WO2023062715A1 - Method for manufacturing low-alcohol beverage - Google Patents

Method for manufacturing low-alcohol beverage Download PDF

Info

Publication number
WO2023062715A1
WO2023062715A1 PCT/JP2021/037709 JP2021037709W WO2023062715A1 WO 2023062715 A1 WO2023062715 A1 WO 2023062715A1 JP 2021037709 W JP2021037709 W JP 2021037709W WO 2023062715 A1 WO2023062715 A1 WO 2023062715A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol
beverage
low
ethanol
infrared
Prior art date
Application number
PCT/JP2021/037709
Other languages
French (fr)
Japanese (ja)
Inventor
祐司 谷口
良夫 近藤
孝介 丹羽
和成 山田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2021/037709 priority Critical patent/WO2023062715A1/en
Publication of WO2023062715A1 publication Critical patent/WO2023062715A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12HPASTEURISATION, STERILISATION, PRESERVATION, PURIFICATION, CLARIFICATION OR AGEING OF ALCOHOLIC BEVERAGES; METHODS FOR ALTERING THE ALCOHOL CONTENT OF FERMENTED SOLUTIONS OR ALCOHOLIC BEVERAGES
    • C12H3/00Methods for reducing the alcohol content of fermented solutions or alcoholic beverage to obtain low alcohol or non-alcoholic beverages

Definitions

  • the present invention relates to a method for producing low-alcohol beverages.
  • step (A) a step of separating ethanol and aroma components from an alcohol-containing beverage by vacuum steam distillation to obtain a distillate containing ethanol and aroma components, and a residual liquid after the distillate is separated; B) a step of contacting the distillate with the resin to adsorb the aroma component to the resin; (C) a step of removing ethanol from the resin that has adsorbed the aroma component; and (E) mixing the residual liquid obtained in step (A) with the aroma component obtained in step (D) to obtain a low-alcohol beverage.
  • the distillation in step (A) is preferably carried out at 60° C. or lower, and the recovery of aromatic components in step (D) is preferably carried out by contacting water vapor at 100° C. or higher with the resin.
  • Patent Document 2 discloses a method for purifying organic compounds, and as an example, discloses a method for selectively and efficiently recovering methanol from a mixture of methanol and water. Specifically, by performing distillation at 85 ° C while irradiating infrared rays in the infrared absorption wavelength region of methanol, the distillate (methanol concentration is 80 to 85% ) can be obtained.
  • Patent Document 2 describes recovery of methanol from a mixture of methanol and water, but does not describe recovery of ethanol from alcohol-containing beverages. Therefore, Patent Literature 2 does not address the problem of preventing the residual liquid remaining after ethanol is recovered from the alcohol-containing beverage from spoiling the original flavor of the alcohol-containing beverage.
  • the present invention was made to solve such problems, and its main purpose is to provide a low-alcohol beverage that maintains the original flavor of alcohol-containing beverages.
  • the method for producing a low-alcoholic beverage of the present invention includes: A method for producing a low-alcohol beverage by removing ethanol from an alcohol-containing beverage, comprising: Ethanol is distilled and removed from the alcohol-containing beverage by maintaining the temperature of the alcohol-containing beverage at 50 ° C. or less and irradiating the alcohol-containing beverage with infrared rays including the infrared absorption wavelength of the OH group of ethanol. It is.
  • this low-alcoholic beverage production method it is possible to obtain a low-alcoholic beverage that retains the original flavor of the alcohol-containing beverage.
  • the infrared rays are preferably infrared rays having a peak at a wavelength of 3 ⁇ m, 6.7 ⁇ m or 9 ⁇ m. By doing so, the effects of the present invention can be reliably obtained.
  • the distribution of flavor items between the low-alcoholic beverage and the alcohol-containing beverage measured by a taste recognition device match. In this way, it is possible to objectively confirm that the original flavor of the alcohol-containing beverage is maintained.
  • FIG. 3 is a perspective view of the infrared heater 10;
  • FIG. 3 is a partial bottom view of the infrared heater 10;
  • FIG. 1 is a radar chart showing the flavor evaluation results of Example 1.
  • FIG. 4 is a radar chart showing the flavor evaluation results of Example 2.
  • the method for producing a low-alcoholic beverage of this embodiment is a method for producing a low-alcoholic beverage by removing ethanol from an alcohol-containing beverage. Specifically, by maintaining the temperature of the alcohol-containing beverage at 50° C. or less and irradiating the alcohol-containing beverage with infrared rays including the infrared absorption wavelength of the OH group of ethanol, ethanol is distilled and removed from the alcohol-containing beverage. It is something to do.
  • alcohol-containing beverages refer to alcoholic beverages containing ethanol (sparkling alcoholic beverages, brewed alcoholic beverages, distilled alcoholic beverages, mixed alcoholic beverages, etc.).
  • a "low-alcoholic beverage” refers to a beverage having an ethanol content of 1% or less and having an alcoholic flavor. Examples of sparkling alcoholic beverages include beer and low-malt beer; examples of brewed alcoholic beverages include refined sake and fruit wine; and examples of distilled alcoholic beverages include whiskey and brandy.
  • Mixed alcoholic beverages include, for example, mirin and liqueurs.
  • the temperature at which ethanol is distilled from the alcohol-containing beverage is preferably 50°C or lower, more preferably 40°C or lower. If the distillation temperature is 50°C or less, some of the flavor components (aromatic components, etc.) originally contained in the alcohol-containing beverage volatilize, changing the overall balance of the flavor components or changing into other components due to heat. can be suppressed. These effects are enhanced by setting the distillation temperature to 40° C. or lower.
  • An alcohol-containing beverage can also be viewed as a mixture of water and ethanol.
  • a mixture of water and ethanol is an azeotrope, unlike a mixture of water and methanol. Therefore, the boiling point (azeotropic point) of a mixture of water and ethanol is lower than the boiling point of ethanol alone.
  • FIG. 1 shows the infrared absorption spectrum of ethanol.
  • Ethanol can be selectively and efficiently recovered from alcohol-containing beverages by irradiating with infrared rays that cause ethanol to vibrate without vibrating flavor components other than ethanol contained in alcohol-containing beverages. is preferentially absorbed into ethanol. By doing so, ethanol can be recovered in a shorter time and at a lower temperature than in the case of thermal distillation without irradiation with infrared rays.
  • Infrared rays with a peak at a wavelength of 3 ⁇ m, 6.7 ⁇ m or 9 ⁇ m are preferable as the infrared rays with which the alcohol-containing beverage is irradiated.
  • "having a peak at a wavelength of 3 ⁇ m, 6.7 ⁇ m, or 9 ⁇ m” is not limited to having a peak center at a wavelength of 3 ⁇ m, 6.7 ⁇ m, or 9 ⁇ m. Those centered at wavelengths of 3 ⁇ m ⁇ 0.5 ⁇ m, 6.7 ⁇ m ⁇ 0.5 ⁇ m, and 9 ⁇ m ⁇ 0.5 ⁇ m are also included.
  • an infrared emitting device is used to irradiate infrared rays including the infrared absorption wavelength of the OH group of ethanol.
  • Any infrared emitting device can be used as long as it can emit infrared rays.
  • the infrared emitting device one having a plate-like radiator and a planar heater as a heat source can be used.
  • the infrared emitting device it is preferable to use an infrared emitting device capable of emitting infrared rays having a peak at a desired wavelength, particularly infrared rays having a narrow half-width having a peak at a desired wavelength.
  • Examples of such infrared emitting devices include metamaterial emitters and infrared emitting devices with filters.
  • metamaterial emitters include MIM (Metal-Insulator-Metal) type, microcavity type, metaatom type, laminated type, and the like.
  • MIM Metal-Insulator-Metal
  • microcavity type for example, those described in Reference 1 (JSME TED Newsletter, No.74, pp.7-10, 2014) can be used. This MIM type will be described later in detail.
  • As the microcavity type and the metaatom type for example, those described in Reference Document 2 (JSME TED Newsletter, No.74, pp.2-6, 2014) can be used.
  • As the laminated type for example, one described in Reference Document 3 (ACS Cent. Sci., Vol.5, pp319-326, 2019) can be used.
  • an infrared heater described in Japanese Patent No. 6442355 can be used as an infrared emitting device with a filter.
  • FIGS. 2 and 3 An infrared heater 10 is shown in FIGS. 2 and 3 as an example of an infrared emitting device.
  • FIG. 2 is a perspective view of the infrared heater 10, partially shown in cross section.
  • FIG. 3 is a partial bottom view of the infrared heater 10.
  • FIG. The left-right direction, the front-rear direction, and the up-down direction are as shown in FIG.
  • the infrared heater 10 is an example of an MIM type metamaterial emitter, and includes a heater main body 11, a structure 30, and a casing 70. This infrared heater 10 is arranged to radiate infrared rays toward an alcohol-containing beverage in a distillation apparatus (not shown) arranged below.
  • the heater main body 11 is configured as a so-called planar heater, and includes a heating element 12 formed by bending a linear member in a zigzag shape, and a protective member, which is an insulator that contacts the heating element 12 and covers the periphery of the heating element 12. 13.
  • Examples of materials for the heating element 12 include W, Mo, Ta, Fe--Cr--Al alloys and Ni--Cr alloys.
  • Examples of materials for the protective member 13 include insulating resins such as polyimide, ceramics, and the like.
  • the heater main body 11 is arranged inside the casing 70 . Both ends of the heating element 12 are connected to a pair of input terminals (not shown) attached to the casing 70 . Electric power can be supplied to the heating element 12 from the outside through the pair of input terminals.
  • the heater main body 11 may be a planar heater in which a ribbon-shaped heating element is wrapped around an insulator.
  • the structural body 30 is a plate-like radiator arranged below the heating element 12 .
  • the structure 30 includes a first conductor layer 31 (metal pattern), a dielectric layer 34, a second conductor layer 35 (metal substrate), and a support substrate 37 arranged downward from outside to inside of the infrared heater 10. They are stacked in this order.
  • the structure 30 is arranged to block the opening below the casing 70 .
  • the first conductor layer 31 is configured as a metal pattern having a periodic structure in which metal electrodes 32 of the same shape and size are arranged on the dielectric layer 34 at regular intervals.
  • a plurality of square-shaped metal electrodes 32 are arranged on the dielectric layer 34 at regular intervals of D1 in the left-right direction, and at intervals of D2 in the front-rear direction. They are configured as metal patterns spaced apart and equally spaced from each other.
  • the metal electrode 32 has a shape whose thickness (vertical height) is smaller than the width W1 (the width in the horizontal direction) and the vertical width W2 (the width in the front-rear direction).
  • D1 and D2 are equal
  • W1 and W2 are equal.
  • Examples of the material of the metal electrode 32 include gold and aluminum (Al).
  • the metal electrode 32 is bonded to the dielectric layer 34 via an adhesive layer (not shown).
  • Examples of materials for the adhesive layer include chromium (Cr), titanium (Ti), ruthenium (Ru), and the like.
  • the dielectric layer 34 is a plate-like member whose upper surface is joined to the second conductor layer 35 .
  • the dielectric layer 34 is sandwiched between the first conductor layer 31 and the second conductor layer 35 .
  • a portion of the lower surface of the dielectric layer 34 where the metal electrode 32 is not arranged serves as a radiation surface 38 that radiates infrared rays to an object.
  • materials for the dielectric layer 34 include alumina (Al 2 O 3 ) and silica (SiO 2 ).
  • the second conductor layer 35 is a metal plate whose upper surface is bonded to the support substrate 37 via an adhesive layer (not shown).
  • an adhesive layer As the material of the second conductor layer 35, the same material as that of the first conductor layer 31 can be used. Examples of materials for the adhesive layer include chromium (Cr), titanium (Ti), ruthenium (Ru), and the like.
  • the support substrate 37 is a plate-like member fixed inside the casing 70 by a fixture (not shown) or the like, and supports the first conductor layer 31 , the dielectric layer 34 and the second conductor layer 35 .
  • Examples of materials for the support substrate 37 include materials such as Si wafers and glass, which easily maintain a smooth surface, have high heat resistance, and have low thermal warping.
  • the support substrate 37 may be in contact with the lower surface of the heater main body 11, or may be vertically separated with a space therebetween without contact. When the support substrate 37 and the heater main body 11 are in contact with each other, they may be bonded together.
  • Such a structure 30 functions as a metamaterial emitter that has the property of selectively emitting infrared rays of specific wavelengths. This characteristic is believed to be due to the resonance phenomenon explained by the magnetic polariton.
  • the magnetic polariton is a resonance phenomenon in which a strong electromagnetic field confinement effect is obtained in the dielectric (dielectric layer 34) between the upper and lower conductors (the first conductor layer 31 and the second conductor layer 35). be.
  • the portion of the dielectric layer 34 sandwiched between the second conductor layer 35 and the metal electrode 32 serves as an infrared radiation source.
  • Infrared rays emitted from the radiation source go around the metal electrode 32 and are radiated to the surrounding environment from a portion of the dielectric layer 34 where the metal electrode 32 is not provided (that is, the radiation surface 38). Further, in this structure 30, the resonance wavelength can be adjusted by adjusting the materials of the first conductor layer 31, the dielectric layer 34, and the second conductor layer 35, and the shape and periodic structure of the first conductor layer 31. can be done. As a result, the infrared rays emitted from the emitting surface 38 of the structure 30 exhibit a characteristic that the emissivity of infrared rays of a specific wavelength is high.
  • the structure 30 has a half width of 2.0 ⁇ m or less (preferably 1.0 ⁇ m or less) within a wavelength range of 0.9 ⁇ m or more and 25 ⁇ m or less (preferably 2.5 ⁇ m or more and 25 ⁇ m or less (4000 to 400 cm ⁇ 1 )). 5 ⁇ m or less, more preferably 1.0 ⁇ m or less) and an emissivity of 0.7 or more (preferably 0.8 or more).
  • the shape, periodic structure, etc. are adjusted. That is, the structure 30 has a characteristic of emitting infrared rays having a steep maximum peak with a relatively small half-value width and a relatively high emissivity.
  • the half width is not particularly limited, it is preferably 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and even more preferably 1.0 ⁇ m or less.
  • the casing 70 has a substantially rectangular parallelepiped shape with a space inside and an open bottom.
  • the heater main body 11 and the structure 30 are arranged in the space inside the casing 70 .
  • the casing 70 is made of metal (for example, SUS or aluminum) so as to reflect infrared rays emitted from the heating element 12 .
  • a distillation device (not shown) containing an alcoholic beverage is placed under the first conductor layer 31 of the infrared heater 10.
  • the distillation apparatus has a heater with a thermostat. The heater is switched on to bring the alcohol-containing beverage to the desired temperature.
  • power is supplied to both ends of the heating element 12 from a power source (not shown) of the infrared heater 10 through input terminals. Power is supplied so that the temperature of the heating element 12 reaches a preset temperature (not particularly limited, but several hundred degrees Celsius, for example).
  • the heating element 12 From the heating element 12 that has reached a predetermined temperature, energy is transmitted to the surroundings by one or more modes of heat transfer of conduction, convection, and radiation, and the structure 30 is heated. As a result, the structure 30 rises to a predetermined temperature, becomes a secondary radiator, and radiates infrared rays.
  • the distances D1 and D2 between the metal electrodes 32 of the structure 30 and the distances D1 and D2 between the metal electrodes 32 of the structure 30 and Widths W1 and W2 and metal pattern periods .LAMBDA.1 and .LAMBDA.2 are set in advance.
  • the infrared absorption wavelength of the OH group of ethanol is preferably 3 ⁇ m, 6.7 ⁇ m or 9 ⁇ m.
  • the above-described infrared heater 10 is designed to mainly emit infrared rays of a target wavelength (here, the infrared absorption wavelength of the OH group of ethanol). It is difficult to exclude all of , and in the atmosphere, convective heat dissipation from each part of the heater to the surroundings is also expected. Therefore, when constructing an actual process, various considerations should be given to the shape of the apparatus and the like so that the temperature of the raw material and the like does not excessively rise due to such accompanying heat flow.
  • a target wavelength here, the infrared absorption wavelength of the OH group of ethanol
  • the infrared rays emitted by the infrared heater 10 are infrared rays having a peak at a wavelength of 3 ⁇ m (3333 cm ⁇ 1 ), 6.7 ⁇ m (1493 cm ⁇ 1 ), or 9 ⁇ m (1111 cm ⁇ 1 ), alcohol-containing beverages can be obtained. It is possible to reliably obtain a low-alcohol beverage maintaining the original flavor of
  • flavor items may be appropriately set depending on the alcohol-containing beverage, and examples thereof include bitterness/richness, umami, body, aftertaste, sharpness, and sweetness.
  • the alcohol-containing beverage is not particularly limited, but beer and whiskey are preferable.
  • the metal electrode 32 has a rectangular shape in the above-described embodiment, it is not limited to this.
  • the metal electrode 32 may have a circular shape or a cross shape (a shape in which rectangles intersect perpendicularly).
  • the diameter of the circle corresponds to the width W1 and the vertical width W2. do.
  • the metal electrodes 32 are arranged in a grid pattern at regular intervals along the left-right direction and the front-rear direction, the present invention is not limited to this.
  • the metal electrodes 32 may be arranged at regular intervals only in the left-right direction or only in the front-rear direction.
  • the structure 30 includes the support substrate 37 in the above-described embodiment, the support substrate 37 may be omitted. Further, in the structure 30, the first conductor layer 31 and the dielectric layer 34 may be directly bonded without an adhesive layer, or the second conductor layer 35 and the support substrate 37 may be directly bonded without an adhesive layer. may be directly bonded to
  • Example 1 10 cc of commercially available beers A, B and C with an alcohol concentration of about 5% were sampled and placed in a distillation apparatus equipped with separate infrared emitting devices (infrared heater 10 described above). While maintaining the temperature of the beer in the distillation apparatus at 40 ° C. or less, beer A was irradiated with infrared rays with a peak at 3 ⁇ m, beer B with infrared rays with a peak at 6.7 ⁇ m, and beer C with a peak at 9 ⁇ m. Ethanol was distilled from the beer by irradiating the beer with infrared rays from the infrared emitting device, respectively.
  • the residual liquid after distillation is the low-alcohol beverage.
  • Alcohol concentrations were measured by combining absorption and density measurements by infrared spectroscopy.
  • a taste recognition device TS-5000Z manufactured by Intelligent Sensor Technology Co., Ltd.
  • sharpness, and sweetness were evaluated, and the evaluation results were summarized in a radar chart. The results are shown in FIG. As can be seen from FIG. 4, the flavor distribution was consistent between the radar chart of the commercial beer used and the radar chart of the low-alcohol beverage. Therefore, it was determined that the low-alcohol beverage maintains the original flavor of beer well.
  • Example 1 The same beer as in Example 1 was heated at 73° C. without being irradiated with infrared rays, and after the ethanol concentration reached 1%, the flavor of the remaining liquid was evaluated using a taste recognition device. As a result, the sweetness decreased due to the Maillard reaction, and the bitter component increased significantly.
  • Example 2 10 cc each of commercially available whiskeys P, Q and R with an alcohol concentration of about 40% were sampled and placed in a distillation apparatus equipped with separate infrared emitting devices (infrared heater 10 described above). While maintaining the temperature of the whiskey in the distillation apparatus at 40 ° C. or less, whiskey P was irradiated with infrared rays with a peak at 3 ⁇ m, whiskey Q with infrared rays with a peak at 6.7 ⁇ m, and whiskey R with a peak at 9 ⁇ m. Ethanol was distilled from the whiskey by irradiating the whiskey with infrared rays from the infrared emitting device.
  • the residual liquid after distillation is the low-alcohol beverage.
  • the alcohol concentration was measured in the same manner as in Example 1.
  • both the commercially available whiskey used and the obtained low-alcohol beverage were evaluated for flavor in the same manner as in Example 1, and the evaluation results were summarized in a radar chart. The results are shown in FIG. As can be seen from FIG. 5, the distribution of flavor was consistent between the radar chart of the commercial whiskey used and the radar chart of the low-alcohol beverage. Therefore, it was determined that the low-alcohol beverage maintains the original flavor of whiskey well.
  • the present invention can be used when producing low-alcohol beverages (for example, non-alcoholic beer-taste beverages, etc.).
  • low-alcohol beverages for example, non-alcoholic beer-taste beverages, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Food Science & Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Abstract

The present invention pertains to a method for manufacturing a low-alcohol beverage by removing ethanol from an alcohol-containing beverage, said method comprising, while maintaining the temperature of the alcohol-containing beverage at 50°C or lower, irradiating the alcohol-containing beverage with infrared rays containing the infrared absorption wavelength of the OH group of ethanol to thereby distill off ethanol from the alcohol-containing beverage.

Description

低アルコール飲料の製法Production of low-alcohol beverages
 本発明は、低アルコール飲料の製法に関する。 The present invention relates to a method for producing low-alcohol beverages.
 近年、低アルコール飲料の需要が高まっている。低アルコール飲料の製法としては、例えば特許文献1に開示されているものが知られている。この製法では、(A)アルコール含有飲料から減圧水蒸気蒸留によりエタノール及びアロマ成分を分離し、エタノール及びアロマ成分を含む蒸留液と、蒸留液が分離されたあとの残留液とを得る工程と、(B)蒸留液と樹脂とを接触させて樹脂にアロマ成分を吸着させる工程と、(C)アロマ成分を吸着した樹脂からエタノールを除去する工程と、(D)エタノールを除去した樹脂からアロマ成分を回収する工程と、(E)工程(A)で得られた残留液と工程(D)で得られたアロマ成分とを混合して低アルコール飲料を得る工程と、を含む。工程(A)の蒸留は60℃以下で行うのが好ましく、工程(D)のアロマ成分の回収は100℃以上の水蒸気と樹脂とを接触させるのが好ましいと記載されている。 Demand for low-alcohol beverages has increased in recent years. As a method for producing a low-alcoholic beverage, for example, the method disclosed in Patent Document 1 is known. In this production method, (A) a step of separating ethanol and aroma components from an alcohol-containing beverage by vacuum steam distillation to obtain a distillate containing ethanol and aroma components, and a residual liquid after the distillate is separated; B) a step of contacting the distillate with the resin to adsorb the aroma component to the resin; (C) a step of removing ethanol from the resin that has adsorbed the aroma component; and (E) mixing the residual liquid obtained in step (A) with the aroma component obtained in step (D) to obtain a low-alcohol beverage. It is described that the distillation in step (A) is preferably carried out at 60° C. or lower, and the recovery of aromatic components in step (D) is preferably carried out by contacting water vapor at 100° C. or higher with the resin.
 一方、特許文献2には、有機化合物の精製方法が開示され、その一例として、メタノール-水の混合液からメタノールを選択的に効率よく回収する方法が開示されている。具体的には、メタノールが持つ赤外吸収波長領域の赤外線を照射しながら85℃で蒸留を行うことにより、そうした照射を行わない場合と比べて高速に留出液(メタノール濃度は80~85%)を得ることができると記載されている。 On the other hand, Patent Document 2 discloses a method for purifying organic compounds, and as an example, discloses a method for selectively and efficiently recovering methanol from a mixture of methanol and water. Specifically, by performing distillation at 85 ° C while irradiating infrared rays in the infrared absorption wavelength region of methanol, the distillate (methanol concentration is 80 to 85% ) can be obtained.
国際公開第2021/131636号パンフレットWO2021/131636 Pamphlet 特許第6285619号公報Japanese Patent No. 6285619
 しかしながら、特許文献1に記載された製法では、アロマ成分の回収を100℃以上で行うため、アロマ成分の一部が揮発して成分比が変化したり熱により別の成分に変化したりすることがあった。その結果、得られた低アルコール飲料は、元のアルコール含有飲料の本来の風味を有さないことがあった。また、特許文献2には、メタノール-水の混合液からメタノールを回収する点は記載されているが、アルコール含有飲料からエタノールを回収する点は記載されていない。そのため、アルコール含有飲料からエタノールを回収したあとの残留液について、アルコール含有飲料の本来の風味を毀損しないようにするといった課題については、特許文献2には存在しない。 However, in the manufacturing method described in Patent Document 1, since the aroma component is recovered at 100° C. or higher, part of the aroma component volatilizes, changing the component ratio or changing to another component due to heat. was there. As a result, the resulting low-alcohol beverage may not have the original flavor of the original alcohol-containing beverage. Further, Patent Document 2 describes recovery of methanol from a mixture of methanol and water, but does not describe recovery of ethanol from alcohol-containing beverages. Therefore, Patent Literature 2 does not address the problem of preventing the residual liquid remaining after ethanol is recovered from the alcohol-containing beverage from spoiling the original flavor of the alcohol-containing beverage.
 本発明はこのような課題を解決するためになされたものであり、アルコール含有飲料の本来の風味を維持した低アルコール飲料を提供することを主目的とする。 The present invention was made to solve such problems, and its main purpose is to provide a low-alcohol beverage that maintains the original flavor of alcohol-containing beverages.
 本発明の低アルコール飲料の製法は、
 アルコール含有飲料からエタノールを除去することにより低アルコール飲料を製造する方法であって、
 前記アルコール含有飲料の温度を50℃以下に維持すると共にエタノールのOH基の赤外吸収波長を含む赤外線を前記アルコール含有飲料に照射することにより、前記アルコール含有飲料からエタノールを蒸留させて除去する、
 ものである。
The method for producing a low-alcoholic beverage of the present invention includes:
A method for producing a low-alcohol beverage by removing ethanol from an alcohol-containing beverage, comprising:
Ethanol is distilled and removed from the alcohol-containing beverage by maintaining the temperature of the alcohol-containing beverage at 50 ° C. or less and irradiating the alcohol-containing beverage with infrared rays including the infrared absorption wavelength of the OH group of ethanol.
It is.
 この低アルコール飲料の製法によれば、アルコール含有飲料の本来の風味を維持した低アルコール飲料を得ることができる。 According to this low-alcoholic beverage production method, it is possible to obtain a low-alcoholic beverage that retains the original flavor of the alcohol-containing beverage.
 本発明の低アルコール飲料の製法において、前記赤外線は、波長3μm、6.7μm又は9μmにピークを有する赤外線が好ましい。こうすれば、本発明の効果を確実に得ることができる。 In the method for producing a low-alcoholic beverage of the present invention, the infrared rays are preferably infrared rays having a peak at a wavelength of 3 μm, 6.7 μm or 9 μm. By doing so, the effects of the present invention can be reliably obtained.
 本発明の低アルコール飲料の製法において、味認識装置によって測定した前記低アルコール飲料と前記アルコール含有飲料との風味項目の分布は、一致していることが好ましい。こうすれば、アルコール含有飲料の本来の風味が維持されていることを客観的に確認することができる。 In the method for producing a low-alcoholic beverage of the present invention, it is preferable that the distribution of flavor items between the low-alcoholic beverage and the alcohol-containing beverage measured by a taste recognition device match. In this way, it is possible to objectively confirm that the original flavor of the alcohol-containing beverage is maintained.
エタノールの赤外吸収スペクトルを示すグラフ。The graph which shows the infrared absorption spectrum of ethanol. 赤外線ヒーター10の斜視図。3 is a perspective view of the infrared heater 10; FIG. 赤外線ヒーター10の部分底面図。3 is a partial bottom view of the infrared heater 10; FIG. 実施例1の風味の評価結果を示すレーダーチャート。1 is a radar chart showing the flavor evaluation results of Example 1. FIG. 実施例2の風味の評価結果を示すレーダーチャート。4 is a radar chart showing the flavor evaluation results of Example 2. FIG.
 以下の本発明の好適な実施形態について説明する。 A preferred embodiment of the present invention will be described below.
 本実施形態の低アルコール飲料の製法は、アルコール含有飲料からエタノールを除去することにより低アルコール飲料を製造する方法である。具体的には、アルコール含有飲料の温度を50℃以下に維持すると共にエタノールのOH基の赤外吸収波長を含む赤外線をアルコール含有飲料に照射することにより、アルコール含有飲料からエタノールを蒸留させて除去するものである。 The method for producing a low-alcoholic beverage of this embodiment is a method for producing a low-alcoholic beverage by removing ethanol from an alcohol-containing beverage. Specifically, by maintaining the temperature of the alcohol-containing beverage at 50° C. or less and irradiating the alcohol-containing beverage with infrared rays including the infrared absorption wavelength of the OH group of ethanol, ethanol is distilled and removed from the alcohol-containing beverage. It is something to do.
 本明細書で、「アルコール含有飲料」とは、エタノールを含有する酒類(発泡性酒類、醸造酒類、蒸留酒類、混成酒類など)をいう。また、「低アルコール飲料」とは、エタノール分が1%以下で酒類の風味を有する飲料をいう。なお、発泡性酒類としては、例えば、ビールや発泡酒などが挙げられ、醸造酒類としては、例えば、清酒や果実酒などが挙げられ、蒸留酒類としては、例えば、ウイスキーやブランデーなどが挙げられ、混成酒類としては、例えば、みりんやリキュールなどが挙げられる。 As used herein, "alcohol-containing beverages" refer to alcoholic beverages containing ethanol (sparkling alcoholic beverages, brewed alcoholic beverages, distilled alcoholic beverages, mixed alcoholic beverages, etc.). A "low-alcoholic beverage" refers to a beverage having an ethanol content of 1% or less and having an alcoholic flavor. Examples of sparkling alcoholic beverages include beer and low-malt beer; examples of brewed alcoholic beverages include refined sake and fruit wine; and examples of distilled alcoholic beverages include whiskey and brandy. Mixed alcoholic beverages include, for example, mirin and liqueurs.
 本実施形態では、アルコール含有飲料からエタノールを蒸留させる際の温度は50℃以下が好ましく、40℃以下がより好ましい。蒸留温度が50℃以下であれば、アルコール含有飲料に本来含まれる風味成分(アロマ成分など)の一部が揮発して風味成分全体のバランスが変化したり熱により別の成分に変化したりするのを抑制することができる。こうした効果は、蒸留温度を40℃以下にすることでより高くなる。 In this embodiment, the temperature at which ethanol is distilled from the alcohol-containing beverage is preferably 50°C or lower, more preferably 40°C or lower. If the distillation temperature is 50°C or less, some of the flavor components (aromatic components, etc.) originally contained in the alcohol-containing beverage volatilize, changing the overall balance of the flavor components or changing into other components due to heat. can be suppressed. These effects are enhanced by setting the distillation temperature to 40° C. or lower.
 なお、アルコール含有飲料は、水とエタノールとの混合物とみることもできる。水とエタノールとの混合物は、水とメタノールとの混合物と異なり、共沸混合物となる。そのため、水とエタノールとの混合物の沸点(共沸点)は、エタノール単体の沸点よりも低くなる。 An alcohol-containing beverage can also be viewed as a mixture of water and ethanol. A mixture of water and ethanol is an azeotrope, unlike a mixture of water and methanol. Therefore, the boiling point (azeotropic point) of a mixture of water and ethanol is lower than the boiling point of ethanol alone.
 本実施形態では、アルコール含有飲料からエタノールを蒸留させる際に、エタノールのOH基の赤外吸収波長を含む赤外線をアルコール含有飲料に照射する。エタノールの赤外吸収スペクトルを図1に示す。アルコール含有飲料からエタノールを選択的に効率よく回収するには、アルコール含有飲料に含まれるエタノール以外の風味成分の振動が起こらず、エタノールの振動が起こるような赤外線を照射することで、赤外エネルギーが選択的にエタノールに吸収されるようにすることが好ましい。こうすれば、このような赤外線を照射せずに加熱蒸留する場合と比べ、より短時間かつ低温でエタノールを回収することができる。アルコール含有飲料に照射する赤外線としては、波長3μm、6.7μm又は9μmにピークを有する赤外線が好ましい。なお、本明細書で、「波長3μm、6.7μm又は9μmにピークを有する」とは、波長3μm、6.7μmm、9μmにピークの中心があるもののみに限定されるわけではなく、ピークの中心が波長3μm±0.5μm、波長6.7μm±0.5μm、波長9μm±0.5μmにあるものも含まれる。 In this embodiment, when distilling ethanol from an alcohol-containing beverage, the alcohol-containing beverage is irradiated with infrared rays including the infrared absorption wavelength of the OH group of ethanol. FIG. 1 shows the infrared absorption spectrum of ethanol. Ethanol can be selectively and efficiently recovered from alcohol-containing beverages by irradiating with infrared rays that cause ethanol to vibrate without vibrating flavor components other than ethanol contained in alcohol-containing beverages. is preferentially absorbed into ethanol. By doing so, ethanol can be recovered in a shorter time and at a lower temperature than in the case of thermal distillation without irradiation with infrared rays. Infrared rays with a peak at a wavelength of 3 μm, 6.7 μm or 9 μm are preferable as the infrared rays with which the alcohol-containing beverage is irradiated. In this specification, "having a peak at a wavelength of 3 μm, 6.7 μm, or 9 μm" is not limited to having a peak center at a wavelength of 3 μm, 6.7 μm, or 9 μm. Those centered at wavelengths of 3 μm±0.5 μm, 6.7 μm±0.5 μm, and 9 μm±0.5 μm are also included.
 本実施形態では、エタノールのOH基の赤外吸収波長を含む赤外線を照射するにあたり、赤外線放出装置を使用する。赤外線放出装置としては、赤外線を放出可能なものであれば、どのようなものでも用いることができる。例えば、赤外線放出装置としては、板状の放射体と、熱源としての面状ヒーターとを有するものを用いることができる。また、赤外線放出装置としては、所望の波長にピークを有する赤外線、特に所望の波長にピークを有する半値幅の狭い赤外線を放出可能な赤外線放出装置を用いることが好ましい。そのような赤外線放出装置としては、例えば、メタマテリアルエミッターやフィルタ付きの赤外線放出装置などが挙げられる。メタマテリアルエミッターとしては、MIM(Metal-Insulator-Metal)タイプ、マイクロキャビティタイプ、メタアトムタイプ、積層タイプなどが挙げられる。MIMタイプとしては、例えば参考文献1(JSME TED Newsletter, No.74, pp.7-10, 2014)に記載されたものを用いることができる。このMIMタイプについては、後で詳述する。マイクロキャビティタイプやメタアトムタイプとしては、例えば参考文献2(JSME TED Newsletter, No.74, pp.2-6, 2014)に記載されたものを用いることができる。積層タイプとしては、例えば参考文献3(ACS Cent. Sci., Vol.5, pp319-326, 2019)に記載されたものを用いることができる。フィルタ付きの赤外線放出装置としては、例えば特許第6442355号公報に記載された赤外線ヒーターを用いることができる。 In this embodiment, an infrared emitting device is used to irradiate infrared rays including the infrared absorption wavelength of the OH group of ethanol. Any infrared emitting device can be used as long as it can emit infrared rays. For example, as the infrared emitting device, one having a plate-like radiator and a planar heater as a heat source can be used. As the infrared emitting device, it is preferable to use an infrared emitting device capable of emitting infrared rays having a peak at a desired wavelength, particularly infrared rays having a narrow half-width having a peak at a desired wavelength. Examples of such infrared emitting devices include metamaterial emitters and infrared emitting devices with filters. Examples of metamaterial emitters include MIM (Metal-Insulator-Metal) type, microcavity type, metaatom type, laminated type, and the like. As the MIM type, for example, those described in Reference 1 (JSME TED Newsletter, No.74, pp.7-10, 2014) can be used. This MIM type will be described later in detail. As the microcavity type and the metaatom type, for example, those described in Reference Document 2 (JSME TED Newsletter, No.74, pp.2-6, 2014) can be used. As the laminated type, for example, one described in Reference Document 3 (ACS Cent. Sci., Vol.5, pp319-326, 2019) can be used. For example, an infrared heater described in Japanese Patent No. 6442355 can be used as an infrared emitting device with a filter.
 赤外線放出装置の一例として、赤外線ヒーター10を図2及び図3に示す。図2は、赤外線ヒーター10の斜視図であり、一部を断面で示した。図3は、赤外線ヒーター10の部分底面図である。なお、左右方向、前後方向及び上下方向は、図2に示した通りとする。 An infrared heater 10 is shown in FIGS. 2 and 3 as an example of an infrared emitting device. FIG. 2 is a perspective view of the infrared heater 10, partially shown in cross section. FIG. 3 is a partial bottom view of the infrared heater 10. FIG. The left-right direction, the front-rear direction, and the up-down direction are as shown in FIG.
 赤外線ヒーター10は、MIMタイプのメタマテリアルエミッターの一例であり、ヒーター本体11と、構造体30と、ケーシング70とを備えている。この赤外線ヒーター10は、下方に配置された図示しない蒸留装置内のアルコール含有飲料に向けて赤外線を放射するように配置される。 The infrared heater 10 is an example of an MIM type metamaterial emitter, and includes a heater main body 11, a structure 30, and a casing 70. This infrared heater 10 is arranged to radiate infrared rays toward an alcohol-containing beverage in a distillation apparatus (not shown) arranged below.
 ヒーター本体11は、いわゆる面状ヒーターとして構成されており、線状の部材をジグザグに湾曲させた発熱体12と、発熱体12に接触して発熱体12の周囲を覆う絶縁体である保護部材13とを備えている。発熱体12の材質としては、例えばW,Mo,Ta,Fe-Cr-Al合金及びNi-Cr合金などが挙げられる。保護部材13の材質としては、例えばポリイミドなどの絶縁性の樹脂やセラミックス等が挙げられる。ヒーター本体11は、ケーシング70の内部に配置されている。発熱体12の両端は、ケーシング70に取り付けられた図示しない一対の入力端子にそれぞれ接続されている。この一対の入力端子を介して、発熱体12に外部から電力を供給可能である。なお、ヒーター本体11は、絶縁体にリボン状の発熱体を巻き付けた構成の面状ヒーターとしてもよい。 The heater main body 11 is configured as a so-called planar heater, and includes a heating element 12 formed by bending a linear member in a zigzag shape, and a protective member, which is an insulator that contacts the heating element 12 and covers the periphery of the heating element 12. 13. Examples of materials for the heating element 12 include W, Mo, Ta, Fe--Cr--Al alloys and Ni--Cr alloys. Examples of materials for the protective member 13 include insulating resins such as polyimide, ceramics, and the like. The heater main body 11 is arranged inside the casing 70 . Both ends of the heating element 12 are connected to a pair of input terminals (not shown) attached to the casing 70 . Electric power can be supplied to the heating element 12 from the outside through the pair of input terminals. Note that the heater main body 11 may be a planar heater in which a ribbon-shaped heating element is wrapped around an insulator.
 構造体30は、発熱体12の下方に配設された板状の放射体である。構造体30は、赤外線ヒーター10の下方外側から内側に向かって、第1導体層31(金属パターン)と、誘電体層34と、第2導体層35(金属基板)と、支持基板37とがこの順に積層されている。構造体30は、ケーシング70の下方の開口を塞ぐように配置されている。 The structural body 30 is a plate-like radiator arranged below the heating element 12 . The structure 30 includes a first conductor layer 31 (metal pattern), a dielectric layer 34, a second conductor layer 35 (metal substrate), and a support substrate 37 arranged downward from outside to inside of the infrared heater 10. They are stacked in this order. The structure 30 is arranged to block the opening below the casing 70 .
 第1導体層31は、図3に示すように、誘電体層34上に同じ形状で同じサイズの金属電極32が互いに等間隔に配設された周期構造をもつ金属パターンとして構成されている。具体的には、第1導体層31は、複数の四角形状の金属電極32が誘電体層34上で左右方向に間隔D1ずつ離れて互いに等間隔に配設されると共に前後方向に間隔D2ずつ離れて互いに等間隔に配設された金属パターンとして構成されている。金属電極32は、厚さ(上下高さ)が横幅W1(左右方向の幅)及び縦幅W2(前後方向の幅)よりも小さい形状をしている。金属パターンの横方向の周期はΛ1=D1+W1、縦方向の周期はΛ2=D2+W2である。ここではD1とD2とは等しく、W1とW2とは等しいとする。金属電極32の材料としては、例えば金、アルミニウム(Al)などが挙げられる。金属電極32は、図示しない接着層を介して誘電体層34に接合されている。接着層の材質としては、例えばクロム(Cr)、チタン(Ti)、ルテニウム(Ru)などが挙げられる。 As shown in FIG. 3, the first conductor layer 31 is configured as a metal pattern having a periodic structure in which metal electrodes 32 of the same shape and size are arranged on the dielectric layer 34 at regular intervals. Specifically, in the first conductor layer 31, a plurality of square-shaped metal electrodes 32 are arranged on the dielectric layer 34 at regular intervals of D1 in the left-right direction, and at intervals of D2 in the front-rear direction. They are configured as metal patterns spaced apart and equally spaced from each other. The metal electrode 32 has a shape whose thickness (vertical height) is smaller than the width W1 (the width in the horizontal direction) and the vertical width W2 (the width in the front-rear direction). The horizontal period of the metal pattern is .LAMBDA.1=D1+W1, and the vertical period is .LAMBDA.2=D2+W2. Here, D1 and D2 are equal, and W1 and W2 are equal. Examples of the material of the metal electrode 32 include gold and aluminum (Al). The metal electrode 32 is bonded to the dielectric layer 34 via an adhesive layer (not shown). Examples of materials for the adhesive layer include chromium (Cr), titanium (Ti), ruthenium (Ru), and the like.
 誘電体層34は、上面が第2導体層35に接合された平板状の部材である。誘電体層34は、第1導体層31と第2導体層35との間に挟まれている。誘電体層34の下面のうち金属電極32が配設されていない部分は、対象物に赤外線を放射する放射面38となっている。誘電体層34の材質としては、例えばアルミナ(Al23),シリカ(SiO2)などが挙げられる。 The dielectric layer 34 is a plate-like member whose upper surface is joined to the second conductor layer 35 . The dielectric layer 34 is sandwiched between the first conductor layer 31 and the second conductor layer 35 . A portion of the lower surface of the dielectric layer 34 where the metal electrode 32 is not arranged serves as a radiation surface 38 that radiates infrared rays to an object. Examples of materials for the dielectric layer 34 include alumina (Al 2 O 3 ) and silica (SiO 2 ).
 第2導体層35は、上面が支持基板37に図示しない接着層を介して接合された金属板である。第2導体層35の材質は、第1導体層31と同様の材質を用いることができる。接着層の材質としては、例えばクロム(Cr)、チタン(Ti)、ルテニウム(Ru)などが挙げられる。 The second conductor layer 35 is a metal plate whose upper surface is bonded to the support substrate 37 via an adhesive layer (not shown). As the material of the second conductor layer 35, the same material as that of the first conductor layer 31 can be used. Examples of materials for the adhesive layer include chromium (Cr), titanium (Ti), ruthenium (Ru), and the like.
 支持基板37は、ケーシング70の内部に図示しない固定具などにより固定された平板状の部材であり、第1導体層31、誘電体層34及び第2導体層35を支持する。支持基板37の材質としては、例えばSiウェハ、ガラスなどのように、平滑面が維持しやすく、耐熱性が高く、熱反りが低い素材が挙げられる。支持基板37は、ヒーター本体11の下面に接触していてもよいし、接触せず空間を介して上下に離間して配設されていてもよい。支持基板37とヒーター本体11とが接触している場合には両者は接合されていてもよい。 The support substrate 37 is a plate-like member fixed inside the casing 70 by a fixture (not shown) or the like, and supports the first conductor layer 31 , the dielectric layer 34 and the second conductor layer 35 . Examples of materials for the support substrate 37 include materials such as Si wafers and glass, which easily maintain a smooth surface, have high heat resistance, and have low thermal warping. The support substrate 37 may be in contact with the lower surface of the heater main body 11, or may be vertically separated with a space therebetween without contact. When the support substrate 37 and the heater main body 11 are in contact with each other, they may be bonded together.
 こうした構造体30は、特定の波長の赤外線を選択的に放射する特性を有するメタマテリアルエミッターとして機能する。この特性は、マグネティックポラリトン(Magneticpolariton)で説明される共鳴現象によるものと考えられている。なお、マグネティックポラリトンとは、上下2層の導体(第1導体層31及び第2導体層35)間の誘電体(誘電体層34)内において強い電磁場の閉じ込め効果が得られる共鳴現象のことである。これにより、構造体30では、誘電体層34のうち第2導体層35と金属電極32とによって挟まれる部分が赤外線の放射源となる。そして、その放射源から放たれる赤外線は金属電極32をまわり込んで、誘電体層34のうち金属電極32が配設されていない部分(すなわち放射面38)から周囲環境に放射される。また、この構造体30では、第1導体層31、誘電体層34及び第2導体層35の材質や、第1導体層31の形状及び周期構造を調整することで、共鳴波長を調整することができる。これにより、構造体30の放射面38から放射される赤外線は、特定の波長の赤外線の放射率が高くなる特性を示す。本実施形態では、構造体30が、波長0.9μm以上25μm以下(好ましくは2.5μm以上25μm以下(4000~400cm-1))の範囲内に半値幅が2.0μm以下(好ましくは1.5μm以下、より好ましくは1.0μm以下)で放射率が0.7以上(好ましくは0.8以上)の最大ピークを有する赤外線を放射面38から放射する特性を有するように、上述した材質、形状及び周期構造などが調整される。すなわち、構造体30は、半値幅が比較的小さく放射率が比較的高い急峻な最大ピークを有する赤外線を放射する特性を有する。半値幅は、特に限定するものではないが、例えば2.0μm以下が好ましく、1.5μm以下がより好ましく、1.0μm以下が更に好ましい。 Such a structure 30 functions as a metamaterial emitter that has the property of selectively emitting infrared rays of specific wavelengths. This characteristic is believed to be due to the resonance phenomenon explained by the magnetic polariton. The magnetic polariton is a resonance phenomenon in which a strong electromagnetic field confinement effect is obtained in the dielectric (dielectric layer 34) between the upper and lower conductors (the first conductor layer 31 and the second conductor layer 35). be. As a result, in the structure 30, the portion of the dielectric layer 34 sandwiched between the second conductor layer 35 and the metal electrode 32 serves as an infrared radiation source. Infrared rays emitted from the radiation source go around the metal electrode 32 and are radiated to the surrounding environment from a portion of the dielectric layer 34 where the metal electrode 32 is not provided (that is, the radiation surface 38). Further, in this structure 30, the resonance wavelength can be adjusted by adjusting the materials of the first conductor layer 31, the dielectric layer 34, and the second conductor layer 35, and the shape and periodic structure of the first conductor layer 31. can be done. As a result, the infrared rays emitted from the emitting surface 38 of the structure 30 exhibit a characteristic that the emissivity of infrared rays of a specific wavelength is high. In the present embodiment, the structure 30 has a half width of 2.0 μm or less (preferably 1.0 μm or less) within a wavelength range of 0.9 μm or more and 25 μm or less (preferably 2.5 μm or more and 25 μm or less (4000 to 400 cm −1 )). 5 μm or less, more preferably 1.0 μm or less) and an emissivity of 0.7 or more (preferably 0.8 or more). The shape, periodic structure, etc. are adjusted. That is, the structure 30 has a characteristic of emitting infrared rays having a steep maximum peak with a relatively small half-value width and a relatively high emissivity. Although the half width is not particularly limited, it is preferably 2.0 μm or less, more preferably 1.5 μm or less, and even more preferably 1.0 μm or less.
 ケーシング70は、内部に空間を有し且つ底面が開放された略直方体の形状をしている。このケーシング70内部の空間に、ヒーター本体11及び構造体30が配置されている。ケーシング70は、発熱体12から放出される赤外線を反射するように金属(例えばSUSやアルミニウム)で形成されている。 The casing 70 has a substantially rectangular parallelepiped shape with a space inside and an open bottom. The heater main body 11 and the structure 30 are arranged in the space inside the casing 70 . The casing 70 is made of metal (for example, SUS or aluminum) so as to reflect infrared rays emitted from the heating element 12 .
 こうした赤外線ヒーター10を使用してアルコール含有飲料の蒸留を行う場合の一例を以下に説明する。まず、赤外線ヒーター10の第1導体層31の下方位置に、アルコール含有飲料の入った蒸留装置(図示せず)を配置する。蒸留装置は、サーモスタット付きのヒータを有している。このヒータのスイッチを入れてアルコール含有飲料が所望の温度になるようにする。次に、赤外線ヒーター10の図示しない電源から入力端子を介して発熱体12の両端に電力を供給する。電力の供給は、発熱体12の温度が予め設定された温度(特に限定するものではないが、例えば数百℃)になるように行う。所定の温度に達した発熱体12からは、伝導・対流・放射の伝熱3形態のうち1以上の形態によって周囲にエネルギーが伝達され、構造体30が加熱される。その結果、構造体30は所定温度に上昇し、二次放射体となって、赤外線を放射するようになる。 An example of distilling an alcohol-containing beverage using such an infrared heater 10 will be described below. First, under the first conductor layer 31 of the infrared heater 10, a distillation device (not shown) containing an alcoholic beverage is placed. The distillation apparatus has a heater with a thermostat. The heater is switched on to bring the alcohol-containing beverage to the desired temperature. Next, power is supplied to both ends of the heating element 12 from a power source (not shown) of the infrared heater 10 through input terminals. Power is supplied so that the temperature of the heating element 12 reaches a preset temperature (not particularly limited, but several hundred degrees Celsius, for example). From the heating element 12 that has reached a predetermined temperature, energy is transmitted to the surroundings by one or more modes of heat transfer of conduction, convection, and radiation, and the structure 30 is heated. As a result, the structure 30 rises to a predetermined temperature, becomes a secondary radiator, and radiates infrared rays.
 この場合、エタノールのOH基の赤外吸収波長を有する赤外線が構造体30から放射されるように予め設定しておく。具体的には、構造体30から放射される赤外線がエタノールのOH基の赤外吸収波長にピークを有する赤外線となるように、構造体30の金属電極32の間隔D1,D2、金属電極32の幅W1,W2及び金属パターンの周期Λ1,Λ2を予め設定しておく。エタノールのOH基の赤外吸収波長は、3μm、6.7μm又は9μmとすることが好ましい。蒸留装置内のアルコール含有飲料にこうした赤外線を照射すると、時間の経過と共にアルコール含有飲料からエタノールが蒸発し、最終的に低アルコール飲料が得られる。 In this case, it is set in advance so that infrared rays having an infrared absorption wavelength of the OH group of ethanol are emitted from the structure 30 . Specifically, the distances D1 and D2 between the metal electrodes 32 of the structure 30 and the distances D1 and D2 between the metal electrodes 32 of the structure 30 and Widths W1 and W2 and metal pattern periods .LAMBDA.1 and .LAMBDA.2 are set in advance. The infrared absorption wavelength of the OH group of ethanol is preferably 3 μm, 6.7 μm or 9 μm. When an alcohol-containing beverage in a distillation apparatus is irradiated with such infrared radiation, the ethanol evaporates from the alcohol-containing beverage over time, ultimately resulting in a low-alcohol beverage.
 上述した赤外線ヒーター10は、目的波長(ここではエタノールのOH基の赤外吸収波長)の赤外線を主として放射するように設計されてはいるが、構造体30の赤外線放射において、目的波長以外の放射をすべて除外することは困難であり、また大気下では、ヒーター各部からの周囲への対流放熱も予測される。したがって、実際のプロセスを構成する場合、こうした付随の熱流動が起因となって原料等が過度に温度上昇しないよう、装置形状等に各種考慮がなされるべきである。 The above-described infrared heater 10 is designed to mainly emit infrared rays of a target wavelength (here, the infrared absorption wavelength of the OH group of ethanol). It is difficult to exclude all of , and in the atmosphere, convective heat dissipation from each part of the heater to the surroundings is also expected. Therefore, when constructing an actual process, various considerations should be given to the shape of the apparatus and the like so that the temperature of the raw material and the like does not excessively rise due to such accompanying heat flow.
 以上詳述した本実施形態の低アルコール飲料の製法によれば、アルコール含有飲料の本来の風味を維持した低アルコール飲料を得ることができる。 According to the method for producing a low-alcoholic beverage according to the present embodiment detailed above, it is possible to obtain a low-alcoholic beverage that retains the original flavor of the alcohol-containing beverage.
 また、赤外線ヒーター10によって放射される赤外線を、波長3μm(3333cm-1)、波長6.7μm(1493cm-1)、又は波長9μm(1111cm-1)にピークを有する赤外線にすれば、アルコール含有飲料の本来の風味を維持した低アルコール飲料を確実に得ることができる。 Also, if the infrared rays emitted by the infrared heater 10 are infrared rays having a peak at a wavelength of 3 μm (3333 cm −1 ), 6.7 μm (1493 cm −1 ), or 9 μm (1111 cm −1 ), alcohol-containing beverages can be obtained. It is possible to reliably obtain a low-alcohol beverage maintaining the original flavor of
 更に、味認識装置によって測定した低アルコール飲料とアルコール含有飲料との風味項目の分布は、一致していることが好ましい。こうすれば、アルコール含有飲料の本来の風味が維持されていることを客観的に確認することができる。風味項目は、アルコール含有飲料によって適宜設定すればよいが、例えば苦味・コク、うまみ、ボディ感、余韻、キレ、甘さなどが挙げられる。 Furthermore, it is preferable that the distribution of flavor items between the low-alcoholic beverage and the alcohol-containing beverage measured by the taste recognition device match. In this way, it is possible to objectively confirm that the original flavor of the alcohol-containing beverage is maintained. Flavor items may be appropriately set depending on the alcohol-containing beverage, and examples thereof include bitterness/richness, umami, body, aftertaste, sharpness, and sweetness.
 更にまた、上述した製法において、アルコール含有飲料としては、特に限定するものではないが、例えばビールやウイスキーが好ましい。 Furthermore, in the above-described manufacturing method, the alcohol-containing beverage is not particularly limited, but beer and whiskey are preferable.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present invention is by no means limited to the above-described embodiments, and can be implemented in various forms as long as they fall within the technical scope of the present invention.
 上述した実施形態では、金属電極32は四角形状としたが、これに限られない。例えば、金属電極32は、円形状や十字形状(長方形が垂直に交差した形状)としてもよい。金属電極32が円形状の場合、円の直径が横幅W1及び縦幅W2に相当し、十字形状の場合、交差する2つの長方形の各々の長辺の長さが横幅W1及び縦幅W2に相当する。また、金属電極32は左右方向及び前後方向に沿って等間隔に格子状に配列されていたが、これに限られない。例えば金属電極32は左右方向のみ又は前後方向のみに等間隔に配列されていてもよい。 Although the metal electrode 32 has a rectangular shape in the above-described embodiment, it is not limited to this. For example, the metal electrode 32 may have a circular shape or a cross shape (a shape in which rectangles intersect perpendicularly). When the metal electrode 32 has a circular shape, the diameter of the circle corresponds to the width W1 and the vertical width W2. do. Moreover, although the metal electrodes 32 are arranged in a grid pattern at regular intervals along the left-right direction and the front-rear direction, the present invention is not limited to this. For example, the metal electrodes 32 may be arranged at regular intervals only in the left-right direction or only in the front-rear direction.
 上述した実施形態では、構造体30は支持基板37を備えていたが、支持基板37を省略してもよい。また、構造体30において、第1導体層31と誘電体層34とが接着層を介さずに直接接合されていてもよいし、第2導体層35と支持基板37とが接着層を介さずに直接接合されていてもよい。 Although the structure 30 includes the support substrate 37 in the above-described embodiment, the support substrate 37 may be omitted. Further, in the structure 30, the first conductor layer 31 and the dielectric layer 34 may be directly bonded without an adhesive layer, or the second conductor layer 35 and the support substrate 37 may be directly bonded without an adhesive layer. may be directly bonded to
[実施例1]
 アルコール濃度が5%程度の市販のビールA,B及びCを10ccずつ採取して、別々の赤外線放出装置(上述した赤外線ヒーター10)を装着した蒸留装置に入れた。蒸留装置内のビールの温度を40℃以下に維持しつつ、ビールAには3μmにピークを持つ赤外線を、ビールBには6.7μmにピークを持つ赤外線を、ビールCには9μmにピークを持つ赤外線を、それぞれ赤外線放出装置からビールに照射して、ビールからエタノールを蒸留させた。蒸留は、残留液(ビール)のアルコール濃度が1%以下となるまで行った。蒸留終了後の残留液が低アルコール飲料である。アルコール濃度の測定は、赤外分光法による吸収測定と密度測定を組み合わせて実施した。また、使用した市販のビール及び得られた低アルコール飲料の両方に対して、味認識装置((株)インテリジェントセンサテクノロジー社製TS-5000Z)により、風味(苦味・コク、うまみ、ボディ感、余韻、キレ、甘さの6項目)について評価を行い、評価結果をレーダーチャートにまとめた。その結果を図4に示す。図4からわかるように、使用した市販のビールのレーダーチャートと低アルコール飲料のレーダーチャートとで風味の分布は一致していた。そのため、低アルコール飲料は、ビール本来の風味を良好に維持していると判断した。
[Example 1]
10 cc of commercially available beers A, B and C with an alcohol concentration of about 5% were sampled and placed in a distillation apparatus equipped with separate infrared emitting devices (infrared heater 10 described above). While maintaining the temperature of the beer in the distillation apparatus at 40 ° C. or less, beer A was irradiated with infrared rays with a peak at 3 μm, beer B with infrared rays with a peak at 6.7 μm, and beer C with a peak at 9 μm. Ethanol was distilled from the beer by irradiating the beer with infrared rays from the infrared emitting device, respectively. Distillation was carried out until the residual liquid (beer) had an alcohol concentration of 1% or less. The residual liquid after distillation is the low-alcohol beverage. Alcohol concentrations were measured by combining absorption and density measurements by infrared spectroscopy. In addition, for both the commercial beer used and the low-alcohol beverage obtained, a taste recognition device (TS-5000Z manufactured by Intelligent Sensor Technology Co., Ltd.) , sharpness, and sweetness) were evaluated, and the evaluation results were summarized in a radar chart. The results are shown in FIG. As can be seen from FIG. 4, the flavor distribution was consistent between the radar chart of the commercial beer used and the radar chart of the low-alcohol beverage. Therefore, it was determined that the low-alcohol beverage maintains the original flavor of beer well.
[比較例1]
 実施例1と同様のビールを、赤外線を照射することなく73℃で加熱し、エタノール濃度が1%になった後、残留液に対して味認識装置により風味の評価を行った。そうしたところ、メイラード反応により甘さが少なくなり、苦み成分が極端に増加した結果となった。
[Comparative Example 1]
The same beer as in Example 1 was heated at 73° C. without being irradiated with infrared rays, and after the ethanol concentration reached 1%, the flavor of the remaining liquid was evaluated using a taste recognition device. As a result, the sweetness decreased due to the Maillard reaction, and the bitter component increased significantly.
[実施例2]
 アルコール濃度が40%程度の市販のウイスキーP,Q及びRを10ccずつ採取して、別々の赤外線放出装置(上述した赤外線ヒーター10)を装着した蒸留装置に入れた。蒸留装置内のウイスキーの温度を40℃以下に維持しつつ、ウイスキーPには3μmにピークを持つ赤外線を、ウイスキーQには6.7μmにピークを持つ赤外線を、ウイスキーRには9μmにピークを持つ赤外線を、それぞれ赤外線放出装置からウイスキーに照射して、ウイスキーからエタノールを蒸留させた。蒸留は、残留液(ウイスキー)のアルコール濃度が1%以下となるまで行った。蒸留終了後の残留液が低アルコール飲料である。アルコール濃度の測定は、実施例1と同様の方法で実施した。また、使用した市販のウイスキー及び得られた低アルコール飲料の両方に対して、実施例1と同様の方法で風味について評価を行い、評価結果をレーダーチャートにまとめた。その結果を図5に示す。図5からわかるように、使用した市販のウイスキーのレーダーチャートと低アルコール飲料のレーダーチャートとで風味の分布は一致していた。そのため、低アルコール飲料は、ウイスキー本来の風味を良好に維持していると判断した。
[Example 2]
10 cc each of commercially available whiskeys P, Q and R with an alcohol concentration of about 40% were sampled and placed in a distillation apparatus equipped with separate infrared emitting devices (infrared heater 10 described above). While maintaining the temperature of the whiskey in the distillation apparatus at 40 ° C. or less, whiskey P was irradiated with infrared rays with a peak at 3 μm, whiskey Q with infrared rays with a peak at 6.7 μm, and whiskey R with a peak at 9 μm. Ethanol was distilled from the whiskey by irradiating the whiskey with infrared rays from the infrared emitting device. Distillation was continued until the residual liquid (whiskey) had an alcohol concentration of 1% or less. The residual liquid after distillation is the low-alcohol beverage. The alcohol concentration was measured in the same manner as in Example 1. In addition, both the commercially available whiskey used and the obtained low-alcohol beverage were evaluated for flavor in the same manner as in Example 1, and the evaluation results were summarized in a radar chart. The results are shown in FIG. As can be seen from FIG. 5, the distribution of flavor was consistent between the radar chart of the commercial whiskey used and the radar chart of the low-alcohol beverage. Therefore, it was determined that the low-alcohol beverage maintains the original flavor of whiskey well.
 本発明は、低アルコール飲料(例えばノンアルコールビールテイスト飲料など)を製造する際に利用可能である。 The present invention can be used when producing low-alcohol beverages (for example, non-alcoholic beer-taste beverages, etc.).
10 赤外線ヒーター、11 ヒーター本体、12 発熱体、13 保護部材、30 構造体、31 第1導体層、32 金属電極、34 誘電体層、35 第2導体層、37 支持基板、38 放射面、70 ケーシング、W1 横幅、W2 縦幅、D1,D2 間隔。 10 infrared heater, 11 heater body, 12 heating element, 13 protective member, 30 structure, 31 first conductor layer, 32 metal electrode, 34 dielectric layer, 35 second conductor layer, 37 support substrate, 38 radiation surface, 70 Casing, W1 width, W2 length, D1, D2 spacing.

Claims (4)

  1.  アルコール含有飲料からエタノールを除去することにより低アルコール飲料を製造する方法であって、
     前記アルコール含有飲料の温度を50℃以下に維持すると共にエタノールのOH基の赤外吸収波長を含む赤外線を前記アルコール含有飲料に照射することにより、前記アルコール含有飲料からエタノールを蒸留させて除去する、
     低アルコール飲料の製法。
    A method for producing a low-alcohol beverage by removing ethanol from an alcohol-containing beverage, comprising:
    Ethanol is distilled and removed from the alcohol-containing beverage by maintaining the temperature of the alcohol-containing beverage at 50 ° C. or less and irradiating the alcohol-containing beverage with infrared rays including the infrared absorption wavelength of the OH group of ethanol.
    Production of low-alcohol beverages.
  2.  前記赤外線は、波長3μm、6.7μm又は9μmにピークを有する赤外線である、
     請求項1に記載の低アルコール飲料の製法。
    The infrared rays are infrared rays having a peak at a wavelength of 3 μm, 6.7 μm or 9 μm,
    A method for producing a low-alcoholic beverage according to claim 1.
  3.  味認識装置によって測定した前記低アルコール飲料と前記アルコール含有飲料との風味項目の分布は、一致している、
     請求項1又は2に記載の低アルコール飲料の製法。
    the distribution of flavor items of the low-alcohol beverage and the alcohol-containing beverage measured by a taste recognition device are consistent;
    A method for producing a low-alcoholic beverage according to claim 1 or 2.
  4.  前記低アルコール飲料は、ビール又はウイスキーである、
     請求項1~3のいずれか1項に記載の低アルコール飲料の製法。
    The low-alcoholic beverage is beer or whiskey,
    A method for producing a low-alcoholic beverage according to any one of claims 1 to 3.
PCT/JP2021/037709 2021-10-12 2021-10-12 Method for manufacturing low-alcohol beverage WO2023062715A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/037709 WO2023062715A1 (en) 2021-10-12 2021-10-12 Method for manufacturing low-alcohol beverage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/037709 WO2023062715A1 (en) 2021-10-12 2021-10-12 Method for manufacturing low-alcohol beverage

Publications (1)

Publication Number Publication Date
WO2023062715A1 true WO2023062715A1 (en) 2023-04-20

Family

ID=85988447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037709 WO2023062715A1 (en) 2021-10-12 2021-10-12 Method for manufacturing low-alcohol beverage

Country Status (1)

Country Link
WO (1) WO2023062715A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100183A (en) * 1984-10-22 1986-05-19 Okunomatsu Syuzo Kk Preparation of liquor having low alcohol content
JP2004049082A (en) * 2002-07-18 2004-02-19 Ishii Iron Works Co Ltd Infrared irradiated beverage, method and apparatus for producing the same
WO2018034305A1 (en) * 2016-08-19 2018-02-22 日本碍子株式会社 Method for refining organic compound
WO2021131636A1 (en) * 2019-12-24 2021-07-01 サントリーホールディングス株式会社 Method for producing de-alcoholized beverage, method for producing alcoholic beverage, and method for producing aroma component derived from alcohol-containing beverage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100183A (en) * 1984-10-22 1986-05-19 Okunomatsu Syuzo Kk Preparation of liquor having low alcohol content
JP2004049082A (en) * 2002-07-18 2004-02-19 Ishii Iron Works Co Ltd Infrared irradiated beverage, method and apparatus for producing the same
WO2018034305A1 (en) * 2016-08-19 2018-02-22 日本碍子株式会社 Method for refining organic compound
WO2021131636A1 (en) * 2019-12-24 2021-07-01 サントリーホールディングス株式会社 Method for producing de-alcoholized beverage, method for producing alcoholic beverage, and method for producing aroma component derived from alcohol-containing beverage

Similar Documents

Publication Publication Date Title
JP7242806B2 (en) Method for purifying organic compounds
TWI430948B (en) A low-dielectric-rate amorphous silica-based coating film, and a low-dielectric-weight amorphous silica-based film obtained from the coating solution
WO2023062715A1 (en) Method for manufacturing low-alcohol beverage
US20190041346A1 (en) Sensing Layer Formation
US10822292B2 (en) Method for producing reaction product
US20230167577A1 (en) Refining method
Beck et al. Formation of C119 by thermal decomposition of C60O
US20210045195A1 (en) Infrared radiation device
WO2022013919A1 (en) Purification method
JP6997060B2 (en) Infrared radiant device
Dattelbaum et al. Surface assisted laser desorption–ionization mass spectrometry on patterned nanoporous silica thin films
Kukovecz et al. An FT-IR and UV–VIS study on the structure and acidity of sol–gel derived silica foams
US10020193B1 (en) Method for laser annealing with laser beam radiated via through hole
JP7345731B2 (en) Laser desorption/ionization mass spectrometry substrate and laser desorption/ionization mass spectrometry using the same
JPH1087395A (en) Production of high quality thin carbon film in diamond form
Chibante Production, characterization and reactions of fullerenes
JP2005327925A (en) Method for manufacturing polycrystalline silicon film
Taylor Anion photoelectron spectroscopy of radicals and clusters
Sanela A Study of Silicon-Based Materials as Matrices for Matrix-Assisted Laser Desorption/lonization Time-of-Flight Mass Spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960574

Country of ref document: EP

Kind code of ref document: A1