JP4627481B2 - Optical waveguide circuit - Google Patents

Optical waveguide circuit Download PDF

Info

Publication number
JP4627481B2
JP4627481B2 JP2005309563A JP2005309563A JP4627481B2 JP 4627481 B2 JP4627481 B2 JP 4627481B2 JP 2005309563 A JP2005309563 A JP 2005309563A JP 2005309563 A JP2005309563 A JP 2005309563A JP 4627481 B2 JP4627481 B2 JP 4627481B2
Authority
JP
Japan
Prior art keywords
core
contact angle
optical waveguide
waveguide circuit
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005309563A
Other languages
Japanese (ja)
Other versions
JP2007121380A (en
Inventor
貴光 増田
博 照井
和美 清水
和一 滑川
淳 阿部
裕史 山崎
明正 金子
育生 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Electronics Corp
Priority to JP2005309563A priority Critical patent/JP4627481B2/en
Publication of JP2007121380A publication Critical patent/JP2007121380A/en
Application granted granted Critical
Publication of JP4627481B2 publication Critical patent/JP4627481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Description

本発明は、導波光の入出力において使用される反射面の反射角制御性を向上し、反射面の製造歩留りを向上することができる光導波回路に関する。   The present invention relates to an optical waveguide circuit capable of improving the reflection angle controllability of a reflecting surface used in the input / output of guided light and improving the manufacturing yield of the reflecting surface.

従来の光導波回路では、導波路の光軸に対して直交するミラー溝がエッチング等により形成され、そのミラー溝に金属膜が配置されていた。導波光がその金属膜で反射されることにより、導波路から導波光が出力された(例えば、特許文献1参照。)。   In a conventional optical waveguide circuit, a mirror groove orthogonal to the optical axis of the waveguide is formed by etching or the like, and a metal film is disposed in the mirror groove. The guided light is output from the waveguide by being reflected by the metal film (see, for example, Patent Document 1).

特許文献1に開示された光導波回路では、導波路の光軸に直交し、且つ光導波回路中の導波路のコアより深いミラー溝が設けられ、このミラー溝の底部に金属膜が蒸着形成される。さらに、ループを描くように形成されたリボン状金属膜の両端が、ミラー溝底部の金属膜上に圧着されている。リボン状金属膜は、導波路から導波光を取り出すため、導波光を上方に反射させる。   In the optical waveguide circuit disclosed in Patent Document 1, a mirror groove that is perpendicular to the optical axis of the waveguide and deeper than the core of the waveguide in the optical waveguide circuit is provided, and a metal film is deposited on the bottom of the mirror groove. Is done. Furthermore, both ends of the ribbon-like metal film formed so as to draw a loop are pressure-bonded onto the metal film at the bottom of the mirror groove. The ribbon-like metal film reflects the guided light upward in order to extract the guided light from the waveguide.

しかし、リボン状金属膜では、平坦な反射面を形成するのが困難であった。このため、導波光の波面歪みや散乱が発生していた。またリボン状金属膜の成すループの形状を微調整するのが困難であった。このため、リボン状金属膜で反射された導波光は、リボン状金属膜上の反射した場所に応じて反射角度が大きく異なり反射角度の制御性が悪く、また製造歩留りが悪かった。
特開2004−118081号公報
However, it has been difficult to form a flat reflective surface with a ribbon-like metal film. For this reason, wavefront distortion and scattering of guided light have occurred. In addition, it is difficult to finely adjust the shape of the loop formed by the ribbon-like metal film. For this reason, the waveguide light reflected by the ribbon-like metal film has a different reflection angle depending on the location of reflection on the ribbon-like metal film, and the controllability of the reflection angle is poor, and the production yield is poor.
JP 2004-118081 A

本発明は、このような問題を解決するために、反射角度の制御性が高く、製造歩留りの良い光導波回路の提供を目的とする。   In order to solve such a problem, an object of the present invention is to provide an optical waveguide circuit with high controllability of reflection angle and good manufacturing yield.

本発明に係る光導波回路は、導波光を入出力するミラー溝が、光軸と略直交する第一の側面と、第一の側面に略平行に対向する第二の側面と、第二の側面と90°より大きく180°より小さい内角を持つように交わる第三の側面とを含む。第二の側面と第三の側面とが90°より大きく180°より小さい内角を持つため、ミラー溝に流し込まれる硬化性樹脂が第三の側面上で自らの表面張力によりせり上がるのを防ぐことができる。このため、表面が平坦な反射部を形成することができる。また、ミラー溝が硬化性樹脂で埋められるのを防止することができる。従って、反射角度の制御性が高く、製造歩留りの良い光導波回路を提供することができる。   In the optical waveguide circuit according to the present invention, a mirror groove for inputting and outputting guided light includes a first side surface substantially orthogonal to the optical axis, a second side surface facing the first side surface substantially in parallel, and a second side surface. A side surface and a third side surface that intersects to have an internal angle greater than 90 ° and less than 180 °. Since the second side surface and the third side surface have an inner angle larger than 90 ° and smaller than 180 °, the curable resin poured into the mirror groove is prevented from rising due to its surface tension on the third side surface. Can do. For this reason, a reflective part with a flat surface can be formed. In addition, the mirror groove can be prevented from being filled with the curable resin. Therefore, it is possible to provide an optical waveguide circuit with high controllability of the reflection angle and good manufacturing yield.

さらに、本発明に係る光導波回路は、導波光を入出力するミラー溝が、光軸と略直交する第一の側面と、第一の側面に略平行に対向する第二の側面と、第二の側面と90°以上で180°より小さい内角を持つように交わる第三の側面と、180°より小さい外角で第三の側面と交わる第四の側面と、を含む。第四の側面と第三の側面との成す交線が、反射部の反射面と第三の側面との成す交線より第一の側面側にある。このため、ミラー溝に流し込まれる硬化性樹脂は、ミラー溝の底面の表面不整等により流れが乱されても、第四の側面と第三の側面とのコーナーでせき止められ、ミラー溝が硬化性樹脂で埋められるのを防止することができる。また、底面の表面不整等の影響を抑え、表面が平坦な反射部を形成することができる。従って、反射角度の制御性が高く、製造歩留りの良い光導波回路を提供することができる。   Furthermore, the optical waveguide circuit according to the present invention includes a first side surface in which a mirror groove for inputting / outputting guided light is substantially orthogonal to the optical axis, a second side surface facing the first side surface substantially parallel to the first side surface, A third side surface that intersects the second side surface so as to have an inner angle of 90 ° or more and smaller than 180 °, and a fourth side surface that intersects the third side surface with an outer angle smaller than 180 °. The intersection line formed between the fourth side surface and the third side surface is located on the first side surface side from the intersection line formed between the reflection surface of the reflection portion and the third side surface. For this reason, the curable resin poured into the mirror groove is clogged at the corners of the fourth side surface and the third side surface even if the flow is disturbed due to surface irregularities on the bottom surface of the mirror groove, and the mirror groove is hardened. Filling with resin can be prevented. Further, it is possible to suppress the influence of surface irregularities on the bottom surface and form a reflective portion having a flat surface. Therefore, it is possible to provide an optical waveguide circuit with high controllability of the reflection angle and good manufacturing yield.

具体的には、本願第1の発明は、平坦な基板上に形成されたクラッドと、前記クラッドに囲まれ光を導波するコアと、前記コアを遮るように形成され底面が前記コアより深いミラー溝と、を備える光導波回路であって、前記ミラー溝は、前記コアの露出する第一の側面が前記コアの光軸に略直交し、第二の側面が前記第一の側面に略平行に対向し、第三の側面が90°より大きく180°より小さい内角で前記第二の側面と交わり、前記底面が前記第二の側面とのコーナーに液状の硬化性樹脂を流し込み硬化させることにより前記コーナーに形成された、前記コアからの光を前記底面と反対側に反射する反射部を有する光導波回路である。 Specifically, according to the first invention of the present application, a clad formed on a flat substrate, a core that guides light surrounded by the clad, and a bottom surface deeper than the core formed to block the core. An optical waveguide circuit comprising: a mirror groove, wherein the first side surface of the core that is exposed is substantially perpendicular to the optical axis of the core, and the second side surface is substantially parallel to the first side surface. Opposing in parallel, the third side surface intersects with the second side surface at an inner angle greater than 90 ° and smaller than 180 °, and the bottom surface is poured into the corner with the second side surface, and a liquid curable resin is poured and cured. This is an optical waveguide circuit having a reflection part formed at the corner to reflect light from the core to the side opposite to the bottom surface.

反射部は、硬化性樹脂により形成されるのが好ましい。液状の硬化性樹脂をミラー溝の所定の位置に流し込み硬化させることにより形成することができる。反射部は、ミラー溝の底面と第二の側面とのコーナーに斜面を有し、底面、第二の側面及び第三の側面と接する。第三の側面が、第二の側面に対し90°より大きく180°より小さい内角で交わるため、ミラー溝に流し込まれる硬化性樹脂が、第三の側面上で、表面張力によりせり上がるのを防止することができる。このため表面が平坦な反射部を形成することができる。また、せり上がり現象を抑えることにより、ミラー溝が硬化性樹脂で埋められるのを防止することができる。従って、反射角度の制御性が高く、製造歩留りの良い光導波回路を提供することができる。   The reflection part is preferably formed of a curable resin. It can be formed by pouring a liquid curable resin into a predetermined position of the mirror groove and curing. The reflecting portion has a slope at a corner between the bottom surface of the mirror groove and the second side surface, and is in contact with the bottom surface, the second side surface, and the third side surface. Since the third side intersects with the second side at an inner angle greater than 90 ° and smaller than 180 °, the curable resin poured into the mirror groove is prevented from rising due to surface tension on the third side. can do. For this reason, a reflection part with a flat surface can be formed. Further, by suppressing the rising phenomenon, the mirror groove can be prevented from being filled with the curable resin. Therefore, it is possible to provide an optical waveguide circuit with high controllability of the reflection angle and good manufacturing yield.

本願第1の発明において、前記底面は、前記反射部を有しない部分が前記反射部を有する部分に比べ、前記反射部の前記底面と接する部分を形成する物質に対して、大きい接触角を呈するのが好ましい。   In the first invention of the present application, the bottom surface exhibits a larger contact angle with respect to a substance forming a portion in contact with the bottom surface of the reflecting portion than a portion in which the reflecting portion does not have the reflecting portion. Is preferred.

ミラー溝は、斜め蒸着法等により表面処理が施される。底面は、濡れ性の異なる領域に分けられ、底面の第一の側面側を硬化性樹脂に対してより大きい接触角を呈する大接触角領域と、第二の側面側をより小さい接触角を呈する小接触角領域とに分けられる。第三の側面も硬化性樹脂に対してより大きい接触角を呈する大接触角領域とより小さい接触角を呈する小接触角領域とに分けられる。ミラー溝に流し込まれた硬化性樹脂は、底面のより小さい接触角を呈する小接触角領域を選択して流れ、第三の側面に突き当たる。硬化性樹脂は第三の側面上の小接触角領域をせり上がる。硬化性樹脂は、底面及び第三の側面上の小接触角領域と大接触角領域の境界でせき止められる。従って、底面の小接触角領域と第二の側面とのコーナーに斜面を有する反射部を精度よく形成することができる。   The mirror groove is subjected to surface treatment by an oblique vapor deposition method or the like. The bottom surface is divided into regions having different wettability, the first side surface side of the bottom surface exhibits a larger contact angle with the curable resin, and the second side surface exhibits a smaller contact angle. Divided into small contact angle regions. The third side surface is also divided into a large contact angle region that exhibits a larger contact angle with respect to the curable resin and a small contact angle region that exhibits a smaller contact angle. The curable resin poured into the mirror groove flows by selecting a small contact angle region exhibiting a smaller contact angle on the bottom surface and hits the third side surface. The curable resin rises a small contact angle region on the third side. The curable resin is dammed at the boundary between the small contact angle region and the large contact angle region on the bottom surface and the third side surface. Therefore, it is possible to accurately form a reflection portion having a slope at the corner between the small contact angle region on the bottom surface and the second side surface.

本願第1の発明において、前記第三の側面と前記第二の側面との成す内角から90°をひいた角度をθ°とし、前記反射部が前記底面と成す傾斜角をφ°とし、前記底面における前記反射部を有しない部分の接触角をΓ°としたとき、前記θが下式(1)を満足することが好ましい。
θ≧sin−1(cosΓ/sinφ)(1)
このとき底面における反射部を有しない部分とは、底面の大接触角領域と略一致するため、接触角のΓとは底面の大接触角領域の接触角を示す。
In the first invention of the present application, an angle formed by 90 ° from an inner angle formed by the third side surface and the second side surface is defined as θ °, an inclination angle formed by the reflecting portion with the bottom surface is defined as φ °, When the contact angle of the portion having no reflection portion on the bottom surface is Γ °, it is preferable that the θ satisfies the following formula (1).
θ ≧ sin −1 (cos Γ / sin φ) (1)
At this time, the portion having no reflecting portion on the bottom surface substantially coincides with the large contact angle region on the bottom surface, and thus the contact angle Γ indicates the contact angle in the large contact angle region on the bottom surface.

第三の側面が90°より大きく180°より小さい内角で前記第二の側面と交わることで、硬化性樹脂が表面張力により、第三の側面上で接触角が異なる境界を越えてせり上がるのを防止することができる。より厳密には、第三の側面と反射部の斜面との成す角度が底面の大接触角領域の接触角より小さいことが好ましい。すなわち上式(1)を満足すればよい。上式(1)を満足するように、第三の側面を第二の側面に対して配置することで、硬化性樹脂が第三の側面上において大接触角領域と小接触角領域との境界を越えてせり上がるのを防止することができる。   When the third side surface intersects with the second side surface at an internal angle greater than 90 ° and smaller than 180 °, the curable resin rises over the boundary where the contact angle differs on the third side surface due to surface tension. Can be prevented. More precisely, it is preferable that the angle formed between the third side surface and the inclined surface of the reflecting portion is smaller than the contact angle in the large contact angle region of the bottom surface. That is, the above equation (1) may be satisfied. By disposing the third side surface with respect to the second side surface so as to satisfy the above formula (1), the curable resin has a boundary between the large contact angle region and the small contact angle region on the third side surface. Can be prevented from climbing over.

具体的には、本願第2の発明は、平坦な基板上に形成されたクラッドと、前記クラッドに囲まれ光を導波するコアと、前記コアを遮るように形成され底面が前記コアより深いミラー溝と、を備える光導波回路であって、前記ミラー溝は、前記コアの露出する第一の側面が前記コアの光軸に略直交し、第二の側面が前記第一の側面に略平行に対向し、第三の側面が90°以上で180°より小さい内角で前記第二の側面と交わり、第四の側面が180°より小さい外角で第三の側面と交わり、前記底面が前記第二の側面とのコーナーに液状の硬化性樹脂を流し込み硬化させることにより前記コーナーに形成された、前記コアからの光を前記底面と反対側に反射する反射部を有し、前記第四の側面と前記第三の側面との成す交線が前記反射部の反射面と前記第三の側面との成す交線より第一の側面側にある光導波回路である。

Specifically, in the second invention of the present application, a clad formed on a flat substrate, a core for guiding light surrounded by the clad, and a bottom surface deeper than the core formed so as to block the core. An optical waveguide circuit comprising: a mirror groove, wherein the first side surface of the core that is exposed is substantially perpendicular to the optical axis of the core, and the second side surface is substantially parallel to the first side surface. Opposing in parallel, the third side surface intersects the second side surface at an inner angle of 90 ° or more and smaller than 180 °, the fourth side surface intersects the third side surface at an outer angle smaller than 180 °, and the bottom surface A reflection part formed on the corner by pouring and curing a liquid curable resin into the corner with the second side surface and reflecting the light from the core to the side opposite to the bottom surface; The line of intersection between the side surface and the third side surface is the reflection of the reflecting portion. An optical waveguide circuit in a first side surface side than the intersection line formed between the third side surface and.

反射部は、硬化性樹脂により形成されるのが好ましい。液状の硬化性樹脂をミラー溝の所定の位置に流し込み硬化させることにより形成することができる。反射部は、ミラー溝の底面と第二の側面とのコーナーに斜面を有し、底面、第二の側面及び第三の側面と接する。また、第四の側面は、180°より小さい外角で第三の側面と交わるように配置される。第四の側面と第三の側面との成す交線が反射部の反射面と第三の側面との成す交線より僅かに第一の側面側にある。このため、ミラー溝に流し込まれる硬化性樹脂は、ミラー溝の底面の表面不整等により流れが乱されても、第四の側面と第三の側面とのコーナーでせき止められるため、ミラー溝が硬化性樹脂で埋められるのを防止することができる。また、底面の表面不整等の影響を抑えられるため、表面が平坦な反射部を形成することができる。従って、反射角度の制御性が高く、製造歩留りの良い光導波回路を提供することができる。   The reflection part is preferably formed of a curable resin. It can be formed by pouring a liquid curable resin into a predetermined position of the mirror groove and curing. The reflecting portion has a slope at a corner between the bottom surface of the mirror groove and the second side surface, and is in contact with the bottom surface, the second side surface, and the third side surface. Further, the fourth side surface is arranged so as to intersect the third side surface at an outer angle smaller than 180 °. The intersection line formed between the fourth side surface and the third side surface is slightly closer to the first side surface than the intersection line formed between the reflection surface of the reflection portion and the third side surface. For this reason, since the curable resin poured into the mirror groove is clogged at the corners of the fourth side surface and the third side surface even if the flow is disturbed due to surface irregularities on the bottom surface of the mirror groove, the mirror groove is cured. Can be prevented from being filled with the conductive resin. Further, since the influence of surface irregularities on the bottom surface can be suppressed, a reflective portion having a flat surface can be formed. Therefore, it is possible to provide an optical waveguide circuit with high controllability of the reflection angle and good manufacturing yield.

本願第2の発明において、前記底面は、前記反射部を有しない部分が前記反射部を有する部分に比べ、前記反射部の前記底面と接する部分を形成する物質に対して、大きい接触角を呈することが好ましい。   In the second invention of the present application, the bottom surface exhibits a larger contact angle with respect to a substance that forms a portion in contact with the bottom surface of the reflecting portion than a portion in which the reflecting portion does not have the reflecting portion. It is preferable.

ミラー溝は、第一の発明と同様、斜め蒸着法等による表面処理が施される。底面は、濡れ性の異なる領域に分けられ、底面の第一の側面側を硬化性樹脂に対してより大きい接触角を呈する大接触角領域と、より小さい接触角を呈する小接触角領域とに分けられる。第三の側面も硬化性樹脂に対して大きい接触角を呈する大接触角領域と小さい接触角を呈する小接触角領域とに分けられる。第四の側面は小さい接触角を呈する。ミラー溝に流し込まれた硬化性樹脂は、底面のより小さい接触角を呈する小接触角領域を選択して流れ、第三の側面に突き当たる。硬化性樹脂は第三の側面上の小接触角領域をせり上がる。硬化性樹脂は、底面の大接触角領域と小接触角領域との境界でせき止められる。さらに、ミラー溝の底面の表面不整等により流れが乱れても、第四の側面と第三の側面とのコーナーで表面張力によりせき止められ、底面の大接触角領域に流れ込まない。従って、底面の小接触角領域と第二の側面とのコーナーに斜面を有する反射部を形成することができる。   Similar to the first invention, the mirror groove is subjected to a surface treatment by an oblique vapor deposition method or the like. The bottom surface is divided into regions having different wettability, and the first side surface side of the bottom surface is divided into a large contact angle region that exhibits a larger contact angle with the curable resin and a small contact angle region that exhibits a smaller contact angle. Divided. The third side surface is also divided into a large contact angle region exhibiting a large contact angle with respect to the curable resin and a small contact angle region exhibiting a small contact angle. The fourth side exhibits a small contact angle. The curable resin poured into the mirror groove flows by selecting a small contact angle region exhibiting a smaller contact angle on the bottom surface and hits the third side surface. The curable resin rises a small contact angle region on the third side. The curable resin is dammed at the boundary between the large contact angle region and the small contact angle region on the bottom surface. Furthermore, even if the flow is disturbed due to surface irregularities or the like on the bottom surface of the mirror groove, it is blocked by the surface tension at the corners of the fourth side surface and the third side surface and does not flow into the large contact angle region on the bottom surface. Therefore, it is possible to form a reflection portion having a slope at the corner between the small contact angle region on the bottom surface and the second side surface.

本願第2の発明において、前記第三の側面と前記第四の側面との成す外角をσ°とし、前記底面における前記反射部を有する部分の接触角をγ°としたとき、前記σが下式(2)を満足する事が好ましい。
σ≦γ+90 (2)
このとき底面における反射部を有する部分と、底面における小接触角領域とは略一致するため、接触角γとは底面の小接触角領域の接触角を示す。
In the second invention of the present application, when the outer angle formed by the third side surface and the fourth side surface is σ ° and the contact angle of the portion having the reflecting portion on the bottom surface is γ °, the σ is lower. It is preferable to satisfy Formula (2).
σ ≦ γ + 90 (2)
At this time, since the portion having the reflection portion on the bottom surface and the small contact angle region on the bottom surface substantially coincide, the contact angle γ indicates the contact angle of the small contact angle region on the bottom surface.

第四の側面は、180°より小さい外角で第三の側面と交わる。第四の側面と第三の側面との成す交線が反射部の反射面と第三の側面との成す交線より僅かに第一の側面側にある。このため、底面の表面不整等があったとしても、硬化性樹脂は第四の側面と第三の側面とのコーナーで表面張力によりせき止められ、大接触角領域に流れ込まず、ミラー溝が硬化性樹脂で埋められるのを防止することができる。また、底面の表面不整等の影響を抑えることで、表面が平坦な反射部を形成することができる。より厳密には、第三の側面と第四の側面との成す外角をσ°とし、底面における小接触角領域の接触角をγ°としたとき、前記σが上式(2)を満足する事が好ましい。上式(2)を満足するように第三の側面と第四の側面とを配置することで、底面に表面不整等があり硬化性樹脂の流れが多少乱れたとしても、硬化性樹脂を第四の側面と第三の側面とのコーナーで自らの表面張力によりせき止めることができる。   The fourth side intersects the third side with an outer angle less than 180 °. The intersection line formed between the fourth side surface and the third side surface is slightly closer to the first side surface than the intersection line formed between the reflection surface of the reflection portion and the third side surface. For this reason, even if there is surface irregularity on the bottom surface, the curable resin is blocked by the surface tension at the corners of the fourth side surface and the third side surface, does not flow into the large contact angle region, and the mirror groove is hardened Filling with resin can be prevented. Further, by suppressing the influence of surface irregularities on the bottom surface, a reflective portion having a flat surface can be formed. More precisely, when the outer angle formed by the third side surface and the fourth side surface is σ ° and the contact angle of the small contact angle region on the bottom surface is γ °, the σ satisfies the above equation (2). Things are preferable. By arranging the third side surface and the fourth side surface so as to satisfy the above formula (2), even if the surface of the bottom surface is irregular and the flow of the curable resin is somewhat disturbed, the curable resin is It can be stopped by its own surface tension at the corners of the fourth and third sides.

なお、前述したこれらの発明は可能な限り組み合わせることができる。   These inventions described above can be combined as much as possible.

本発明により、反射角度の制御性が高く、製造歩留りの良い光導波回路を提供することができる。   According to the present invention, it is possible to provide an optical waveguide circuit with high controllability of the reflection angle and good manufacturing yield.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment.

(実施の形態1)
本願第1の実施形態は、平坦な基板上に形成されたクラッドと、前記クラッドに囲まれ光を導波するコアと、前記コアを遮るように形成され底面が前記コアより深いミラー溝と、を備える光導波回路であって、前記ミラー溝は、前記コアの露出する第一の側面が前記コアの光軸に略直交し、第二の側面が前記第一の側面に略平行に対向し、第三の側面が90°より大きく180°より小さい内角で前記第二の側面と交わり、前記底面が前記第二の側面とのコーナーにコアからの光を前記底面と反対側に反射する反射部を有する光導波回路である。
(Embodiment 1)
The first embodiment of the present application includes a clad formed on a flat substrate, a core that guides light surrounded by the clad, a mirror groove that is formed so as to block the core and has a bottom surface deeper than the core, The mirror groove has a first side surface exposed by the core substantially perpendicular to the optical axis of the core, and a second side surface substantially parallel to the first side surface. The third side surface intersects with the second side surface at an inner angle larger than 90 ° and smaller than 180 °, and the bottom surface reflects light from the core to the opposite side to the bottom surface at the corner with the second side surface. This is an optical waveguide circuit having a portion.

第1の実施形態に係る光導波回路について図1及び図2を用いて説明する。図1は、第1及び第2の実施形態に係る光導波回路の上面図である。図2は、第1の実施形態に係る光導波回路であって、図1のA−A’面における断面図である。図1及び図2に示す光導波回路91は、平坦な基板10上に形成されたクラッド11と、クラッド11に囲まれ光を導波するコア12と、コア12を遮るように形成され底面24がコア12より深いミラー溝20と、を備える光導波回路91であって、ミラー溝20は、コア12の露出する第一の側面25がコア12の光軸101に略直交し、第二の側面26が第一の側面25に略平行に対向し、第三の側面27が90°より大きく180°より小さい内角で第二の側面26と交わり、底面24が前記第二の側面26とのコーナーにコア12からの光を底面24と反対側に反射する反射部21を有する。   The optical waveguide circuit according to the first embodiment will be described with reference to FIGS. FIG. 1 is a top view of the optical waveguide circuit according to the first and second embodiments. FIG. 2 is an optical waveguide circuit according to the first embodiment, and is a cross-sectional view taken along the plane A-A ′ of FIG. 1. An optical waveguide circuit 91 shown in FIGS. 1 and 2 includes a clad 11 formed on a flat substrate 10, a core 12 surrounded by the clad 11 to guide light, and a bottom surface 24 formed so as to block the core 12. Is an optical waveguide circuit 91 including a mirror groove 20 deeper than the core 12, and the mirror groove 20 has a first side surface 25 where the core 12 is exposed substantially orthogonal to the optical axis 101 of the core 12, The side surface 26 faces the first side surface 25 substantially in parallel, the third side surface 27 intersects the second side surface 26 at an inner angle greater than 90 ° and smaller than 180 °, and the bottom surface 24 is in contact with the second side surface 26. A reflection portion 21 that reflects light from the core 12 to the opposite side of the bottom surface 24 is provided at the corner.

光導波回路91としては、クラッド11及びコア12がSiOを主成分とする石英ガラス系光導波回路を用いるのが好ましいがこれに限らない。石英ガラス系光導波回路は、光損失が少なく高性能である。例えば、クラッド11及びコア12がフッ素化ポリイミド等を材料とするポリマ光導波回路でもよい。製造工程を簡素化でき低コスト化することができる。光導波回路91は、埋め込み型光導波回路が好ましい。スラブ型光導波回路でもよい。また、光導波回路91は、シングルモードでもマルチモードでもよい。 As the optical waveguide circuit 91, it is preferable to use a silica glass optical waveguide circuit in which the cladding 11 and the core 12 are mainly composed of SiO 2 , but it is not limited thereto. The quartz glass-based optical waveguide circuit has high performance with little optical loss. For example, the clad 11 and the core 12 may be a polymer optical waveguide circuit made of fluorinated polyimide or the like. The manufacturing process can be simplified and the cost can be reduced. The optical waveguide circuit 91 is preferably an embedded optical waveguide circuit. A slab type optical waveguide circuit may be used. The optical waveguide circuit 91 may be single mode or multimode.

基板10は、平坦な板状に形成される。シリコン基板を用いるのが好ましい。石英基板、ポリイミド基板等を用いてもよい。クラッド11及びコア12は火炎堆積法により形成されるのが好ましい。CVD(Chemical Vapor Deposition)法等により形成されてもよい。   The substrate 10 is formed in a flat plate shape. It is preferable to use a silicon substrate. A quartz substrate, a polyimide substrate, or the like may be used. The clad 11 and the core 12 are preferably formed by a flame deposition method. It may be formed by a CVD (Chemical Vapor Deposition) method or the like.

ミラー溝20は、コア12により導波される光の進行方向を遮るように形成される。ミラー溝20は、コア12に略直交し、底面24はコア12より深い。深さは、基板10にまで達していてもよい。ミラー溝20は、ドライエッチング法により形成されるのが好ましい。精密に形成することができる。ウェットエッチング法、サンドブラスト法、マイクロブラスト法等を用いてもよい。ミラー溝20は、底面24、第一の側面25、第二の側面26、第三の側面27及び反射部21を含む。第一の側面25は、コア12の光軸101に略直交し、コア12を露出する面である。コア12は、第一の側面25上で略直交に切断される。第一の側面25上で、コア12により導波された光はコア12の光軸101方向に出射する。第二の側面26は、第一の側面25に略平行に対向する面である。第三の側面27は、第二の側面26に対し90°より大きく180°より小さい内角で交わる。反射部21は、第二の側面26と底面24とのコーナー斜面を有する。   The mirror groove 20 is formed so as to block the traveling direction of light guided by the core 12. The mirror groove 20 is substantially orthogonal to the core 12, and the bottom surface 24 is deeper than the core 12. The depth may reach the substrate 10. The mirror groove 20 is preferably formed by a dry etching method. It can be formed precisely. A wet etching method, a sand blast method, a micro blast method, or the like may be used. The mirror groove 20 includes a bottom surface 24, a first side surface 25, a second side surface 26, a third side surface 27, and a reflecting portion 21. The first side surface 25 is a surface that is substantially orthogonal to the optical axis 101 of the core 12 and exposes the core 12. The core 12 is cut substantially orthogonally on the first side surface 25. On the first side surface 25, the light guided by the core 12 is emitted in the direction of the optical axis 101 of the core 12. The second side surface 26 is a surface facing the first side surface 25 substantially in parallel. The third side surface 27 intersects the second side surface 26 at an interior angle greater than 90 ° and less than 180 °. The reflecting portion 21 has a corner slope between the second side surface 26 and the bottom surface 24.

ミラー溝20は、光導波回路91に含まれるコア12を切断し、第一の側面25上で露出するコア12の切断面から導波光を取り出し、取り出した導波光を反射部21で反射させ、外部に出力するためのものである。外部からの光を反射部21で反射させコア12へ入力することも可能である。   The mirror groove 20 cuts the core 12 included in the optical waveguide circuit 91, takes out the guided light from the cut surface of the core 12 exposed on the first side surface 25, reflects the extracted guided light at the reflecting portion 21, It is for output to the outside. Light from the outside can also be reflected by the reflecting portion 21 and input to the core 12.

底面24は第二の側面26とのコーナーに反射部21を有する。反射部21は、底面24と第二の側面26とのコーナーに斜面を有し、コア12からの光を底面24と反対側に反射させ、導波路の外部に出力させるための部位である。反対に、外部からの光をコア12の光軸101方向に反射させ、コア12に入力させるためにも用いられる。反射部21は、硬化性樹脂により形成されるのが好ましい。硬化性樹脂としては、光硬化性樹脂、熱硬化性樹脂等を用いることができる。光硬化性樹脂としては、紫外線硬化性樹脂、可視光硬化性樹脂等があり、一般に硬化速度が速く、接着性に優れる。熱硬化性樹脂としては、エポキシ樹脂を用いるのが好ましい。耐熱性、耐湿性、接着性に優れ、表面の硬化性が高い。例えば、フェノール樹脂、不飽和ポリエステル樹脂等を用いてもよい。   The bottom surface 24 has a reflecting portion 21 at a corner with the second side surface 26. The reflecting portion 21 has a slope at the corner between the bottom surface 24 and the second side surface 26, and is a portion for reflecting the light from the core 12 to the opposite side to the bottom surface 24 and outputting it to the outside of the waveguide. On the contrary, it is also used to reflect light from the outside in the direction of the optical axis 101 of the core 12 and input it to the core 12. The reflecting portion 21 is preferably formed of a curable resin. As the curable resin, a photocurable resin, a thermosetting resin, or the like can be used. Examples of the photocurable resin include an ultraviolet curable resin, a visible light curable resin, and the like, and generally have a high curing speed and excellent adhesiveness. An epoxy resin is preferably used as the thermosetting resin. Excellent heat resistance, moisture resistance and adhesion, and high surface curability. For example, a phenol resin or an unsaturated polyester resin may be used.

図1に示すように、ミラー溝20は上面から見るとL字状に形成され、樹脂供給溝30と連通していることが好ましい。樹脂供給溝30に硬化性樹脂を注入することで、ミラー溝20へ流し込まれる硬化性樹脂の流量及び流速の微調整をすることができる。樹脂供給溝30は、光導波回路91に含まれる別のミラー溝と連通していてもよい。樹脂供給溝30を通じ、底面24と第二の側面26とのコーナーに流し込まれた液状の硬化性樹脂が表面張力の効果により前記コーナーをつたい進み、前記コーナーで硬化することにより、反射部21が形成される。反射部21は、底面24と第二の側面26とのコーナーに斜面を有し、底面24、第二の側面26、第三の側面27と接する。   As shown in FIG. 1, the mirror groove 20 is preferably formed in an L shape when viewed from above, and communicates with the resin supply groove 30. By injecting the curable resin into the resin supply groove 30, it is possible to finely adjust the flow rate and flow rate of the curable resin poured into the mirror groove 20. The resin supply groove 30 may communicate with another mirror groove included in the optical waveguide circuit 91. The liquid curable resin poured into the corners of the bottom surface 24 and the second side surface 26 through the resin supply groove 30 advances through the corners due to the effect of surface tension, and cures at the corners, thereby reflecting the reflecting portion 21. Is formed. The reflecting portion 21 has a slope at the corner between the bottom surface 24 and the second side surface 26, and contacts the bottom surface 24, the second side surface 26, and the third side surface 27.

第三の側面27は、底面24に対し略直角に交わっていることが好ましい。形成が容易である。硬化性樹脂の表面張力の大きさにより、角度を変えてもよい。また、第三の側面27は、第二の側面26に対し90°より大きく180°より小さい内角で交わる。第三の側面27は、ミラー溝20に流し込まれた硬化性樹脂の流れをせき止める。ミラー溝20の底面24と第二の側面26とのコーナーに硬化性樹脂を適量流し込めば、硬化性樹脂は、底面24、第二の側面26、第三の側面27との表面張力により、底面24と第二の側面26とのコーナーにとどまる。従って、ミラー溝20を埋めることなく底面24と第二の側面26とのコーナーに斜面を有する反射部21を形成することができる。   The third side surface 27 preferably intersects the bottom surface 24 at a substantially right angle. Easy to form. The angle may be changed depending on the surface tension of the curable resin. Further, the third side surface 27 intersects the second side surface 26 at an inner angle greater than 90 ° and smaller than 180 °. The third side surface 27 stops the flow of the curable resin poured into the mirror groove 20. If an appropriate amount of curable resin is poured into the corners of the bottom surface 24 and the second side surface 26 of the mirror groove 20, the curable resin is caused by the surface tension of the bottom surface 24, the second side surface 26, and the third side surface 27. It remains at the corner between the bottom surface 24 and the second side surface 26. Therefore, it is possible to form the reflecting portion 21 having an inclined surface at the corner between the bottom surface 24 and the second side surface 26 without filling the mirror groove 20.

ミラー溝20に流し込まれる硬化性樹脂が、表面張力によって、底面24と第二の側面26とのコーナーをつたい進み、第三の側面27に突き当たる。第三の側面27は、第二の側面26に対し90°より大きく180°より小さい内角で交わるため、第三の側面27上で形成予定の反射部21の傾斜角を越えてせり上がることを防止することができる。従って、第三の側面27上で余分なせり上がり部分がない平坦な斜面を有する反射部21を形成することができる。また、ミラー溝20が硬化性樹脂で埋められるのを防止することができるため、製造歩留りを良くすることができる。すなわち、反射角度の制御性が高く、製造歩留りの良い光導波回路を提供することができる。   The curable resin poured into the mirror groove 20 advances through the corners of the bottom surface 24 and the second side surface 26 by the surface tension and hits the third side surface 27. Since the third side surface 27 intersects with the second side surface 26 at an inner angle greater than 90 ° and smaller than 180 °, the third side surface 27 rises beyond the inclination angle of the reflecting portion 21 to be formed on the third side surface 27. Can be prevented. Therefore, it is possible to form the reflecting portion 21 having a flat slope with no excessive rising portion on the third side surface 27. In addition, since the mirror groove 20 can be prevented from being filled with the curable resin, the manufacturing yield can be improved. That is, it is possible to provide an optical waveguide circuit with high controllability of the reflection angle and good manufacturing yield.

(実施の形態2)
本願第2の実施形態は、本願第1の実施形態において、底面の反射部を有しない部分が反射部を有する部分に比べ、反射部の底面と接する部分を形成する物質に対して、大きい接触角を呈することを特徴とする光導波回路である。
(Embodiment 2)
In the second embodiment of the present application, in the first embodiment of the present application, the portion that does not have the reflecting portion on the bottom surface has a larger contact with the substance that forms the portion that contacts the bottom surface of the reflecting portion than the portion that has the reflecting portion. An optical waveguide circuit characterized by exhibiting a corner.

第2の実施形態に係る光導波回路について図1及び図4を用いて説明する。図1は、第1及び第2の実施形態に係る光導波回路91の上面図である。図4は、第2及び第3の実施形態に係る光導波回路92であって、図1のA−A’面における断面図である。ここで、図1の光導波回路91のA−A’面における断面図は、第1の実施形態に係る図2の光導波回路91及び第2の実施形態にかかる図4の光導波回路92で示される。第2の実施形態は、図1の光導波回路91及び図4の光導波回路92で示されるが、二つは同一のものであるので、光導波回路92を代表して用いる。図1及び図2に示される光導波回路92は、平坦な基板10上に形成されたクラッド11と、クラッド11に囲まれ光を導波するコア12と、コア12を遮るように形成され底面24がコア12より深いミラー溝20と、を備える光導波回路であって、ミラー溝20は、コア12の露出する第一の側面25がコア12の光軸101に略直交し、第二の側面26が第一の側面25に略平行に対向し、第三の側面27が90°より大きく180°より小さい内角で第二の側面26と交わり、底面24が前記第二の側面26とのコーナーにコア12からの光を底面24と反対側に反射する反射部21を有し、また、底面24において、反射部21を有しない部分が反射部21を有する部分に比べ、反射部21の底面24と接する部分を形成する物質に対して、大きい接触角を呈する。   An optical waveguide circuit according to the second embodiment will be described with reference to FIGS. FIG. 1 is a top view of the optical waveguide circuit 91 according to the first and second embodiments. FIG. 4 is an optical waveguide circuit 92 according to the second and third embodiments, and is a cross-sectional view taken along the plane A-A ′ of FIG. 1. Here, the cross-sectional view taken along the plane AA ′ of the optical waveguide circuit 91 of FIG. 1 is the optical waveguide circuit 91 of FIG. 2 according to the first embodiment and the optical waveguide circuit 92 of FIG. 4 according to the second embodiment. Indicated by The second embodiment is shown by the optical waveguide circuit 91 in FIG. 1 and the optical waveguide circuit 92 in FIG. 4, but since the two are the same, the optical waveguide circuit 92 is used as a representative. An optical waveguide circuit 92 shown in FIGS. 1 and 2 includes a clad 11 formed on a flat substrate 10, a core 12 surrounded by the clad 11 to guide light, and a bottom surface formed so as to block the core 12. 24 is an optical waveguide circuit including a mirror groove 20 deeper than the core 12, and the mirror groove 20 has a first side surface 25 where the core 12 is exposed substantially orthogonal to the optical axis 101 of the core 12, The side surface 26 faces the first side surface 25 substantially in parallel, the third side surface 27 intersects the second side surface 26 at an inner angle greater than 90 ° and smaller than 180 °, and the bottom surface 24 is in contact with the second side surface 26. The corner 21 has a reflection portion 21 that reflects light from the core 12 to the side opposite to the bottom surface 24, and a portion of the bottom surface 24 that does not have the reflection portion 21 is compared with a portion having the reflection portion 21. The substance that forms the part in contact with the bottom surface 24 On the other hand, a large contact angle is exhibited.

第1の実施形態と同様、反射部21の底面24と接する部分を形成する物質としては、硬化性樹脂が好ましい。   As in the first embodiment, a curable resin is preferable as the substance that forms the portion in contact with the bottom surface 24 of the reflecting portion 21.

接触角とは、固体の表面が液体及びその蒸気を含んだ気体(通常は空気)と接触しているとき、この3相の接触する境界線において液体面が固体面となす角を、液体側で表した角である。接触角が大きいと液滴は球に近く、接触角が小さいと液滴は平面に近い。接触角が大きいとは濡れ性が良いと同義であり、接触角が小さいとは濡れ性が悪いと同義である。   The contact angle is the angle between the liquid surface and the solid surface at the boundary line where these three phases contact when the surface of the solid is in contact with the gas containing the liquid and its vapor (usually air). It is a corner represented by. When the contact angle is large, the droplet is close to a sphere, and when the contact angle is small, the droplet is close to a plane. A large contact angle is synonymous with good wettability, and a small contact angle is synonymous with poor wettability.

図4に示すように、底面24において、反射部21を形成する予定の領域である第二の側面26側を小接触角領域23とし、底面24のそれ以外の部分を大接触角領域22とする。大接触角領域22が小接触角領域23に比べ大きい接触角を呈するように表面処理を施す。   As shown in FIG. 4, on the bottom surface 24, the second side surface 26 side, which is a region where the reflecting portion 21 is to be formed, is a small contact angle region 23, and the other part of the bottom surface 24 is a large contact angle region 22. To do. Surface treatment is performed so that the large contact angle region 22 exhibits a larger contact angle than the small contact angle region 23.

ここで、ミラー溝20を接触角の異なる領域に分けるための表面処理の方法について説明する。但し、下記の方法に限定されるものではない。まず、ミラー溝20の斜め上方からTiを0.1μm程度の厚さに斜め蒸着させる。このとき、Tiが蒸着していない、すなわち蒸着方向に対して、影になっている部分が、反射部21を形成する予定の領域と略一致するようにする。反射部21は第二の側面26と底面24とのコーナーに形成する予定であるので、第二の側面26が影になるように蒸着を行う。次に、光導波回路92を回転させながら、影ができないようにミラー溝20を含む光導波回路92の全面にCrを0.1μm程度の厚さに蒸着する。次に、光導波回路92の全面を希フッ酸に浸漬させ、TiでCrをリフトオフし除去する。この過程により、前の過程でTiの蒸着方向に対して影となっていた部分にCrが残留する。次に、光導波回路92の全面に表面処理膜を形成する。表面処理膜としては、フッ素系撥水処理剤を用いることができるがこれに限らない。表面処理膜は硬化性樹脂に対して大きい接触角を呈し、硬化性樹脂に対する接触角は45°以上であることが好ましい。最後に、光導波回路92の全面をCrエッチング液に浸漬させ、Crで表面処理膜をリフトオフし除去する。この過程により、ミラー溝20で反射部21を形成する予定の領域は表面処理膜がリフトオフされ除去され、それ以外の領域の表面処理膜は残留する。表面処理膜が除去された領域は表面処理膜が残留している領域と比べ、硬化性樹脂に対して小さい接触角を呈する。   Here, a surface treatment method for dividing the mirror groove 20 into regions having different contact angles will be described. However, it is not limited to the following method. First, Ti is deposited obliquely from the upper side of the mirror groove 20 to a thickness of about 0.1 μm. At this time, Ti is not vapor-deposited, that is, the shaded portion with respect to the vapor deposition direction is made to substantially coincide with the region where the reflecting portion 21 is to be formed. Since the reflection part 21 is scheduled to be formed at the corner of the second side face 26 and the bottom face 24, the vapor deposition is performed so that the second side face 26 becomes a shadow. Next, while rotating the optical waveguide circuit 92, Cr is deposited to a thickness of about 0.1 μm on the entire surface of the optical waveguide circuit 92 including the mirror groove 20 so as not to shadow. Next, the entire surface of the optical waveguide circuit 92 is immersed in dilute hydrofluoric acid, and Cr is lifted off with Ti to be removed. As a result of this process, Cr remains in the shadowed part of the Ti deposition direction in the previous process. Next, a surface treatment film is formed on the entire surface of the optical waveguide circuit 92. As the surface treatment film, a fluorine-based water repellent treatment agent can be used, but is not limited thereto. The surface treatment film exhibits a large contact angle with respect to the curable resin, and the contact angle with respect to the curable resin is preferably 45 ° or more. Finally, the entire surface of the optical waveguide circuit 92 is immersed in a Cr etching solution, and the surface treatment film is lifted off with Cr and removed. As a result of this process, the surface treatment film is lifted off and removed from the region where the reflection portion 21 is to be formed in the mirror groove 20, and the surface treatment film in other regions remains. The area where the surface treatment film is removed exhibits a smaller contact angle with respect to the curable resin than the area where the surface treatment film remains.

このように、上記方法により、ミラー溝20を接触角の異なる領域に分けることができる。底面24は、第一の側面25側に表面処理膜が残留し、より大きい接触角を呈する大接触角領域22と、第二の側面26側に表面処理膜が除去されより小さい接触角を呈する小接触角領域23とに分けられる。大接触角領域22と小接触角領域23との境界は、前記斜め蒸着により第二の側面26の影となった部分と蒸着された部分との境界であるため、第一の側面25及び第二の側面26に略平行になる。第三の側面27も、より大きい接触角を呈する大接触角領域とより小さい接触角を呈する小接触角領域とに分けられる。底面24及び第三の側面27において、小接触角領域が反射部21の形成予定の部分と略一致する。   Thus, the mirror groove 20 can be divided into regions having different contact angles by the above method. The bottom surface 24 has a large contact angle region 22 where the surface treatment film remains on the first side surface 25 side and exhibits a larger contact angle, and a smaller contact angle when the surface treatment film is removed on the second side surface 26 side. It is divided into a small contact angle region 23. Since the boundary between the large contact angle region 22 and the small contact angle region 23 is a boundary between the shadowed portion of the second side surface 26 by the oblique deposition and the deposited portion, It becomes substantially parallel to the second side surface 26. The third side surface 27 is also divided into a large contact angle region that exhibits a larger contact angle and a small contact angle region that exhibits a smaller contact angle. On the bottom surface 24 and the third side surface 27, the small contact angle region substantially coincides with the portion where the reflecting portion 21 is to be formed.

樹脂供給溝30を通じミラー溝20に流し込まれた硬化性樹脂は、底面24のより小さい接触角を呈する小接触角領域23を選択して流れ、第三の側面27に突き当たる。硬化性樹脂は第三の側面27上の小接触角領域をせり上がる。第三の側面27が第二の側面26に対し90°より大きく180°より小さい内角で交わるため、硬化性樹脂が、第三の側面27上で接触角が異なる領域の境界を越えてせり上がることを防止することができる。また、硬化性樹脂は、小接触角領域と大接触角領域の境界でせき止められるため、液圧と大気圧がつり合うまで、すなわち反射部21の斜面がより平坦になるまで樹脂を供給することができる。すなわち、小接触角領域23と第二の側面26とのコーナーに第1の実施形態に比べより平坦な斜面を有する反射部21を形成することができる。   The curable resin poured into the mirror groove 20 through the resin supply groove 30 flows by selecting the small contact angle region 23 exhibiting a smaller contact angle on the bottom surface 24 and hits the third side surface 27. The curable resin rises a small contact angle region on the third side surface 27. Since the third side surface 27 intersects with the second side surface 26 at an inner angle greater than 90 ° and smaller than 180 °, the curable resin rises over the boundary between the regions having different contact angles on the third side surface 27. This can be prevented. Further, since the curable resin is dammed at the boundary between the small contact angle region and the large contact angle region, the resin can be supplied until the hydraulic pressure and the atmospheric pressure are balanced, that is, until the inclined surface of the reflecting portion 21 becomes flatter. it can. That is, it is possible to form the reflecting portion 21 having a flat slope at the corner between the small contact angle region 23 and the second side surface 26 as compared with the first embodiment.

従って、第三の側面27上で余分なせり上がり部分がなく、且つ第1の実施形態と比べより平坦な斜面を有する反射部21を形成することができる。また、硬化性樹脂が第三の側面27上で余分にせり上がるのを防止することができるため、ミラー溝20が硬化性樹脂で埋まることも防止できる。   Therefore, it is possible to form the reflective portion 21 that has no excessive rising portion on the third side surface 27 and has a flat slope as compared with the first embodiment. Further, since it is possible to prevent the curable resin from rising excessively on the third side surface 27, it is possible to prevent the mirror groove 20 from being filled with the curable resin.

さらに、第2の実施形態において、第三の側面27と第二の側面26との成す内角から90°をひいた角度をθ°とし、反射部21が底面24と成す傾斜角をφ°とし、底面24における反射部21を有しない部分の接触角をΓ°としたとき、前記θが下式(1)を満足することが好ましい。
θ≧sin−1(cosΓ/sinφ)(1)
このとき底面24における反射部21を有しない部分の接触角Γ°とは、底面24の大接触角領域22の接触角とする。
Furthermore, in the second embodiment, the angle formed by 90 ° from the inner angle formed by the third side surface 27 and the second side surface 26 is θ °, and the inclination angle formed by the reflecting portion 21 and the bottom surface 24 is φ °. When the contact angle of the portion of the bottom surface 24 that does not have the reflecting portion 21 is Γ °, it is preferable that the θ satisfies the following formula (1).
θ ≧ sin −1 (cos Γ / sin φ) (1)
At this time, the contact angle Γ ° of the portion of the bottom surface 24 that does not have the reflecting portion 21 is the contact angle of the large contact angle region 22 of the bottom surface 24.

上式(1)の導出について、図5及び図6を用いて説明する。図5は、第二の側面26と第三の側面27とが直角の内角で交わるときの第二の側面26、第三の側面27及び底面24が成すコーナーの斜視図である。図6は、第二の側面26と第三の側面27とが(90+θ)°の内角で交わるときの第二の側面26、第三の側面27及び底面24が成すコーナーの斜視図である。   Derivation of the above equation (1) will be described with reference to FIGS. FIG. 5 is a perspective view of a corner formed by the second side surface 26, the third side surface 27, and the bottom surface 24 when the second side surface 26 and the third side surface 27 meet at a right angle inner angle. FIG. 6 is a perspective view of a corner formed by the second side surface 26, the third side surface 27, and the bottom surface 24 when the second side surface 26 and the third side surface 27 intersect at an internal angle of (90 + θ) °.

図5及び図6は、底面24と、底面24に垂直に交わる第二の側面26と、底面24に垂直に交わる第三の側面27と、反射部21と、を含む。図5及び図6では、第三の側面27上に接触角の境界であり、反射部21の形成予定の場所を示す境界を一点鎖線で示し、反射部21と底面24及び第三の側面27との境界を破線で示している。前記一点鎖線と、前記破線とが重なる部分については、代表して破線で示している。また、便宜のために直交座標軸を図示している。第二の側面26、第三の側面27及び底面24の交点を原点とし、第二の側面26及び第三の側面27との交線をZ軸、底面24及び第二の側面26との交線をY軸、原点を通り且つ第二の側面26の垂線をX軸とする。図6において、反射部21の斜面の法線ベクトル41と、第三の側面27の法線ベクトル42とを設定し、反射部21が底面24と成す角をγ°とし、第二の側面26と第三の側面27とが成す角をθ°とし、第三の側面の法線ベクトル42と反射部21の斜面の法線ベクトル41との成す内角をβ°とする。   5 and 6 include a bottom surface 24, a second side surface 26 that intersects perpendicularly with the bottom surface 24, a third side surface 27 that intersects perpendicularly with the bottom surface 24, and the reflecting portion 21. In FIGS. 5 and 6, the boundary of the contact angle on the third side surface 27 and the boundary indicating the location where the reflection portion 21 is to be formed is indicated by a one-dot chain line, and the reflection portion 21, the bottom surface 24, and the third side surface 27. The boundary is shown by a broken line. A portion where the alternate long and short dash line and the broken line overlap is representatively shown by a broken line. In addition, for convenience, orthogonal coordinate axes are illustrated. The intersection of the second side surface 26, the third side surface 27, and the bottom surface 24 is the origin, and the intersection line with the second side surface 26 and the third side surface 27 is the intersection of the Z axis, the bottom surface 24, and the second side surface 26. Let the line be the Y-axis, the origin and the perpendicular of the second side surface 26 be the X-axis. In FIG. 6, the normal vector 41 of the slope of the reflecting portion 21 and the normal vector 42 of the third side surface 27 are set, the angle formed by the reflecting portion 21 and the bottom surface 24 is γ °, and the second side surface 26 And the third side surface 27 is defined as θ °, and the inner angle formed between the normal vector 42 on the third side surface and the normal vector 41 of the inclined surface of the reflecting portion 21 is defined as β °.

図5では、第三の側面27と第二の側面26とが直角で交わっているため、第三の側面27上で、硬化性樹脂が表面張力により接触角の異なる境界を越えてせり上がる。図6に示されるように、第三の側面27上で、硬化性樹脂がせり上がるのを防止するためには、より厳密に、第三の側面27と反射部21の斜面との成す角度が、底面24における大接触角領域22の接触角より小さければよい。第三の側面27と反射部21の斜面とのなす角度は、第三の側面の法線ベクトル42と反射部21の斜面の法線ベクトル41との成す内角をβ°と同値である。すなわち、β≦Γであれば、硬化性樹脂が第三の側面27上でせり上がるのを防止することができる。   In FIG. 5, since the third side surface 27 and the second side surface 26 intersect at a right angle, the curable resin rises on the third side surface 27 beyond the boundary where the contact angle differs due to surface tension. As shown in FIG. 6, in order to prevent the curable resin from rising on the third side surface 27, more strictly, the angle formed by the third side surface 27 and the inclined surface of the reflecting portion 21 is determined. The contact angle may be smaller than the contact angle of the large contact angle region 22 on the bottom surface 24. The angle formed between the third side surface 27 and the inclined surface of the reflecting portion 21 is equal to the internal angle formed by the normal vector 42 of the third side surface and the normal vector 41 of the inclined surface of the reflecting portion 21 with β °. That is, if β ≦ Γ, the curable resin can be prevented from rising on the third side surface 27.

数式上、法線ベクトル41をnr、法線ベクトル42をnwで示し、上式(1)を導出する。上記各法線ベクトルを成分表示すると、
nr=(sinθ,cosθ,0)
nw=(sinφ,0,cosφ)である。
そこで、法線ベクトル41と法線ベクトル42との内積は、
nw・nr=|nr||nw|cosβより、
sinθsinφ=cosβ
θ=sin−1(cosβ/sinφ)
また、β≦Γより、
θ≧sin−1(cosΓ/sinφ)となる。
よって、上式(1)が導出された。上式(1)を満足するθにおいて、第三の側面27を第二の側面26に対して(90+θ)°の内角を持つように交わらせて配置するのがよい。従って、より厳密に、硬化性樹脂が第三の側面27上において大接触角領域と小接触角領域との境界を越えて、せり上がるのを防止することができる。
In the equation, the normal vector 41 is represented by nr, the normal vector 42 is represented by nw, and the above equation (1) is derived. When each normal vector is displayed as a component,
nr = (sin θ, cos θ, 0)
nw = (sin φ, 0, cos φ).
Therefore, the inner product of the normal vector 41 and the normal vector 42 is
From nw · nr = | nr || nw | cosβ,
sinθsinφ = cosβ
θ = sin −1 (cos β / sin φ)
From β ≦ Γ,
θ ≧ sin −1 (cos Γ / sin φ).
Therefore, the above equation (1) was derived. At θ satisfying the above formula (1), the third side surface 27 is preferably arranged so as to intersect with the second side surface 26 so as to have an internal angle of (90 + θ) °. Therefore, more strictly, the curable resin can be prevented from rising on the third side surface 27 beyond the boundary between the large contact angle region and the small contact angle region.

(実施の形態3)
本願第3の実施形態は、平坦な基板上に形成されたクラッドと、前記クラッドに囲まれ光を導波するコアと、前記コアを遮るように形成され底面が前記コアより深いミラー溝と、を備える光導波回路であって、前記ミラー溝は、前記コアの露出する第一の側面が前記コアの光軸に略直交し、第二の側面が前記第一の側面に略平行に対向し、第三の側面が90°以上で180°より小さい内角で前記第二の側面と交わり、第四の側面が180°より小さい外角で第三の側面と交わり、前記底面が前記第二の側面とのコーナーにコアからの光を前記底面と反対側に反射する反射部を有し、前記第四の側面と前記第三の側面との成す交線が前記反射部の反射面と前記第三の側面との成す交線より第一の側面側にあり、また、前記底面において、前記反射部を有しない部分が前記反射部を有する部分に比べ、前記反射部の前記底面と接する部分を形成する物質に対して、大きい接触角を呈することを特徴とする光導波回路である。
(Embodiment 3)
The third embodiment of the present application includes a clad formed on a flat substrate, a core that guides light surrounded by the clad, a mirror groove that is formed so as to block the core and has a bottom surface deeper than the core, The mirror groove has a first side surface exposed by the core substantially perpendicular to the optical axis of the core, and a second side surface substantially parallel to the first side surface. The third side surface intersects with the second side surface at an inner angle of 90 ° or more and smaller than 180 °, the fourth side surface intersects with the third side surface at an outer angle smaller than 180 °, and the bottom surface is the second side surface. And a reflection portion that reflects light from the core to the opposite side of the bottom surface, and an intersection formed by the fourth side surface and the third side surface is a reflection surface of the reflection portion and the third side. On the first side surface from the line of intersection with the side surface, and on the bottom surface, No portion of the section is compared with the portion having the reflective portion, with respect to the material forming the portion in contact with the bottom surface of the reflective portion is an optical waveguide circuit characterized by exhibiting a high contact angle.

第3の実施形態に係る光導波回路について図3及び図4を用いて説明する。図3は、第3の実施形態に係る光導波回路92の上面図である。図4は、第2及び第3の実施形態に係る光導波回路であって、図3のA−A’面における断面図である。図3及び図4に示す光導波回路92は、平坦な基板10上に形成されたクラッド11と、クラッド11に囲まれ光を導波するコア12と、コアを12遮るように形成され底面24がコア12より深いミラー溝20と、を備える光導波回路92であって、ミラー溝20は、コア12の露出する第一の側面25がコア12の光軸101に略直交し、第二の側面26が第一の側面25に略平行に対向し、第三の側面27が90°以上で180°より小さい内角で第二の側面26と交わり、第四の側面28が180°より小さい外角で第三の側面27と交わり、底面24が第二の側面26とのコーナーにコア12からの光を底面24と反対側に反射する反射部21を有し、第四の側面28と第三の側面27との成す交線が反射部21の反射面と第三の側面27との成す交線より第一の側面側25にあり、また、底面24において、反射部21を有しない部分が反射部21を有する部分に比べ、反射部21の底面24と接する部分を形成する物質に対して、大きい接触角を呈する。   An optical waveguide circuit according to a third embodiment will be described with reference to FIGS. FIG. 3 is a top view of the optical waveguide circuit 92 according to the third embodiment. FIG. 4 is an optical waveguide circuit according to the second and third embodiments, and is a cross-sectional view taken along the plane A-A ′ of FIG. 3. The optical waveguide circuit 92 shown in FIGS. 3 and 4 includes a clad 11 formed on a flat substrate 10, a core 12 that is surrounded by the clad 11 and guides light, and is formed so as to block the core 12. Is an optical waveguide circuit 92 including a mirror groove 20 deeper than the core 12, and the mirror groove 20 has a first side surface 25 where the core 12 is exposed substantially perpendicular to the optical axis 101 of the core 12, The side surface 26 faces the first side surface 25 substantially parallel, the third side surface 27 intersects the second side surface 26 at an inner angle of 90 ° or more and smaller than 180 °, and the fourth side surface 28 is an outer angle smaller than 180 °. At the corner of the second side surface 26, the bottom surface 24 has a reflecting portion 21 that reflects the light from the core 12 to the opposite side of the bottom surface 24, and the fourth side surface 28 and the third side surface The intersecting line formed with the side surface 27 of the reflecting portion is the reflecting surface of the reflecting portion 21 and the third side. 27 on the first side face 25 from the intersection line formed with the line 27, and in the bottom surface 24, the part not having the reflection part 21 forms a part in contact with the bottom surface 24 of the reflection part 21 compared to the part having the reflection part 21. It exhibits a large contact angle with respect to the substances to be used.

第2の実施形態と同様、反射部21の底面24と接する部分を形成する物質としては、硬化性樹脂が好ましい。また、反射部21の斜面は金属蒸着されているのが好ましい。精緻な反射面が形成される。例えば、金属膜を反射部21の斜面に接着してあってもよい。蒸着される金属としては、Auを用いるのが好ましい。Ag、Cu、Pt、Cr等でもよい。   As in the second embodiment, a curable resin is preferable as the substance that forms the portion in contact with the bottom surface 24 of the reflecting portion 21. Moreover, it is preferable that the inclined surface of the reflection part 21 is metal-deposited. A precise reflecting surface is formed. For example, a metal film may be bonded to the inclined surface of the reflecting portion 21. Au is preferably used as the metal to be deposited. Ag, Cu, Pt, Cr, etc. may be used.

樹脂供給溝30を通じてミラー溝20に流し込まれた硬化性樹脂は、第2の実施形態と同様、小接触角領域23を選択して流れ、第三の側面27に突き当たる。硬化性樹脂は、接触角の境界線上で境界を越えてせり上がる傾向があり、特に、第三の側面27と底面24と反射部21の反射面との交点で、接触角の境界を越えてせり上がる傾向がある。このため、底面24に表面不整等があり、僅かに硬化性樹脂の流れがみだされると、硬化性樹脂が、第三の側面27と底面24と反射部21の反射面との交点付近から接触角の境界を越えて流れてしまうことがある。   The curable resin poured into the mirror groove 20 through the resin supply groove 30 flows by selecting the small contact angle region 23 and hits the third side surface 27 as in the second embodiment. The curable resin tends to rise beyond the boundary on the boundary line of the contact angle. In particular, the curable resin crosses the boundary of the contact angle at the intersection of the third side surface 27, the bottom surface 24, and the reflection surface of the reflection portion 21. There is a tendency to rise. For this reason, when the bottom surface 24 has surface irregularities or the like, and a slight flow of the curable resin is found, the curable resin is near the intersection of the third side surface 27, the bottom surface 24, and the reflective surface of the reflecting portion 21. May flow beyond the boundary of the contact angle.

第3の実施形態では、第四の側面28が設けられ、第四の側面28は、第三の側面27と180°より小さい外角で交わり、また第四の側面28と第三の側面27との成す交線が反射部21の反射面と第三の側面27との成す交線より第一の側面25側にある。第四の側面28と第三の側面27との成す交線が底面24と交わる交点が、第三の側面27と底面24と反射部21の反射面との交点より、僅かに第一の側面25側にあることが好ましい。底面24に表面不整等があり、硬化性樹脂の流れが乱されても第四の側面28と第三の側面27とのコーナーで硬化性樹脂をせき止めることができるため、ミラー溝20が硬化性樹脂で埋められるのを防止することができる。また、底面24の表面不整等の影響を抑えることができるため、表面が平坦な反射部21を形成することができる。従って、反射角度の制御性が高く製造歩留りの良い光導波回路を提供することができる。   In the third embodiment, a fourth side surface 28 is provided, the fourth side surface 28 intersects with the third side surface 27 at an outer angle smaller than 180 °, and the fourth side surface 28 and the third side surface 27 The intersecting line formed by is located closer to the first side face 25 than the intersecting line formed between the reflecting surface of the reflecting portion 21 and the third side face 27. The point of intersection of the fourth side surface 28 and the third side surface 27 with the bottom surface 24 is slightly more than the point of intersection of the third side surface 27, the bottom surface 24 and the reflecting surface of the reflecting portion 21. It is preferably on the 25th side. Since the bottom surface 24 has surface irregularities and the like, and the flow of the curable resin is disturbed, the curable resin can be blocked at the corners of the fourth side surface 28 and the third side surface 27, so that the mirror groove 20 is hardened. Filling with resin can be prevented. Moreover, since the influence of the surface irregularity etc. of the bottom face 24 can be suppressed, the reflection part 21 with a flat surface can be formed. Therefore, it is possible to provide an optical waveguide circuit with high controllability of the reflection angle and good manufacturing yield.

さらに、第3の実施形態において、第三の側面27と第四の側面28との成す外角をσ°とし、底面24における反射部21を有する部分の接触角をγ°としたとき、σが下式(2)を満足することが好ましい。
σ≦γ+90 (2)
このとき底面24における反射部21を有する部分の接触角γとは、底面24の小接触角領域23の接触角とする。
Furthermore, in the third embodiment, when the external angle formed by the third side surface 27 and the fourth side surface 28 is σ °, and the contact angle of the portion having the reflecting portion 21 on the bottom surface 24 is γ °, σ is It is preferable that the following formula (2) is satisfied.
σ ≦ γ + 90 (2)
At this time, the contact angle γ of the portion having the reflecting portion 21 on the bottom surface 24 is a contact angle of the small contact angle region 23 of the bottom surface 24.

上式(2)の導出について、図7を用いて説明する。図7は、第三の側面27が第四の側面28とσ°の外角で交わるときの第三の側面27と第四の側面28とが成すコーナーの上面図である。図7は、第二の側面26と、底面24(不図示)及び第二の側面26に垂直に交わる第三の側面27と、底面24(不図示)と垂直に交わり第三の側面27にσ°の外角で交わる第四の側面28と、反射部21と、を含む。図7には、便宜のため、底面24(不図示)の大接触角領域22(不図示)及び小接触角領域23(不図示)との境界に補助線43、補助線43と第三の側面27との交点を通り第四の側面28に平行な補助線44を一点鎖線で図示し、反射部21と底面24(不図示)との境界を破線で図示している。前記一点鎖線と、前記破線とが重なる部分については、代表して一点鎖線で示している。補助線43と補助線44との成す角は、(σ−90)°となる。第四の側面と第三の側面との成す角度と、斜め蒸着法等を行う角度との兼ね合いにより、第四の側面28は、小接触角領域となる。   Derivation of the above equation (2) will be described with reference to FIG. FIG. 7 is a top view of a corner formed by the third side surface 27 and the fourth side surface 28 when the third side surface 27 intersects the fourth side surface 28 at an external angle of σ °. 7 shows a second side surface 26, a bottom surface 24 (not shown) and a third side surface 27 perpendicular to the second side surface 26, and a third side surface 27 perpendicular to the bottom surface 24 (not shown). A fourth side surface 28 that intersects at an external angle of σ ° and the reflection portion 21 are included. In FIG. 7, for convenience, an auxiliary line 43, an auxiliary line 43, and a third line are formed at the boundary between the large contact angle region 22 (not shown) and the small contact angle region 23 (not shown) of the bottom surface 24 (not shown). An auxiliary line 44 passing through the intersection with the side surface 27 and parallel to the fourth side surface 28 is shown by a one-dot chain line, and a boundary between the reflecting portion 21 and the bottom surface 24 (not shown) is shown by a broken line. A portion where the one-dot chain line and the broken line overlap is represented by a one-dot chain line as a representative. The angle formed by the auxiliary line 43 and the auxiliary line 44 is (σ−90) °. The fourth side surface 28 becomes a small contact angle region due to the balance between the angle formed by the fourth side surface and the third side surface and the angle at which the oblique deposition method or the like is performed.

底面24に表面不整等があり、硬化性樹脂の流れが乱されても第四の側面28と第三の側面27とのコーナーで硬化性樹脂をせき止めるには、より厳密には、補助線43と補助線44との成す角が小接触角領域23(不図示)の接触角γより小さければよい。σ−90≦γの式変形より、上式(2)が導出される。上式(2)の条件を満足するように第四の側面28を配置すれば、第三の側面27と底面24と反射部21の反射面との交点で、硬化性樹脂が第三の側面27をつたって、底面24の接触角の境界を越えて大接触角領域22に流れ込むのを、第三の側面27と第四の側面28とのコーナーでせき止めることができる。   In order to stop the curable resin at the corners of the fourth side surface 28 and the third side surface 27 even if the bottom surface 24 has surface irregularities and the flow of the curable resin is disturbed, more precisely, the auxiliary line 43 And the auxiliary line 44 need only be smaller than the contact angle γ of the small contact angle region 23 (not shown). The above equation (2) is derived from the equation modification of σ−90 ≦ γ. If the fourth side surface 28 is arranged so as to satisfy the condition of the above formula (2), the curable resin is the third side surface at the intersection of the third side surface 27, the bottom surface 24, and the reflecting surface of the reflecting portion 21. 27, the flow into the large contact angle region 22 beyond the contact angle boundary of the bottom surface 24 can be blocked at the corners of the third side surface 27 and the fourth side surface 28.

次に、第1の実施形態、第2の実施形態及び第3の実施形態における光導波回路の動作について図2及び図4を用いて説明する。コア12により導波された光は、ミラー溝20における第一の側面25上のコア12の切断面から出射される。コア12の切断面から出射された光は、反射部21の反射面で底面24の反対側に反射する。本発明により平坦な反射部21を形成することができ、反射部21と底面24との成す傾斜角φを精度よく決めることができるため、反射光の反射角度の制御性が高い。従って、反射した光を、光導波回路の外部に低損失で取り出すことができる。また、光導波回路の外部から反射部21の反射面に向かって光を出射し、反射面で反射させ、高精度でコア12に光を入力することができる。光導波回路のミラー溝20の上部に受光素子や他の光導波路等を設置してもよい。反射部21の傾斜角をほぼ45°にすることで、導波光の垂直入出力を精度よく行うことができる。またミラー溝と他の光学部品との接続部分については、マッチングオイル等を充填し屈折率の整合を行うことが好ましい。   Next, the operation of the optical waveguide circuit in the first embodiment, the second embodiment, and the third embodiment will be described with reference to FIGS. The light guided by the core 12 is emitted from the cut surface of the core 12 on the first side surface 25 in the mirror groove 20. The light emitted from the cut surface of the core 12 is reflected to the opposite side of the bottom surface 24 by the reflecting surface of the reflecting portion 21. According to the present invention, the flat reflecting portion 21 can be formed, and the inclination angle φ formed by the reflecting portion 21 and the bottom surface 24 can be determined with high accuracy, so that the controllability of the reflection angle of the reflected light is high. Therefore, the reflected light can be extracted outside the optical waveguide circuit with low loss. Further, light can be emitted from the outside of the optical waveguide circuit toward the reflecting surface of the reflecting portion 21 and reflected by the reflecting surface, so that the light can be input to the core 12 with high accuracy. You may install a light receiving element, another optical waveguide, etc. in the upper part of the mirror groove | channel 20 of an optical waveguide circuit. By making the inclination angle of the reflecting portion 21 approximately 45 °, vertical input / output of guided light can be performed with high accuracy. In addition, it is preferable to match the refractive index by filling a matching oil or the like at a connection portion between the mirror groove and another optical component.

以上説明したように、光導波回路91は、底面24が、大接触角領域22と小接触角領域23とに分かれ、第三の側面27が第二の側面26に対し90°より大きく180°より小さい内角で交わることで、より厳密には、上式(1)の条件を満たすθを用いて、第二の側面26に対し(90+θ)°の内角で交わることで、第三の側面27上で余分なせり上がりのない平坦な反射部21が形成される。また、ミラー溝20が硬化性樹脂で埋められるのを防止できる。さらに、第四の側面28が第三の側面27に対し180°より小さい外角で交わることで、より厳密には、上式(2)の条件を満たすσ°の外角で交わることで、ミラー溝20の底面24に表面不整等があったとしても、硬化性樹脂が第四の側面28と第三の側面27のコーナーでせき止められ、ミラー溝20が硬化性樹脂で埋められるのを防止することができる。また、底面24の表面不整等の影響を抑えることが出来るため、表面が平坦な反射部21を形成することができる。従って、反射角の制御性を高くし、製造歩留りを良くすることができる。   As described above, in the optical waveguide circuit 91, the bottom surface 24 is divided into the large contact angle region 22 and the small contact angle region 23, and the third side surface 27 is greater than 90 ° and 180 ° with respect to the second side surface 26. More precisely, by intersecting at a smaller interior angle, more precisely, using the angle θ that satisfies the condition of the above formula (1), the second side surface 26 intersects at an interior angle of (90 + θ) °, so that the third side surface 27 A flat reflecting portion 21 with no excessive rise is formed. Further, the mirror groove 20 can be prevented from being filled with the curable resin. Further, when the fourth side surface 28 intersects the third side surface 27 at an outer angle smaller than 180 °, more precisely, the fourth side surface 28 intersects at the outer angle of σ ° satisfying the condition of the above expression (2), thereby the mirror groove Even if the bottom surface 24 of the surface 20 has irregularities, the curable resin is blocked at the corners of the fourth side surface 28 and the third side surface 27, and the mirror groove 20 is prevented from being filled with the curable resin. Can do. Moreover, since the influence of the surface irregularity etc. of the bottom face 24 can be suppressed, the reflection part 21 with a flat surface can be formed. Therefore, the controllability of the reflection angle can be increased and the manufacturing yield can be improved.

本発明の実施例について詳細に説明する。但し、本発明は、以下の実施例に限定されるものではない。   Examples of the present invention will be described in detail. However, the present invention is not limited to the following examples.

光導波回路として、Si基板上にSiOを主成分とするガラスからなる石英系光導波回路を火炎堆積法で形成した埋め込み型光導波回路を用いた。コア‐クラッド間の比屈折率差は0.5%、下部クラッドの厚さは20μm、コアは7μm角、上下両クラッドを含む厚さは40μmである。この光導波回路中の所望の場所に、図1及び図3に示されるように、樹脂供給溝を備え、L字状で、溝長Dが200μm、溝幅Wが70μm、樹脂供給溝の幅dが30μmで、底面が基板まで達する深さ40μmのミラー溝をドライエッチング法によって形成した。ミラー溝の第三の側面は底面に対し90°で交わる。ミラー溝はフッ素系撥水処理剤による表面処理を施し、大接触角領域と小接触角領域とに分けた。大接触角領域の接触角は75°〜80°であり、小接触角領域の接触角は10°〜30°であった。硬化性樹脂としてエポキシ樹脂を樹脂供給溝に滴下し、ミラー溝の小接触角領域に流し込み、ほぼ45°の傾斜角を持つ反射部を形成した。 As the optical waveguide circuit, an embedded optical waveguide circuit in which a silica-based optical waveguide circuit made of glass containing SiO 2 as a main component on a Si substrate was formed by a flame deposition method was used. The relative refractive index difference between the core and the clad is 0.5%, the thickness of the lower clad is 20 μm, the core is 7 μm square, and the thickness including the upper and lower clads is 40 μm. As shown in FIGS. 1 and 3, a resin supply groove is provided at a desired location in the optical waveguide circuit. The resin supply groove is L-shaped, the groove length D is 200 μm, the groove width W is 70 μm, and the width of the resin supply groove. A mirror groove having a depth of 30 μm and a depth of 40 μm reaching the substrate to the bottom was formed by dry etching. The third side surface of the mirror groove intersects at 90 ° with respect to the bottom surface. The mirror groove was subjected to a surface treatment with a fluorine-based water repellent agent, and was divided into a large contact angle region and a small contact angle region. The contact angle in the large contact angle region was 75 ° to 80 °, and the contact angle in the small contact angle region was 10 ° to 30 °. Epoxy resin as a curable resin was dropped into the resin supply groove and poured into the small contact angle region of the mirror groove to form a reflection portion having an inclination angle of approximately 45 °.

本願第1の発明について、第三の側面が第二の側面に対して交わる内角を変えたときの製造歩留りを調べた。具体的には、第三の側面が第二の側面と成す内角を(θ+90)°としたとき、θを0から40まで5おきに変えた9種類のミラー溝をそれぞれ264個ずつ作成した。総数2376個のミラー溝を4インチウエーハ上に均一に分布させたものを用いて調べた。θ=0のミラー溝については、歩留りは95.1%であり、ウエーハ周辺部で13個のミラー溝が硬化性樹脂で埋められた。一方、5≦θ≦40のミラー溝については、歩留りは100%であった。例えば、大接触角領域の接触角Γ=75として上式(1)に代入して計算すると、θが約21以上のとき、第三の側面上で硬化性樹脂がせり上がるのを防止することができる。ただし、5≦θ≦40で歩留りは100%であるため、せり上がりを完全に防止しなくても、ミラー溝が埋まるのを防止でき、歩留りを向上することができる。   Regarding the first invention of the present application, the manufacturing yield was examined when the internal angle at which the third side intersects the second side was changed. Specifically, when the inner angle formed by the third side surface and the second side surface is (θ + 90) °, 264 pieces of nine kinds of mirror grooves each having θ changed from 0 to 40 every 5 are formed. A total of 2376 mirror grooves distributed uniformly on a 4-inch wafer were examined. With respect to the mirror groove with θ = 0, the yield was 95.1%, and 13 mirror grooves were filled with a curable resin at the periphery of the wafer. On the other hand, the yield was 100% for the mirror groove with 5 ≦ θ ≦ 40. For example, when the contact angle Γ = 75 in the large contact angle region is substituted into the above formula (1) and calculated, the curable resin is prevented from rising on the third side surface when θ is about 21 or more. Can do. However, since 5 ≦ θ ≦ 40 and the yield is 100%, it is possible to prevent the mirror groove from being filled without completely preventing the rising, and the yield can be improved.

また、本願第2の発明について、第三の側面が第二の側面に対し成す内角を90°に固定し、且つ第四の側面が第三の側面に対し成す外角を変えたときの製造歩留りを調べた。具体的には、第四の側面が第三の側面に対し成す外角をσ°としたとき、σを100から60まで10おきに変えた5種類のミラー溝をそれぞれ475個ずつ作成した。総数2375個のミラー溝を4インチウエーハ上に均一に分布させたものを用いて調べた。σ=100のミラー溝については歩留りが97.7%であった。ウエーハ周辺部の11個のミラー溝で、硬化性樹脂で埋められたり、反射部の斜面の形状不整が発生した。一方、110≦σ≦60のミラー溝については、歩留りは100%であった。σ=100のミラー溝について、硬化性樹脂で埋められたり、反射部の斜面の形状不整が発生したのは、上式(2)に代入して計算すると小接触角領域の接触角γ°が10°以下の領域が部分的にあったためだと考えられる。   Further, regarding the second invention of the present application, the manufacturing yield when the inner angle formed by the third side surface with respect to the second side surface is fixed at 90 ° and the outer angle formed by the fourth side surface with respect to the third side surface is changed. I investigated. Specifically, when the outer angle formed by the fourth side surface with respect to the third side surface is σ °, 475 mirror grooves of 475 each having σ changed every 10 from 100 to 60 were created. A total of 2375 mirror grooves were uniformly distributed on a 4-inch wafer. For the mirror groove with σ = 100, the yield was 97.7%. Eleven mirror grooves in the periphery of the wafer were filled with curable resin, and irregular shapes of the inclined surface of the reflecting portion occurred. On the other hand, the yield of the mirror groove with 110 ≦ σ ≦ 60 was 100%. The mirror groove with σ = 100 was filled with a curable resin or the irregular shape of the inclined surface of the reflecting portion was calculated by substituting into the above equation (2) and calculating the contact angle γ ° in the small contact angle region. This is thought to be due to a partial area of 10 ° or less.

以上の実施例により、反射部の歩留り向上効果が得られたことが解る。従って、本発明により、反射部製造における工程内検査を省略でき、反射部による導波光の垂直入出力構造を用いた応用デバイスの低価格化が実現できる。さらに、第三の側面上でのせり上がりが防止されたことが確認できた。従って、本発明により、ゆがみの少ない平坦な斜面を有する反射部を実現することができる。   It turns out that the yield improvement effect of the reflection part was acquired by the above Example. Therefore, according to the present invention, the in-process inspection in the manufacturing of the reflecting portion can be omitted, and the price of the application device using the vertical input / output structure of the guided light by the reflecting portion can be reduced. Furthermore, it was confirmed that the rising on the third side face was prevented. Therefore, according to the present invention, it is possible to realize a reflecting portion having a flat slope with little distortion.

本発明は、入射光の波面歪みや散乱の発生が小さいゆがみの少ない平坦な反射面を実現できるため、高性能な光路変換機能が要求される半導体レーザ光の導波路への入力に特に有効である。   Since the present invention can realize a flat reflecting surface with little distortion and little wavefront distortion or scattering of incident light, it is particularly effective for inputting semiconductor laser light into a waveguide that requires a high-performance optical path conversion function. is there.

本願第1の実施形態及び第2の実施形態に係る光導波回路の上面図である。It is a top view of the optical waveguide circuit concerning a 1st embodiment and a 2nd embodiment of this application. 図2は、第1の実施形態に係る光導波回路であって、図1のA−A’面における断面図である。FIG. 2 is an optical waveguide circuit according to the first embodiment, and is a cross-sectional view taken along the plane A-A ′ of FIG. 1. 第3の実施形態に係る光導波回路の上面図である。It is a top view of the optical waveguide circuit concerning a 3rd embodiment. 第2及び第3の実施形態に係る光導波回路であって、図1及び図3のA−A’面における断面図である。FIG. 4 is a cross-sectional view taken along the line A-A ′ of FIGS. 1 and 3, illustrating optical waveguide circuits according to second and third embodiments. 第二の側面と第三の側面とが直角の内角で交わるときの第二の側面、第三の側面及び底面が成すコーナーの斜視図である。FIG. 6 is a perspective view of a corner formed by a second side surface, a third side surface, and a bottom surface when the second side surface and the third side surface meet at a right angle. 第二の側面と第三の側面とが(90+θ)°の内角で交わるときの第二の側面、第三の側面及び底面が成すコーナーの斜視図である。FIG. 10 is a perspective view of a corner formed by a second side surface, a third side surface, and a bottom surface when the second side surface and the third side surface intersect at an internal angle of (90 + θ) °. 第三の側面が第四の側面とσ°の外角で交わるときの第三の側面と第四の側面とが成すコーナーの上面図である。FIG. 6 is a top view of a corner formed by a third side surface and a fourth side surface when the third side surface intersects the fourth side surface at an external angle of σ °.

符号の説明Explanation of symbols

10 基板
11 クラッド
12 コア
20 ミラー溝
21 反射部
22 大接触角領域
23 小接触角領域
24 底面
25 第一の側面
26 第二の側面
27 第三の側面
28 第四の側面
30 樹脂供給溝
41、42 法線ベクトル
43、44 補助線
91 光導波回路
92 光導波回路
101 光軸
DESCRIPTION OF SYMBOLS 10 Substrate 11 Cladding 12 Core 20 Mirror groove 21 Reflecting part 22 Large contact angle region 23 Small contact angle region 24 Bottom surface 25 First side surface 26 Second side surface 27 Third side surface 28 Fourth side surface 30 Resin supply groove 41, 42 Normal vector 43, 44 Auxiliary line 91 Optical waveguide circuit 92 Optical waveguide circuit 101 Optical axis

Claims (6)

平坦な基板上に形成されたクラッドと、
前記クラッドに囲まれ光を導波するコアと、
前記コアを遮るように形成され底面が前記コアより深いミラー溝と、を備える光導波回路であって、
前記ミラー溝は、
前記コアの露出する第一の側面が前記コアの光軸に略直交し、
第二の側面が前記第一の側面に略平行に対向し、
第三の側面が90°より大きく180°より小さい内角で前記第二の側面と交わり、
前記底面が前記第二の側面とのコーナーに液状の硬化性樹脂を流し込み硬化させることにより前記コーナーに形成された、前記コアからの光を前記底面と反対側に反射する反射部を有する光導波回路。
A clad formed on a flat substrate;
A core that guides light surrounded by the cladding;
An optical waveguide circuit comprising a mirror groove formed to shield the core and having a bottom surface deeper than the core,
The mirror groove is
The exposed first side surface of the core is substantially orthogonal to the optical axis of the core,
The second side surface is substantially parallel to the first side surface;
The third side intersects the second side at an interior angle greater than 90 ° and less than 180 °;
An optical waveguide having a reflecting portion that reflects light from the core to the opposite side of the bottom surface , which is formed at the corner by pouring and curing a liquid curable resin into the corner with the second side surface. circuit.
前記底面は、前記反射部を有しない部分が前記反射部を有する部分に比べ、前記反射部の前記底面と接する部分を形成する物質に対して、大きい接触角を呈することを特徴とする請求項1に記載の光導波回路。   The bottom surface has a larger contact angle with respect to a substance that forms a portion of the reflecting portion that contacts the bottom surface than a portion where the reflecting portion does not have the reflecting portion. 2. An optical waveguide circuit according to 1. 前記第三の側面と前記第二の側面との成す内角から90°をひいた角度をθ°とし、
前記反射部が前記底面と成す傾斜角をφ°とし、
前記底面における前記反射部を有しない部分の接触角をΓ°としたとき、
前記θが下式(1)を満足することを特徴とする請求項2に記載の光導波回路。
θ≧sin−1(cosΓ/sinφ) (1)
An angle obtained by drawing 90 ° from an inner angle formed by the third side surface and the second side surface is θ °,
The angle of inclination formed by the reflecting portion with the bottom surface is φ °,
When the contact angle of the portion that does not have the reflective portion on the bottom surface is Γ °,
The optical waveguide circuit according to claim 2, wherein the θ satisfies the following expression (1).
θ ≧ sin −1 (cos Γ / sin φ) (1)
平坦な基板上に形成されたクラッドと、
前記クラッドに囲まれ光を導波するコアと、
前記コアを遮るように形成され底面が前記コアより深いミラー溝と、を備える光導波回路であって、
前記ミラー溝は、
前記コアの露出する第一の側面が前記コアの光軸に略直交し、
第二の側面が前記第一の側面に略平行に対向し、
第三の側面が90°以上で180°より小さい内角で前記第二の側面と交わり、
第四の側面が180°より小さい外角で第三の側面と交わり、
前記底面が前記第二の側面とのコーナーに液状の硬化性樹脂を流し込み硬化させることにより前記コーナーに形成された、前記コアからの光を前記底面と反対側に反射する反射部を有し、
前記第四の側面と前記第三の側面との成す交線が前記反射部の反射面と前記第三の側面との成す交線より第一の側面側にある光導波回路。
A clad formed on a flat substrate;
A core that guides light surrounded by the cladding;
An optical waveguide circuit comprising a mirror groove formed to shield the core and having a bottom surface deeper than the core,
The mirror groove is
The exposed first side surface of the core is substantially orthogonal to the optical axis of the core,
The second side surface is substantially parallel to the first side surface;
The third side intersects the second side at an internal angle of 90 ° or more and less than 180 °,
The fourth side intersects the third side with an outer angle less than 180 °,
The bottom surface is formed at the corner by pouring and curing a liquid curable resin into the corner with the second side surface, and has a reflecting portion that reflects light from the core to the opposite side of the bottom surface,
An optical waveguide circuit in which an intersection line formed between the fourth side surface and the third side surface is located closer to a first side surface than an intersection line formed between the reflection surface of the reflection portion and the third side surface.
前記底面は、前記反射部を有しない部分が前記反射部を有する部分に比べ、前記反射部の前記底面と接する部分を形成する物質に対して、大きい接触角を呈することを特徴とする請求項4に記載の光導波回路。   The bottom surface has a larger contact angle with respect to a substance that forms a portion of the reflecting portion that contacts the bottom surface than a portion where the reflecting portion does not have the reflecting portion. 5. An optical waveguide circuit according to 4. 前記第三の側面と前記第四の側面との成す外角をσ°とし、
前記底面における前記反射部を有する部分の接触角をγ°としたとき、
前記σが下式(2)を満足する事を特徴とする請求項5に記載の光導波回路。
σ≦γ+90 (2)




The outer angle formed by the third side surface and the fourth side surface is σ °,
When the contact angle of the portion having the reflective portion on the bottom surface is γ °,
The optical waveguide circuit according to claim 5, wherein the σ satisfies the following expression (2).
σ ≦ γ + 90 (2)




JP2005309563A 2005-10-25 2005-10-25 Optical waveguide circuit Active JP4627481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005309563A JP4627481B2 (en) 2005-10-25 2005-10-25 Optical waveguide circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005309563A JP4627481B2 (en) 2005-10-25 2005-10-25 Optical waveguide circuit

Publications (2)

Publication Number Publication Date
JP2007121380A JP2007121380A (en) 2007-05-17
JP4627481B2 true JP4627481B2 (en) 2011-02-09

Family

ID=38145326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005309563A Active JP4627481B2 (en) 2005-10-25 2005-10-25 Optical waveguide circuit

Country Status (1)

Country Link
JP (1) JP4627481B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907035B2 (en) * 2012-10-09 2016-04-20 富士通株式会社 Optical interconnect device manufacturing method and optical interconnect device
CN114205990B (en) * 2020-09-17 2024-03-22 深南电路股份有限公司 Circuit board and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184183A (en) * 1997-09-12 1999-03-26 Nippon Telegr & Teleph Corp <Ntt> Optical module
JP2005156947A (en) * 2003-11-26 2005-06-16 Nippon Telegr & Teleph Corp <Ntt> Optical circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184183A (en) * 1997-09-12 1999-03-26 Nippon Telegr & Teleph Corp <Ntt> Optical module
JP2005156947A (en) * 2003-11-26 2005-06-16 Nippon Telegr & Teleph Corp <Ntt> Optical circuit

Also Published As

Publication number Publication date
JP2007121380A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP5772927B2 (en) Optical converter and manufacturing method thereof
US7184630B2 (en) Optical coupling module with self-aligned etched grooves and method for fabricating the same
US7664352B1 (en) Spot size converter
JP6829446B2 (en) Optical circuits and optics
KR102057738B1 (en) Surface waveguide having a tapered region and method of forming
US20190204503A1 (en) Resin optical waveguide and composite optical waveguide
JP2003240997A (en) Manufacturing method for optical integrated circuit having spatial reflection type structure
US20230384501A1 (en) Wire grid polarizer with slanted support-ribs
JP4627481B2 (en) Optical waveguide circuit
WO2014196251A1 (en) Opto-electric hybrid module
CN107144925B (en) Optical fiber structure, optical communication device, and manufacturing process for manufacturing the same
JPH04238305A (en) Polymer-coated glass core optical waveguide
JP2019020624A (en) Optical waveguide
JP4780532B2 (en) Optical device
JP2005345630A (en) Optical waveguide and the manufacturing method
US11543702B2 (en) Polarizer and optical apparatus
US20050191021A1 (en) Optical element, spectroscope and condenser
JP2004302241A (en) Optical waveguide and its manufacturing method
JPH09318850A (en) Optical waveguide circuit and its production
JP2018063300A (en) Optical waveguide, optical modulation device and manufacturing method of optical waveguide
JP4059835B2 (en) Multi-channel optical path conversion element
JP5983051B2 (en) Optical waveguide device
JP2004295043A (en) Optical waveguide
JP2004354608A (en) Optical waveguide and manufacturing method therefor
JP2005156947A (en) Optical circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250