JP4630220B2 - Apparatus and method for preventing contamination of laser optical element - Google Patents

Apparatus and method for preventing contamination of laser optical element Download PDF

Info

Publication number
JP4630220B2
JP4630220B2 JP2006113327A JP2006113327A JP4630220B2 JP 4630220 B2 JP4630220 B2 JP 4630220B2 JP 2006113327 A JP2006113327 A JP 2006113327A JP 2006113327 A JP2006113327 A JP 2006113327A JP 4630220 B2 JP4630220 B2 JP 4630220B2
Authority
JP
Japan
Prior art keywords
optical element
laser
purge gas
dust
ion generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006113327A
Other languages
Japanese (ja)
Other versions
JP2007283354A (en
Inventor
秀行 濱村
辰彦 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006113327A priority Critical patent/JP4630220B2/en
Publication of JP2007283354A publication Critical patent/JP2007283354A/en
Application granted granted Critical
Publication of JP4630220B2 publication Critical patent/JP4630220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、劣悪環境下におけるレーザ加工で使用する光学素子の汚れ防止装置及び方法に関する。   The present invention relates to a device and method for preventing contamination of an optical element used in laser processing in a poor environment.

通常、レーザ加工機では、レーザ本体とは別にレーザ光を伝送するミラーやレーザ光を集光するレンズ等の光学系を筐体に納め、筐体中を、清浄なパージガス等で正圧にして埃等の侵入を防いで、光学系の汚れを回避している。しかしながら、製鉄所等の工場ラインのような、床や空気中などの埃や塵等の異物の多い劣悪環境下では、完全に筐体への侵入を防ぐことは困難であり、特に、メンテナンスで筐体を開放した時、相当量の埃、塵等の異物が侵入し、そのまま筐体内に留まってしまう。   Usually, in a laser processing machine, an optical system such as a mirror that transmits laser light and a lens that condenses laser light is housed in the housing separately from the laser body, and the inside of the housing is made positive with clean purge gas or the like. It prevents dust and the like from entering and avoids contamination of the optical system. However, in an inferior environment with many foreign objects such as dust and dirt on the floor and in the air, such as factory lines such as steelworks, it is difficult to completely prevent entry into the case. When the body is opened, a considerable amount of foreign matter such as dust and dirt enters and stays in the casing.

この埃、塵等の異物がパージガス等で浮遊し、レンズやミラーに付着することがある。これまで、この異物を除去するために、局所的に、パージガスをレンズやミラーに吹きつけて対処していた。   Foreign matter such as dust or dust may float on the purge gas or the like and adhere to the lens or mirror. Until now, in order to remove this foreign matter, a purge gas was blown locally to the lens or mirror to cope with it.

レーザ波長10.6μmの炭酸ガスレーザやレーザ波長1.06μmのYAGレーザで、マルチモードと呼ばれる、さほど中心部に高い強度分布を持たない場合は、問題にならなかった。しかし、近年レーザ加工に用いられ始めた、レーザ波長1.08μm近傍のファイバレーザに代表される高出力かつシングルモードの中心部に高い強度分布を有するレーザにおいては、単にパージガスを吹きつける対処をすると、レンズがくもったり白濁したりする現象が発生することを、本発明者らは見出した。   In the case of a carbon dioxide laser with a laser wavelength of 10.6 μm or a YAG laser with a laser wavelength of 1.06 μm, which is called multimode, and does not have a very high intensity distribution at the center, there was no problem. However, in a laser having a high output and a high intensity distribution at the center of a single mode, represented by a fiber laser having a laser wavelength near 1.08 μm, which has recently started to be used for laser processing, it is necessary to simply blow a purge gas. The present inventors have found that a phenomenon occurs in which the lens is clouded or clouded.

ファイバレーザは、数十μmの微小スポットへ集光できることが特徴の一つであるが、微小集光による微細加工の場合、このレンズの白濁はレーザビームの集光特性を劣化させて、加工品質に大きな影響を与えてしまう。例えば、この現象が発生すると、光学系を通過した後のレーザパワーを、レーザ本体出射口でのレーザパワーで除したレーザ光の透過率は低下し、加工に必要なレーザパワーが得られなくなる。   One of the features of the fiber laser is that it can focus on a small spot of several tens of μm. However, in the case of microfabrication by microfocusing, the white turbidity of this lens deteriorates the focusing characteristics of the laser beam, resulting in processing quality. It will have a big influence on. For example, when this phenomenon occurs, the transmittance of the laser beam obtained by dividing the laser power after passing through the optical system by the laser power at the laser body exit port decreases, and the laser power necessary for processing cannot be obtained.

また、集光レンズが白濁すると、焦点距離が設計より短くなったり、被加工物上のレーザ照射径が設計より大きくなったりしてしまい、所望の加工ができなくなることがある。   Further, when the condenser lens becomes clouded, the focal length may be shorter than the design, or the laser irradiation diameter on the workpiece may be larger than the design, and desired processing may not be performed.

これを解決するため、特許文献1には、筐体内をクリーンルーム化する方法が開示されているが、この方法では、非常にコストが高く、また、光学系の調整作業や保守管理作業が不便である等の問題があり、実現はむずかしい。   In order to solve this problem, Patent Document 1 discloses a method for creating a clean room inside the housing. However, this method is very expensive and inconvenient for adjustment work and maintenance work of the optical system. There are some problems and it is difficult to realize.

特開平8−332586号公報JP-A-8-332586

本発明の課題は、製鉄所の工場ラインのような埃や塵等の異物の多い劣悪環境下でのレーザ加工において、光学素子のくもり、汚れ等の発生を防止することにより、安定したレーザ加工を実現するため、簡便で、低コストで、かつ、保守管理がし易いレーザ用光学素子の汚れ防止技術を提供することである。   The object of the present invention is to provide stable laser processing by preventing the occurrence of clouding, dirt, etc. of optical elements in laser processing in a harsh environment where there are many foreign matters such as dust and dust such as factory lines of steelworks. Therefore, the present invention provides a technique for preventing contamination of a laser optical element that is simple, low-cost, and easy to maintain.

本発明者は、通常の清浄なパージガスの吹きつけにおいても発生する、劣悪環境下でのレーザ加工において、光学素子のくもり、汚れ等の白濁発生現象を詳細に検討した結果、ビーム強度分布と静電気に着目して、劣悪環境下でのレーザ加工において、光学素子のくもり、汚れ等の白濁発生を防止する装置及び方法を見出した。本発明の要旨を以下に示す。   The present inventor has studied in detail the phenomenon of clouding of optical elements, such as clouding and dirt, in laser processing under a poor environment that occurs even when blowing a normal clean purge gas. In view of the above, the present inventors have found an apparatus and a method for preventing the occurrence of white turbidity such as clouding and dirt of optical elements in laser processing in a poor environment. The gist of the present invention is shown below.

本発明のレーザ用光学素子の汚れ防止装置は、レーザビームを被加工材に光学素子を用いて伝送し、集光・照射して加工するレーザ加工装置に用いる光学素子の汚れ防止装置であって、前記光学素子表面の帯電極性や帯電量を検出する静電気極性判定センサ、前記帯電極性や帯電量の検出値に基づいて、逆性イオンを含むパージガスを前記光学素子表面に吹きつけるイオン発生装置、及び、前記光学素子を挟んで前記イオン発生装置に対向する、前記パージガスによって吹き飛ばされた埃や塵を集めるための集塵ボックスからなることを特徴とする。   The laser optical element contamination preventive apparatus according to the present invention is an optical element contamination preventive apparatus used in a laser processing apparatus for transmitting a laser beam to a workpiece using an optical element, and condensing and irradiating the workpiece. An electrostatic polarity determination sensor for detecting a charge polarity and a charge amount on the surface of the optical element, an ion generator for blowing a purge gas containing reverse ions on the surface of the optical element based on the detected value of the charge polarity and the charge amount, And a dust collection box for collecting dust blown away by the purge gas and facing the ion generator with the optical element interposed therebetween.

本発明のレーザ用光学素子の汚れ防止方法は、レーザビームを被加工材に光学素子を用いて伝送し、集光・照射して加工するレーザ加工装置に用いる光学素子の汚れ防止方法であって、静電気極性判定センサで前記光学素子表面の帯電極性や帯電量を検出し、前記帯電極性や帯電量の検出値に基づいて、イオン発生装置を用いて逆性イオンを含むパージガスを前記光学素子表面に吹きつけ、前記パージガスによって吹き飛ばされた埃や塵を前記光学素子を挟んで前記イオン発生装置に対向する集塵ボックスに集めることを特徴とする。   The method for preventing contamination of a laser optical element according to the present invention is a method for preventing contamination of an optical element used in a laser processing apparatus for transmitting a laser beam to a workpiece using an optical element, and collecting and irradiating the laser beam. The electrostatic polarity determination sensor detects the charge polarity and charge amount on the surface of the optical element, and based on the detected value of the charge polarity and charge amount, purge gas containing reverse ions is detected using the ion generator. The dust and the dust blown by the purge gas are collected in a dust collection box facing the ion generator with the optical element interposed therebetween.

これまで、埃や塵等の異物の多い劣悪環境下でのレーザ加工では、光学レンズのくもり、汚れ等の発生により、安定した加工が困難であり、光学素子のメンテナンス負荷も高かった。本発明により、長期間安定したレーザ加工が可能となるとともに、光学素子の清掃等のメンテナンス周期が伸び、メンテナンス負荷が軽減される。しかも、簡便で低コストで実現できる。   Until now, in laser processing in a poor environment with a lot of foreign matters such as dust and dust, stable processing has been difficult due to the occurrence of cloudiness and dirt on the optical lens, and the maintenance load on the optical element has been high. According to the present invention, stable laser processing can be performed for a long period of time, and a maintenance cycle such as cleaning of the optical element is extended, and a maintenance load is reduced. Moreover, it can be realized simply and at low cost.

本発明者は、通常の清浄なパージガスの吹きつけにおいても発生する、劣悪環境下でのレーザ加工において、光学素子のくもり、汚れ等の白濁発生現象を詳細に検討した結果、ビーム強度分布と静電気に着目して、集光特性に多大な影響を与えるレンズの白いくもりの発生メカニズムは、以下に説明するような発生メカニズムであると考えるに至った。以下、検討結果を説明する。   The present inventor has studied in detail the phenomenon of clouding of optical elements, such as clouding and dirt, in laser processing under a poor environment that occurs even when blowing a normal clean purge gas. From the above, it has been considered that the generation mechanism of white fogging of the lens, which has a great influence on the light condensing characteristics, is the generation mechanism described below. Hereinafter, the examination results will be described.

パージガスは、配管とそこを通るエアー間で摩擦を生じ、静電気を帯びる。この静電気を帯びたパージガスを光学素子に吹きつけると、光学素子も静電気を帯びる。そして、大気中に浮遊する塵や埃やごみ等の異物が、この静電気に吸い寄せられ、光学素子に付着する。付着した異物は、レーザビームによって照射加熱され、水分等が蒸発し又は化学反応して、有機物、無機物が変質したものと考えられる。   The purge gas causes friction between the pipe and the air passing therethrough and is charged with static electricity. When this purge gas charged with static electricity is blown onto the optical element, the optical element is also charged with static electricity. Then, foreign matters such as dust, dust, and dust floating in the atmosphere are attracted to the static electricity and adhere to the optical element. The adhering foreign matter is considered to be one in which organic matter or inorganic matter has been altered by irradiation and heating with a laser beam, evaporation of water or the like, or chemical reaction.

しかしながら、局所的なパージガスのみで、なぜこれまで問題にならなかったのか、また、ファイバレーザで問題が発生したのかという疑問が残る。これを検証するため、通常のパージガスのみを吹きつける条件で、ファイバレーザのレーザパワーを変化させ、それぞれの10日後の最小集光径の変化を調査した。   However, there remains a question as to why only a local purge gas has not been a problem until now, and why a problem has occurred in the fiber laser. In order to verify this, the laser power of the fiber laser was changed under the condition that only the normal purge gas was blown, and the change in the minimum focused diameter after 10 days was investigated.

図5は、本検討で集光特性を測定するのに用いたレーザ照射装置である。レーザ装置1から出射されたレーザビーム9が集光レンズ2によって集光され、ビームプロファイラー7によって集光特性が測定される。パージガス6は、供給ホース3より集光レンズに噴射される。パージガス6の供給ホース3の先端には、イオン発生装置4と静電気極性判定センサ5が装備されているが、本調査では使用していない。なお、イオン発生装置4と静電気極性判定センサ5は、市販のものを利用した。   FIG. 5 shows the laser irradiation apparatus used to measure the light collection characteristics in this study. The laser beam 9 emitted from the laser device 1 is condensed by the condenser lens 2, and the condensing characteristic is measured by the beam profiler 7. The purge gas 6 is jetted from the supply hose 3 to the condenser lens. The tip of the supply hose 3 for the purge gas 6 is equipped with an ion generator 4 and an electrostatic polarity determination sensor 5, which are not used in this survey. In addition, the ion generator 4 and the electrostatic polarity determination sensor 5 utilized the commercially available thing.

ビームプロファイラー7以外は、筐体10に納められている。レーザビームは、波長1.08μmの200W連続発振ファイバレーザで、レーザビーム径は6mm、集光レンズの焦点距離は200mmである。パージガスとしては、窒素ガス、アルゴンガス等の不活性気体、クリーンエアー等を使用した。今回は、乾燥エアーを異物除去フィルターに通したクリーンエアーを使用した。   Other than the beam profiler 7 is housed in the housing 10. The laser beam is a 200 W continuous wave fiber laser with a wavelength of 1.08 μm, the laser beam diameter is 6 mm, and the focal length of the condenser lens is 200 mm. As the purge gas, an inert gas such as nitrogen gas or argon gas, clean air, or the like was used. This time, clean air with dry air passed through a foreign matter removal filter was used.

図4に、レンズに入射されるレーザパワー密度と最小集光径の関係を示す。横軸のレーザパワー密度Ipはレーザパワー/レーザビーム面積で定義され、レーザパワー密度Ipを変化させるのに、レーザパワーを変化させた。また、レーザビーム面積は、レンズに入射するビームにおいて、レーザパワーの86%が含まれる径から算出して定義される。縦軸の最小集光径は、集光レンズで集光されたビームにおいて、レーザパワーの86%が含まれる直径で定義される。   FIG. 4 shows the relationship between the laser power density incident on the lens and the minimum focused diameter. The laser power density Ip on the horizontal axis is defined by laser power / laser beam area, and the laser power was changed to change the laser power density Ip. The laser beam area is defined by calculating from a diameter that includes 86% of the laser power in the beam incident on the lens. The minimum condensing diameter on the vertical axis is defined as a diameter including 86% of the laser power in the beam condensed by the condensing lens.

この図より、レーザパワー密度Ipが0.5kW/cm2程度以上では、白濁が発生して最小集光径も大きくなる。レーザパワー密度Ipが0.5kW/cm2程度以下では、10日を経過しても白濁は発生せず、照射直後の最小集光径50μmと同程度になる。比較として、工業的に切断等に用いられている炭酸ガスレーザを例にとると、レーザパワー6000W、レーザビーム径40mmで、レーザパワー密度Ipは0.48kW/cm2であり、白濁の発生は見られない。 From this figure, when the laser power density Ip is about 0.5 kW / cm 2 or more, white turbidity occurs and the minimum condensing diameter increases. When the laser power density Ip is about 0.5 kW / cm 2 or less, white turbidity does not occur even after 10 days, and is about the same as the minimum focused diameter of 50 μm immediately after irradiation. For comparison, in the case of a carbon dioxide laser used for cutting, etc. as an example, the laser power is 6000 W, the laser beam diameter is 40 mm, the laser power density Ip is 0.48 kW / cm 2 , and the occurrence of cloudiness is observed. I can't.

このように、これまでは、高出力レーザにおいてもレーザパワー密度Ipが大きくなかったために、白濁が発生しなかったものと考えられる。   Thus, it is considered that until now, even in a high-power laser, the laser power density Ip has not been large, and thus no cloudiness has occurred.

したがって、レーザ用光学素子の白濁を防ぐには、光学素子に入射するレーザパワー密度Ipを0.5kW/cm2以下とすることが必要である。しかし、ファイバレーザのようなシングルモードを持つレーザ加工においては、加工速度を上げるためなどの理由で、大出力のレーザビームを用いることが多い。そのために、この条件を満たすのが困難な場合が多々ある。 Therefore, to prevent the laser optical element from becoming clouded, it is necessary that the laser power density Ip incident on the optical element be 0.5 kW / cm 2 or less. However, in laser processing having a single mode such as a fiber laser, a high-power laser beam is often used for reasons such as increasing the processing speed. Therefore, it is often difficult to satisfy this condition.

本発明者は、この集光特性に多大な影響を与えるレンズの白いくもりの発生メカニズムを基に、これを防ぐには、静電気、特に、光学素子の静電気を抑制することがポイントであると考えた。光学素子が静電気を帯びないよう、帯電防止膜の使用が考えられるが、帯電防止皮膜層の特性によっては、光学レンズの反射率等の光学特性が変化してしまう。   The present inventor believes that, based on the generation mechanism of the white clouding of the lens, which has a great influence on the light condensing characteristics, to prevent this, it is important to suppress static electricity, particularly static electricity of the optical element. It was. The use of an antistatic film can be considered so that the optical element is not charged with static electricity. However, depending on the characteristics of the antistatic film layer, the optical characteristics such as the reflectance of the optical lens change.

特に、レーザに対する吸収率が上がった場合は、レンズの熱膨張を引き起こし、焦点距離や集光径の光学特性に著しく影響を与える。また、帯電防止膜の長期安定性にも問題があるのが現状である。   In particular, when the absorption rate with respect to the laser increases, it causes thermal expansion of the lens, which significantly affects the optical characteristics of the focal length and the focused diameter. There is also a problem with the long-term stability of the antistatic film.

また、静電気を防ぐために湿度を高くするという、湿度による管理も考えられるが、空気中の水分によって結露が生じやすくなり、レンズ表面でガラスと水分に含まれる成分が反応して、光学レンズのくもり、汚れを増長してしまう。   In addition, the humidity can be controlled by increasing the humidity to prevent static electricity, but condensation tends to occur due to moisture in the air, and the components of the glass and moisture react on the lens surface to cloud the optical lens. , Will increase dirt.

まず、パージガスを吹きつけた場合、光学素子はプラスに帯電していることをセンサにより確認した。そこで、マイナスイオン発生装置でマイナスイオンを供給し、中和させたところ、最初は、塵や埃等の異物の付着は抑制されたが、時間とともに付着量が増加した。この原因は、マイナスイオンを供給しすぎたために、レンズが逆にマイナスに帯電してしまい、プラスに帯電している異物を引き寄せてしまったためであった。   First, when the purge gas was blown, it was confirmed by a sensor that the optical element was positively charged. Therefore, when negative ions were supplied and neutralized by the negative ion generator, the adhesion of foreign matters such as dust and dust was suppressed at first, but the amount of adhesion increased with time. This is because the negative ions were supplied too much, so that the lens was charged negatively and attracted the positively charged foreign matter.

次に、光学素子の表面の帯電極性を検出して、それとは逆の極性のイオンを供給することとした。これは、上記のマイナスイオン供給と比較して大きな効果が認められたが、やはり時間とともに異物が付着する結果となった。この原因は、イオンを光学素子に供給することにより、二次的にプラス及びマイナスに帯電した異物を筐体内に存在させることになることである。   Next, the charged polarity on the surface of the optical element was detected, and ions having the opposite polarity were supplied. This was a significant effect compared to the negative ion supply described above, but it also resulted in foreign matter adhering over time. The cause of this is that, by supplying ions to the optical element, foreign particles that are secondarily charged positively and negatively exist in the housing.

イオン発生装置は、光学素子を中和状態にするため、時間的に、プラス、マイナスのイオンを交互に発生させるので、帯電した逆極性の異物を引き寄せてしまう。このため、光学素子及びイオンを発生させるための電極針に短時間であるが異物が付着する。   Since the ion generator generates the positive and negative ions alternately in time to neutralize the optical element, the charged reverse polarity foreign matter is attracted. For this reason, foreign substances adhere to the optical element and the electrode needle for generating ions for a short time.

電極針に異物が付着すると、放電時に反応を起こして電極を覆う析出物が生成され、そのイオン供給能力を減少してしまう。このため、パージガスの静電気で光学素子は、再び帯電し、異物が、再度、付着してしまうと考えられる。   When foreign matter adheres to the electrode needle, a reaction occurs during discharge to cover the electrode, and the ion supply capacity is reduced. For this reason, it is considered that the optical element is charged again by the static electricity of the purge gas, and the foreign matter adheres again.

そこで、二次的にプラス及びマイナスに帯電した異物を筐体内に存在させないために、イオン発生装置及びパージガスで除去された異物を、フィルター又は放電型集塵機で捕らえ、光学素子及び電極針への再付着を防ぐ方法を着想した。   Therefore, in order not to allow the positively and negatively charged foreign matter to be present in the housing, the foreign matter removed by the ion generator and the purge gas is captured by a filter or a discharge dust collector and re-applied to the optical element and electrode needle. Inspired by a method to prevent adhesion.

本発明において、異物を補足する集塵ボックスは、レンズに吹きつけたパージガスを十分に取り込める開口を持ち、ファンによる吸引力を持ち、内部にフィルター又は放電型集塵機を持った構成にする。   In the present invention, the dust collection box for capturing foreign substances has an opening that can sufficiently take in the purge gas blown to the lens, has a suction force by a fan, and has a filter or a discharge type dust collector inside.

なお、本実施の形態において、光学系は筐体内に収納したが、塵や埃が顕著ではないときには、筐体内に収納する必要がない。   In this embodiment, the optical system is housed in the housing. However, when dust or dust is not significant, it is not necessary to house the optical system in the housing.

(集光特性)
図1は、本実施例で用いた、汚れ防止装置を組み込んだ、レーザビームの集光特性を測定するためのレーザ照射装置の例である。図5と同じく、レーザ装置1から出射されたレーザビーム9が集光レンズ2によって集光され、ビームプロファイラー7によって集光特性が測定される。
(Condensing characteristics)
FIG. 1 shows an example of a laser irradiation apparatus used in this embodiment for measuring the condensing characteristic of a laser beam incorporating a dirt prevention apparatus. As in FIG. 5, the laser beam 9 emitted from the laser device 1 is condensed by the condenser lens 2, and the condensing characteristic is measured by the beam profiler 7.

パージガス6は、供給ホース3より集光レンズ2に噴射される。パージガス6の供給ホース3の先端には、市販の除電装置を用いたイオン発生装置4と静電気極性判定センサ5が装備され、さらに、集光レンズ2をはさんで、パージガス6によって除去された埃や塵等の異物を回収する集塵ボックス8が配置されている。本実施例では、開口部11とファン13を備える集塵ボックス8内に、市販の空気清浄用フィルター12を装着した。   The purge gas 6 is jetted from the supply hose 3 to the condenser lens 2. The tip of the supply hose 3 for the purge gas 6 is equipped with an ion generator 4 using a commercially available static eliminator and an electrostatic polarity determination sensor 5, and the dust removed by the purge gas 6 across the condenser lens 2. A dust collection box 8 for collecting foreign matters such as dust is disposed. In this example, a commercially available air cleaning filter 12 was mounted in a dust collection box 8 having an opening 11 and a fan 13.

ビームプロファイラー7以外は、筐体10に納められている。筐体10の大きさは、1m(W)×1m(L)×0.5m(H)である。測定条件としては、波長1.08μmの200W連続発振ファイバレーザを使用し、レーザビーム径は6mm、集光レンズの焦点距離は200mmである。   Other than the beam profiler 7 is housed in the housing 10. The size of the housing 10 is 1 m (W) × 1 m (L) × 0.5 m (H). As measurement conditions, a 200 W continuous-wave fiber laser with a wavelength of 1.08 μm is used, the laser beam diameter is 6 mm, and the focal length of the condenser lens is 200 mm.

Figure 0004630220
Figure 0004630220

表1に、本発明及び比較例の装置構成を示す。レーザ照射開始直後、並びに、本発明、パージガスのみ(比較例1)、及び、パージガスとイオン発生装置のみ(比較例2)を使用した場合の3通りについて、10日後のそれぞれ集光直径の集光特性を図2に示す。フォーカス位置は照射開始直後の最も集光径が小さくなった位置を0として、マイナスが大きいほど集光レンズ側、プラスほど集光レンズから遠い方向である。   Table 1 shows device configurations of the present invention and comparative examples. Immediately after the start of laser irradiation, and in the case of using the present invention, only the purge gas (Comparative Example 1), and only the purge gas and the ion generator (Comparative Example 2), the condensed light of the condensed diameter after 10 days. The characteristics are shown in FIG. The focus position is a position where the condensing diameter is the smallest immediately after the start of irradiation, and the larger the minus, the farther the condensing lens side is, and the farther the distance is from the condensing lens.

本発明では、照射開始直後とほぼ同等の集光特性が維持されている。一方、比較例1のパージガスのみでは、最小集光径が50μmから100μmと大きくなり、その位置もレンズに近い側に5mmシフトしている。比較例2のパージガスとイオン発生装置のみでは、最小集光径が50μmから70μmと大きくなり、その位置もレンズに近い側に1mmシフトしている。   In the present invention, the light condensing characteristic substantially the same as that immediately after the start of irradiation is maintained. On the other hand, with only the purge gas of Comparative Example 1, the minimum condensing diameter is increased from 50 μm to 100 μm, and the position is also shifted by 5 mm toward the side closer to the lens. With only the purge gas and the ion generator of Comparative Example 2, the minimum condensing diameter is increased from 50 μm to 70 μm, and the position is also shifted by 1 mm toward the side closer to the lens.

比較例1の集光レンズの外観を観察したところ、レーザビームが入射するレンズ表面中央部周辺に、白いくもりが明確に見られた。比較例2の集光レンズにも、非常に薄いが、白いくもりが認められた。   When the appearance of the condensing lens of Comparative Example 1 was observed, a white cloud was clearly seen around the center of the lens surface where the laser beam was incident. The condensing lens of Comparative Example 2 was also very thin but white cloudy was observed.

これより、集光径が大きくなったのは、この白いくもりにより収差が発生したものと考えられる。また、レーザビームパワーの伝送効率は、およそ10%低下していた。これより、この白いくもりによりレーザビームパワーが吸収され、熱となり、熱レンズ効果を引き起こしたため、焦点位置がシフトしたと考えられる。   From this, it is considered that the reason why the condensing diameter was increased was that aberrations were generated by this white cloud. Further, the transmission efficiency of the laser beam power was reduced by about 10%. From this, the laser beam power is absorbed by this white cloud, and it becomes heat, which causes the thermal lens effect. Therefore, it is considered that the focal position has shifted.

その結果、図3に示すように、パージガスのみの比較例1では、4日程度で集光径が2倍程度となる白いくもりが発生していた。また、イオン発生装置4として、市販の除電器を使用する比較例2では、15日程度で集光径が2倍程度となる白いくもりが発生していたのに対して、本発明では、約30日にまで、その発生を防ぐことができた。   As a result, as shown in FIG. 3, in Comparative Example 1 using only the purge gas, a white cloud was generated in which the condensed light diameter was about twice in about 4 days. Further, in Comparative Example 2 in which a commercially available static eliminator is used as the ion generator 4, a white clouding in which the condensed light diameter is approximately doubled in about 15 days was generated. It was possible to prevent the occurrence until 30 days.

本発明により、長期間安定したレーザ加工が可能となるとともに、光学素子の清掃等のメンテナンス周期が伸び、メンテナンス負荷が軽減される。   According to the present invention, stable laser processing can be performed for a long period of time, and a maintenance cycle such as cleaning of the optical element is extended, and a maintenance load is reduced.

30日後に、本発明例の除電器の電極針を外観検査したところ、異物が付着していた。また、フィルターも汚れていた。これより、異物の補足の能力が低下したため、帯電した浮遊異物が増加して、光学素子及び電極針に付着し、イオン供給能力低下によって白いくもりが発生したと考えられる。その主要因としては、パージガス自体の清浄度に影響され、従がって、より清浄度の高いパージガスを供給できれば、さらに、長期間の効果が期待できる。   After 30 days, when the appearance of the electrode needle of the static eliminator of the present invention was inspected, foreign matter was adhered. The filter was also dirty. As a result, the ability to capture foreign matter has been reduced, so that charged floating foreign matter has increased and adhered to the optical element and the electrode needle, and it is considered that white clouding has occurred due to the reduced ion supply ability. The main factor is influenced by the cleanliness of the purge gas itself. Therefore, if purge gas with a higher cleanliness can be supplied, a long-term effect can be expected.

本発明の劣悪環境下におけるレーザ用光学素子の汚れ防止装置の概略を示す図である。It is a figure which shows the outline of the pollution prevention apparatus of the optical element for lasers in the inferior environment of this invention. 本発明の実施例と比較例における集光特性、フォーカス位置と集光径の関係を示す図である。It is a figure which shows the relationship between the condensing characteristic in the Example and comparative example of this invention, a focus position, and a condensing diameter. 本発明の実施例と比較例における照射日数と集光径の関係を示す図である。It is a figure which shows the relationship between the irradiation days in the Example and comparative example of this invention, and a condensing diameter. レーザパワー密度と最小集光径の関係を示す図である。It is a figure which shows the relationship between a laser power density and the minimum condensing diameter. パージガス吹きつけ時のファイバーレーザ光の集光特性を測定するのに用いたレーザ照射装置の概略を示す図である。It is a figure which shows the outline of the laser irradiation apparatus used in order to measure the condensing characteristic of the fiber laser beam at the time of purge gas blowing.

符号の説明Explanation of symbols

1 レーザ発振器
2 集光レンズまたは、fθレンズ
3 パージガス配管
4 イオン発生装置
5 静電気センサ
6 パージガス
7 ビームプロファイラー
8 集塵ボックス
9 レーザビーム
10 装置筐体
11 開口部
12 フィルター
13 ファン
DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 Condensing lens or f (theta) lens 3 Purge gas piping 4 Ion generator 5 Electrostatic sensor 6 Purge gas 7 Beam profiler 8 Dust collection box 9 Laser beam 10 Apparatus housing 11 Opening part 12 Filter 13 Fan

Claims (2)

レーザビームを被加工材に光学素子を用いて伝送し、集光・照射して加工するレーザ加工装置に用いる光学素子の汚れ防止装置であって、
前記光学素子表面の帯電極性や帯電量を検出する静電気極性判定センサ、
前記帯電極性や帯電量の検出値に基づいて、逆性イオンを含むパージガスを前記光学素子表面に吹きつけるイオン発生装置、及び、
前記光学素子を挟んで前記イオン発生装置に対向する、前記パージガスによって吹き飛ばされた埃や塵を集めるための集塵ボックス
からなることを特徴とするレーザ用光学素子の汚れ防止装置。
A device for preventing contamination of an optical element used in a laser processing apparatus that transmits a laser beam to a workpiece using an optical element, collects and irradiates the workpiece,
An electrostatic polarity determination sensor for detecting the charge polarity and charge amount of the optical element surface;
An ion generator that blows a purge gas containing reverse ions on the surface of the optical element based on the detected value of the charge polarity and charge amount; and
An apparatus for preventing contamination of an optical element for a laser, comprising a dust collection box for collecting dust blown away by the purge gas and facing the ion generator with the optical element interposed therebetween.
レーザビームを被加工材に光学素子を用いて伝送し、集光・照射して加工するレーザ加工装置に用いる光学素子の汚れ防止方法であって、
静電気極性判定センサで前記光学素子表面の帯電極性や帯電量を検出し、
前記帯電極性や帯電量の検出値に基づいて、イオン発生装置を用いて逆性イオンを含むパージガスを前記光学素子表面に吹きつけ、
前記パージガスによって吹き飛ばされた埃や塵を、前記光学素子を挟んで前記イオン発生装置に対向する集塵ボックスに集める
ことを特徴とするレーザ用光学素子の汚れ防止方法。
A method for preventing contamination of an optical element used in a laser processing apparatus for transmitting a laser beam to a workpiece using an optical element, and condensing and irradiating the workpiece.
The electrostatic polarity determination sensor detects the charge polarity and charge amount of the optical element surface,
Based on the detected value of the charging polarity and charge amount, a purge gas containing reverse ions is blown onto the optical element surface using an ion generator,
A method for preventing contamination of a laser optical element, wherein dust or dust blown off by the purge gas is collected in a dust collection box facing the ion generator with the optical element interposed therebetween.
JP2006113327A 2006-04-17 2006-04-17 Apparatus and method for preventing contamination of laser optical element Active JP4630220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113327A JP4630220B2 (en) 2006-04-17 2006-04-17 Apparatus and method for preventing contamination of laser optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113327A JP4630220B2 (en) 2006-04-17 2006-04-17 Apparatus and method for preventing contamination of laser optical element

Publications (2)

Publication Number Publication Date
JP2007283354A JP2007283354A (en) 2007-11-01
JP4630220B2 true JP4630220B2 (en) 2011-02-09

Family

ID=38755594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113327A Active JP4630220B2 (en) 2006-04-17 2006-04-17 Apparatus and method for preventing contamination of laser optical element

Country Status (1)

Country Link
JP (1) JP4630220B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5061660B2 (en) * 2007-03-07 2012-10-31 ミツミ電機株式会社 Laser processing method and dust collector used therefor
JP5198910B2 (en) * 2008-03-24 2013-05-15 株式会社ディスコ Cutting equipment
JP2009285674A (en) * 2008-05-28 2009-12-10 Sunx Ltd Marking device using laser beam
JP5781278B2 (en) 2010-05-14 2015-09-16 三菱重工業株式会社 Welding equipment
CN114700576B (en) * 2022-06-02 2022-08-02 辰风策划(深圳)有限公司 Welding table special for electronic product and welding method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084901U (en) * 1983-11-16 1985-06-12 株式会社東芝 beam bender
JPH08332586A (en) * 1995-06-05 1996-12-17 Mitsubishi Electric Corp Laser beam machine
JPH10118569A (en) * 1996-10-19 1998-05-12 Ricoh Co Ltd Filter for fine particle classification and its production
JP2000270832A (en) * 1999-03-19 2000-10-03 Japan Tobacco Inc Opening apparatus for belt-like material
JP2003126977A (en) * 2001-10-17 2003-05-08 Amada Eng Center Co Ltd Laser processing head
JP2005305537A (en) * 2004-04-26 2005-11-04 Tdk Corp Dust collection method for laser beam machining by-product and its equipment and laser beam machining device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084901U (en) * 1983-11-16 1985-06-12 株式会社東芝 beam bender
JPH08332586A (en) * 1995-06-05 1996-12-17 Mitsubishi Electric Corp Laser beam machine
JPH10118569A (en) * 1996-10-19 1998-05-12 Ricoh Co Ltd Filter for fine particle classification and its production
JP2000270832A (en) * 1999-03-19 2000-10-03 Japan Tobacco Inc Opening apparatus for belt-like material
JP2003126977A (en) * 2001-10-17 2003-05-08 Amada Eng Center Co Ltd Laser processing head
JP2005305537A (en) * 2004-04-26 2005-11-04 Tdk Corp Dust collection method for laser beam machining by-product and its equipment and laser beam machining device

Also Published As

Publication number Publication date
JP2007283354A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4630220B2 (en) Apparatus and method for preventing contamination of laser optical element
KR101168948B1 (en) System for sampling and measuring particulated matters
JP5610356B2 (en) Laser decontamination equipment
KR101419654B1 (en) Optical particle-detecting device and particle-detecting method
CN102192898B (en) Smoke detector
CN102218415B (en) Method and device for cleaning tokamak first mirror by vacuum ultraviolet laser
US12085865B2 (en) System and method for detecting debris in a photolithography system
US20090051900A1 (en) Apparatus and Method for Detecting Particulates in Water
JP2010524203A (en) Method for laser ablation of solar cells
JPWO2003076117A1 (en) Method and apparatus for preventing fouling on optical components in laser processing machine
JPH0755692A (en) Particle detecting device
CN111940421A (en) Efficient laser cleaning device and method
JP2010112803A5 (en)
JP2006167728A (en) Method and apparatus for detecting stain of condensing lens in laser beam machine
CN110849897A (en) Optical element surface non-contact type cleaning monitoring and processing system
KR102298103B1 (en) Apparatus for inspecting surface
TW202219480A (en) Method and apparatus for detection of particle size in a fluid
CN110695005B (en) Laser cleaning equipment and method for electronic components
JP5371534B2 (en) Laser processing method, laser processing apparatus, and solar panel manufacturing method
JP2015024416A (en) Sheet cutter
KR100778389B1 (en) Laser Cleaning Appartus and Method for the Contaminants on a Optically Transparent Substrate
JP2005217119A (en) Laser oscillator
JP2008264843A (en) Micromachining method eliminating influence of machining fine powder
TWI853572B (en) Highly efficient dry dust removal system
CN110523714A (en) The cleaning method and cleaning device of optical component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4630220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350