to be processed was formed by spraying an aerosol beam made of titanium oxide powder and He gas on a glass substrate. A schematic diagram of a titanium oxide film forming system using an aerosol beam is shown in FIG.

原料としては、粒径200nmの酸化チタン粉末を用い、これをHeガスによって加速してエアロゾルビームとして出射した。エアロゾルビームが出射されるノズルと基板との距離は10mm、ビーム入射角は40度とした。この方法により、ガラス基板上に厚さ5μmのアナターゼ型TiOの白色皮膜が形成された。これを被処理物として、以下の方法で処理を行った。 Titanium oxide powder having a particle size of 200 nm was used as a raw material, and this was accelerated by He gas and emitted as an aerosol beam. The distance between the nozzle from which the aerosol beam was emitted and the substrate was 10 mm, and the beam incident angle was 40 degrees. By this method, a white film of anatase TiO 2 having a thickness of 5 μm was formed on the glass substrate. Using this as an object to be processed, the following method was used.

(2)レーザ照射
上記した方法で形成した酸化チタン皮膜に対して、波長800 nm、パルス幅100 fs、繰り返し周波数1 kHz、スポット径300 mm、フルーエンス0.28 J/cm2、強度2.8×1012 W/cm2の条件でフェムト秒レーザを照射した。レーザ照射スポットは、ステージに取り付けた皮膜の位置を制御することにより1 mm/sの速度で掃引させた。図3の上段は、フェムト秒レーザの照射によって酸化チタン膜を黒色化する工程を模式的に示す図面である。この操作によりレーザ照射部分については、酸化チタン皮膜の表面が黒色に変色した。
(2) Laser irradiation For the titanium oxide film formed by the method described above, wavelength 800 nm, pulse width 100 fs, repetition frequency 1 kHz, spot diameter 300 mm, fluence 0.28 J / cm 2 , intensity 2.8 × 10 12 W The femtosecond laser was irradiated under the condition of / cm 2 . The laser irradiation spot was swept at a speed of 1 mm / s by controlling the position of the film attached to the stage. The upper part of FIG. 3 is a drawing schematically showing a step of blackening the titanium oxide film by irradiation with a femtosecond laser. As a result of this operation, the surface of the titanium oxide film turned black in the laser irradiated portion.

次いで、黒色化した酸化チタン皮膜の表面に対して連続発振(CW)のファイバーレーザ(波長1076 nm)を集光照射した。ファイバーレーザは、スポット径300 mm、出力30 W、強度1.1×104W/cm2で照射した。レーザ照射スポットは、フェムト秒レーザ照射の場合と同様に1 mm/sの速度で掃引させた。この操作によって、上記処理によって黒色化した酸化チタンの表面の内で、ファイバーレーザの照射部分については、再度、白色皮膜となった。図3の中段は、フィバーレーザの照射によって黒色皮膜が白色化する状態を模式的に示す図面である。 Next, the surface of the blackened titanium oxide film was focused and irradiated with a continuous wave (CW) fiber laser (wavelength 1076 nm). The fiber laser was irradiated with a spot diameter of 300 mm, an output of 30 W, and an intensity of 1.1 × 10 4 W / cm 2 . The laser irradiation spot was swept at a speed of 1 mm / s as in the case of femtosecond laser irradiation. As a result of this operation, a portion of the surface of the titanium oxide blackened by the above-described treatment became a white film again at the portion irradiated with the fiber laser. The middle part of FIG. 3 is a drawing schematically showing a state in which the black film is whitened by the irradiation of the fiber laser.

次いで、白色化した酸化チタン皮膜の表面に再度フェムト秒レーザを照射した。照射条件は、一回目の照射と同一である。ファイバーレーザ照射によって白色化された皮膜は、この操作により再度黒色化された。図3の下段は、フェムト秒レーザの照射によって再度黒色化される状態を模式的に示す図面である。   Next, the surface of the whitened titanium oxide film was irradiated again with a femtosecond laser. Irradiation conditions are the same as the first irradiation. The film whitened by the fiber laser irradiation was blackened again by this operation. The lower part of FIG. 3 is a drawing schematically showing a state where the blackening is again caused by the irradiation of the femtosecond laser.

(3)皮膜物性
図4は、レーザフルーエンスを変化させてフェムト秒レーザを照射した場合の酸化チタン膜の表面状態を示す写真である。フェムト秒レーザの照射条件は、レーザフルーエンス値以外は、上記(2)項に記載した照射条件と同一である。
(3) Physical Properties of Film FIG. 4 is a photograph showing the surface state of the titanium oxide film when the laser fluence is changed and the femtosecond laser is irradiated. The irradiation conditions of the femtosecond laser are the same as the irradiation conditions described in the above item (2) except for the laser fluence value.

図4における(a), (b), (c)は、レーザフルーエンス95mJ/cm2でフェムト秒レーザを照射した場合について、それぞれ、酸化チタン膜の光学顕微鏡写真、SEM写真、及びSEM写真の中心部の拡大像であり、(d), (e), (f)はレーザフルーエンス127mJ/cm2でフェムト秒レーザを照射した場合について、それぞれ、酸化チタン膜の光学顕微鏡写真、SEM写真、及びSEM写真の中心部の拡大像であり、(g), (h), (i)はレーザフルーエンス191mJ/cm2でフェムト秒レーザを照射した場合について、それぞれ、酸化チタン膜の光学顕微鏡写真、SEM写真、及びSEM写真の中心部の拡大像であり、(j), (k), (l)はレーザフルーエンス318mJ/cm2でフェムト秒レーザを照射した場合について、それぞれ、酸化チタン膜の光学顕微鏡写真、SEM写真、及びSEM写真の中心部の拡大像である。レーザフルーエンスが95〜191mJ/cm2の範囲では、照射部分された部分が黒色化されているが、皮膜に物理的な損傷が見られないのに対して、レーザフルーエンス318mJ/cm2で照射した場合には、黒色化した皮膜の周辺に損傷が認められる。 (A), (b), and (c) in FIG. 4 are the center of the optical micrograph, SEM photograph, and SEM photograph of the titanium oxide film, respectively, when a femtosecond laser is irradiated at a laser fluence of 95 mJ / cm 2. (D), (e), and (f) are optical micrographs, SEM photographs, and SEMs of the titanium oxide film, respectively, when the femtosecond laser is irradiated at a laser fluence of 127 mJ / cm 2. (G), (h), and (i) are optical micrographs and SEM photographs of titanium oxide films, respectively, when the laser fluence is 191 mJ / cm 2 and the femtosecond laser is irradiated. And (j), (k), (l) are optical micrographs of a titanium oxide film when irradiated with a femtosecond laser at a laser fluence of 318 mJ / cm 2 , respectively. , SEM photograph, and center of SEM photograph It is an enlarged image of. When the laser fluence was in the range of 95 to 191 mJ / cm 2 , the irradiated part was blackened, but no physical damage was seen in the film, whereas irradiation was performed with a laser fluence of 318 mJ / cm 2 . In some cases, damage is observed around the blackened film.

また、図5は、上記した方法でフェムト秒レーザを照射した場合について、照射部分の電気抵抗値とレーザフルーエンスとの関係を示すグラフである。図5から明らかなように、レーザフルーエンスが増加するに従って電気抵抗が低下し、一定値以上となるとほぼ一定の電気抵抗値となることが判る。   FIG. 5 is a graph showing the relationship between the electrical resistance value of the irradiated portion and the laser fluence when the femtosecond laser is irradiated by the above method. As is apparent from FIG. 5, it can be seen that the electrical resistance decreases as the laser fluence increases, and that the electrical resistance value becomes substantially constant when the laser fluence increases above a certain value.

本発明によるフェムト秒レーザ照射による部分的特性制御(黒色パターンの書き込み)と連続波レーザ照射による復元工程(黒色パターンの消去)を模式的に示す図面である。2 is a drawing schematically showing partial characteristic control (black pattern writing) by femtosecond laser irradiation and restoration process (black pattern erasing) by continuous wave laser irradiation according to the present invention. エアロゾルビームによる酸化チタン膜形成システムの概略図である。It is the schematic of the titanium oxide film formation system by an aerosol beam. 実施例1におけるレーザ処理工程を模式的に示す図面である。1 is a drawing schematically showing a laser processing step in Example 1. レーザフルーエンスを変化させてフェムト秒レーザを照射した場合の酸化チタン膜の表面状態を示す写真である。It is a photograph which shows the surface state of the titanium oxide film at the time of irradiating a femtosecond laser while changing a laser fluence. フェムト秒レーザ照射部分の電気抵抗値とレーザフルーエンスとの関係を示すグラフである。It is a graph which shows the relationship between the electrical resistance value of a femtosecond laser irradiation part, and a laser fluence.

Claims (6)

n型酸化物半導体の皮膜又は成形体に対してフェムト秒レーザを照射することを特徴とするn型酸化物半導体の特性制御方法。 A method for controlling characteristics of an n-type oxide semiconductor, comprising irradiating a film or a molded body of the n-type oxide semiconductor with a femtosecond laser. フェムト秒レーザの照射によって、照射部分のn型酸化物半導体の表面又は内部の特性が変化する請求項1に記載のn型酸化物半導体の特性制御方法。 2. The method for controlling the characteristics of an n-type oxide semiconductor according to claim 1, wherein characteristics of the surface or inside of the n-type oxide semiconductor in the irradiated portion change by irradiation with a femtosecond laser. フェムト秒レーザの照射によって、照射部分のn型酸化物半導体の表面又は内部の電気抵抗値が低下する請求項1に記載のn型酸化物半導体の特性制御方法。 2. The method for controlling the characteristics of an n-type oxide semiconductor according to claim 1, wherein irradiation with the femtosecond laser reduces a surface or internal electrical resistance value of the irradiated portion of the n-type oxide semiconductor. フルーエンス0.05〜0.5J/cm2、パルス幅50〜1000fs、波長200〜1600nmのフェムト秒レーザを照射する請求項1〜3のいずれかに記載の方法。 The method according to claim 1, wherein a femtosecond laser having a fluence of 0.05 to 0.5 J / cm 2 , a pulse width of 50 to 1000 fs, and a wavelength of 200 to 1600 nm is irradiated. 請求項1〜4のいずれかの方法によってn型酸化物半導体にフェムト秒レーザを照射した後、照射部分に、連続波レーザ又はパルス間隔1ms以下のパルスレーザを照射して、フェムト秒レーザの照射前の状態とすることを特徴とするn型酸化物半導体の特性制御方法。 After irradiating the femtosecond laser to the n-type oxide semiconductor by the method according to any one of claims 1 to 4, the irradiated portion is irradiated with a continuous wave laser or a pulsed laser having a pulse interval of 1 ms or less to irradiate the femtosecond laser. A method for controlling characteristics of an n-type oxide semiconductor, characterized by being in a previous state. n型酸化物半導体が酸化チタンである請求項1〜5のいずれかに記載の方法。 The method according to claim 1, wherein the n-type oxide semiconductor is titanium oxide.
JP2007248660A 2007-09-26 2007-09-26 Method for controlling characteristics of titanium oxide Active JP5311789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248660A JP5311789B2 (en) 2007-09-26 2007-09-26 Method for controlling characteristics of titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248660A JP5311789B2 (en) 2007-09-26 2007-09-26 Method for controlling characteristics of titanium oxide

Publications (3)

Publication Number Publication Date
JP2009081235A true JP2009081235A (en) 2009-04-16
JP2009081235A5 JP2009081235A5 (en) 2010-11-04
JP5311789B2 JP5311789B2 (en) 2013-10-09

Family

ID=40655781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248660A Active JP5311789B2 (en) 2007-09-26 2007-09-26 Method for controlling characteristics of titanium oxide

Country Status (1)

Country Link
JP (1) JP5311789B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002324A1 (en) * 2013-07-05 2015-01-08 Nitto Denko Corporation Filter element for decomposing contaminants, system for decomposing contaminants and method using the system
JP2015018980A (en) * 2013-07-12 2015-01-29 アイシン精機株式会社 Laser processing apparatus and laser processing method
JP2019121715A (en) * 2018-01-09 2019-07-22 学校法人立命館 Method and apparatus for manufacturing p-type gallium nitride compound semiconductor and apparatus for manufacturing semiconductor device
CN110230084A (en) * 2019-04-15 2019-09-13 清华大学 Titanium surface polycrystalline structure forming method and system based on femtosecond laser annealing
JP2020092230A (en) * 2018-12-07 2020-06-11 スタンレー電気株式会社 Light emitting device and light emitting device module
JP2020096128A (en) * 2018-12-14 2020-06-18 スタンレー電気株式会社 Light-emitting device
CN112103377A (en) * 2019-06-18 2020-12-18 斯坦雷电气株式会社 Light emitting device
KR102299658B1 (en) * 2020-05-18 2021-09-10 충북대학교 산학협력단 Method for manufacturing oxide thin film transistor according to femtosecond laser surface treatment and oxide thin film transistor manufactured by the manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383878A (en) * 1989-08-25 1991-04-09 Toshiba Corp Decoration of ceramic
JP2002283729A (en) * 2001-03-26 2002-10-03 Mitsubishi Materials Corp Marking base material and lamination base material using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383878A (en) * 1989-08-25 1991-04-09 Toshiba Corp Decoration of ceramic
JP2002283729A (en) * 2001-03-26 2002-10-03 Mitsubishi Materials Corp Marking base material and lamination base material using it

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CSNC200759070410; 岡村 有造 Y. Okamura: 'フェムト秒レーザー照射によるTiO2の電気抵抗制御 Electrical resistance of femto-second laser irra' 2006年(平成18年)秋季 第67回応用物理学会学術講演会講演予稿集 第3分冊 Extended Abstracts 第3巻, 20060829, 143-144頁, (社)応用物理学会 *
JPN6012062233; 岡村 有造 Y. Okamura: 'フェムト秒レーザー照射によるTiO2の電気抵抗制御 Electrical resistance of femto-second laser irra' 2006年(平成18年)秋季 第67回応用物理学会学術講演会講演予稿集 第3分冊 Extended Abstracts 第3巻, 20060829, 143-144頁, (社)応用物理学会 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016530908A (en) * 2013-07-05 2016-10-06 日東電工株式会社 Filter element for decomposing pollutants, system for decomposing pollutants and method of using the system
WO2015002324A1 (en) * 2013-07-05 2015-01-08 Nitto Denko Corporation Filter element for decomposing contaminants, system for decomposing contaminants and method using the system
US10549268B2 (en) 2013-07-05 2020-02-04 Nitto Denko Corporation Filter element for decomposing contaminants, system for decomposing contaminants and method using the system
JP2015018980A (en) * 2013-07-12 2015-01-29 アイシン精機株式会社 Laser processing apparatus and laser processing method
JP2019121715A (en) * 2018-01-09 2019-07-22 学校法人立命館 Method and apparatus for manufacturing p-type gallium nitride compound semiconductor and apparatus for manufacturing semiconductor device
JP7216387B2 (en) 2018-01-09 2023-02-01 学校法人立命館 METHOD AND APPARATUS FOR MANUFACTURING CURRENT CONFIDENTIAL HIGH POWER VERTICAL HETEROJUNCTION FET
JP2020092230A (en) * 2018-12-07 2020-06-11 スタンレー電気株式会社 Light emitting device and light emitting device module
JP7190889B2 (en) 2018-12-07 2022-12-16 スタンレー電気株式会社 Light-emitting device and light-emitting device module
JP7182450B2 (en) 2018-12-14 2022-12-02 スタンレー電気株式会社 light emitting device
JP2020096128A (en) * 2018-12-14 2020-06-18 スタンレー電気株式会社 Light-emitting device
CN110230084A (en) * 2019-04-15 2019-09-13 清华大学 Titanium surface polycrystalline structure forming method and system based on femtosecond laser annealing
CN110230084B (en) * 2019-04-15 2020-09-11 清华大学 Titanium surface polycrystalline structure forming method and system based on femtosecond laser annealing treatment
JP2020205355A (en) * 2019-06-18 2020-12-24 スタンレー電気株式会社 Light-emitting device
CN112103377A (en) * 2019-06-18 2020-12-18 斯坦雷电气株式会社 Light emitting device
JP7277276B2 (en) 2019-06-18 2023-05-18 スタンレー電気株式会社 light emitting device
KR102299658B1 (en) * 2020-05-18 2021-09-10 충북대학교 산학협력단 Method for manufacturing oxide thin film transistor according to femtosecond laser surface treatment and oxide thin film transistor manufactured by the manufacturing method

Also Published As

Publication number Publication date
JP5311789B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5311789B2 (en) Method for controlling characteristics of titanium oxide
JP7232840B2 (en) Use of lasers to reduce reflection of transparent solids, coatings and devices using transparent solids
TWI424479B (en) Method for patterning crystalline indium tin oxide by using femtosecond laser
JP2010142862A (en) Method for producing nano-periodic structure on surface of dielectric material
JP6111538B2 (en) Manufacturing method of ITO powder used for manufacturing ITO film
JP2008265344A (en) Color marking method using laser
Schade et al. Sintering of thin titanium dioxide nanoparticle films via photothermal processing with ultraviolet continuous-wave lasers
Siuzdak et al. Review on robust laser light interaction with titania–Patterning, crystallisation and ablation processes
JP2003037314A (en) Etching method for transparent electrode of touch screen using laser
JP2012030172A (en) Method of manufacturing visible light responsive photocatalyst and visible light responsive photocatalyst
JP2005272189A (en) Method for producing oxide semiconductor thin film by irradiation with ultraviolet radiation
JP2003178625A (en) Transparent conductive film having optical element function and its manufacturing method
JP2007070141A (en) Tin-containing indium oxide nanoparticle, its dispersed solution, and its production method
CN212967604U (en) System for forming ohmic contacts on silicon carbide substrates
Lorenz et al. Secondary electron yield engineering of copper surfaces by 532 nm ultrashort laser pulses
KR101210292B1 (en) Substrate including self-cleaning coating layer having favorable abrasion resistance and method of manufacturing the same
Xie et al. Controllable fabrication of polygonal micro and nanostructures on sapphire surfaces by chemical etching after femtosecond laser irradiation
Tsukamoto et al. Photoconductive properties of titanium dioxide film modified by femtosecond laser irradiation
Horiguchi et al. Development of visible-light activated titanium dioxide films with femtosecond laser
Okoshi et al. Femtosecond laser ablation of polyethylene
KR101704963B1 (en) Apparatus for intense pulsed light sintering
Horiguchi et al. Variation of photocatalytic activity in titanium dioxide film modified by femtosecond laser irradiation
JP5305928B2 (en) How to create a periodic structure
JP5907517B2 (en) Photocatalyst advanced technology
JP2008188661A (en) Laser beam machining method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5311789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250