JP4106682B2 - Fruit juice beverage with improved antioxidant capacity, method for producing fruit juice beverage, apparatus for producing fruit juice beverage, wine with improved antioxidant capacity, wine production method, wine production apparatus - Google Patents

Fruit juice beverage with improved antioxidant capacity, method for producing fruit juice beverage, apparatus for producing fruit juice beverage, wine with improved antioxidant capacity, wine production method, wine production apparatus Download PDF

Info

Publication number
JP4106682B2
JP4106682B2 JP2002209683A JP2002209683A JP4106682B2 JP 4106682 B2 JP4106682 B2 JP 4106682B2 JP 2002209683 A JP2002209683 A JP 2002209683A JP 2002209683 A JP2002209683 A JP 2002209683A JP 4106682 B2 JP4106682 B2 JP 4106682B2
Authority
JP
Japan
Prior art keywords
infrared
wine
wavelength
pulsed light
fruit juice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002209683A
Other languages
Japanese (ja)
Other versions
JP2004049082A (en
Inventor
洌 加藤
詠子 高岡
宏治 石井
和司 豊田
孝信 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002209683A priority Critical patent/JP4106682B2/en
Publication of JP2004049082A publication Critical patent/JP2004049082A/en
Application granted granted Critical
Publication of JP4106682B2 publication Critical patent/JP4106682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Alcoholic Beverages (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ブドウ果汁やリンゴ果汁等の果汁を原料とした抗酸化能を向上させた果汁飲料又はワイン、その果汁飲料又はワインの製造方法、及びその果汁飲料又はワイン製造装置に関するものである。
【0002】
【従来の技術】
果汁飲料やワインにおいてその酸化は品質を劣化させる重大な問題であり、酸化を抑制するため、ブドウやリンゴ等の果実の破砕搾汁段階から瓶詰め等の容器充填段階に至るまでの果汁飲料やワインの製造工程において抗酸化剤、例えばワインでは亜硫酸塩を添加し、長期間にわたる品質保持を図って来た。
【0003】
また酒の短期醸成や殺菌、或いは水の活性化などを目的にして、赤外線放電ランプから照射される赤外線や遠赤外線セラミックス等から放射される遠赤外線を酒や水等に照射する方法の赤外線照射技術が考えられている。
【0004】
【発明が解決しようとする課題】
上記亜硫酸塩を添加するワインにおいては、飲用した際に亜硫酸によるアレルギー症状等の健康阻害を惹起する恐れがあるため、例えば国内では、ワイン中の総亜硫酸濃度を350ppm以下に抑えるよう法的規制が設けられている。 そこで、ワイン製造業者はワインの原料果汁の段階、発酵直後の段階、熟成中、瓶詰め前などの各段階において、亜硫酸塩を適宜添加してその酸化劣化を抑制しつつ、かつ風味の良いワインとするために、総亜硫酸濃度を規制値の範囲以内で極力少なくするように管理しており、ワインを高品質に保つことに多大な労力を費やしていた。
【0005】
また、上記亜硫酸塩のように人体の健康に有害な化学添加物を含まない飲食品を要望する消費者の健康志向の高まりから、亜硫酸無添加ワインや有機栽培ワインなどが開発販売されているが、それらの製造には、亜硫酸添加ワインの製造とは異なる複雑で手間のかかる製造工程が必要である。
【0006】
また、上記赤外線利用の従来技術は、幅広い波長範囲を有するインコヒーレントで間断なく連続的に放射する連続波の赤外線、例えば特開平8−196262号公報に開示された発明では、波長が3μm(マイクロメートル)から25μmの範囲にある幅広い波長帯を有する遠赤外線の熱的作用を利用して、酒類や食品の原料の熟成促進や水分調整を行うものであるが、被照射物に均一に照射することが難しく、被照射物を必要以上に加熱し高温変質させてしまう問題がある。
【0007】
また、遠赤外線セラミックス等が自然放射する遠赤外線の非熱的作用を利用する技術、例えば特開平6−54676号に開示された発明にあっては、酒類の発酵を速めるために波長が2.5μmから25μmの範囲にある幅広い波長バンドを有する遠赤外線を放射する遠赤外線セラミックスと被照射物を接触させる方法で被照射物の発酵を促進するものであるが、遠赤外線セラミックスの放射する遠赤外線が極めて微弱であるが故に、遠赤外線の有する非熱的作用を被照射物に発現させるには、約30時間にわたる長時間の遠赤外線の適用が必要であり、遠赤外線の非熱的作用を効率良く生かせない等の解決すべき多くの課題がある。
【0008】
この発明は、上述した従来の技術が内在する問題等の課題を解決するためになされたものであって、ブドウ果汁やリンゴ果汁等の果汁飲料又はワインの製造工程で亜硫酸塩等の抗酸化剤を添加することなく、より有効なる波長の赤外線パルス光を照射適用し、それら飲料の抗酸化能を向上させ、その酸化を抑制するとともに腐敗をも抑制し、長期間にわたる高品質保持を可能にした、赤外線照射して抗酸化能を向上させた果汁飲料又はワイン、その果汁飲料又はワインの製造方法、及びその果汁飲料又はワイン製造装置を提供するものである。
【0009】
【課題を解決するための手段】
(a) 請求項1の発明に係る抗酸化能を向上させた果汁飲料は、波長5.1μmから5.3μm又は10.2μmから10.6μmの範囲の赤外線パルス光を照射したものである。
(b) また、請求項2の発明に係る果汁飲料の製造方法は、果汁飲料の原料果実の破砕搾汁段階から瓶詰め等の段階までの製造工程のいずれかの段階において、波長5.1μmから5.3μm又は10.2μmから10.6μmの範囲のコヒーレントな赤外線パルス光を発振する赤外線照射装置による照射を行うことにより果汁飲料の抗酸化能を向上させるものである。
【00010】
(c) また、請求項3の発明に係る果汁飲料の製造装置は、炭酸ガスパルスレーザー発振器と光学回路で構成された、波長10.2μmから10.6μmの範囲にある炭酸ガスパルスレーザーの基本波又はその基本波を波長変換した5.1μmから5.3μmの範囲にある第2次高調波を発振する赤外線照射装置を備え、製造工程のいずれかの段階において、該赤外線照射装置による照射を行うことにより果汁飲料の抗酸化能を向上させるものである。
(d) また、請求項4の発明に係る抗酸化能を向上させたワインは、波長5.1μmから5.3μm又は10.2μmから10.6μmの範囲の赤外線パルス光を照射したものである。
【0011】
(e) 請求項5の発明に係るワインの製造方法は、ワインの原料果実の破砕搾汁段階から瓶詰め等の段階までの製造工程のいずれかの段階において、波長5.1μmから5.3μm又は10.2μmから10.6μmの範囲のコヒーレントな赤外線パルス光を発振する赤外線照射装置による照射を行うことによりワインの抗酸化能を向上させるものである。(f) 請求項6の発明に係るワインの製造装置は、炭酸ガスパルスレーザー発振器と光学回路で構成された、波長10.2μmから10.6μmの範囲にある炭酸ガスパルスレーザーの基本波又はその基本波を波長変換した5.1μmから5.3μmの範囲にある第2次高調波を発振する赤外線照射装置を備え、製造工程のいずれか の段階において、該赤外線照射装置による照射を行うことによりワインの抗酸化能を向上させるものである。
【0012】
【発明の実施の形態】
この発明に係る赤外線照射飲料は、炭酸ガスパルスレーザーの基本波又は基本波の第2次高調波を用い、製造工程において果汁飲料又はワインに照射することにより、抗酸化能が向上した果汁飲料又はワインであるが、その製造方法及び製造装置の実施形態例について図を参照し説明する。
【0013】
図1は、炭酸ガスレーザーの基本発振波長のうち、波長範囲10.2μmから10.6μmに含まれる波長の赤外線パルス光を被照射物、つまり原料果実の破砕搾汁段階から瓶詰め等の段階までのいずれかの製造工程にある果汁飲料又はワインに照射して高抗酸化能を有する赤外線照射飲料を製造する製造装置を説明するために一部簡略化して示したブロック線図である。
図中1は赤外線照射装置本体、2は炭酸ガスパルスレーザー発振器、3は被照射物である原料果汁やワイン等が流れる配管、4は原料果汁やワイン等の被照射物、5は電源装置、6は制御装置、7は光学窓、8はレンズ、11は揺動鏡、12(L1)は赤外線パルス光、L1は波長範囲10.2μmから10.6μmの赤外線パルス光を示す。
【0014】
また図2は、炭酸ガスレーザーの基本発振波長のうち、波長範囲10.2μmから10.6μmに含まれる波長の赤外線パルス光を非線形光学回路に導光して、基本波の1/2波長の波長範囲5.1μから5.3μ、mに含まれる波長に変換した第2次高調波の赤外線パルス光を被照射物、つまり原料果実の破砕搾汁段階から瓶詰め等の段階までのいずれかの製造工程にある果汁飲料又はワインに照射して高抗酸化能を有する赤外線照射飲料を製造する製造装置を説明するために一部簡略化して示したブロック線図である。 図中1は赤外線照射装置本体、2は炭酸ガスパルスレーザー発振器、3は被照射物である原料果汁やワイン等が流れる配管、4は果汁原料やワイン原料等の被照射物、5は電源装置、6は制御装置、7は光学窓、8はレンズ、9は非線形光学結晶、10はビームスプリッター、11は揺動鏡、12(L1及びL2)は赤外線パルス光、L1は波長範囲10.2μmから10.6μmの赤外線パルス光、L2は波長範囲5.1μmから5.3μmの赤外線パルス光を示す。
【0015】
なお図中3は、赤外線パルス光12を照射する被照射物4を通すステンレス製等の配管であるが、被照射物4が入ったステンレス製等の容器でも良い。
【0016】
赤外線照射飲料を製造するために、ブドウ果汁やリンゴ果汁等の原料果汁又はワインである被照射物4に照射する赤外線パルス光12は、炭酸ガスレーザー発振器2が発振する基本波長の赤外線パルス光L1、又は非線形光学効果を発現するようにしたレンズ8及び非線形光学結晶9、及びビームスプリッター10で構成された光学回路を経て波長変換された第2次高調波の赤外線パルス光L2が用いられ、更に揺動鏡11により左右或いは上下に走査しながら光学窓7を介して、配管3に流れる被照射物4に照射される。 なお、この発明に係る特定波長赤外線照射飲料においては、その製造に用いられる赤外線照射装置そのものの構成を何ら特定しているものではない。
【0017】
赤外線照射飲料を製造するために、被照射物4に照射する赤外線パルス光L1又はL2の波長は、各種果汁やワインに波長の異なる赤外線パルス光を照射して実験的に求め得たものである。 すなわち、パルス光の一つのパルス発振持続時間が15ns(ナノ秒)から30ms(ミリ秒)で、パルス繰り返し数が10Hz(ヘルツ)から20kHz(キロヘルツ)、波長範囲が10.2μmから10.6μm又は5.1μmから5.3μmの範囲に含まれる赤外線パルス光の照射が、ブドウ果汁やリンゴ果汁、又はワインの酸化を抑制し、かつ腐敗抑制にも有効であった。
【0018】
ところで上記波長は、被照射物4である果汁やワインに含まれている水分が示す赤外線の吸収ピーク約3μm近辺、6μm近辺及び約14μm近辺、或いは被照射物4であるワインに含まれているアルコール分が示す赤外線吸収ピーク約3μm近辺および約9μm近辺からも外れていることから、被照射物4が赤外線パルス光の照射によって不必要に加熱されて高温変質する問題は解消されている。
【0019】
なお、波長10μm近辺の赤外線は、波長5μm近辺の赤外線と比較して水分やアルコールによる赤外線の吸収が大きくなるが、赤外線の1光子当たりのエネルギーは波長に反比例するため、例えば波長10μmの赤外線は、波長5μmの赤外線と比較して1光子当たりのエネルギーが約1/2と小さいために、赤外線の熱的作用が緩和されており、非熱的効果を充分に生かすことが可能である。
【0020】
また、被照射物4である果汁やワインの酸化抑制および腐敗抑制に適用する赤外線には、次に示す問題点から、インコヒーレントな(幅広い波長帯を有する)赤外線やコヒーレントな(位相が揃った)赤外線の連続波と比較して、コヒーレントな赤外線のパルス光がより適している。 その第一の問題点は、コヒーレントな赤外線パルス光は、被照射物の酸化抑制と腐敗抑制に有効な波長のみを効率的に照射できるのに対して、幅広い波長帯を有するインコヒーレントな赤外線は、被照射物の成分である水分やアルコールに熱として吸収され易い波長帯を包含しており、酸化抑制と腐敗抑制に効率的に作用し得ない点である。 その第二の問題点は、コヒーレントな赤外線パルス光が一つ一つの尖頭出力(ピーク出力)は大きくとも、発振時間が極めて短いパルス光を断続的に繰り返すことで被照射物に及ぼす熱的作用を小さくすることができるのに対して、間断なく連続的に発振する連続波の赤外線は、被照射物に及ぼす熱的作用が極めて大きく、被照射物が高温変質し易い点にある。 さらに、セラミックス等から自然放射されるインコヒーレントな遠赤外線は、極めて微弱であるが故に、コヒーレントな赤外線パルス光と比較して非熱的作用の照射効率が極端に小さい点等の問題点がある。
【0021】
そして、この被照射物4に照射する赤外線パルス光12は、被照射物4の性状によって適用すべき赤外線パルス光が異なるものではあるが、例えば尖頭出力(ピーク出力)は1平方センチメートルあたり0.8W(ワット)から3kW(キロワット)、パルス幅(パルス持続時間)が15ns(ナノ秒)から30ms(ミリ秒)、周波数は10Hz(ヘルツ)から20kHz(キロヘルツ)の範囲の中から選択すれば、酸化抑制および腐敗抑制を図る被照射物4の性状に、より適した条件の赤外線パルス光12が見つけられる。
【0022】
なお、被照射物4の酸化抑制に有効な波長のコヒーレントな赤外線パルス光であっても、尖頭出力が極度に大きい場合やパルス繰り返し数が極度に大き過ぎる場合、或いは尖頭出力とパルス繰り返し数が適切であっても照射時間が長過ぎたる場合には、入射熱量が過多となって被照射物4が高温変質しやすく、他方赤外線パルス光の短時間照射は、酸化防止および腐敗防止の効果を発現させるためのエネルギー不足問題を生じやすいため、被照射物4の性状や赤外線照射装置1の能力、例えば、尖頭出力とパルス幅、およびパルス繰り返し数等を勘案して、より適した赤外線パルス光の照射条件を適用すべきである。
【0023】
【実施例】
酸化抑制効果の確認は、ブドウ果汁及びワインを試験体として、図1及び図2に示した装置で特定波長の赤外線パルス光を照射して、時間経過とともに変化する試験体の酸化状況を、赤外線パルス光を照射していない未処理の試験体と比較しながら観察した。 酸化の状況は、酸化還元電位計を用いて測定した試験体の酸化還元電位差の変化量、及び紫外・可視分光光度計を用いて測定した試験体の吸光度の変化、フーリエ変換赤外分光光度計等によってそれぞれ評価した。 次に、亜硫酸無添加の白ワイン及び赤ワインを試験体として実施した事例について説明する。
【0024】
(1)酸化還元電位の変化について: 図3は、亜硫酸無添加白ワインの酸化還元電位の変化の一例を示したものである。図中丸記号(○)で示したデータは波長5.3μm、平均照射パワー0.4Wの赤外線パルス光を10分間照射した試験体のものであり、また図中四角記号(□)で示したデータは波長10.6μm、平均照射パワー0.8Wの赤外線パルス光を9ml/s(ミリリットル/秒)で適用した試験体のものである。 また、図中ばつ記号(×)で示したデータは赤外線を照射していない赤外線非照射試験体のものである。
【0025】
波長5.3μmの赤外線パルス光照射後24時間経過した時点での赤外線照射白ワイン試験体の酸化還元電位(○記号)は、同じく24時間経過した未処理の白ワイン試験体の酸化還元電位(×記号)よりも約20mV(ミリボルト)電位が低く、風味も劣化していなかった。 それに対して、未処理の試験体の酸化還元電位変化量は約1.4倍も大きく、ワイン本来の風味が損なわれていたことから、亜硫酸無添加白ワインに対し、波長5.3μmの赤外線を適切な条件で照射することにより酸化抑制効果が得られることを確認した。
【0026】
さらに、24時間経過以降も、時間(日数)経過と共に赤外線パルス光を照射した試験体と未処理の試験体との酸化還元電位の差は僅かずつ拡大した。そして、風味の保持の点においても赤外線パルス光を照射した亜硫酸無添加白ワイン試験体は未処理の試験体に比べて顕著な効果があった。 また、四角記号(□)が示すように波長10.6μmを照射した白ワイン試験体についてもほぼ同様の効果が得られている。
【0027】
図4は、同じく亜硫酸無添加白ワインを試験体として赤外線パルス光の照射効果を照射エネルギーと酸化還元電位変化量の関係について例示したものである。 図中四角記号(□)で示したデータは、試験体白ワインの流速を変えて波長10.6μmの赤外線パルス光を照射した場合の結果を示している。 この場合、試験体への照射エネルギーが1ml(ミリリットル)当たり約0.07J(ジュール)から約0.15Jの時、さらに詳述すれば平均照射パワー0.8Wの赤外線パルス光を1秒当たり約5mlから約12mlの速さで処理した時、24時間経過後の酸化還元電位の変化量で比較して、赤外線パルス光を照射した照射白ワインは、赤外線パルス光を照射しなかった非照射白ワインよりも、酸化還元電位の変化量を15mV(ミリボルト)以上抑制することができた。
なお、図中破線で描かれた水平線は赤外線パルス光を照射しなかった非照射白ワインの24時間経過後の酸化還元電位変化量を示す。
【0028】
また、図中丸記号(○)で示したデータは、試験体白ワインを容器に入れて、波長5.3μmの赤外線パルス光を照射した場合を示している。 この場合、試験体白ワインへの入力エネルギーが1ml当たり約4Jから約7Jの時、さらに詳述すれば平均照射パワー0.4Wの赤外線パルス光を約8分間から約15分間照射することによって、24時間経過後の酸化還元電位の変化量で比較して、赤外線パルス光を照射した照射白ワインは赤外線パルス光を照射しなかった非照射白ワインよりも酸化還元電位の変化を15mV以上抑制することができた。 以上のように、酸化抑制に効果的な波長の赤外線パルス光の照射であっても、酸化抑制効果を発現できる適切な照射パワー範囲が存在し、被照射物により効果的に抗酸化能を付与し得る適切な照射パワーが存在していた。
なお、詳述は省略するが、亜硫酸無添加赤ワイン及びブドウ果汁を試験体とした事例においても、上記と同傾向の酸化抑制効果が得られることを確認した。
【0029】
(2)可視光吸光度の変化について: 酸化に伴って生ずるワインの色調変化(褐変)を紫外・可視分光光度計によって吸光度の変化により測定(透過度を計測)した事例について説明する。 亜硫酸無添加赤ワインに対して波長5.3μm、平均照射パワー0.4Wの赤外線パルス光を10分間照射した赤ワイン試験体の例では、赤外線照射後7日経過時点における波長0.65μm可視光の透過度が初期値より約49%直線的に低下したのに対して、同じく7日経過した未処理(赤外線を照射していない)の赤外線非照射試験体では約63%の低下を示し、約1.3倍の透過度変化が観察された。
【0030】
その後の、長期間にわたる測定によれば、赤外線パルス光を照射した試験体と未処理の試験体との透過度の差は徐々に大きくなっていくことからしても、波長5.3μmの赤外線パルス光を照射した亜硫酸無添加赤ワインは、赤外線パルス光を照射していない亜硫酸無添加赤ワインに比べて、酸化による褐変の抑制効果が顕著であることが判明した。 なお、詳述を省略するが、亜硫酸無添加白ワインの試験体に対して、同じく波長5.3μmの赤外線パルス光を照射した試験体の事例においても、上記と同傾向の酸化抑制効果が得られることを確認した。
【0031】
(3)赤外線分光分析について: ワイン成分の酸化の結果として生成するアセトアルデヒド成分の変化を、フーリエ変換赤外分光光度計によりアセトアルデヒドの最大吸収ピーク(5.8μm近辺)について吸光度を計測した事例について説明する。 亜硫酸無添加白ワインに対して波長5.3μm、平均照射パワー0.4Wの赤外線パルス光を10分間照射した白ワイン試験体の例では、赤外線パルス光照射後7日経過時点におけるアセトアルデヒド吸収ピークが示す吸光度(初期値0)は約0.2であったのに対して、赤外線パルス光を照射しなかった非照射試験体では約0.31であり、約1.5倍のアセトアルデヒド吸収ピーク値を示した。 さらに長期間経過後の分析において、赤外線パルス光照射試験体と非照射試験体の示すアセトアルデヒド吸収ピークの吸光度の差がより大きくなることを確認した。 また、亜硫酸無添加赤ワインについて行った同様の分析においても、アセトアルデヒド吸収ピークが示す吸光度は、赤外線パルス光照射試験体の方が、赤外線パルス光を照射しなかった非照射試験体よりも小さく、アセトアルデヒドの生成が抑制され、ワインの酸化が抑制されていた。
【0032】
以上は、亜硫酸無添加ワインに波長5.3μm及び10.6μmの赤外線パルス光を照射した事例について詳述したものであるが、炭酸ガスパルスレーザーの基本発振波長10.2μmや、その基本発振波長を波長変換して得た第2次高調波の波長5.1μmの赤外線パルス光を照射した場合についても酸化抑制効果が得られる。 また、亜硫酸等の抗酸化剤を含むブドウ果汁や及びワインを試験体として、赤外線パルス光を照射して行った酸化還元電位差の変化、吸光度の変化等の測定においても前述と同傾向の結果が得られ、被照射物の抗酸化能を向上し得ることが確認できた。よって、抗酸化剤を含む果汁やワインに赤外線パルス光照射を適用すれば、果汁やワインに添加する抗酸化剤の使用量を減ずる事が可能となる。 なお、前述したように、赤外線パルス光の最適な照射条件は、被照射物である果汁原料やワイン原料の種類、赤外線照射装置本体1の発振する赤外線パルス光の質、すなわち尖頭出力、パルス持続時間、パルス繰り返し数等の相違により照射時間等適切な条件を求め、採用されるべきである。
【0033】
ところで、上記実施例における赤外線パルス光照射用の赤外線照射装置本体1は、次に示す2種の赤外線照射装置である。 その第1の赤外線照射装置は、図1示すように、炭酸ガスパルスレーザーで発振させた波長10.2μmから10.6μmの範囲にある基本発振波長の赤外線パルス光L1を、例えば赤外線の吸収が小さいセレン化亜鉛(ZnSe)製の光学窓7を介して被照射物4に照射する装置である。
【0034】
また、その第2の赤外線照射装置1は、図2示すように、炭酸ガスパルスレーザーで発振させた波長10.2μmから10.6μmの範囲にある基本発振波長の赤外線パルス光L1を、例えばセレン化亜鉛(ZnSe)製のレンズ8や、例えば銀(Ag)やガリウム(Ga)、セレン(Se)等を組成とする非線形光学結晶9、波長10.2μmから10.6μmの波長帯をカットし、波長5.1μmから5.3μmの波長帯を選択的に取り出す例えばフッ化マグネシウム(MgF2)製のビームスプリッター10等で構成した光学回路を経て、波長5.1μmから5.3μmの範囲の赤外線パルス光L2に変換したうえで、光学窓7例えばセレン化亜鉛(ZnSe)製の窓を介して被照射物4に照射する装置である。
【0035】
なお、上記第1の赤外線照射装置は、エネルギー変換効率が高く、第2の赤外線照射装置に比較して安価に製作することができるため大量処理用の普及品製造装置に適する。
【0036】
【発明の効果】
上記詳述した通り、 請求項1の発明に係る抗酸化能を向上させた果汁飲料は、波長5.1μmから5.3μm又は10.2μmから10.6μmの範囲の赤外線パルス光をブドウ果汁やリンゴ果汁等の果汁飲料の原料照射したものであるので、より効率的に酸化が抑制されるとともに腐敗をも抑制され、長期間にわたり高品質で、かつ抗酸化剤を使用することなく、無害で健康に優しい果汁飲料となる。 請求項2の発明に係る果汁飲料の製造方法は、ブドウ果汁やリンゴ果汁等を原料とした果汁飲料の製造工程のいずれかの段階において、波長5.1μmから5.3μm又は10.2μmから10.6μmの範囲のコヒーレントな赤外線パルス光を発振する赤外線照射装置による照射を行うことにより果汁飲料の抗酸化能を向上させるので、抗酸化能を向上させた果汁飲料 を効率良く製造する方法となる。
【0037】
請求項3の発明に係る果汁飲料の製造装置は、炭酸ガスパルスレーザー発振器と光学回路で構成された、波長10.2μmから10.6μmの範囲にある炭酸ガスパルスレーザーの基本波又はその基本波を波長変換した5.1μmから5.3μmの範囲にある第2次高調波を発振する赤外線照射装置を備え、製造工程のいずれかの段階において、該赤外線照射装置による照射を行うことにより果汁飲料の抗酸化能を向上させ得る製造装置となる。 請求項4の発明に係る抗酸化能を向上させたワインは、波長5.1μmから5.3μm又は10.2μmから10.6μmの範囲の赤外線パルス光をワインの原料、熟成中のワイン或いは塾成後のワインに照射したものであるので、より効率的に酸化が抑制されるとともに腐敗をも抑制され、長期間にわたり高品質で、かつ抗酸化剤を使用することなく、無害で健康に優しいワインとなる。
【0038】
請求項5の発明に係るワインの製造方法は、ブドウ果汁やリンゴ果汁等を原料としたワインの製造工程のいずれかの段階において、波長5.1μmから5.3μm又は10.2μmから10.6μmの範囲のコヒーレントな赤外線パルス光を発振する赤外線照射装置による照射を行うことによりワインの抗酸化能を向上させるので、抗酸化能を向上させたワインを効率良く製造する方法となる。 請求項6の発明に係るワインの製造装置は、炭酸ガスパルスレーザー発振器と光学回路で構成された、波長10.2μmから10.6μmの範囲にある炭酸ガスパルスレーザーの基本波又はその基本波を波長変換した5.1μmから5.3μmの範囲にある第2次高調波を発振する赤外線照射装置を備え、製造工程のいずれかの段階において、該赤外線照射装置による照射を行うことによりワインの抗酸化能を向上させ得る製造装置となる。
【0039】
なお、上記果汁飲料又はワインの製造方法は、抗酸化剤を添加しない果汁飲料又はワインの製造に有効であるが、上記製造方法を適用した抗酸化剤添加果汁飲料又はワインについても抗酸化能が向上し、抗酸化剤の使用量を減らすことができることから、上記赤外線照射飲料製造方法は、抗酸化剤の使用量を減らして高品質とした果汁飲料又はワインの製造方法となる。
【図面の簡単な説明】
【図1】 この発明に係る赤外線照射飲料の製造装置のうち、炭酸ガスパルスレーザーの基本発振波長の赤外線パルス光を照射する装置を説明するために一部簡略化して示したブロック線図である。
【図2】 この発明に係る赤外線照射ワインの製造装置の内、炭酸ガスパルスレーザーの基本発振波長を非線形光学回路に導光し波長変換した赤外線パルス光を照射する装置を説明するために一部簡略化して示したブロック線図である。
【図3】 白ワインにおける酸化抑制効果を時間経過に伴なう酸化還元電位変化の推移で例示したグラフ図である。
【図4】 白ワインにおける酸化抑制効果が照射エネルギーによって変化することを例示したグラフ図である。
【符号の説明】
1 赤外線照射装置本体 2 炭酸ガスパルスレーザー発振器 3 配管 4 被照射体 5 電源装置 6 制御装置 7 光学窓 8 レンズ 9 非線形光学結晶 10 ビームスプリッター 11 揺動鏡 12 赤外線パルス光 L1 波長範囲10.2μmから10.6μmの赤外線パルス光 L2 波長範囲5.1μmから5.3μmの赤外線パルス光
[0001]
BACKGROUND OF THE INVENTION
  This invention uses fruit juices such as grape juice and apple juice as raw materials.Improved antioxidant capacityFruit juice or wine, Its juice drink or wineManufacturing method, And its juice or wineThe present invention relates to a manufacturing apparatus.
[0002]
[Prior art]
  Oxidation in fruit juices and wines is a serious problem that degrades the quality, and in order to suppress oxidation, fruit juices and wines from the crushing and squeezing stage of fruits such as grapes and apples to the container filling stage such as bottling In this manufacturing process, an antioxidant, for example, sulfite is added to wine to maintain quality over a long period of time.
[0003]
  Also, for the purpose of short-term brewing and sterilization of liquor, or activation of water, infrared irradiation is a method of irradiating alcohol or water with far infrared rays emitted from infrared discharge lamps or far infrared ceramics. Technology is considered.
[0004]
[Problems to be solved by the invention]
  In wines to which the above sulfites are added, there is a risk of causing health problems such as allergic symptoms due to sulfites when they are drunk. For example, in Japan, there are legal regulations to reduce the total sulfite concentration in wine to 350 ppm or less. Is provided. Therefore, the wine manufacturer adds a sulfite appropriately to suppress the oxidative deterioration at each stage such as the raw material juice of the wine, the stage immediately after fermentation, the aging, and before bottling, and the wine has a good flavor. In order to do so, the total sulfite concentration was controlled to be as low as possible within the range of the regulation value, and a great deal of effort was spent on keeping the wine in high quality.
[0005]
  In addition, sulfite-free wines and organically grown wines are being developed and sold due to the growing health-consciousness of consumers who demand foods and drinks that do not contain chemical additives that are harmful to human health, such as sulfites. Their production requires complicated and laborious production processes different from the production of sulfite-added wines.
[0006]
  In addition, the above-described prior art using infrared rays is an incoherent and continuous wave infrared ray having a wide wavelength range. For example, in the invention disclosed in JP-A-8-196262, the wavelength is 3 μm (micrometer). Meter) to 25 μm in the far-infrared thermal action with a wide wavelength band, to promote the aging of alcoholic beverages and food ingredients and to adjust the moisture, but to uniformly irradiate the irradiated object This is difficult, and there is a problem that the irradiated object is heated more than necessary to cause high temperature alteration.
[0007]
  Further, in the technology using the non-thermal action of far infrared radiation naturally emitted by far infrared ceramics, for example, the invention disclosed in JP-A-6-54676, the wavelength is 2. Far-infrared radiation emitted by far-infrared ceramics promotes fermentation of the object by contacting the object with far-infrared ceramics emitting far-infrared radiation having a wide wavelength band in the range of 5 to 25 μm. Therefore, in order to develop the non-thermal action of far-infrared rays in the irradiated object, it is necessary to apply far-infrared rays for a long time of about 30 hours. There are many issues to be solved such as not being able to make efficient use.
[0008]
  The present invention has been made in order to solve the problems such as the problems inherent in the prior art described above, and is an antioxidant such as sulfite in the production process of fruit juices such as grape juice and apple juice or wine. In addition, it can be applied by irradiating infrared pulsed light with a more effective wavelength without adding odor, improving the antioxidant capacity of those beverages, suppressing their oxidation and also preventing spoilage, and maintaining high quality over a long period of time did, Fruit juice or wine whose antioxidant ability is improved by infrared irradiation, method for producing the fruit juice or wine, and apparatus for producing the fruit juice or wineIs to provide.
[0009]
[Means for Solving the Problems]
(A) The juice beverage with improved antioxidant capacity according to the invention of claim 1 is irradiated with infrared pulsed light in the wavelength range of 5.1 μm to 5.3 μm or 10.2 μm to 10.6 μm.It is.
(B) Moreover, the manufacturing method of the fruit juice drink which concerns on invention of Claim 2 WHEREIN: In any stage of the manufacturing process from the crushing and squeezing stages of the raw material fruit of fruit juice drinks to stages, such as bottling, from wavelength 5.1micrometer. The antioxidant ability of fruit juice drinks is improved by irradiation with an infrared irradiation device that oscillates coherent infrared pulsed light in the range of 5.3 μm or 10.2 μm to 10.6 μm.
[00010]
(C) Moreover, the juice drink manufacturing apparatus according to the invention of claim 3 is a basic of a carbon dioxide pulse laser having a wavelength in the range of 10.2 μm to 10.6 μm, which is composed of a carbon dioxide pulse laser oscillator and an optical circuit. An infrared irradiation device that oscillates a second harmonic wave in the range of 5.1 μm to 5.3 μm obtained by wavelength conversion of the wave or its fundamental wave, and irradiation by the infrared irradiation device is performed at any stage of the manufacturing process. This improves the antioxidant ability of the fruit juice beverage.
(D) Further, the wine with improved antioxidant ability according to the invention of claim 4 is irradiated with infrared pulsed light in the wavelength range of 5.1 μm to 5.3 μm or 10.2 μm to 10.6 μm. .
[0011]
(E) The method for producing wine according to the invention of claim 5 has a wavelength of 5.1 μm to 5.3 μm in any stage of the production process from the crushing and squeezing stage of the raw fruit of wine to the stage of bottling, etc. The antioxidant ability of wine is improved by irradiating with an infrared irradiation device that oscillates coherent infrared pulsed light in the range of 10.2 μm to 10.6 μm. (F) The wine manufacturing apparatus according to the invention of claim 6 is a fundamental wave of a carbon dioxide pulse laser having a wavelength in the range of 10.2 μm to 10.6 μm, comprising a carbon dioxide pulse laser oscillator and an optical circuit. It is equipped with an infrared irradiation device that oscillates the second harmonic in the range of 5.1 μm to 5.3 μm obtained by converting the wavelength of the fundamental wave, and is one of the manufacturing processes In this stage, the antioxidant ability of the wine is improved by irradiating with the infrared irradiation device.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
  The infrared irradiation beverage according to the present invention uses the fundamental wave of the carbon dioxide pulse laser or the second harmonic of the fundamental wave, and irradiates the juice beverage or wine in the production process,Fruit juice drink or wine with improved antioxidant capacityHowever, an embodiment of the manufacturing method and manufacturing apparatus will be described with reference to the drawings.
[0013]
  FIG. 1 shows an irradiation with infrared pulsed light having a wavelength included in a wavelength range of 10.2 μm to 10.6 μm among the fundamental oscillation wavelengths of a carbon dioxide laser, from crushing and squeezing of an object to be irradiated, that is, from the stage of crushing and squeezing fruit It is the block diagram shown partially simplified in order to demonstrate the manufacturing apparatus which irradiates the fruit juice drink or wine in any one of manufacturing process, and manufactures the infrared irradiation drink which has high antioxidant ability.
  In the figure, 1 is an infrared irradiation apparatus body, 2 is a carbon dioxide pulse laser oscillator, 3 is a pipe through which raw material juice or wine, which is an object to be irradiated, 4 is an irradiation object such as raw material juice or wine, and 5 is a power supply device. Reference numeral 6 denotes a control device, 7 denotes an optical window, 8 denotes a lens, 11 denotes a oscillating mirror, 12 (L1) denotes infrared pulse light, and L1 denotes infrared pulse light having a wavelength range of 10.2 μm to 10.6 μm.
[0014]
  Further, FIG. 2 shows that the infrared pulsed light having a wavelength included in the wavelength range of 10.2 μm to 10.6 μm among the fundamental oscillation wavelengths of the carbon dioxide laser is guided to the nonlinear optical circuit, and has a half wavelength of the fundamental wave. Any one of the second-harmonic infrared pulse light converted to the wavelength included in the wavelength range 5.1 μ to 5.3 μm, from the crushing and squeezing stage of the object to be irradiated, that is, the raw fruit to the stage of bottling, etc. It is the block diagram simplified in part in order to demonstrate the manufacturing apparatus which irradiates the fruit juice drink or wine in a manufacturing process, and manufactures the infrared irradiation drink which has high antioxidant ability. In the figure, 1 is an infrared irradiation apparatus main body, 2 is a carbon dioxide pulse laser oscillator, 3 is a pipe through which raw material juice, wine, etc., which is an object to be irradiated, 4 is an irradiated object such as fruit juice material or wine material, and 5 is a power supply device , 6 is a control device, 7 is an optical window, 8 is a lens, 9 is a nonlinear optical crystal, 10 is a beam splitter, 11 is a oscillating mirror, 12 (L1 and L2) is infrared pulsed light, and L1 is a wavelength range of 10.2 μm. To 10.6 μm infrared pulsed light, and L2 represents infrared pulsed light having a wavelength range of 5.1 μm to 5.3 μm.
[0015]
  In the figure, reference numeral 3 denotes a pipe made of stainless steel or the like through which the irradiated object 4 that irradiates the infrared pulsed light 12 passes, but a stainless steel or the like containing the irradiated object 4 may be used.
[0016]
  In order to produce an infrared irradiation beverage, the infrared pulsed light 12 applied to the irradiated object 4 which is a raw fruit juice such as grape juice or apple juice or wine is an infrared pulsed light L1 having a fundamental wavelength oscillated by the carbon dioxide laser oscillator 2. Or second-order harmonic infrared pulsed light L2 that has been wavelength-converted through an optical circuit composed of a lens 8 and a nonlinear optical crystal 9 and a beam splitter 10 that exhibit a nonlinear optical effect. The irradiated object 4 flowing through the pipe 3 is irradiated through the optical window 7 while being scanned left and right or up and down by the oscillating mirror 11. In addition, in the specific wavelength infrared irradiation drink which concerns on this invention, the structure of the infrared irradiation apparatus itself used for the manufacture is not specified at all.
[0017]
  In order to produce an infrared irradiation beverage, the wavelength of the infrared pulsed light L1 or L2 applied to the irradiated object 4 is obtained experimentally by irradiating various fruit juices or wines with infrared pulsed light having different wavelengths. . That is, one pulse oscillation duration of the pulsed light is 15 ns (nanoseconds) to 30 ms (milliseconds), the pulse repetition rate is 10 Hz (hertz) to 20 kHz (kilohertz), and the wavelength range is 10.2 μm to 10.6 μm or Irradiation with infrared pulsed light included in the range of 5.1 μm to 5.3 μm suppressed the oxidation of grape juice, apple juice, or wine, and was also effective in suppressing spoilage.
[0018]
  By the way, the said wavelength is contained in the wine which is the to-be-irradiated object 4, the absorption peak of infrared rays which the moisture contained in the fruit juice and wine which is the to-be-irradiated object 4 shows about 3 micrometer vicinity, 6-micrometer vicinity and about 14-micrometer vicinity. Since the infrared absorption peak indicated by the alcohol component is also outside the vicinity of about 3 μm and about 9 μm, the problem that the irradiated object 4 is unnecessarily heated by the irradiation with infrared pulsed light and deteriorated at high temperature is solved.
[0019]
  Infrared light with a wavelength of about 10 μm is more absorbed by moisture and alcohol than infrared light with a wavelength of about 5 μm, but the energy per infrared photon is inversely proportional to the wavelength. Since the energy per photon is as small as about 1/2 compared with infrared rays having a wavelength of 5 μm, the thermal action of infrared rays is relaxed, and the nonthermal effect can be fully utilized.
[0020]
  In addition, the infrared rays applied to the fruit juice and wine that are the irradiated object 4 to suppress oxidation and spoilage are incoherent (having a wide wavelength band) and coherent (coherent in phase) due to the following problems. ) Compared to infrared continuous wave, coherent infrared pulsed light is more suitable. The first problem is that coherent infrared pulsed light can efficiently irradiate only wavelengths that are effective in suppressing oxidation and decay of irradiated objects, whereas incoherent infrared light having a wide wavelength band It includes a wavelength band that is easily absorbed as heat by moisture or alcohol, which is a component of the irradiated object, and cannot effectively act to suppress oxidation and decay. The second problem is that even if the coherent infrared pulsed light has a large peak output (peak output), the pulsed light that is extremely short in oscillation time is intermittently repeated, causing the thermal effect on the irradiated object. In contrast to the fact that the action can be reduced, continuous wave infrared light that oscillates continuously without interruption has a very large thermal effect on the irradiated object, and the irradiated object is likely to be altered at high temperatures. Furthermore, since incoherent far infrared rays naturally emitted from ceramics and the like are extremely weak, there are problems such as extremely low irradiation efficiency of nonthermal action compared to coherent infrared pulsed light. .
[0021]
  The infrared pulsed light 12 applied to the irradiated object 4 is different in the infrared pulsed light to be applied depending on the properties of the irradiated object 4, but for example, the peak output (peak output) is 0.00 per square centimeter. If you select from the range of 8W (watt) to 3kW (kilowatt), pulse width (pulse duration) from 15ns (nanosecond) to 30ms (millisecond), and frequency from 10Hz (hertz) to 20kHz (kilohertz), Infrared pulsed light 12 having a more suitable condition can be found for the properties of the irradiated object 4 that is intended to suppress oxidation and decay.
[0022]
  Even in the case of coherent infrared pulsed light having a wavelength effective for suppressing oxidation of the irradiated object 4, when the peak output is extremely large, the number of pulse repetitions is extremely large, or the peak output and pulse repetition Even if the number is appropriate, if the irradiation time is too long, the amount of incident heat is excessive and the irradiated object 4 is likely to be deteriorated at high temperature. On the other hand, the short-time irradiation with infrared pulsed light prevents oxidation and corruption. It is more suitable to take into consideration the properties of the object to be irradiated 4 and the capability of the infrared irradiation device 1, for example, the peak output and pulse width, and the number of pulse repetitions, because the problem of insufficient energy for producing the effect is likely to occur. Irradiation conditions of infrared pulsed light should be applied.
[0023]
【Example】
  Confirmation of the oxidation inhibition effect is carried out using grape juice and wine as test specimens, irradiating infrared pulsed light of a specific wavelength with the apparatus shown in FIG. 1 and FIG. The observation was made in comparison with an untreated specimen not irradiated with pulsed light. The state of oxidation is the amount of change in the redox potential difference of the test specimen measured using the redox potentiometer, the change in the absorbance of the specimen measured using the ultraviolet / visible spectrophotometer, and the Fourier transform infrared spectrophotometer. Etc., respectively. Next, an example in which white wine and red wine without addition of sulfite were used as test specimens will be described.
[0024]
  (1) Change in oxidation-reduction potential: FIG. 3 shows an example of the change in oxidation-reduction potential of sulfite-free white wine. The data indicated by a circle symbol (◯) in the figure is for a test body irradiated with infrared pulsed light having a wavelength of 5.3 μm and an average irradiation power of 0.4 W for 10 minutes, and the data indicated by a square symbol (□) in the figure. Is a test specimen to which infrared pulsed light having a wavelength of 10.6 μm and an average irradiation power of 0.8 W was applied at 9 ml / s (milliliter / second). In addition, the data indicated by a cross symbol (x) in the figure is for an infrared non-irradiated specimen that is not irradiated with infrared light.
[0025]
  The oxidation-reduction potential (◯ symbol) of the infrared-irradiated white wine specimen after 24 hours from irradiation with the infrared pulsed light having a wavelength of 5.3 μm is the oxidation-reduction potential of the untreated white wine specimen (24 symbols). The potential was about 20 mV (millivolt) lower than the symbol x, and the flavor was not deteriorated. On the other hand, the redox potential change amount of the untreated specimen was about 1.4 times larger, and the original flavor of the wine was impaired. Therefore, an infrared ray having a wavelength of 5.3 μm was applied to white wine without sulfite. It was confirmed that the effect of inhibiting oxidation was obtained by irradiating under the appropriate conditions.
[0026]
  Furthermore, even after 24 hours, the difference in redox potential between the test specimen irradiated with infrared pulsed light and the untreated specimen gradually increased with time (days). And also in the point of the flavor maintenance, the sulfite-free white wine specimen irradiated with infrared pulse light had a remarkable effect compared with the untreated specimen. In addition, as indicated by the square symbol (□), substantially the same effect is obtained with the white wine specimen irradiated with a wavelength of 10.6 μm.
[0027]
  FIG. 4 exemplifies the irradiation effect of infrared pulsed light with respect to the relationship between the irradiation energy and the amount of change in oxidation-reduction potential, using white wine with no sulfite added as a test specimen. The data indicated by square symbols (□) in the figure show the results when the pulsed white wine is irradiated with infrared pulsed light having a wavelength of 10.6 μm while changing the flow rate of the test white wine. In this case, when the irradiation energy to the specimen is about 0.07 J (joule) to about 0.15 J per ml (milliliter), more specifically, infrared pulsed light with an average irradiation power of 0.8 W is about 1 second per second. Compared with the amount of change in oxidation-reduction potential after 24 hours when treated at a rate of 5 ml to about 12 ml, irradiated white wine irradiated with infrared pulsed light is unirradiated white that was not irradiated with infrared pulsed light. Compared with wine, the amount of change in redox potential could be suppressed by 15 mV (millivolt) or more.
  In addition, the horizontal line drawn with the broken line in a figure shows the oxidation-reduction potential variation | change_quantity after 24-hour progress of the non-irradiated white wine which did not irradiate infrared pulse light.
[0028]
  Further, the data indicated by a circle symbol (◯) in the figure shows a case where a test sample white wine is put in a container and irradiated with infrared pulsed light having a wavelength of 5.3 μm. In this case, when the input energy to the test sample white wine is about 4 J to about 7 J per ml, more specifically, by irradiating infrared pulse light with an average irradiation power of 0.4 W for about 8 minutes to about 15 minutes, Compared with the amount of change in redox potential after the lapse of 24 hours, the irradiated white wine irradiated with infrared pulsed light suppresses the change in redox potential by 15 mV or more than the non-irradiated white wine not irradiated with infrared pulsed light. I was able to. As described above, there is an appropriate irradiation power range that can exhibit an oxidation suppression effect even when irradiation with infrared pulsed light with an effective wavelength for oxidation suppression, and effectively imparts antioxidant capacity to the irradiated object. There was an appropriate irradiation power that could be used.
In addition, although detailed description is omitted, it was confirmed that even in the case where red wine without sulfite and grape juice were used as test specimens, the same oxidation inhibition effect as the above was obtained.
[0029]
  (2) Change in Visible Light Absorbance: An example will be described in which a change in wine color tone (browning) caused by oxidation is measured by measuring the change in absorbance with an ultraviolet / visible spectrophotometer (measurement of transmittance). In the example of a red wine specimen in which an infrared pulsed light having a wavelength of 5.3 μm and an average irradiation power of 0.4 W is irradiated for 10 minutes to red wine without addition of sulfite, a visible light having a wavelength of 0.65 μm is transmitted when 7 days have passed since the infrared irradiation. The degree decreased linearly by about 49% from the initial value, whereas the untreated (non-irradiated infrared) non-irradiated specimen after 7 days showed a decrease of about 63%, about 1 A 3-fold change in permeability was observed.
[0030]
  Subsequent measurements over a long period of time indicate that the difference in transmittance between the specimen irradiated with the infrared pulsed light and the untreated specimen gradually increases, and the infrared having a wavelength of 5.3 μm It was found that the sulfite-free red wine irradiated with pulsed light has a remarkable effect of suppressing browning due to oxidation compared to the sulfite-free red wine not irradiated with infrared pulsed light. Although not described in detail, the same oxidation suppression effect as described above was obtained even in the case of a test sample that was irradiated with infrared pulsed light having a wavelength of 5.3 μm on a test sample of white wine without addition of sulfite. It was confirmed that
[0031]
  (3) Infrared spectroscopic analysis: Explained the case where the absorbance of the acetaldehyde maximum absorption peak (near 5.8 μm) was measured with a Fourier transform infrared spectrophotometer for the change of the acetaldehyde component generated as a result of the oxidation of the wine component. To do. In the example of a white wine specimen that was irradiated with infrared pulsed light having a wavelength of 5.3 μm and an average irradiation power of 0.4 W for white wine without addition of sulfite for 10 minutes, the acetaldehyde absorption peak at 7 days after irradiation with infrared pulsed light was observed. The absorbance (initial value 0) shown was about 0.2, whereas the non-irradiated specimen that was not irradiated with infrared pulsed light was about 0.31, and the acetaldehyde absorption peak value was about 1.5 times. showed that. Furthermore, in the analysis after a long period of time, it was confirmed that the difference in absorbance between the acetaldehyde absorption peaks of the infrared pulsed light irradiated specimen and the non-irradiated specimen was larger. In the same analysis performed for red wine without sulfite addition, the absorbance of the acetaldehyde absorption peak is smaller in the infrared pulsed light irradiated test specimen than in the non-irradiated test specimen not irradiated with the infrared pulsed light. Production was suppressed, and wine oxidation was suppressed.
[0032]
  The above is a detailed description of an example in which an infrared pulsed light having a wavelength of 5.3 μm and 10.6 μm is irradiated to a sulfite-free wine. The fundamental oscillation wavelength of the carbon dioxide pulse laser is 10.2 μm and the fundamental oscillation wavelength thereof. The effect of suppressing oxidation is also obtained when infrared pulsed light having a wavelength of 5.1 μm of the second harmonic obtained by wavelength conversion is applied. In addition, the results of the same trend as described above were also obtained in the measurement of changes in redox potential difference, changes in absorbance, etc. performed by irradiating infrared pulsed light using grape juice and wine containing antioxidants such as sulfurous acid as test specimens. It was confirmed that the antioxidant ability of the irradiated object could be improved. Therefore, if infrared pulse light irradiation is applied to fruit juice or wine containing an antioxidant, the amount of antioxidant added to the fruit juice or wine can be reduced. As described above, the optimum irradiation condition of the infrared pulsed light is the kind of fruit juice material and wine raw material to be irradiated, the quality of the infrared pulsed light oscillated by the infrared irradiation apparatus body 1, that is, the peak output, the pulse Appropriate conditions such as irradiation time should be determined and adopted according to differences in duration, number of pulse repetitions, and the like.
[0033]
  By the way, the infrared irradiation apparatus main body 1 for infrared pulsed light irradiation in the said Example is the following 2 types of infrared irradiation apparatuses. As shown in FIG. 1, the first infrared irradiating apparatus emits infrared pulsed light L1 having a fundamental oscillation wavelength in the range of 10.2 μm to 10.6 μm oscillated by a carbon dioxide pulse laser, for example, absorbing infrared rays. This is an apparatus for irradiating the irradiated object 4 through a small optical window 7 made of zinc selenide (ZnSe).
[0034]
  In addition, as shown in FIG. 2, the second infrared irradiation apparatus 1 emits infrared pulsed light L1 having a fundamental oscillation wavelength in the range of 10.2 μm to 10.6 μm oscillated by a carbon dioxide pulse laser, for example, selenium. A lens 8 made of zinc halide (ZnSe), a nonlinear optical crystal 9 composed of, for example, silver (Ag), gallium (Ga), selenium (Se), etc., and a wavelength band of 10.2 μm to 10.6 μm are cut. Infrared rays having a wavelength in the range of 5.1 μm to 5.3 μm are obtained through an optical circuit composed of, for example, a beam splitter 10 made of magnesium fluoride (MgF 2), which selectively takes out a wavelength band from 5.1 μm to 5.3 μm. It is an apparatus that irradiates the irradiated object 4 through an optical window 7 such as a window made of zinc selenide (ZnSe) after being converted into pulsed light L2.
[0035]
  Note that the first infrared irradiation apparatus has high energy conversion efficiency and can be manufactured at a lower cost than the second infrared irradiation apparatus, and therefore is suitable for a mass-production spread product manufacturing apparatus.
[0036]
【The invention's effect】
  As detailed above,The fruit juice beverage with improved antioxidant ability according to the invention of claim 1 has a wavelength in the range of 5.1 μm to 5.3 μm or 10.2 μm to 10.6 μm.Ingredients for juice drinks such as grape juice and apple juice using infrared pulsed lightInIrradiatedBecauseOxidation is suppressed more efficiently and rot is also suppressed, it is high quality over a long period of time, and it is harmless and health friendly without using antioxidantsJuice drinkIt becomes.The method for producing a fruit juice drink according to the invention of claim 2 has a wavelength of 5.1 μm to 5.3 μm or 10.2 μm to 10 at any stage of the fruit juice production process using grape juice or apple juice as a raw material. Because the antioxidant ability of fruit juice beverages is improved by irradiating with an infrared irradiation device that oscillates coherent infrared pulsed light in the range of 6 μm, the fruit juice beverage has improved antioxidant ability. Is a method for efficiently producing
[0037]
  The apparatus for producing a fruit juice according to the invention of claim 3It consists of a carbon dioxide pulse laser oscillator and an optical circuit.Wavelength10.2 μm to 10.6 μmThe fundamental wave of the carbon dioxide pulse laser in the range or its fundamental waveAn infrared irradiation device that oscillates the second harmonic in the wavelength range of 5.1 μm to 5.3 μm.Prepared,At any stage of the manufacturing processTheInfrared irradiation deviceJuice drink by irradiating withCan improve the antioxidant capacity ofMadeManufacturing equipment.The wine with improved antioxidant ability according to the invention of claim 4 is obtained by using infrared pulsed light having a wavelength in the range of 5.1 μm to 5.3 μm or 10.2 μm to 10.6 μm as a raw material of wine, aged wine, or a cram school Since it is irradiated to the wine after it has been grown, oxidation is more efficiently suppressed and spoilage is also suppressed, it is of high quality over a long period of time, and it is harmless and health friendly without using antioxidants It becomes wine.
[0038]
  The wine production method according to the invention of claim 5 has a wavelength of 5.1 μm to 5.3 μm or 10.2 μm to 10.6 μm at any stage of the wine production process using grape juice or apple juice as a raw material. Since the antioxidant ability of wine is improved by irradiating with an infrared irradiating device that oscillates coherent infrared pulsed light in the above range, it is a method for efficiently producing wine with improved antioxidant ability.  The wine manufacturing apparatus according to the invention of claim 6 is configured to emit a fundamental wave of a carbon dioxide pulse laser having a wavelength of 10.2 μm to 10.6 μm, or a fundamental wave thereof, composed of a carbon dioxide pulse laser oscillator and an optical circuit. An infrared irradiation device that oscillates the second harmonic in the range of 5.1 μm to 5.3 μm that has been wavelength-converted is provided, and at any stage of the manufacturing process, irradiation with the infrared irradiation device is performed to reduce the resistance of wine. It becomes a manufacturing apparatus which can improve oxidation ability.
[0039]
  In addition, the manufacturing method of the said fruit juice drink or wine isIt is effective for the production of fruit juices or wines that do not contain antioxidants, but the antioxidant capacity is also improved for antioxidant-added fruit juices or wines to which the above production method is applied, and the amount of antioxidants used is reduced. Therefore, the infrared irradiation beverage manufacturing method is a method for manufacturing a fruit juice beverage or wine that has a high quality by reducing the amount of antioxidant used.
[Brief description of the drawings]
FIG. 1 is a block diagram partially simplified for explaining an apparatus for irradiating infrared pulsed light having a fundamental oscillation wavelength of a carbon dioxide pulse laser among the apparatus for producing an infrared irradiated beverage according to the present invention. .
FIG. 2 is a partial view for explaining an apparatus for irradiating infrared pulsed light in which the fundamental oscillation wavelength of a carbon dioxide pulse laser is guided to a nonlinear optical circuit and converted in wavelength among the apparatus for producing infrared irradiated wine according to the present invention. It is the block diagram simplified and shown.
FIG. 3 is a graph illustrating the oxidation-inhibiting effect of white wine as a change in oxidation-reduction potential change with time.
FIG. 4 is a graph illustrating that the oxidation suppression effect in white wine varies with irradiation energy.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Infrared irradiation apparatus main body 2 Carbon dioxide pulse laser oscillator 3 Piping 4 To-be-irradiated object 5 Power supply device 6 Control apparatus 7 Optical window 8 Lens 9 Nonlinear optical crystal 10 Beam splitter 11 Oscillation mirror 12 Infrared pulse light L1 From wavelength range 10.2 micrometer Infrared pulsed light of 10.6 μm L2 Infrared pulsed light in the wavelength range of 5.1 μm to 5.3 μm

Claims (6)

波長5.1μmから5.3μm又は10.2μmから10.6μmの範囲の赤外線パルス光を照射したものであることを特徴とする抗酸化能を向上させた果汁飲料。 Fruit juice with improved antioxidant activity, characterized in that the wavelength 5.1μm is obtained by irradiating infrared rays pulsed light in the range of 10.6μm from 5.3μm or 10.2 .mu.m. 製造工程のいずれかの段階において、波長5.1μmから5.3μm又は10.2μmから10.6μmの範囲のコヒーレントな赤外線パルス光を発振する赤外線照射装置による照射を行うことにより果汁飲料の抗酸化能を向上させることを特徴とする果汁飲料製造方法。Antioxidation of fruit juice drinks by irradiating with an infrared irradiation device that oscillates coherent infrared pulsed light in a wavelength range of 5.1 μm to 5.3 μm or 10.2 μm to 10.6 μm at any stage of the manufacturing process method for producing a fruit juice beverage, characterized in that to improve the performance. 炭酸ガスパルスレーザー発振器と光学回路で構成された、波長10.2μmから10.6μmの範囲にある炭酸ガスパルスレーザーの基本波又はその基本波を波長変換した5.1μmから5.3μmの範囲にある第2次高調波を発振する赤外線照射装置を備え、製造工程のいずれかの段階において、該赤外線照射装置による照射を行うことにより果汁飲料の抗酸化能を向上させことを特徴とする果汁飲料の製造装置。The fundamental wave of a carbon dioxide pulse laser composed of a carbon dioxide pulse laser oscillator and an optical circuit in the wavelength range of 10.2 μm to 10.6 μm, or a wavelength converted from the fundamental wave of the fundamental wave to a range of 5.1 μm to 5.3 μm juice an infrared irradiation device for oscillating a certain second harmonic, at any stage of the manufacturing process, wherein the Ru improve the antioxidant capacity of the fruit juice by performing irradiation by the infrared irradiation device Beverage manufacturing equipment. 波長5.1μmから5.3μm又は10.2μmから10.6μmの範囲の赤外線パルス光を照射したものであることを特徴とする抗酸化能を向上させたワイン。A wine with improved antioxidant ability, which has been irradiated with infrared pulsed light in a wavelength range of 5.1 μm to 5.3 μm or 10.2 μm to 10.6 μm. 製造工程のいずれかの段階において、波長5.1μmから5.3μm又は10.2μmから10.6μmの範囲のコヒーレントな赤外線パルス光を発振する赤外線照射装置による照射を行うことによりワインの抗酸化能を向上させることを特徴とするワインの製造方法。Antioxidant ability of wine by irradiating with an infrared irradiation device that oscillates coherent infrared pulsed light in a wavelength range of 5.1 μm to 5.3 μm or 10.2 μm to 10.6 μm at any stage of the manufacturing process A method for producing wine, characterized by improving the quality. 炭酸ガスパルスレーザー発振器と光学回路で構成された、波長10.2μmから10.6μmの範囲にある炭酸ガスパルスレーザーの基本波又はその基本波を波長変換した5.1μmから5.3μmの範囲にある第2次高調波を発振する赤外線照射装置を備え、製造工程のいずれかの段階において、該赤外線照射装置による照射を行うことによりワインの抗酸化能を向上させることを特徴とするワインの製造装置。The fundamental wave of a carbon dioxide pulse laser composed of a carbon dioxide pulse laser oscillator and an optical circuit in the wavelength range of 10.2 μm to 10.6 μm, or a wavelength converted from the fundamental wave of the fundamental wave to a range of 5.1 μm to 5.3 μm A wine production comprising an infrared irradiation device that oscillates a certain second harmonic, and improving the antioxidant capacity of the wine by irradiating with the infrared irradiation device at any stage of the production process apparatus.
JP2002209683A 2002-07-18 2002-07-18 Fruit juice beverage with improved antioxidant capacity, method for producing fruit juice beverage, apparatus for producing fruit juice beverage, wine with improved antioxidant capacity, wine production method, wine production apparatus Expired - Fee Related JP4106682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209683A JP4106682B2 (en) 2002-07-18 2002-07-18 Fruit juice beverage with improved antioxidant capacity, method for producing fruit juice beverage, apparatus for producing fruit juice beverage, wine with improved antioxidant capacity, wine production method, wine production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209683A JP4106682B2 (en) 2002-07-18 2002-07-18 Fruit juice beverage with improved antioxidant capacity, method for producing fruit juice beverage, apparatus for producing fruit juice beverage, wine with improved antioxidant capacity, wine production method, wine production apparatus

Publications (2)

Publication Number Publication Date
JP2004049082A JP2004049082A (en) 2004-02-19
JP4106682B2 true JP4106682B2 (en) 2008-06-25

Family

ID=31933470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209683A Expired - Fee Related JP4106682B2 (en) 2002-07-18 2002-07-18 Fruit juice beverage with improved antioxidant capacity, method for producing fruit juice beverage, apparatus for producing fruit juice beverage, wine with improved antioxidant capacity, wine production method, wine production apparatus

Country Status (1)

Country Link
JP (1) JP4106682B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035502A1 (en) * 2006-09-23 2008-03-27 Mikio Kuzuu Method of producing processed food
KR101081108B1 (en) 2011-04-21 2011-11-07 조미련 Functional fermented drinks substituting for fresh vegetable juice
CN106485935B (en) * 2016-12-26 2019-04-05 重庆西楚智捷科技有限公司 A method of public transport arrival time is predicted based on GPS
JP6996761B2 (en) * 2018-08-22 2022-01-17 株式会社ミウラセンサー研究所 Agricultural product processing method and pretreatment equipment used for this processing method
WO2023062715A1 (en) * 2021-10-12 2023-04-20 日本碍子株式会社 Method for manufacturing low-alcohol beverage

Also Published As

Publication number Publication date
JP2004049082A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
Preetha et al. Effect of pulsed light treatment on inactivation kinetics of Escherichia coli (MTCC 433) in fruit juices
EP0411046B1 (en) Methods for preservation of foodstuffs
Orlowska et al. Continuous and pulsed ultraviolet light for nonthermal treatment of liquid foods. Part 1: effects on quality of fructose solution, apple juice, and milk
Choudhary et al. Ultraviolet pasteurization for food industry
Illera et al. Effect of thermosonication batch treatment on enzyme inactivation kinetics and other quality parameters of cloudy apple juice
Keklik et al. Microbial decontamination of food by ultraviolet (UV) and pulsed UV light
Falguera et al. Ultraviolet processing of liquid food: A review: Part 2: Effects on microorganisms and on food components and properties
Grant-Preece et al. Light-induced changes in bottled white wine and underlying photochemical mechanisms
Xu et al. Optimization of spiral continuous flow-through pulse light sterilization for Escherichia coli in red grape juice by response surface methodology
Hwang et al. Relationship between optical properties of beverages and microbial inactivation by intense pulsed light
US20140105784A1 (en) Ultraviolet treatment device
Prithviraj et al. Emerging non-thermal processing techniques for preservation of tender coconut water
JP4106682B2 (en) Fruit juice beverage with improved antioxidant capacity, method for producing fruit juice beverage, apparatus for producing fruit juice beverage, wine with improved antioxidant capacity, wine production method, wine production apparatus
de Matos Ribeiro et al. Synergistic effect of thermosonication to reduce enzymatic activity in coconut water
Koutchma Preservation and shelf life extension: UV applications for fluid foods
Yannam et al. Effect of UV-C irradiation on the inactivation kinetics of oxidative enzymes, essential amino acids and sensory properties of coconut water
Maguluri et al. Evaluation of UV‐C LEDs efficacy for microbial inactivation in tender coconut water
Antonio-Gutiérrez et al. UV-C light for processing beverages: Principles, applications, and future trends
Usaga et al. Time after apple pressing and insoluble solids influence the efficiency of the UV treatment of cloudy apple juice
JP6892788B2 (en) Sterilization method, sterilization equipment
Czako et al. The effect of UV-C irradiation on grape juice turbidity, sensoric properties and microbial count.
Krishnamurthy et al. 11 UV Pasteurization
JP4631099B2 (en) Infrared irradiation wine and its production equipment
US10986852B2 (en) Systems and methods of making cold processed juice beverages
Tsikrika et al. Effect of ultrasonic treatment on enzyme activity and bioactives of strawberry puree

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4106682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees