JP4626192B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4626192B2
JP4626192B2 JP2004167389A JP2004167389A JP4626192B2 JP 4626192 B2 JP4626192 B2 JP 4626192B2 JP 2004167389 A JP2004167389 A JP 2004167389A JP 2004167389 A JP2004167389 A JP 2004167389A JP 4626192 B2 JP4626192 B2 JP 4626192B2
Authority
JP
Japan
Prior art keywords
circuit
external electrode
conductive
antenna
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004167389A
Other languages
Japanese (ja)
Other versions
JP2005347635A (en
Inventor
耕司 田崎
裕宣 石坂
正仁 渋谷
耕輔 田中
正久 新沢
秀彦 殿塚
克也 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004167389A priority Critical patent/JP4626192B2/en
Publication of JP2005347635A publication Critical patent/JP2005347635A/en
Application granted granted Critical
Publication of JP4626192B2 publication Critical patent/JP4626192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、ICチップを搭載した非接触式固体識別装置に関して、安価で生産性に優れ、かつ良好な通信特性を得るのに好適な半導体装置に関する。   The present invention relates to a non-contact solid identification device equipped with an IC chip, and relates to a semiconductor device that is inexpensive, excellent in productivity, and suitable for obtaining good communication characteristics.

近年、RFID(Radio Frequency Identification)タグを用いる非接触式個体識別システムは、物のライフサイクル全体を管理するシステムとして、製造、物流、販売、リサイクルのすべての業態で注目されている。特にUHF波やマイクロ波を用いる電波方式のRFIDタグは、ICチップに外部アンテナを取り付けた構造で数メートルの通信距離が可能であるという特徴によって注目されており、現在、大量の商品の物流管理や製造物履歴管理等を目的にシステムの構築が進められている。   2. Description of the Related Art In recent years, non-contact type individual identification systems using RFID (Radio Frequency Identification) tags have been attracting attention as a system for managing the entire life cycle of goods in all business categories of manufacturing, distribution, sales, and recycling. In particular, radio frequency RFID tags using UHF waves or microwaves are attracting attention due to the feature that a communication distance of several meters is possible with a structure in which an external antenna is attached to an IC chip. System construction is underway for the purpose of product history management.

マイクロ波を用いる電波方式のRFIDタグとしては、例えば、株式会社日立製作所と株式会社ルネサステクノロジ社によって開発されたTCP(Tape Carrier Package)型インレットを用いたものが知られている。   As a radio frequency type RFID tag using a microwave, for example, a tag using a TCP (Tape Carrier Package) type inlet developed by Hitachi, Ltd. and Renesas Technology Corp. is known.

また、その他のインレット構造として、例えば、株式会社日立製作所の宇佐美により、外部電極が表裏面に1個ずつ形成されたICチップにおいて、各々の面に形成された各外部電極にダイポールアンテナを接続するガラスダイオード・パッケージ構造が開発されている(特許文献1参照)。さらに、宇佐美らにより、上記2個の外部電極が表裏面に形成されたICチップ(以下、両面電極チップ)を励振スリット型ダイポールアンテナに実装する際に、アンテナによって ICチップの外部電極を挟み込む構造が開発されている(特許文献2参照)。励振スリットを有するダイポールアンテナ構造は、このスリットの幅及び長さを変えることで、アンテナのインピーダンスとICチップの入力インピーダンスとを整合することが可能であり、良好な通信特性を得ることができる。
特開2002−269520号公報 特開2004−127230号公報
In addition, as another inlet structure, for example, an IC chip in which one external electrode is formed on each of the front and back surfaces by Usami of Hitachi, Ltd., a dipole antenna is connected to each external electrode formed on each surface. A glass diode package structure has been developed (see Patent Document 1). Furthermore, when Usami et al. Mount an IC chip (hereinafter referred to as a double-sided electrode chip) on which the two external electrodes are formed on the front and back surfaces to an excitation slit type dipole antenna, the external electrode of the IC chip is sandwiched by the antenna. Has been developed (see Patent Document 2). The dipole antenna structure having the excitation slit can match the impedance of the antenna and the input impedance of the IC chip by changing the width and length of the slit, and can obtain good communication characteristics.
JP 2002-269520 A Japanese Patent Laid-Open No. 2004-127230

RFIDタグを用いた非接触式個体識別システムで大量の商品の物流及び物品管理を実現するためには、商品の1つ1つにRFIDタグを取り付ける必要があり、そのためには通信特性に優れたRFIDの安価かつ大量な生産が不可欠となる。   In order to realize logistics and goods management of a large amount of goods with a non-contact type individual identification system using RFID tags, it is necessary to attach RFID tags to each of the goods. Low-cost and mass production of RFID is indispensable.

しかしながら、信号の入出力用の2個の外部電極が同一面内に形成されたICチップを前記の励振スリット型ダイポールアンテナに実装する場合には、ICチップの2個の外部電極を励振スリットの各々の側に接続する必要があるため、一般にはICチップの2個の外部電極がスリットを跨いだ位置に配置され、ICチップとアンテナを精度良く位置合わせしなければならない。そのため、従来はTAB(Tape Automated Bonding)工法を用いてICチップを1個ずつアンテナに実装していたが、この工法ではダイシングフィルムからの真空吸着等のハンドリングや、アンテナとの位置合わせに時間がかかるという課題がある。またICチップを小型化する場合にはこれらの課題がさらに大きくなるため、安価かつ大量な生産の妨げとなる。   However, when an IC chip in which two external electrodes for signal input / output are formed in the same plane is mounted on the excitation slit type dipole antenna, the two external electrodes of the IC chip are connected to the excitation slit. Since it is necessary to connect to each side, the two external electrodes of the IC chip are generally disposed at a position across the slit, and the IC chip and the antenna must be accurately aligned. Therefore, in the past, TAB (Tape Automated Bonding) method was used to mount the IC chips one by one on the antenna. However, this method requires time for handling such as vacuum suction from the dicing film and positioning with the antenna. There is such a problem. Further, when the IC chip is downsized, these problems are further increased, which hinders inexpensive and mass production.

一方、アンテナによって両面電極チップの2個の外部電極を挟み込む構造を用いれば、ICチップとアンテナの高精度な位置合わせが不要となり、さらにチップの小型化に対しても何ら支障が生じないため、安価なRFIDタグの生産方法として有効である。   On the other hand, if the structure in which the two external electrodes of the double-sided electrode chip are sandwiched between the antennas is used, high-precision alignment between the IC chip and the antenna becomes unnecessary, and there is no hindrance to the downsizing of the chip. It is effective as a method for producing an inexpensive RFID tag.

この工法における課題は、両面電極チップの回路面上の外部電極とアンテナとを電気的に接続する導電性バンプを、外部電極以外の半導体素子領域にまで形成すると、導電性バンプと両面電極チップ内部の半導体素子からなる回路との間に電気的な不要結合が生じ、電力の損失やクロストークノイズ等の発生により通信特性が低下することにある。特に両面電極チップ内部のアナログ回路は、振幅が連続的に変化するアナログ信号を処理するために、電圧の変化やノイズの影響を受けやすく、数μmの絶縁膜を介してバンプと近接した場合には通信特性の低下は避けられない。   The problem with this method is that when conductive bumps that electrically connect the external electrodes on the circuit surface of the double-sided electrode chip and the antenna are formed in the semiconductor element region other than the external electrodes, the conductive bumps and the inside of the double-sided electrode chip There is an unnecessary electrical coupling with a circuit composed of the above semiconductor elements, and communication characteristics deteriorate due to generation of power loss, crosstalk noise, and the like. In particular, the analog circuit inside the double-sided electrode chip is susceptible to voltage changes and noise because it processes analog signals whose amplitude changes continuously, and when it is close to the bumps via an insulating film of several μm However, communication characteristics are inevitably degraded.

本発明は、前記に鑑みてなされたものであり、両面電極チップを用いて安価で生産性に優れた構造を有し、かつ通信特性にも優れたRFIDタグを提供するものである。   The present invention has been made in view of the above, and provides an RFID tag that has a structure that is inexpensive and excellent in productivity using a double-sided electrode chip and that also has excellent communication characteristics.

すなわち、本発明は以下の通りである。   That is, the present invention is as follows.

第1に、整流回路部、クロック回路部、ロジック回路部及びメモリ回路部を含む無線通信用のICチップと送受信アンテナとを有する半導体装置において、前記ICチップは半導体素子が形成された回路面上に形成された第1の外部電極と、前記第1の外部電極と前記送受信アンテナとを電気的に接続するために前記第1の外部電極上に形成された導電性バンプと、前記回路面と対向する面上に形成された第2の外部電極と、前記送受信アンテナを構成しかつ前記第1の外部電極及び第2の外部電極にそれぞれ接続される第1の導体及び第2の導体とを有し、前記導電性バンプは、少なくとも、前記整流回路部及びクロック回路部を含むアナログ回路部の内、前記導電性バンプとの間に電気的不要結合が生じ得る領域を選択的に除く領域に形成されていることを特徴とする。   First, in a semiconductor device having an IC chip for wireless communication including a rectifier circuit portion, a clock circuit portion, a logic circuit portion, and a memory circuit portion and a transmission / reception antenna, the IC chip is on a circuit surface on which a semiconductor element is formed. A first external electrode formed on the first external electrode, a conductive bump formed on the first external electrode to electrically connect the first external electrode and the transmitting / receiving antenna, and the circuit surface A second external electrode formed on the opposing surface, and a first conductor and a second conductor constituting the transmitting / receiving antenna and connected to the first external electrode and the second external electrode, respectively. And the conductive bump is at least a region in the analog circuit portion including the rectifier circuit portion and the clock circuit portion that selectively excludes a region in which unnecessary electrical coupling may occur with the conductive bump. form Characterized in that it is.

第2に、整流回路部、クロック回路部、ロジック回路部及びメモリ回路部を含む無線通信用のICチップと送受信アンテナとを有する半導体装置において、前記ICチップは半導体素子が形成された回路面上に形成された第1の外部電極と、前記第1の外部電極と前記送受信アンテナとを電気的に接続するために前記第1の外部電極上に形成された導電性バンプと、前記回路面上に形成された電気的接続に寄与しない少なくとも1個以上の導電性ダミーバンプと、前記回路面と対向する面上に形成された第2の外部電極と、前記送受信アンテナを構成しかつ前記第1の外部電極及び第2の外部電極にそれぞれ接続される第1の導体及び第2の導体とを有し、前記導電性バンプ及び前記導電性ダミーバンプは、少なくとも、前記整流回路部及びクロック回路部を含むアナログ回路部の内、前記導電性バンプ及び前記導電性ダミーバンプとの間に電気的不要結合が生じ得る領域を選択的に除く領域に形成されていることを特徴とする。   Second, in a semiconductor device having a wireless communication IC chip including a rectifier circuit portion, a clock circuit portion, a logic circuit portion, and a memory circuit portion and a transmission / reception antenna, the IC chip is on a circuit surface on which a semiconductor element is formed. A first external electrode formed on the first external electrode, a conductive bump formed on the first external electrode to electrically connect the first external electrode and the transmitting / receiving antenna, and on the circuit surface At least one conductive dummy bump that does not contribute to the electrical connection, a second external electrode formed on a surface facing the circuit surface, the transmission / reception antenna, and the first antenna A first conductor and a second conductor connected to the external electrode and the second external electrode, respectively, and the conductive bump and the conductive dummy bump include at least the rectifier circuit unit and Among the analog circuit section which includes a lock circuit, characterized in that the electrical unnecessary bond is formed selectively excluding area a region may occur between the conductive bump and said conductive dummy bumps.

第3に、整流回路部、クロック回路部、ロジック回路部及びメモリ回路部を含む無線通信用のICチップと送受信アンテナとを有する半導体装置において、前記ICチップは半導体素子が形成された回路面上に形成された第1の外部電極と、前記第1の外部電極と前記送受信アンテナとを電気的に接続するために前記第1の外部電極上に形成された導電性バンプと、前記回路面上に形成された少なくとも1個以上の非導電性ダミーバンプと、前記回路面と対向する面上に形成された第2の外部電極と、前記送受信アンテナを構成しかつ前記第1の外部電極及び第2の外部電極にそれぞれ接続される第1の導体及び第2の導体とを有し、前記導電性バンプは、少なくとも、前記整流回路部及びクロック回路部を含むアナログ回路部の内、前記導電性バンプとの間に電気的不要結合が生じ得る領域を選択的に除く領域に形成されていることを特徴とする。   Third, in a semiconductor device having a wireless communication IC chip including a rectifier circuit portion, a clock circuit portion, a logic circuit portion, and a memory circuit portion and a transmission / reception antenna, the IC chip is on a circuit surface on which a semiconductor element is formed. A first external electrode formed on the first external electrode, a conductive bump formed on the first external electrode to electrically connect the first external electrode and the transmitting / receiving antenna, and on the circuit surface At least one non-conductive dummy bump formed on the second surface, a second external electrode formed on a surface opposite to the circuit surface, the transmission / reception antenna, and the first external electrode and the second external electrode. A first conductor and a second conductor respectively connected to the external electrodes, and the conductive bump includes at least the conductive circuit in the analog circuit unit including the rectifier circuit unit and the clock circuit unit. Wherein the electrical unwanted coupling is formed in a region selectively excluding an area that may occur between the sexual bumps.

第4に、整流回路部、クロック回路部、ロジック回路部及びメモリ回路部を含む無線通信用のICチップと送受信アンテナとを有する半導体装置において、前記ICチップは半導体素子が形成された回路面上に形成された第1の外部電極と、前記第1の外部電極と前記送受信アンテナとを電気的に接続するために前記第1の外部電極上に形成された導電性バンプと、前記回路面と対向する面上に形成された第2の外部電極と、前記送受信アンテナを構成しかつ前記第1の外部電極及び第2の外部電極にそれぞれ接続される第1の導体及び第2の導体とを有し、前記ICチップの前記回路面と前記導電性バンプとの間に形成される絶縁膜の厚みが15μm以上であることを特徴とする。ここで、絶縁膜の厚みは、10μm以上が好ましく、15μm以上がより好ましい。   Fourth, in a semiconductor device having an IC chip for wireless communication including a rectifier circuit portion, a clock circuit portion, a logic circuit portion, and a memory circuit portion and a transmission / reception antenna, the IC chip is on a circuit surface on which a semiconductor element is formed. A first external electrode formed on the first external electrode, a conductive bump formed on the first external electrode to electrically connect the first external electrode and the transmitting / receiving antenna, and the circuit surface A second external electrode formed on the opposing surface, and a first conductor and a second conductor constituting the transmitting / receiving antenna and connected to the first external electrode and the second external electrode, respectively. And the thickness of the insulating film formed between the circuit surface of the IC chip and the conductive bump is 15 μm or more. Here, the thickness of the insulating film is preferably 10 μm or more, and more preferably 15 μm or more.

第5に、前記半導体装置において、前記導電性バンプが金で構成され、その高さが5μmから40μmの範囲にあることを特徴とする。   Fifth, in the semiconductor device, the conductive bumps are made of gold, and the height thereof is in the range of 5 μm to 40 μm.

第6に、前記半導体装置において、前記導電性バンプと送受信アンテナを構成する前記第1もしくは第2の導体との電気的接続と、前記第2の外部電極と送受信アンテナを構成する前記第2もしくは第1の導体との電気的接続と、前記送受信アンテナを構成する前記第1の導体と前記第2の導体との電気的接続の少なくとも1つが、導電性接着剤または異方導電性接着剤を介して行われることを特徴とする。   Sixth, in the semiconductor device, electrical connection between the conductive bump and the first or second conductor constituting the transmission / reception antenna, and the second or second electrical electrode constituting the transmission / reception antenna. At least one of the electrical connection with the first conductor and the electrical connection between the first conductor and the second conductor constituting the transmission / reception antenna is made of a conductive adhesive or an anisotropic conductive adhesive. It is carried out through.

第7に、前記半導体装置において、前記第2の外部電極は前記ICチップのSiベース基板の加工面で構成されることを特徴とする。   Seventhly, in the semiconductor device, the second external electrode is formed of a processed surface of a Si base substrate of the IC chip.

本発明の半導体装置によれば、次のような効果を得ることができる。整流回路部、クロック回路部、ロジック回路部及びメモリ回路部を含む無線通信用のICチップの回路面内に形成された第1の外部電極上に導電性バンプが形成され、回路面と対向する面に第2の外部電極が形成された両面電極チップの各々の電極を、アンテナを構成する第1及び第2の導体で挟み込んだ構造の半導体装置において、第1の外部電極上の導電性バンプを少なくとも、整流回路部及びクロック回路部を含むアナログ回路部の内、導電性バンプとの間に電気的不要結合が生じ得る領域を選択的に除く領域に形成すること、もしくは回路面と導電性バンプとの間に形成される絶縁膜を15μm以上とすることによって、ICチップとアンテナとの高精度の位置合わせが不要であり、かつICチップのアナログ回路と導電性バンプとの間の電気的不要結合を抑制できる安価で生産性に優れ、良好な通信特性が得られるRFIDタグ用インレットを実現することができる。   According to the semiconductor device of the present invention, the following effects can be obtained. A conductive bump is formed on the first external electrode formed in the circuit surface of the IC chip for wireless communication including the rectifier circuit portion, the clock circuit portion, the logic circuit portion, and the memory circuit portion, and faces the circuit surface. In a semiconductor device having a structure in which each electrode of a double-sided electrode chip having a second external electrode formed on the surface is sandwiched between first and second conductors constituting an antenna, conductive bumps on the first external electrode At least in the analog circuit portion including the rectifier circuit portion and the clock circuit portion, in a region excluding a region where unnecessary electrical coupling may occur with the conductive bump, or on the circuit surface and conductivity By setting the insulating film formed between the bumps to 15 μm or more, high-precision alignment between the IC chip and the antenna is unnecessary, and the analog circuit of the IC chip and the conductive bump Excellent inexpensive productivity electrical unwanted coupling can be suppressed between, it is possible to achieve good RFID tag inlet communication characteristics can be obtained.

以下、本発明の実施形態について図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施の形態の半導体装置は、ICチップの両面に各々の外部電極を備えた両面電極チップと、第1及び第2の2つの導体からなる送受信アンテナによって構成されている。図1に本実施の形態の半導体装置であるRFIDタグ用インレットの一例であり、送受信アンテナとなる励振スリット型ダイポールアンテナに両面電極チップを実装したインレットを上面から見た概略図を示す。アンテナは第1の導体21と第2の導体22から構成されており、これら2つの導体21,22はA部で両面電極チップ10を挟み込む構造で電気的に接続されており、B部では2つの導体21,22が接続されている。第1の導体21には、励振スリット25が形成されており、この励振スリット25の幅及び長さを変えることでアンテナと両面電極チップ10のインピーダンスを整合することが可能である。   The semiconductor device according to the present embodiment includes a double-sided electrode chip having external electrodes on both sides of an IC chip, and a transmission / reception antenna composed of first and second conductors. FIG. 1 is an example of an RFID tag inlet that is a semiconductor device of the present embodiment, and shows a schematic view of an inlet in which a double-sided electrode chip is mounted on an excitation slit dipole antenna serving as a transmission / reception antenna, as viewed from above. The antenna is composed of a first conductor 21 and a second conductor 22, and these two conductors 21 and 22 are electrically connected by sandwiching the double-sided electrode chip 10 at the A part, and at the B part 2 Two conductors 21 and 22 are connected. An excitation slit 25 is formed in the first conductor 21, and the impedance of the antenna and the double-sided electrode chip 10 can be matched by changing the width and length of the excitation slit 25.

図2に、図1のC−C’の断面概略図を示す。両面電極チップ10は半導体素子からなる回路面11と回路面11内に形成された第1の外部電極12と、第1の外部電極12上に形成された導電性バンプ13と、回路面11と対向する面に形成された第2の外部電極14から構成されている。両面電極チップ10は導電性バンプ13と第2の外部電極14によって、異方導電性接着剤40に含有される導電粒子41を介してアンテナを構成する第1の導体21と第2の導体22に各々接続されている。なお、図2には両面電極チップ10の導電性バンプ13が第2の導体22と、第2の外部電極14が第1の導体21と接続された構造を示したが、両面電極チップ10の上下面が反転した構造であっても、インレットの性能に変わりはない。また、第1の導体21と第2の導体22は各々第1のベース基材23と第2のベース基材24に支持されている構成を示したが、ベース基材23,24はなくてもよい。   FIG. 2 shows a schematic cross-sectional view of C-C ′ of FIG. 1. The double-sided electrode chip 10 includes a circuit surface 11 made of a semiconductor element, a first external electrode 12 formed in the circuit surface 11, a conductive bump 13 formed on the first external electrode 12, a circuit surface 11, It is comprised from the 2nd external electrode 14 formed in the surface which opposes. The double-sided electrode chip 10 includes a first conductor 21 and a second conductor 22 that constitute an antenna through the conductive particles 41 contained in the anisotropic conductive adhesive 40 by the conductive bumps 13 and the second external electrodes 14. Is connected to each. FIG. 2 shows a structure in which the conductive bump 13 of the double-sided electrode chip 10 is connected to the second conductor 22 and the second external electrode 14 is connected to the first conductor 21. Even if the top and bottom surfaces are inverted, the inlet performance remains unchanged. Moreover, although the 1st conductor 21 and the 2nd conductor 22 showed the structure currently supported by the 1st base base material 23 and the 2nd base base material 24, respectively, the base base materials 23 and 24 are not provided. Also good.

図1及び図2に示したアンテナによって両面電極チップ10の2個の外部電極13,14を挟み込んで接続する構造を用いれば、両面電極チップ10チップ10とアンテナの高精度な位置合わせが不要となり、さらに両面電極チップ10の小型化に対しても何ら支障が生じないため、安価なRFIDタグの生産を実現できる。   If the structure shown by sandwiching and connecting the two external electrodes 13 and 14 of the double-sided electrode chip 10 with the antenna shown in FIGS. 1 and 2, high-precision alignment between the double-sided electrode chip 10 chip 10 and the antenna becomes unnecessary. In addition, since there is no hindrance to downsizing of the double-sided electrode chip 10, the production of an inexpensive RFID tag can be realized.

図3は本実施の形態の半導体装置の回路構成例を示すブロック図である。本実施の形態の半導体装置の使用例はRFIDタグ用インレットであり、アンテナ20、整流回路50、クロック回路51、ロジック回路52、メモリ回路53などから構成される。アンテナ20から入力された電磁波は、整流回路50において整流されて直流電圧を発生する。クロック回路51は電磁波に乗せられてきた信号からクロックを抽出するものであり、ロジック回路52はデータの書き込みや読み出し等を制御する。メモリ回路53はカウンタ、デコーダ、メモリセル等から構成される。   FIG. 3 is a block diagram showing a circuit configuration example of the semiconductor device of this embodiment. An example of use of the semiconductor device of this embodiment is an RFID tag inlet, which includes an antenna 20, a rectifier circuit 50, a clock circuit 51, a logic circuit 52, a memory circuit 53, and the like. The electromagnetic wave input from the antenna 20 is rectified in the rectifier circuit 50 to generate a DC voltage. The clock circuit 51 extracts a clock from a signal that has been carried on an electromagnetic wave, and the logic circuit 52 controls writing and reading of data. The memory circuit 53 includes a counter, a decoder, a memory cell, and the like.

また、両面電極チップ10の内部回路は、振幅が連続的に変化するアナログ信号によって動作する、整流回路50、クロック回路51の如きアナログ回路と、アナログ信号を0と1に変換したディジタル信号によって動作する、ロジック回路52、メモリ回路53の如きディジタル回路から構成される。   Further, the internal circuit of the double-sided electrode chip 10 operates with an analog circuit such as a rectifier circuit 50 and a clock circuit 51 that operates by an analog signal whose amplitude continuously changes, and a digital signal obtained by converting the analog signal into 0 and 1. It is composed of digital circuits such as a logic circuit 52 and a memory circuit 53.

両面電極チップ10の内部回路が動作するとき、内部回路と導電性バンプ13が近接していると、両者の間に電気的な不要結合が生じ、電力の損失やクロストークノイズ等が発生することで通信特性が低下する。特に両面電極チップ10内部のアナログ回路は、電圧の変化やノイズの影響を受けやすく、数μmの絶縁膜を介して導電性バンプ13と近接した場合には通信特性の低下は避けられないことから、本実施の形態の半導体装置では、この電気的不要結合の影響を抑制するために、電気的不要結合を生じ得るアナログ回路領域上を除く領域に選択的に導電性バンプ13を形成すること、もしくは内部回路と導電性バンプ13との間に形成する絶縁膜を15μm以上とすることを特徴とする。   When the internal circuit of the double-sided electrode chip 10 operates, if the internal circuit and the conductive bumps 13 are close to each other, unnecessary electrical coupling occurs between the two and power loss, crosstalk noise, etc. occur. The communication characteristics deteriorate. In particular, the analog circuit inside the double-sided electrode chip 10 is easily affected by a change in voltage and noise, and deterioration in communication characteristics is inevitable when it is close to the conductive bump 13 through an insulating film of several μm. In the semiconductor device of the present embodiment, in order to suppress the influence of this unnecessary electrical coupling, the conductive bumps 13 are selectively formed in a region excluding the analog circuit region that may cause the electrical unnecessary coupling. Alternatively, the insulating film formed between the internal circuit and the conductive bump 13 is made to be 15 μm or more.

図4に、本実施の形態の半導体装置を構成する両面電極チップの実施の形態の第1の例として、回路領域の外に導電性バンプと導電性ダミーバンプを形成した両面電極チップを示す。図4(a)に両面電極チップ10を導電性バンプ13面から見た平面図を、図4(b)には図4(a)のD−D’部の断面図を示す。図4に示す導電性バンプ13は、回路面11内の第1の外部電極12上に形成され、絶縁膜16の第1の外部電極12上に形成された開口部を介して第1の外部電極12と接続されている。また、アンテナと導電性バンプ13を接続する際に両面電極チップ10とアンテナとの平行性を保つために、両面電極チップ10の内部回路とアンテナとの電気的接続には寄与しない3個の導電性ダミーバンプ15が回路領域の外に形成されている。図4(b)から、内部回路と導電性バンプ13が断面構造的に重なっておらず、電気的に大きな不要結合が生じないことがわかる。   FIG. 4 shows a double-sided electrode chip in which conductive bumps and conductive dummy bumps are formed outside the circuit region as a first example of the embodiment of the double-sided electrode chip constituting the semiconductor device of the present embodiment. FIG. 4A is a plan view of the double-sided electrode chip 10 viewed from the surface of the conductive bump 13, and FIG. 4B is a cross-sectional view taken along the line D-D 'in FIG. The conductive bump 13 shown in FIG. 4 is formed on the first external electrode 12 in the circuit surface 11, and the first external via the opening formed on the first external electrode 12 of the insulating film 16. It is connected to the electrode 12. Further, in order to keep the parallelism between the double-sided electrode chip 10 and the antenna when connecting the antenna and the conductive bump 13, three conductive materials that do not contribute to the electrical connection between the internal circuit of the double-sided electrode chip 10 and the antenna. The dummy dummy bumps 15 are formed outside the circuit area. It can be seen from FIG. 4B that the internal circuit and the conductive bump 13 do not overlap with each other in terms of cross-sectional structure, and no electrical unnecessary coupling occurs.

後述する図10には、比較のために回路領域全体に導電性バンプを形成した従来構造の例を示す。図10(a)に両面電極チップ110を導電性バンプ118面から見た平面図を、図10(b)には図10(a)のI−I’部の断面図を示す。図10(a)に示す従来構造の導電性バンプ118は、両面電極チップ110のほぼ全面に形成されており、絶縁膜116の第1の外部電極112上に形成された開口部を介して第1の外部電極113と接続されている。図10(b)から、導電性バンプ118と、整流回路部150、クロック回路部151、ロジック回路部152及びメモリ回路153の如き内部回路の回路面111とは絶縁膜116を介して断面構造的に重なっている。一般的な半導体チップの絶縁膜はスパッタにて形成され、その厚みは1μmから数μm程度と、高周波で動作する電気信号の相関を遮断するには非常に薄いことから、導電性バンプ118と内部回路との間には電気的な不要結合が発生する。   FIG. 10 described later shows an example of a conventional structure in which conductive bumps are formed in the entire circuit region for comparison. FIG. 10A is a plan view of the double-sided electrode chip 110 viewed from the surface of the conductive bump 118, and FIG. 10B is a cross-sectional view taken along the line I-I 'of FIG. The conductive bump 118 having the conventional structure shown in FIG. 10A is formed on almost the entire surface of the double-sided electrode chip 110, and is formed through the opening formed on the first external electrode 112 of the insulating film 116. 1 external electrode 113. 10B, the conductive bump 118 and the circuit surface 111 of the internal circuit such as the rectifier circuit unit 150, the clock circuit unit 151, the logic circuit unit 152, and the memory circuit 153 have a cross-sectional structure through an insulating film 116. It overlaps with. The insulating film of a general semiconductor chip is formed by sputtering and has a thickness of about 1 μm to several μm, which is very thin to block the correlation of electrical signals operating at high frequencies. Electrical unnecessary coupling occurs with the circuit.

図5には、本実施の形態の半導体装置を構成する両面電極チップの実施の形態の第2の例として、導電性バンプを第1の外部電極上から回路領域には重ならない領域に拡大して形成し、回路領域の外及びディジタル回路からなるロジック回路及びメモリ回路の領域の一部に導電性ダミーバンプを形成した両面電極チップを示す。図5(a)に両面電極チップ10を導電性バンプ13面から見た平面図を、図5(b)には図5(a)のE−E’部の断面図を示す。図5に示す導電性バンプ13は、回路面11内の第1の外部電極12上から回路領域には重ならない領域に拡大して形成され、絶縁膜16の第1の外部電極12上に形成された開口部を介して第1の外部電極12と接続されている。また、アンテナと導電性バンプ13を接続する際に両面電極チップ10とアンテナとの平行性を保つために、両面電極チップ10の内部回路とアンテナとの接続には寄与しない1個の導電性ダミーバンプ15が、回路領域の外及びディジタル回路からなるロジック回路及びメモリ回路の領域の一部に形成されている。   In FIG. 5, as a second example of the embodiment of the double-sided electrode chip constituting the semiconductor device of the present embodiment, the conductive bump is expanded from the first external electrode to a region that does not overlap the circuit region. 2 shows a double-sided electrode chip in which conductive dummy bumps are formed outside a circuit area and in a part of a logic circuit and memory circuit area including a digital circuit. FIG. 5A shows a plan view of the double-sided electrode chip 10 viewed from the surface of the conductive bump 13, and FIG. 5B shows a cross-sectional view of the E-E 'portion of FIG. 5A. The conductive bump 13 shown in FIG. 5 is formed so as to expand from the first external electrode 12 in the circuit surface 11 to a region that does not overlap the circuit region, and is formed on the first external electrode 12 of the insulating film 16. The first external electrode 12 is connected through the opened opening. Further, in order to maintain the parallelism between the double-sided electrode chip 10 and the antenna when connecting the antenna and the conductive bump 13, one conductive dummy bump that does not contribute to the connection between the internal circuit of the double-sided electrode chip 10 and the antenna. 15 is formed outside the circuit area and in a part of the area of the logic circuit and the memory circuit including the digital circuit.

導電性ダミーバンプ15もアンテナを構成する導体を介して導電性バンプ13と同じ電位になるために、絶縁膜16を介して内部回路の回路面11と電気的な不要結合を生じ得るが、ディジタル信号によって動作するロジック回路及びメモリ回路上であればその影響は小さい。   Since the conductive dummy bump 15 also has the same potential as that of the conductive bump 13 through the conductor constituting the antenna, it may cause unnecessary electrical coupling with the circuit surface 11 of the internal circuit through the insulating film 16. The effect is small if it is on a logic circuit and a memory circuit that operate according to the above.

図5に示した第2の例によれば、まず、導電性バンプ13を拡大することによって、導電性バンプ13とアンテナとの接続面積が増大し、接続抵抗の減少及び接続信頼性の向上が期待できる。また、導電性ダミーバンプ15を拡大することによって、導電性バンプ13と合わせたバンプ面積が増大し、例えばアンテナを構成する2つの導体21,22と、それらに挟み込まれた両面電極チップ10の導電性バンプ13面及び回路面と対向する面の全面に金蒸着等によって形成された第2の外部電極14とを異方導電性接着剤を介して一括して接続する際に、2つの接続面の圧着圧力の差が小さくなるために、良好な接続状態を得ることができる。   According to the second example shown in FIG. 5, first, the conductive bump 13 is enlarged to increase the connection area between the conductive bump 13 and the antenna, thereby reducing the connection resistance and improving the connection reliability. I can expect. Further, by expanding the conductive dummy bumps 15, the bump area combined with the conductive bumps 13 is increased. For example, the two conductors 21 and 22 constituting the antenna and the conductivity of the double-sided electrode chip 10 sandwiched between them are sandwiched between them. When connecting the second external electrode 14 formed by gold vapor deposition or the like over the entire surface of the bump 13 surface and the circuit surface with the anisotropic conductive adhesive, the two connection surfaces Since the difference in pressure-bonding pressure is reduced, a good connection state can be obtained.

図6には、本実施の形態の半導体装置を構成する両面電極チップの実施の形態の第3の例として、導電性バンプを第1の外部電極上から回路領域の外及びディジタル回路からなるロジック回路及びメモリ回路の領域の一部に拡大し、ロの字型に形成した両面電極チップを示す。図6(a)に両面電極チップ10を導電性バンプ13面から見た平面図を、図6(b)には図6(a)のF−F’部の断面図を示す。図6に示す導電性バンプ13は、回路面11内の第1の外部電極12上から回路領域には重ならない領域及びディジタル回路からなるロジック回路及びメモリ回路の領域の一部に拡大して形成され、絶縁膜16の第1の外部電極12上に形成された開口部を介して第1の外部電極12と接続されている。   FIG. 6 shows, as a third example of the embodiment of the double-sided electrode chip constituting the semiconductor device of the present embodiment, a conductive bump formed on the first external electrode from the outside of the circuit area and a logic composed of a digital circuit. A double-sided electrode chip is shown which is enlarged to a part of the area of the circuit and the memory circuit and formed in a square shape. FIG. 6A is a plan view of the double-sided electrode chip 10 as viewed from the surface of the conductive bump 13, and FIG. 6B is a cross-sectional view taken along the line F-F 'of FIG. The conductive bump 13 shown in FIG. 6 is formed on the first external electrode 12 in the circuit surface 11 so as to be expanded to a region that does not overlap the circuit region and a part of the logic circuit and memory circuit region including the digital circuit. The first external electrode 12 is connected through an opening formed on the first external electrode 12 of the insulating film 16.

図6に示した第3の例によれば、導電性バンプ13を両面電極チップ10の周囲に拡大することによって、第2の例で示した構造以上にバンプとアンテナとの接続面積が増大し、接続抵抗の減少及び接続信頼性の向上がより一層期待できる。また、両面電極チップ10とアンテナを接続する際の平行性を保てる点や、例えばアンテナと両面電極チップ10の2つの接続面とを異方導電性接着剤を介して一括して接続する際の圧着圧力の差が小さくできる点においても、良好な接続状態を得ることができる。   According to the third example shown in FIG. 6, by expanding the conductive bump 13 around the double-sided electrode chip 10, the connection area between the bump and the antenna is increased more than the structure shown in the second example. Further, a reduction in connection resistance and an improvement in connection reliability can be expected. In addition, it is possible to maintain parallelism when connecting the double-sided electrode chip 10 and the antenna, for example, when connecting the antenna and the two connection surfaces of the double-sided electrode chip 10 together via an anisotropic conductive adhesive. A good connection state can also be obtained in that the difference in pressure-bonding pressure can be reduced.

図7には、本実施の形態の半導体装置を構成する両面電極チップの実施の形態の第4の例として、導電性バンプを第1の外部電極上から回路領域には重ならない領域に拡大して形成し、アナログ回路領域を含む領域の一部に非導電性ダミーバンプを形成した両面電極チップを示す。図7(a)に両面電極チップ10を導電性バンプ13面から見た平面図を、図7(b)には図7(a)のG−G’部の断面図を示す。図7に示す導電性バンプ13は、回路面内の第1の外部電極12上から回路領域には重ならない領域に拡大して形成され、絶縁膜16の第1の外部電極12上に形成された開口部を介して第1の外部電極12と接続されている。また、アンテナと導電性バンプ13を接続する際に両面電極チップ10とアンテナとの平行性を保つために、非導電性ダミーバンプ17が、回路領域を含む領域の一部に形成されている。   In FIG. 7, as a fourth example of the embodiment of the double-sided electrode chip constituting the semiconductor device of the present embodiment, the conductive bump is expanded from the first external electrode to a region that does not overlap the circuit region. A double-sided electrode chip is shown in which non-conductive dummy bumps are formed in part of a region including an analog circuit region. FIG. 7A is a plan view of the double-sided electrode chip 10 viewed from the surface of the conductive bump 13, and FIG. 7B is a cross-sectional view taken along the line G-G 'in FIG. The conductive bump 13 shown in FIG. 7 is formed so as to expand from the first external electrode 12 in the circuit surface to a region that does not overlap the circuit region, and is formed on the first external electrode 12 of the insulating film 16. The first external electrode 12 is connected through the opening. In order to maintain the parallelism between the double-sided electrode chip 10 and the antenna when the antenna and the conductive bump 13 are connected, the non-conductive dummy bump 17 is formed in a part of the region including the circuit region.

図7に示した第4の例によれば、図5に示した第2の例と同様に、導電性バンプ13を拡大することによって、バンプとアンテナとの接続面積が増大し、接続抵抗の減少及び接続信頼性の向上が期待できる。また、非導電性ダミーバンプ17を両面電極チップ10の回路面に形成すれば、非導電性ダミーバンプ17と両面電極チップ10の内部回路との電気的不要結合を生じることなく、両面電極チップ10とアンテナを接続する際の平行性を保てる点や、例えばアンテナと両面電極チップ10の2つの接続面とを異方導電性接着剤を介して一括して接続する際の圧着圧力の差が小さくできる点においても、良好な接続状態を得ることができる。   According to the fourth example shown in FIG. 7, as in the second example shown in FIG. 5, by expanding the conductive bump 13, the connection area between the bump and the antenna is increased, and the connection resistance is reduced. Reduction and improvement in connection reliability can be expected. Further, if the non-conductive dummy bumps 17 are formed on the circuit surface of the double-sided electrode chip 10, the double-sided electrode chip 10 and the antenna are not generated without causing unnecessary electrical connection between the non-conductive dummy bumps 17 and the internal circuit of the double-sided electrode chip 10. The point that the parallelism when connecting the two can be kept, for example, the difference in pressure bonding pressure when the antenna and the two connection surfaces of the double-sided electrode chip 10 are collectively connected via the anisotropic conductive adhesive can be reduced. In this case, a good connection state can be obtained.

図8には、本実施の形態の半導体装置を構成する両面電極チップの実施の形態の第5の例を構成する両面電極チップを示す。図8(a)に両面電極チップ10を導電性バンプ13面から見た平面図を、図8(b)には図8(a)のH−H’部の断面図を示す。図8(a)に示すように導電性バンプ13は従来の導電性バンプ118(図10)と同様に、第1の外部電極12上からアナログ回路領域を含む両面電極チップ10のほぼ全面に形成されている。一方、図8(b)に示すように、整流回路50、クロック回路51、ロジック回路52及びメモリ回路53の如き回路面11と導電性バンプ13との間に形成された絶縁膜16は、ポリイミド樹脂等をコーティングすることによって15μm以上の厚みで形成されている。   FIG. 8 shows a double-sided electrode chip constituting a fifth example of the embodiment of the double-sided electrode chip constituting the semiconductor device of the present embodiment. FIG. 8A shows a plan view of the double-sided electrode chip 10 viewed from the surface of the conductive bump 13, and FIG. 8B shows a cross-sectional view taken along the line H-H 'in FIG. 8A. As shown in FIG. 8A, the conductive bumps 13 are formed on almost the entire surface of the double-sided electrode chip 10 including the analog circuit area from the first external electrode 12 in the same manner as the conventional conductive bumps 118 (FIG. 10). Has been. On the other hand, as shown in FIG. 8B, the insulating film 16 formed between the circuit surface 11 such as the rectifier circuit 50, the clock circuit 51, the logic circuit 52, and the memory circuit 53 and the conductive bump 13 is polyimide. It is formed with a thickness of 15 μm or more by coating with resin or the like.

図8に示した第5の例によれば、後述の図10に示す従来の構造と同様に、導電性バンプを両面電極チップ10のほぼ全面に形成することによって、バンプとアンテナとの接続面積が増大し、接続抵抗の減少及び接続信頼性の向上が期待でき、かつ両面電極チップ10とアンテナを接続する際の平行性を保てる点や、例えばアンテナと両面電極チップ10の2つの接続面とを異方導電性接着剤を介して一括して接続する際の圧着圧力の差が小さくできる点においても、良好な接続状態を得ることができる。また、内部回路の回路面11と導電性バンプ13との間に介在する絶縁膜を従来構造の1μmから数μmの厚みに比べ、15μm以上と厚くしたことで、両者の間の電気的不要結合を抑制できる。   According to the fifth example shown in FIG. 8, a conductive bump is formed on almost the entire surface of the double-sided electrode chip 10 as in the conventional structure shown in FIG. The connection resistance can be reduced and the connection reliability can be improved, and the parallelism when the double-sided electrode chip 10 and the antenna are connected can be maintained. For example, the two connection surfaces of the antenna and the double-sided electrode chip 10 A good connection state can also be obtained in that the difference in pressure-bonding pressure when the two are connected together via an anisotropic conductive adhesive can be reduced. In addition, the insulating film interposed between the circuit surface 11 of the internal circuit and the conductive bump 13 is increased to 15 μm or more compared to the thickness of 1 μm to several μm of the conventional structure, so that an unnecessary electrical coupling between the two is achieved. Can be suppressed.

前記第1から第5の例において、両面電極チップ10の導電性バンプ13面及び第2の外部電極14面のうちのどちらがアンテナを構成する第1の導体21に接続しても、また、両面電極チップ10が回路面の方向に回転しても半導体装置としての性能に変わりはなく、両面電極チップ10を特定の方向に並べる必要がないため、本実施の形態の構造は大量生産を実現する上で好適である。   In the first to fifth examples, either the surface of the conductive bump 13 or the surface of the second external electrode 14 of the double-sided electrode chip 10 is connected to the first conductor 21 constituting the antenna. Even if the electrode chip 10 rotates in the direction of the circuit surface, the performance as a semiconductor device does not change, and it is not necessary to arrange the double-sided electrode chip 10 in a specific direction, so the structure of the present embodiment realizes mass production. Preferred above.

前記第1から第5の例において、両面電極チップ10とアンテナを構成する第1及び第2の2つの導体21,22との接続部及びアンテナを構成する2つの導体21,22の接続部の少なくとも1つは、導電性接着剤または異方導電性接着剤を介して形成される。前記導電性接着剤は熱硬化性のマトリクス樹脂と、粒状もしくはりん片状もしくは針状の金属片を含有する。また、前記異方導電性接着剤はマトリクス樹脂と、金属粒子もしくは表面に金属層が形成された有機樹脂粒子からなる導電性粒子を含有する。両面電極チップ10とアンテナもしくはアンテナを構成する2つの導体21,22を加熱圧着する際に、マトリクス樹脂40中に含有される金属片もしくは導電性粒子41が各導体21,22に密着した状態で固定されるため、良好な電気的接続を得ることができる。特に、アンテナを構成する2つの導体21,22の間の両面電極チップ10の周囲を充填するのに十分な樹脂量をもつ異方導電性接着剤を用いれば、電気的接続と同時に両面電極チップ10の封止効果が得られ、高い信頼性を実現する上で好適である。   In the first to fifth examples, the connection part between the double-sided electrode chip 10 and the first and second two conductors 21 and 22 constituting the antenna and the connection part between the two conductors 21 and 22 constituting the antenna. At least one is formed via a conductive adhesive or an anisotropic conductive adhesive. The conductive adhesive contains a thermosetting matrix resin and granular, flake-like, or needle-like metal pieces. The anisotropic conductive adhesive contains matrix resin and conductive particles made of metal particles or organic resin particles having a metal layer formed on the surface. When the double-sided electrode chip 10 and the antenna or the two conductors 21 and 22 constituting the antenna are heat-bonded, the metal pieces or conductive particles 41 contained in the matrix resin 40 are in close contact with the conductors 21 and 22. Since it is fixed, a good electrical connection can be obtained. In particular, if an anisotropic conductive adhesive having a sufficient amount of resin to fill the periphery of the double-sided electrode chip 10 between the two conductors 21 and 22 constituting the antenna is used, the double-sided electrode chip simultaneously with the electrical connection. 10 sealing effects are obtained, which is suitable for realizing high reliability.

前記第1から第5の例において、アンテナを構成する第1及び第2の2つの導体21,22のうち、少なくとも励振スリットを形成する第1の導体21はアルミニウムもしくは銅であることが、エッチングや打ち抜き加工による良好なアンテナ回路加工性と低コスト性を実現する上で好ましい。   In the first to fifth examples, of the first and second conductors 21 and 22 constituting the antenna, at least the first conductor 21 forming the excitation slit is made of aluminum or copper. It is preferable for realizing good antenna circuit workability and low cost by punching and punching.

また、アンテナを構成する2つの導体21,22は、金属板単体や、薄い金属層が有機樹脂または紙からなるベース基材に支持されたものでもよい。本実施の形態の半導体装置をRFIDタグ用インレットの形態で使用する際には、導体21,22が有機樹脂または紙からなるベース基材23,24で支持されていることが、アンテナを保護してショート等を防止する点で好ましい。特にポリエチレンテレフタレート(PET)は低コストインレットを実現する上で好適である。   The two conductors 21 and 22 constituting the antenna may be a metal plate alone or a thin metal layer supported on a base substrate made of organic resin or paper. When the semiconductor device of this embodiment is used in the form of an RFID tag inlet, the conductors 21 and 22 are supported by base base materials 23 and 24 made of organic resin or paper to protect the antenna. This is preferable from the viewpoint of preventing short circuit. In particular, polyethylene terephthalate (PET) is suitable for realizing a low-cost inlet.

すなわち、本実施の形態の半導体装置は、整流回路部50、クロック回路部51、ロジック回路部52、メモリ回路部53を含む無線通信用のICチップと送受信アンテナとを有する半導体装置であって、前記両面電極チップ10は半導体素子が形成された回路面11上に形成された第1の外部電極12と、前記第1の外部電極12と前記送受信アンテナとを電気的に接続するために第1の外部電極12上に形成された導電性バンプ13と、前記回路面11と対向する面上に形成された第2の外部電極14と、アンテナを構成しかつ前記第1の外部電極12及び第2の外部電極14に接続される第1の導体21及び第2の導体22とを有し、前記導電性バンプ13は、少なくとも、前記整流回路部50、クロック回路部51を含むアナログ回路部の内、前記導電性バンプ13との間に電気的不要結合が生じ得る領域を選択的に除く領域に形成されていること、もしくは前記回路面11と前記導電性バンプ13との間に形成される絶縁膜16が15μm以上であることを特徴とする半導体装置である。   That is, the semiconductor device of the present embodiment is a semiconductor device having an IC chip for wireless communication including a rectifier circuit unit 50, a clock circuit unit 51, a logic circuit unit 52, and a memory circuit unit 53, and a transmission / reception antenna. The double-sided electrode chip 10 includes a first external electrode 12 formed on a circuit surface 11 on which a semiconductor element is formed, and a first external electrode 12 for electrically connecting the first external electrode 12 and the transmitting / receiving antenna. Conductive bumps 13 formed on the external electrode 12, a second external electrode 14 formed on the surface facing the circuit surface 11, an antenna, and the first external electrode 12 and the first external electrode 12. A first conductor 21 and a second conductor 22 connected to two external electrodes 14, and the conductive bump 13 includes at least an analog circuit including the rectifier circuit unit 50 and a clock circuit unit 51. Of the portion, it is formed in a region that selectively excludes a region where unnecessary electrical coupling may occur with the conductive bump 13, or formed between the circuit surface 11 and the conductive bump 13. The semiconductor device is characterized in that the insulating film 16 is 15 μm or more.

図1から図8を用いて説明したように、両面電極チップ10がアンテナを構成する2つの導体21,22に挟み込まれた構造を持ち、両面電極チップ10の回路面上に形成された導電性バンプ13と内部回路の回路面11との間の電気的不要結合を抑制することによって、安価で生産性に優れ、かつ良好な通信特性を持つRFIDタグ用インレットが実現できる。   As described with reference to FIGS. 1 to 8, the double-sided electrode chip 10 has a structure in which the two-sided electrode chip 10 is sandwiched between the two conductors 21 and 22 and is formed on the circuit surface of the double-sided electrode chip 10. By suppressing unnecessary electrical coupling between the bumps 13 and the circuit surface 11 of the internal circuit, an RFID tag inlet having low cost, excellent productivity, and good communication characteristics can be realized.

以下、本発明の好適な実施例について図面を用いてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to these embodiments.

<実施例1>
実施例1を図4に示す両面電極チップのバンプ配置図及び図9に示す工程図を用いて説明する。
<Example 1>
Example 1 will be described with reference to a bump arrangement diagram of a double-sided electrode chip shown in FIG. 4 and a process diagram shown in FIG.

まず、図4に示すように、整流回路50、クロック回路51、ロジック回路52、メモリ回路53、回路面内の外部電極12等を含む縦横各480μmの両面電極チップ10の左上の外部電極12が形成された回路面上の領域に金による縦横各65μmの導電性バンプ13と、回路が形成されていない領域に金による縦横各65μmの3つの導電性ダミーバンプ15を両面電極チップの4隅に形成した。各々のバンプの高さは15μmであり、めっきにて形成した。(図9(a))
次に、アルミニウム箔による第1の導体21とポリエチレンテレフタレート基材23を貼り合わせた基材を用意し、塩化鉄溶液を用いて所定の寸法に励振スリットをエッチング加工した第1の回路層を作製した。ポリエチレンテレフタレート基材23に支持された第1の導体は、アンテナを構成する。(図9(b))
次に、第1の導体21の両面電極チップ10を実装する所定の位置に、マトリクス樹脂40中に導電性粒子41を含有する異方導電性接着フィルム(AC−2056T−45、日立化成工業(株)製)を仮接着した。(図9(c))
次に、第1の導体21上の異方導電性接着フィルム上の所定の位置に両面電極チップ10を仮固定した。(図9(d))
次に、アルミニウム箔による第2の導体22とポリエチレンテレフタレート基材24を貼り合わせた基材による第2の回路層のアルミニウム箔面の所定の位置にマトリクス樹脂40中に導電性粒子41を含有する異方導電性接着フィルム(AC−2056T−45、日立化成工業(株)製)を仮接着した、アンテナを構成する第2の導体21を用意し、異方導電性フィルム面が両面電極チップ10と対向する向きで重ね、さらに第2の導体22の上から両面電極チップ10の厚みに等しい突起を形成した圧着ヘッド60を所定の位置に合わせた。(図9(e))
次に、圧着ヘッド90を降下し、温度180℃、荷重2Nの条件で20秒間圧着し、図8(f)に示す構造を得た。
First, as shown in FIG. 4, the upper left external electrode 12 of the double-sided electrode chip 10 of 480 μm in length and width including the rectifier circuit 50, the clock circuit 51, the logic circuit 52, the memory circuit 53, the external electrodes 12 in the circuit plane, and the like is provided. Conductive bumps 13 of 65 μm each in vertical and horizontal directions are formed in the area on the formed circuit surface, and three conductive dummy bumps 15 of 65 μm in vertical and horizontal directions are formed in the area where the circuit is not formed at the four corners of the double-sided electrode chip. did. Each bump had a height of 15 μm and was formed by plating. (Fig. 9 (a))
Next, the base material which bonded the 1st conductor 21 and the polyethylene terephthalate base material 23 by aluminum foil is prepared, and the 1st circuit layer which etched the excitation slit to the predetermined dimension using the iron chloride solution is produced. did. The first conductor supported by the polyethylene terephthalate base material 23 constitutes an antenna. (Fig. 9 (b))
Next, an anisotropic conductive adhesive film (AC-2056T-45, Hitachi Chemical Co., Ltd.) containing conductive particles 41 in the matrix resin 40 at a predetermined position where the double-sided electrode chip 10 of the first conductor 21 is mounted. Co., Ltd.) was temporarily bonded. (Fig. 9 (c))
Next, the double-sided electrode chip 10 was temporarily fixed at a predetermined position on the anisotropic conductive adhesive film on the first conductor 21. (Fig. 9 (d))
Next, the conductive particles 41 are contained in the matrix resin 40 at predetermined positions on the aluminum foil surface of the second circuit layer made of the base material obtained by bonding the second conductor 22 made of aluminum foil and the polyethylene terephthalate base material 24 together. A second conductor 21 constituting an antenna is prepared by temporarily adhering an anisotropic conductive adhesive film (AC-2056T-45, manufactured by Hitachi Chemical Co., Ltd.), and the anisotropic conductive film surface is a double-sided electrode chip 10. The crimping head 60 on which the protrusions equal to the thickness of the double-sided electrode chip 10 were formed from above the second conductor 22 was aligned at a predetermined position. (Fig. 9 (e))
Next, the pressure-bonding head 90 was lowered and pressure-bonded for 20 seconds under the conditions of a temperature of 180 ° C. and a load of 2 N to obtain the structure shown in FIG.

以上の工程にて得たRFIDタグ用インレットを、RFIDタグリーダ(MRJ300、出力300mW、日立国際電気(株)製)とRFIDタグリーダ用アンテナ(円形1パッチ直線偏波アンテナ、日立国際電気(株)製)を用いて通信距離を測定したところ、260mmの最大通信距離を得た。   The RFID tag inlet obtained through the above steps is divided into an RFID tag reader (MRJ300, output 300 mW, manufactured by Hitachi Kokusai Electric) and an RFID tag reader antenna (circular one-patch linearly polarized antenna, manufactured by Hitachi Kokusai Electric). ) Was used to measure the communication distance, and a maximum communication distance of 260 mm was obtained.

<実施例2>
実施例2を図5に示す両面電極チップのバンプ配置図及び図9に示す工程図を用いて説明する。
<Example 2>
Example 2 will be described with reference to a bump arrangement diagram of a double-sided electrode chip shown in FIG. 5 and a process diagram shown in FIG.

まず、図5に示すように、整流回路50、クロック回路51、ロジック回路52、メモリ回路53、回路面内の外部電極12等を含む縦横各480μmの両面電極チップ10の上部の外部電極12が形成された領域及び回路が形成されていない領域に金による縦65μm、横400μmの導電性バンプ13と、両面電極チップ10下部の回路が形成されていない領域とロジック回路及びメモリ回路が形成された領域の一部の縦150μm、横400μmの範囲に金による凹型の導電性ダミーバンプ15を形成した。各々のバンプの高さは15μmであり、めっきにて形成した。(図9(a))
以下、図9に従い、圧着条件を温度180℃、荷重3.5N、圧着時間20秒とした他は第1の実施例と同じ工程でRFIDタグ用インレットを作製した。
First, as shown in FIG. 5, the external electrode 12 on the upper side of the double-sided electrode chip 10 of 480 μm in length and width including the rectifier circuit 50, the clock circuit 51, the logic circuit 52, the memory circuit 53, the external electrode 12 in the circuit plane, and the like. In the formed region and the region where the circuit is not formed, conductive bumps 13 made of gold having a length of 65 μm and width of 400 μm, a region where the circuit under the double-sided electrode chip 10 is not formed, a logic circuit and a memory circuit were formed. A concave conductive dummy bump 15 made of gold was formed in a part of the region having a length of 150 μm and a width of 400 μm. Each bump had a height of 15 μm and was formed by plating. (Fig. 9 (a))
Hereinafter, according to FIG. 9, an RFID tag inlet was manufactured in the same process as in the first embodiment except that the pressure bonding conditions were a temperature of 180 ° C., a load of 3.5 N, and a pressure bonding time of 20 seconds.

以上の工程にて得たインレットを、実施例1と同じリーダ及びアンテナを用いて通信距離を測定したところ、255mmの最大通信距離を得た。   When the communication distance of the inlet obtained in the above steps was measured using the same reader and antenna as in Example 1, a maximum communication distance of 255 mm was obtained.

<実施例3>
実施例3を図6に示す両面電極チップのバンプ配置図及び図9に示す工程図を用いて説明する。
<Example 3>
Example 3 will be described with reference to a bump arrangement diagram of a double-sided electrode chip shown in FIG. 6 and a process diagram shown in FIG.

まず、図6に示すように、整流回路50、クロック回路51、ロジック回路52、メモリ回路53、回路面内の外部電極12等を含む縦横各480μmの両面電極チップ10の上部の外部電極12が形成された領域及び回路が形成されていない領域とロジック回路及びメモリ回路が形成された領域の一部の縦420μm、横400μmの範囲に金によるロの字型の導電性バンプ13を形成した。バンプの高さは15μmであり、めっきにて形成した。(図9(a))
以下、図9に従い、圧着条件を温度180℃、荷重4.5N、圧着時間20秒とした他は第1の実施例と同じ工程でRFIDタグ用インレットを作製した。
First, as shown in FIG. 6, the external electrodes 12 on the upper side of the double-sided electrode chip 10 of 480 μm in length and width including the rectifier circuit 50, the clock circuit 51, the logic circuit 52, the memory circuit 53, the external electrodes 12 in the circuit surface, and the like. Gold-shaped conductive bumps 13 made of gold were formed in a region of 420 μm in length and 400 μm in width in the formed region, the region where the circuit was not formed, and the region where the logic circuit and the memory circuit were formed. The height of the bump was 15 μm and was formed by plating. (Fig. 9 (a))
Hereinafter, according to FIG. 9, an RFID tag inlet was manufactured in the same process as in the first embodiment except that the pressure bonding conditions were a temperature of 180 ° C., a load of 4.5 N, and a pressure bonding time of 20 seconds.

以上の工程にて得たインレットを、実施例1と同じリーダ及びアンテナを用いて通信距離を測定したところ、255mmの最大通信距離を得た。   When the communication distance of the inlet obtained in the above steps was measured using the same reader and antenna as in Example 1, a maximum communication distance of 255 mm was obtained.

<実施例4>
実施例4を図7に示す両面電極チップのバンプ配置図及び図9に示す工程図を用いて説明する。
<Example 4>
Example 4 will be described with reference to a bump arrangement diagram of a double-sided electrode chip shown in FIG. 7 and a process diagram shown in FIG.

まず、図7に示すように、整流回路50、クロック回路51、ロジック回路52、メモリ回路53、回路面内の外部電極等を含む縦横各480μmの両面電極チップ10の上部の外部電極12が形成された領域及び回路が形成されていない領域に金による縦65μm、横400μmの導電性バンプ13を形成した。バンプの高さは15μmであり、めっきにて形成した。   First, as shown in FIG. 7, the external electrode 12 on the upper side of the double-sided electrode chip 10 of 480 μm in length and width including the rectifier circuit 50, the clock circuit 51, the logic circuit 52, the memory circuit 53, the external electrodes in the circuit surface, and the like is formed. A conductive bump 13 of 65 μm in length and 400 μm in width was formed in the formed region and the region where no circuit was formed. The height of the bump was 15 μm and was formed by plating.

次に、チップ下部の各回路が形成された領域を含む縦300μm、横400μmの範囲に球状の二酸化珪素フィラーを含有したエポキシ樹脂をディスペンサを用いてポッティングし、続いて150℃、1時間の条件で硬化し、非導電性ダミーバンプ17を形成した。非導電性ダミーバンプ17の最大高さは20μmであった。(図9(a))
以下、図9に従い、圧着条件を温度180℃、荷重4.5N、圧着時間20秒とした他は実施例1と同じ工程でRFIDタグ用インレットを作製した。
Next, an epoxy resin containing a spherical silicon dioxide filler in the range of 300 μm in length and 400 μm in width including the area where each circuit is formed at the bottom of the chip is potted using a dispenser, followed by conditions of 150 ° C. for 1 hour. And a non-conductive dummy bump 17 was formed. The maximum height of the non-conductive dummy bump 17 was 20 μm. (Fig. 9 (a))
Hereinafter, according to FIG. 9, an RFID tag inlet was manufactured in the same process as in Example 1 except that the pressure bonding conditions were a temperature of 180 ° C., a load of 4.5 N, and a pressure bonding time of 20 seconds.

以上の工程にて得たインレットを、第1の実施例と同じリーダ及びアンテナを用いて通信距離を測定したところ、260mmの最大通信距離を得た。   When the communication distance of the inlet obtained in the above steps was measured using the same reader and antenna as in the first example, a maximum communication distance of 260 mm was obtained.

<比較例>
比較例を図10に示す両面電極チップのバンプ配置図及び図9に示す工程図を用いて説明する。
<Comparative example>
A comparative example will be described with reference to a bump arrangement diagram of a double-sided electrode chip shown in FIG. 10 and a process diagram shown in FIG.

まず、図10に示すように、整流回路150、クロック回路151、ロジック回路152、メモリ回路153、回路面内の外部電極等を含む縦横各480μmの両面電極チップ110の上部の外部電極112が形成された領域及び各回路が形成された領域を含む縦横各400μmの範囲に金による導電性バンプ113を形成した。バンプの高さは15μmであり、めっきにて形成した。(図9(a))
以下、図9に従い、圧着条件を温度180℃、荷重4.5N、圧着時間20秒とした他は第1の実施例と同じ工程でRFIDタグ用インレットを作製した。
First, as shown in FIG. 10, the external electrode 112 on the upper side of the double-sided electrode chip 110 of 480 μm in length and width including the rectifier circuit 150, the clock circuit 151, the logic circuit 152, the memory circuit 153, the external electrodes in the circuit surface, and the like is formed. The conductive bumps 113 made of gold were formed in a range of 400 μm each in length and width including the formed region and the region where each circuit was formed. The height of the bump was 15 μm and was formed by plating. (Fig. 9 (a))
Hereinafter, according to FIG. 9, an RFID tag inlet was manufactured in the same process as in the first embodiment except that the pressure bonding conditions were a temperature of 180 ° C., a load of 4.5 N, and a pressure bonding time of 20 seconds.

以上の工程にて得たインレットを、実施例1と同じリーダ及びアンテナを用いて通信距離を測定したところ、200mmの最大通信距離を得た。   When the communication distance of the inlet obtained in the above steps was measured using the same reader and antenna as in Example 1, a maximum communication distance of 200 mm was obtained.

第1から第4の実施の形態及び比較例の結果を表1にまとめて示す。

Figure 0004626192
The results of the first to fourth embodiments and the comparative example are summarized in Table 1.
Figure 0004626192

本実施の形態の半導体装置の構造を示す平面図である。It is a top view which shows the structure of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device of this Embodiment. 本実施の形態の半導体装置の回路構成例を示すブロック図である。It is a block diagram which shows the circuit structural example of the semiconductor device of this Embodiment. 本実施の形態の第1の例の両面電極チップのバンプ配置を示す図である。It is a figure which shows bump arrangement | positioning of the double-sided electrode chip | tip of the 1st example of this Embodiment. 本実施の形態の第2の例の両面電極チップのバンプ配置を示す図である。It is a figure which shows bump arrangement | positioning of the double-sided electrode chip | tip of the 2nd example of this Embodiment. 本実施の形態の第3の例の両面電極チップのバンプ配置を示す図である。It is a figure which shows bump arrangement | positioning of the double-sided electrode chip | tip of the 3rd example of this Embodiment. 本実施の形態の第4の例の両面電極チップのバンプ配置を示す図である。It is a figure which shows bump arrangement | positioning of the double-sided electrode chip | tip of the 4th example of this Embodiment. 本実施の形態の第5の例の両面電極チップのバンプ配置を示す図である。FIG. 10 is a diagram showing a bump arrangement of a double-sided electrode chip of a fifth example of the present embodiment. 本実施の形態の半導体装置の製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the semiconductor device of this Embodiment. 従来の両面電極チップのバンプ配置を示す図である。It is a figure which shows bump arrangement | positioning of the conventional double-sided electrode chip.

符号の説明Explanation of symbols

10:両面電極チップ
11:両面電極チップの内部回路
12:第1の外部電極
13:導電性バンプ
14:第2の外部電極
15:導電性ダミーバンプ
16:絶縁膜
17:非導電性ダミーバンプ
18:導電性バンプ
20:アンテナ
21:アンテナを構成する第1の導体
22:アンテナを構成する第2の導体
23:第1の導体を支持するベース基材
24:第2の導体を支持するベース基材
25:第1の導体に形成された励振スリット
40:異方導電性接着剤
41:導電性粒子
50:整流回路
51:クロック回路
52:ロジック回路
53:メモリ回路
60:圧着ヘッド
10: Double-sided electrode chip 11: Internal circuit of double-sided electrode chip 12: First external electrode 13: Conductive bump 14: Second external electrode 15: Conductive dummy bump 16: Insulating film 17: Nonconductive dummy bump 18: Conductive Bump 20: Antenna 21: First conductor 22 constituting the antenna 22: Second conductor 23 constituting the antenna 23: Base substrate 24 supporting the first conductor 24: Base substrate 25 supporting the second conductor : Exciting slit 40 formed in the first conductor: Anisotropic conductive adhesive 41: Conductive particles 50: Rectifier circuit 51: Clock circuit 52: Logic circuit 53: Memory circuit 60: Crimp head

Claims (6)

整流回路部、クロック回路部、ロジック回路部及びメモリ回路部を含む回路領域を有する無線通信用のICチップと送受信アンテナとを有する半導体装置において、
前記ICチップは、半導体素子が形成された回路面上に形成された第1の外部電極と、前記第1の外部電極と前記送受信アンテナとを電気的に接続するために前記第1の外部電極上に形成された導電性バンプと、前記回路面と対向する面上に形成された第2の外部電極と、前記送受信アンテナを構成しかつ前記第1の外部電極及び第2の外部電極にそれぞれ接続される第1の導体及び第2の導体とを有し、
前記導電性バンプは、少なくとも、前記整流回路部及びクロック回路部を含むアナログ回路部の内、前記導電性バンプとの間に電気的不要結合が生じ得る領域を選択的に除き、かつ前記回路領域の外及び前記ロジック回路及びメモリ回路を含むディジタル回路部の領域の一部に拡大して、前記アナログ回路部の周囲に形成されていること
を特徴とする半導体装置。
In a semiconductor device having an IC chip for wireless communication having a circuit region including a rectifier circuit portion, a clock circuit portion, a logic circuit portion, and a memory circuit portion, and a transmission / reception antenna,
The IC chip includes a first external electrode formed on a circuit surface on which a semiconductor element is formed, and the first external electrode for electrically connecting the first external electrode and the transmitting / receiving antenna. A conductive bump formed thereon, a second external electrode formed on a surface opposite to the circuit surface, and the transmission / reception antenna and the first external electrode and the second external electrode, respectively. A first conductor and a second conductor to be connected;
The conductive bump selectively removes at least a region where an unnecessary electrical coupling may occur between the conductive bump and an analog circuit portion including the rectifier circuit portion and the clock circuit portion, and the circuit region. And a part of a digital circuit portion including the logic circuit portion and the memory circuit portion . The semiconductor device is formed around the analog circuit portion.
整流回路部、クロック回路部、ロジック回路部及びメモリ回路部を含む回路領域を有する無線通信用のICチップと送受信アンテナとを有する半導体装置において、
前記ICチップは、半導体素子が形成された回路面上に形成された第1の外部電極と、前記第1の外部電極と前記送受信アンテナとを電気的に接続するために前記第1の外部電極上に形成された導電性バンプと、前記回路面上に形成された電気的接続に寄与しない少なくとも1個以上の導電性ダミーバンプと、前記回路面と対向する面上に形成された第2の外部電極と、前記送受信アンテナを構成しかつ前記第1の外部電極及び第2の外部電極にそれぞれ接続される第1の導体及び第2の導体とを有し、
前記導電性バンプ及び前記導電性ダミーバンプは、少なくとも、前記整流回路部及びクロック回路を含むアナログ回路部の内、前記導電性バンプ及び前記導電性ダミーバンプとの間に電気的不要結合が生じ得る領域を選択的に除く領域に形成され、かつ前記回路領域を挟んで対向するように、前記回路領域の外及び前記ロジック回路及びメモリ回路を含むディジタル回路部の領域の一部に拡大して形成されていること
を特徴とする半導体装置。
In a semiconductor device having an IC chip for wireless communication having a circuit region including a rectifier circuit portion, a clock circuit portion, a logic circuit portion, and a memory circuit portion, and a transmission / reception antenna,
The IC chip includes a first external electrode formed on a circuit surface on which a semiconductor element is formed, and the first external electrode for electrically connecting the first external electrode and the transmitting / receiving antenna. A conductive bump formed thereon, at least one conductive dummy bump formed on the circuit surface that does not contribute to electrical connection, and a second external formed on the surface facing the circuit surface An electrode, and a first conductor and a second conductor constituting the transmitting / receiving antenna and connected to the first external electrode and the second external electrode, respectively,
The conductive bump and the conductive dummy bump have at least a region where an unnecessary electrical coupling may occur between the conductive bump and the conductive dummy bump in the analog circuit unit including the rectifier circuit unit and the clock circuit. It is formed in an area that is selectively removed, and is formed to be enlarged outside the circuit area and part of the digital circuit area including the logic circuit section and the memory circuit section so as to face each other across the circuit area. A semiconductor device characterized by that.
整流回路部、クロック回路部、ロジック回路部及びメモリ回路部を含む回路領域を有する無線通信用のICチップと送受信アンテナとを有する半導体装置において、
前記ICチップは、半導体素子が形成された回路面上に形成された第1の外部電極と、前記第1の外部電極と前記送受信アンテナとを電気的に接続するために前記第1の外部電極上に形成された導電性バンプと、前記回路面上に形成された少なくとも1個以上の非導電性ダミーバンプと、前記回路面と対向する面上に形成された第2の外部電極と、前記送受信アンテナを構成しかつ前記第1の外部電極及び第2の外部電極にそれぞれ接続される第1の導体及び第2の導体とを有し、
前記導電性バンプは、少なくとも、前記整流回路部及びクロック回路部を含むアナログ回路部の内、前記導電性バンプとの間に電気的不要結合が生じ得る領域を選択的に除く領域に形成され、かつ前記非導電性ダミーバンプは、前記回路領域の外及び前記ロジック回路及びメモリ回路を含むディジタル回路部の領域及び前記アナログ回路部を含む領域に形成されていること
を特徴とする半導体装置。
In a semiconductor device having an IC chip for wireless communication having a circuit region including a rectifier circuit portion, a clock circuit portion, a logic circuit portion, and a memory circuit portion, and a transmission / reception antenna,
The IC chip includes a first external electrode formed on a circuit surface on which a semiconductor element is formed, and the first external electrode for electrically connecting the first external electrode and the transmitting / receiving antenna. A conductive bump formed thereon, at least one non-conductive dummy bump formed on the circuit surface, a second external electrode formed on a surface facing the circuit surface, and the transmission / reception A first conductor and a second conductor constituting an antenna and connected to the first external electrode and the second external electrode, respectively;
The conductive bump is formed at least in an analog circuit part including the rectifier circuit part and the clock circuit part, in a region that selectively excludes a region where unnecessary electrical coupling may occur with the conductive bump, The non-conductive dummy bump is formed outside the circuit area, in a digital circuit area including the logic circuit section and the memory circuit section , and in an area including the analog circuit section.
請求項1から3のいずれかに記載の半導体装置において、前記導電性バンプが金で構成され、その高さが5μmから40μmの範囲にあることを特徴とする半導体装置。   4. The semiconductor device according to claim 1, wherein the conductive bump is made of gold and has a height in a range of 5 μm to 40 μm. 請求項1から4のいずれかに記載の半導体装置において、前記導電性バンプと前記送受信アンテナを構成する前記第1もしくは第2の導体との電気的接続と、前記第2の外部電極と前記送受信アンテナを構成する前記第2もしくは第1の導体との電気的接続と、前記送受信アンテナを構成する前記第1の導体と前記第2の導体との電気的接続の少なくとも1つが、導電性接着剤または異方導電性接着剤を介して行われることを特徴とする半導体装置。   5. The semiconductor device according to claim 1, wherein electrical connection between the conductive bump and the first or second conductor constituting the transmission / reception antenna, and the second external electrode and the transmission / reception are performed. At least one of the electrical connection with the second or first conductor constituting the antenna and the electrical connection between the first conductor and the second conductor constituting the transmitting / receiving antenna is a conductive adhesive. Alternatively, the semiconductor device is performed through an anisotropic conductive adhesive. 請求項1から5のいずれかに記載の半導体装置において、前記第2の外部電極は前記ICチップのSiベース基板の加工面で構成されることを特徴とする半導体装置。   6. The semiconductor device according to claim 1, wherein the second external electrode is formed by a processed surface of a Si base substrate of the IC chip.
JP2004167389A 2004-06-04 2004-06-04 Semiconductor device Expired - Fee Related JP4626192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167389A JP4626192B2 (en) 2004-06-04 2004-06-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167389A JP4626192B2 (en) 2004-06-04 2004-06-04 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2005347635A JP2005347635A (en) 2005-12-15
JP4626192B2 true JP4626192B2 (en) 2011-02-02

Family

ID=35499695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167389A Expired - Fee Related JP4626192B2 (en) 2004-06-04 2004-06-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4626192B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007213463A (en) * 2006-02-13 2007-08-23 Dainippon Printing Co Ltd Noncontact data carrier and wiring board for noncontact data carrier
JP5103127B2 (en) 2007-10-05 2012-12-19 株式会社日立製作所 RFID tag
JP5776780B2 (en) 2011-09-30 2015-09-09 日立化成株式会社 RFID tag

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068321A (en) * 1998-08-26 2000-03-03 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JP2000099673A (en) * 1998-09-17 2000-04-07 Hitachi Maxell Ltd Semiconductor device
JP2002312747A (en) * 2001-04-16 2002-10-25 Oji Paper Co Ltd Ic chip mounting body and manufacturing method therefor
JP2003209181A (en) * 2000-06-21 2003-07-25 Hitachi Maxell Ltd Method for manufacturing semiconductor chip
JP2004086644A (en) * 2002-08-28 2004-03-18 Renesas Technology Corp Inlet for electronic tag and its manufacturing method
JP2004127230A (en) * 2002-08-08 2004-04-22 Renesas Technology Corp Semiconductor device, method of manufacturing semiconductor device, method for electronic commerce and transponder reader

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068321A (en) * 1998-08-26 2000-03-03 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JP2000099673A (en) * 1998-09-17 2000-04-07 Hitachi Maxell Ltd Semiconductor device
JP2003209181A (en) * 2000-06-21 2003-07-25 Hitachi Maxell Ltd Method for manufacturing semiconductor chip
JP2002312747A (en) * 2001-04-16 2002-10-25 Oji Paper Co Ltd Ic chip mounting body and manufacturing method therefor
JP2004127230A (en) * 2002-08-08 2004-04-22 Renesas Technology Corp Semiconductor device, method of manufacturing semiconductor device, method for electronic commerce and transponder reader
JP2004086644A (en) * 2002-08-28 2004-03-18 Renesas Technology Corp Inlet for electronic tag and its manufacturing method

Also Published As

Publication number Publication date
JP2005347635A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP6414614B2 (en) Article
US6518885B1 (en) Ultra-thin outline package for integrated circuit
EP3490067B1 (en) Substrate for rfid tags, rfid tag and rfid system
US6422473B1 (en) Circuit chip mounted card and circuit chip module
US11024936B1 (en) RFID tag assembly methods
US8035522B2 (en) RFID tag
JPWO2007034764A1 (en) Non-contact information storage medium and manufacturing method thereof
KR100879416B1 (en) Electronic device
JP5103127B2 (en) RFID tag
JP4626192B2 (en) Semiconductor device
US8424771B2 (en) RFID tag
JP2006195796A (en) Ic tag and ic tag inlet
EP3734514B1 (en) Substrate for rfid tags, rfid tag and rfid system
JP5103526B2 (en) IC tag device
JP2009003829A (en) Radio tag
JP4449477B2 (en) Electronic inlet
US20120193804A1 (en) Ohmic connection using widened connection zones in a portable electronic object
JP2007233885A (en) Inlet for rfid and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees