JP4626153B2 - 光導波路回路の製造方法 - Google Patents

光導波路回路の製造方法 Download PDF

Info

Publication number
JP4626153B2
JP4626153B2 JP2004044507A JP2004044507A JP4626153B2 JP 4626153 B2 JP4626153 B2 JP 4626153B2 JP 2004044507 A JP2004044507 A JP 2004044507A JP 2004044507 A JP2004044507 A JP 2004044507A JP 4626153 B2 JP4626153 B2 JP 4626153B2
Authority
JP
Japan
Prior art keywords
refractive index
core
waveguide
optical waveguide
low refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004044507A
Other languages
English (en)
Other versions
JP2005234295A (ja
Inventor
毅 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2004044507A priority Critical patent/JP4626153B2/ja
Publication of JP2005234295A publication Critical patent/JP2005234295A/ja
Application granted granted Critical
Publication of JP4626153B2 publication Critical patent/JP4626153B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、光通信などに用いられる光導波路回路、特に分岐部を持つ光導波路回路とその製造方法に関する。
平面光波回路(Planar Lightwave Circuit:PLC)は、近年の光通信ネットワークシステムを支えるキーデバイスとして盛んに用いられている(特許文献1,2,3参照)。特に、石英系の光導波路を用いた光合分波,分岐などの受動素子デバイスは、基幹系大容量光通信からアクセス系ネットワークにいたるまで、システムを低コストかつ高機能で実用化する上で必要不可欠となってきている。
例えばPLCの一例として、図7にアレイ導波路格子(Arrayed Waveguide Grating:AWG)型光合分波器を示す。図7(a)はAWG素子の構成を示す平面図であり、図7(b)は、図7(a)の中の丸で囲んだ領域を拡大した部分構成図である。図7に示す素子は、波長多重された光信号を波長毎に分波し、また、複数の波長の光信号を一本のファイバに合波する機能を有している。
以下、図7に示す素子構造について、分波の例を用いて簡単に説明する。図7に示す素子は、シリコンなどから構成された基板の上に下クラッド層を備え、下クラッド層の上に形成されたコアにより、入力導波路701,入力側スラブ導波路702,アレイ導波路703,出力側スラブ導波路704,出力導波路705が構成されている。
波長多重された光信号は入力導波路701に入射され、入力側スラブ導波路702で回折によって広がり、アレイ導波路703に入射される。アレイ導波路703には、隣接する導波路の間に光路長差を設けてあるため、アレイ導波路703を伝搬する等位相面の傾きは、異なる導波路を導波する波長毎に異なる。アレイ導波路703から出力側スラブ導波路704に出射された光信号は、上記等位相面の傾きに応じて各出力チャンネル毎に集光されて波長分波される。
上記のようなAWG素子の特性上の要求として、素子の低損失化が挙げられる。AWG素子の主要な損失要因の一つに、アレイ導波路とスラブ導波路の結合部、すなわち導波路分岐部における、放射損失がある。分岐部での放射損失は、スラブ導波路とアレイ導波路の接続部において、アレイ導波路間から漏れ出た放射光によるものが主である。
理想的には、スラブ導波路とアレイ導波路の接続部において、アレイ導波路のコア間隔を0とすることが望ましい。しかしながら、作製技術の限界により、接続部分におけるコア間に一定の間隔gを設けなければならない。このため、スラブ導波路領域と分岐される導波路とで、電界分布に差異が生ずるモードミスマッチにより、上述した放射損失が発生する。またコア間隔を狭くすると、上クラッドの埋め込みが難しくなり、コア間のボイドと呼ばれる空洞部が発生してしまう問題がある。ボイドが発生すると損失等の光学特性は著しく劣化する。
上述したコア間を狭くしようしたときの問題を改善するため、コア間隔を狭めずにスラブ導波路とアレイ導波路の接続部での放射損失を低減する技術が提案されている(特許文献4参照)。この技術では、分岐導波路間に分岐部から離れるにしたがい厚さが薄くなるように形成された埋設層を設け、スラブ導波路とアレイ導波路の接続部分での電界分布の差異を小さくし、放射損を低減しようとしている。
また、スラブ導波路内部の一部の屈折率を変化させ、レンズ効果に基づいてスラブ導波路と分岐導波路間の電界分布に差異を低減することにより放射損を低減する技術も提案されている(特許文献5,6参照)。
なお、出願人は、本明細書に記載した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を出願時までに発見するには至らなかった。
特開2003−004958号公報 特開2003−185858号公報 特開2003−202436号公報 特開2000−147283号公報 特開2003−014962号公報 特開2002−062444号公報
しかしながら、上述した従来の放射損を低減する技術では、まず、埋設層を設ける方法では、作製が難しく良品歩留まりを高くしにくいという問題があった。
また、レンズ効果に基づいてスラブ導波路と分岐導波路間の電界分布に差異を低減する技術では、レンズ効果の設計が難しく、また、レーザ誘起という汎用的でない方法で形成するため、製造工程が増加し、使用可能な材料が限定されるなど、製造しにくいという問題があった。
本発明は、以上のような問題点を解消するためになされたものであり、複雑な製造技術を用いることなく容易に製造できる状態で、スラブ導波路と分岐導波路(アレイ導波路)との接続部分での放射損失を低減できるようにすることを目的とする。
本発明に係る光導波路回路は、基板の上に形成されたクラッド層と、このクラッド層に覆われたコアとから構成された導波路を備え、導波路は、複数の異なる方向に分岐する分岐点を有し、複数の異なる方向に分岐する導波路の分岐点において、導波路を構成するコアの分岐する直前の領域に配置され、屈折率がコアの屈折率未満でクラッドの屈折率以上の低屈折率部を備えるようにしたものである。
この光導波路回路では、分岐する前の導波路の低屈折部が配置された領域では、伝搬する光の電界分布が、低屈折率部がない場合に比べてより導波路の分岐された側の電界分布に近づく。
また、本発明に係る他の光導波路回路は、基板の上に形成されたクラッド層と、このクラッド層に覆われたコアとから構成された導波路から構成され、一定の光路長差を有する複数の導波路からなるアレイ導波路及びこのアレイ導波路の光入出力端に接続された2つのスラブ導波路を備えたアレイ導波路格子回路を含む光導波路回路において、アレイ導波路とスラブ導波路とが接続する分岐点において、スラブ導波路を構成するコアの、アレイ導波路を構成する各コアの延長線の間に各々配置され、屈折率がコアの屈折率未満でクラッドの屈折率以上の複数の低屈折率部を備えるようにしたものである。
この光導波路回路では、スラブ導波路の低屈折部が配置された領域では、伝搬する光の電界分布が、低屈折率部がない場合に比べてよりアレイ導波路の側の電界分布に近づく。
上記光導波路回路において、低屈折率部は、分岐点より離れるほど狭い幅に形成されていてもよく、また、低屈折率部は、光の伝搬方向に複数に分割されているようにしてもよい。これらの構成とすることで、電界分布の差が徐々に低減する。
また、上記光導波路回路において、低屈折率部は、コアを構成する複数の元素から構成され、低屈折率部を構成するいずれかの元素の濃度は、コアより低いものとなっていればよい。この場合、コアは、少なくとも珪素,酸素から構成され、かつ水素又は窒素の少なくとも一方を含み、低屈折率部は、水素又は窒素の少なくとも一方の濃度が、コアより低いものとなっていればよい。
また、本発明に係る光導波路回路の製造方法は、基板の上に形成されたクラッド層と、このクラッド層に覆われて水素を含有するSiONから構成されたコアとから構成された導波路を備え、導波路は、複数の異なる方向に分岐する分岐点を有する光導波路回路の製造方法において、複数の異なる方向に分岐する導波路の分岐点において、導波路を構成するコアの分岐する直前の領域に、コアの構成元素の状態を変更することで、屈折率がコアの屈折率未満でクラッドの屈折率以上の低屈折率部を形成する工程を備えるようにしたものである。
上記光導波路回路の製造方法において、コアを構成するいずれかの元素の濃度を低減することで、コアの構成元素の状態を変更する。加えて、コアを構成するいずれかの元素の濃度の低減は、コアを加熱して外部拡散させることで行う。また、コアの加熱は、酸化ガスが含まれた雰囲気で行う。
上記光導波路回路の製造方法において、低屈折率部とするコアの領域が開放した開口部を備えたマスクをコアの上に形成し、マスクが形成されている状態で加熱を行い、開口部より外部拡散させることで、元素の濃度の低減を行うようにしてもよい。また、マスクをコアの上に形成した後、マスクの開口部における側部を変形させて開口部が底ほど狭くなる形状とし、マスクの開口部を変形させた後、元素の濃度の低減を行うようにしてもよい。加えて、マスクは、クラッドの少なくとも一部として用いてもよい。
以上説明したように、本発明では、低屈折率部により、例えば、スラブ導波路とアレイ導波路との間など、分岐する前の導波路と導波路の分岐された側とで、伝搬する光の電界分布の差異が小さくなり、分岐点における放射損失が低減されるようになる。また、本発明では、分岐点より分岐する複数の導波路(コア)の間隔をあまり狭くする必要が無く、放射損失の低減が図れる。このように、本発明によれは、複雑な製造技術を用いることなく容易に製造できる状態で、スラブ導波路と分岐導波路(アレイ導波路)との接続部分での放射損失を低減できるようになるという優れた効果が得られる。
以下、本発明の実施の形態について図面を参照して詳細に説明する。
図1は、本発明の実施の形態における光導波路回路の構成例を示す平面図である。図1(a)は、光導波路回路の特に入力側スラブ導波路102の部分を拡大して示している。図1(b)は、入力側スラブ導波路102を含む光導波路回路の全体を示している。なお、図1においては、入力導波路101,入力側スラブ導波路102,アレイ導波路103,出力側スラブ導波路104,出力導波路105を構成するコアの部分示しており、上部クラッドなどについては省略している。
図1に示す光導波路回路では、入力導波路101から導入された伝搬光は、入力側スラブ導波路102で回折等によって広がり、各々が分岐導波路であるアレイ導波路103に分配される。伝搬光の進行方向は、この逆であってもかまわない。アレイ導波路103の本数をNとするとN≧2である。入力側スラブ導波路102(出力側スラブ導波路104)とアレイ導波路103の接続部におけるアレイ導波路103の各コアの間隔gは、0より大きい値をとる。これは、製造プロセス技術の精度の限界によるものである。
上述した構成の光導波路回路において、本実施の形態では、アレイ導波路103の各コアの間の入力側スラブ導波路102に、低屈折率部111を備えている。言い換えると、図1に示す光導波路回路は、複数の異なる方向に分岐する導波路の分岐点において、導波路を構成するコアの分岐する直前の領域に、屈折率がクラッド以上コア未満の低屈折率な領域を備えるようにしたものである。なお、出力側導波路104においても同様である。
低屈折率部111は、各スラブ導波路のアレイ導波路103へ分岐する接続部近傍で、かつアレイ導波路103の各コアの延長線の間の領域が含まれるように設ける。また、低屈折率部111は、スラブ導波路に接続する最も外側のアレイ導波路コアの外側にも配置する。この場合においても、最も外側のアレイ導波路コアの延長線の外側位置に配置する。
低屈折率部111の屈折率nは、クラッド(図示せず)の屈折率をnclad、スラブ導波路を構成するコアの屈折率をncoreとすると、nclad≦n<ncoreとなるように設定する(図2参照)。図2は、図1(a)におけるAA’線の方向にみた屈折率の変化を示す特性図である。また低屈折率部111は、エッチングなどコア材の物理的加工成形を伴うことを要せず、スラブ導波路を構成するコアを組成変化させることにより形成する。
アレイ導波路103との接続部近傍における入力側スラブ導波路102を伝搬する光の電界分布は、低屈折率部111を設置することにより、低屈折率部111がない場合に比べてよりアレイ導波路103の電界分布に近づく。電界分布がアレイ導波路103に近づくと、両者の差異が小さくなるため、接続部における放射損失が、低減されるようになる。
また、低屈折率部111は、スラブ導波路のエッチング加工などによる物理的加工を用いなければ、エッチング加工技術精度に制約されるコア間隔の制限を受けることなく、低損失化を実現できる。また、図1に示す光導波路回路では、接続部におけるアレイ導波路103のコアの間隔をあまり狭める必要がないため、これらの上を覆う上クラッドの埋め込み時にボイドが発生するような問題がなく、良品歩留まりを高くできるようになる。
低屈折率部111は、入力側スラブ導波路102,出力側スラブ導波路104のアレイ導波路103側の端部近傍を含む領域の屈折率を他のスラブ導波路領域より小さくし、隣接するアレイ導波路103の各コア間のクラッド領域との屈折率差を小さくすることによって電界分布の差異の緩やかな低減を図るものである。従って、低屈折率部111は、特許文献2,3に開示された技術のように、スラブ内部に設置した屈折率の異なる領域による集光効果により電界分布の整合を図る目的の構成ではない。
低屈折率部111は、スラブ導波路の内部ではなく、アレイ導波路103との接続部近傍のスラブ導波路端を含む領域、言い換えると、アレイ導波路103への分岐部の付け根部分に設置する。また低屈折率部111の屈折率を、この上下に設けられるクラッドの屈折率未満とすると、低屈折率部111とこの周囲のスラブ導波路との電界分布の差が拡大し、放射損失が増大してしまう。従って、低屈折率部111の屈折率は、クラッドの屈折率以上とする。
なお、低屈折率部111は、上述した各要件を満たす範囲であれば、様々な形状を採ることができる。低屈折率部111の伝搬方向に対する幅は一定である必要はないが、好適にはgより小さいことが望ましい。このようにすることで、低屈折率部111以外のスラブ導波路領域と低屈折率部111と間での電界分布の差異がより小さくなり、低損失化が図れる。換言すれば、アレイ導波路103のコア間隔をより狭めることと、ほぼ同様に上述した低損失化がはかれる。
また、低屈折率部111の屈折率は、深さ方向で一定ある必要はなく、伝搬方向に一定である必要もない。低屈折率部111の屈折率が深さ方向や光の伝搬方向に変化しても、前述した低損失化の効果は、変わりなく得られる。なお、好適には、スラブ導波路の端部からスラブ導波路の内部方向にかけて、低屈折率部111の幅が狭く、また、深さ(厚さ)が浅く(薄く)なる構造であればよい。これらの構造とすることで、アレイ導波路103のコア間の実効屈折率が、より緩やかにスラブ導波路の屈折率にまで変化する構造となり、より断熱的に電界分布が変化するため、放射損失がより低減されるようになる。
本光導波路回路の適用例としては、m本の入力導波路101、n本の出力導波路を有するm×nスターカプラ(m≧1、n≧2)を始め、アレイ導波路格子(AWG)など、分岐導波路回路を含む光導波路回路が挙げられる。なお通常、スラブ導波路とは、伝搬光が導波路厚さ方向にのみ閉じ込められ幅方向には閉じ込めのない導波路をいう。しかしながら、例えばY分岐回路に見られる入力導波路と分岐導波路との間に位置する幅広の導波路のように、幅方向に閉じ込めがあるものに対しても、上述したスラブ導波路と同様に、低屈折率部を設けることで、分岐導波路との接続損失を低減することができる。
図1に示す光導波路回路は、図3の模式的な断面図に示すように、シリコン基板121上に、石英系の導波路からAWGを構成したものである。シリコン基板121の上には、膜厚15μmの酸化シリコン(SiO2)膜からなる下クラッド122が形成され、下クラッド122の上に、膜厚4μmの酸窒化シリコン(SiON)膜からなるコア123が形成されている。コア123は、入力側スラブ導波路102を構成するものである。
また、コア123は、15μmのホウ素酸化物(B23)とリン酸化物(P25)を添加したSiO2(BPSG)膜からなる上クラッド124に覆われている。下クラッド122,上クラッド124は、波長1.55μmにおける屈折率が1.450であり、コア123の屈折率は1.4721である。従って、コア123と下クラッド122,上クラッド124との比屈折率差Δは、1.5%である。
図1(a)に示すように、入力側スラブ導波路102の両端には入力導波路101、アレイ導波路103が光学的に結合し、結合している領域で分岐導波路回路が構成されている。アレイ導波路103のコアは、幅は4μm程度である。また、アレイ導波路103を構成する各コアの間隔は、入力側スラブ導波路102に近づくに従い狭まり、入力側スラブ導波路102との接続部におけるコア間隔gは、2μmである。なお、アレイ導波路103のコア幅は、入力側スラブ導波路102近傍では入力側スラブ導波路102に近づくに従い広がるテーパー構造を用い、入力側スラブ導波路102との接続部のコア幅は8μmとなるようにした。スラブ焦点距離は5mmとした。
低屈折率部111は、アレイ導波路103との接続部から入力側スラブ導波路102の内部にいくに従い、幅が狭くなるようなテーパー形状とした。例えば、幅が、0.5μmから0.2μmまで狭くなるテーパー形状とすればよい。また、低屈折率部111の光伝搬方向の長さは、例えば、50μmとすればよい。なお、低屈折率部111は、テーパー形状にする必要はなく、一定の幅に形成してもよい。
また、低屈折率部111は、図3の断面図に示すように、入力側スラブ導波路102を構成するコア123の膜厚方向に、部分的に設けられていてもよい。例えば、コア123の上面から膜厚方向に3μmまで、低屈折率部111を設けるようにしてもよい。なお、深さ方向に全てが低屈折率部であるように構成してもよい。
低屈折率部111は、コア123に添加されている窒素原子及び水素原子を、選択的に低減させることで形成すればよい。いずれの元素も、含有濃度が高いほど屈折率が高くなる傾向があるため、これら元素の含有濃度を選択的に低下させることで、所望の領域にてい屈折部111を形成することができる。言い換えると、コア123は、少なくとも珪素,酸素から構成され、かつ水素又は窒素の少なくとも一方を含み、低屈折率部111は、水素又は窒素の少なくとも一方の濃度が、コア123より低い状態となっていればよい。
図4は、図3に示した断面図のB−B’線の断面方向(a)、C−C’線の断面方向(b)における窒素(N)元素及び水素(H)元素の濃度分布を示す分布図である。図4(b)に示すように、入力側スラブ導波路102におけるコア123(低屈折率化されていない領域)ではコア123内に均一にN及びH元素が分布しており、元素濃度はそれぞれ1.7×1021個/cm3、1.5×1020個/cm3程度である。
これに対し、図4(a)に示すように、低屈折率部111では、N元素の濃度が1×1020個/cm3以下、水素元素の濃度が1×1019個/cm3以下となっている。なお、低屈折率部111の屈折率は1.451となっている。
次に、低屈折率部111を備えた光導波路回路の製造方法について説明する。
まず、シリコン基板の上に、化学気層堆積(CVD)法により、酸化シリコン膜(膜厚15μm)を形成し、引き続いて酸窒化シリコン(SiON)膜(膜厚4μm)を形成する。酸化シリコン膜がしたクラッド層となり、酸窒化シリコン膜がコア層となる。
次に、コア層の所定の領域の窒素元素や水素元素を外方拡散させることで、低屈折率部を形成する。
次に、コア層を、公知のフォトリソグラフィ技術とエッチング技術とで加工することで、コアとなるパターンを形成する。エッチング技術としては、例えば、リアクティブイオンエッチングを用いればよい。なお、コアとなるパターンを形成した後、所定の領域に低屈折率部を形成してもよい。
最後に、CVD法により、コアとなるパターンを覆うようにBPSG膜を堆積し、上クラッド層を形成すれば、図1に示した光導波路回路が完成する。
以下、上述した低屈折率部の形成について、より詳細に説明する。SiON膜の低屈折率化は、N又はH元素低減によって行うことが可能である。これらの元素濃度低減は、熱処理による外部拡散により行えばよい。ここで、発明者らは、SiON膜のN又はH元素低減は、O2ガスなどの酸化ガスの雰囲気で高温に加熱することが、効果的であることを見いだした。N2やHeなどの酸化性のないガスの雰囲気で、SiON膜を加熱しても、N又はH元素はほとんど低減しない。発明者らは、酸化性ガスの雰囲気中で加熱することで、温度及び処理時間を制御することで、SiON膜からから外部拡散する深さを、非常に再現性良く制御可能であることを見いだした。
また、SiON膜の上面に、マスクパターンを設けることで、マスクパターンにより覆われた領域では、N又はH元素がほとんど外部拡散しないことが、実験により判明した。
このように、外方拡散を選択的に行うための低屈折率化防止マスクの材料には、石英系膜を用いればよい。例えば、SiON膜の低屈折率部を形成しようとする領域に開口部を有する低屈折率化防止マスクを形成した後、上述した熱処理により外部拡散を行えば、精度よく低屈折率部を形成できる。
次に、以下に示すことにより、アレイ導波路103とスラブ導波路との接合部におけるコア間隔より狭い幅に、低屈折率部が形成できる。前述した選択的な低屈折率部の形成においても、公知のフォトリソグラフィ技術により形成するマスクパターンを用いることになる。従って、低屈折率部の幅も、フォトリソグラフィ技術の精度の制約により、制限を受けることになる。
ここで、低屈折率化防止マスクの開口部を、マスクパターンを形成した後に変形させて狭くすれば、フォトリソグラフィ技術の制約を受けることなく、より狭い幅の低屈折率部が形成できる。
まず、図5(a)に示すように、シリコン基板121の上に、酸化シリコン膜からなる下クラッド122が形成された状態とし、引き続き、SiON膜を堆積してコア層423が形成された状態とする。
ついで、コア層423の上に、低屈折率部を形成しようとする領域の上に開口部を備えた低屈折率化防止マスク401が形成された状態とする。例えば、膜厚1μm程度にBPSG膜を形成し、公知のフォトリソグラフィ技術及びRIEにより低屈折率部に相当する部分を除去して開口部を形成することで、低屈折率防止マスク401が形成できる。このとき開口部の最小幅は、2μmとすればよい。2μm程度の幅であれば、フォトリソグラフィ技術により、安定して形成可能である。
次に、窒素ガス雰囲気で850℃の加熱処理を加えて低屈折率化防止マスク401をリフローさせて変形させ、図5(b)に示すように、開口部の断面(側部)がテーパー形状の低屈折率防止マスク402が形成された状態とする。このことにより、開口部の底部に露出するコア層423の表面は、リフロー前より1.5μm程度狭くなる。
この後、O2ガス雰囲気で1150℃の加熱処理を3時間行い、コア423の露出領域よりN又はH元素を外方拡散させて低濃度化し、低屈折率部411が形成された状態とする。図5(a)に示す低屈折率化防止マスク401による開口幅が、アレイ導波路のコア間隔程度であっても、図5(b)に示す低屈折率防止マスク402に夜開口幅は、上記コア間隔より狭くなる。従って、低屈折率防止マスク402により選択的に外方拡散させることで形成した低屈折率部411は、所望とする狭い幅(0.5μm)に形成できる。なお低屈折率部の幅をあまり狭くする必要のない場合、上記マスク材のリフロー工程は不要である。
さらにより簡略的に上記工程を行うために、リフローによる開口部側面形状のテーパー化をコア組成元素濃度低減処理と同時に行う方法も可能である。濃度低減処理のための熱処理が、開口部の変形する工程を兼ねるため、工程を短縮することが可能である。
なお、マスク材としては、BPSG膜に限るものではなく、外方拡散を制御できる材料であればよい。特に、上クラッドとして使用可能な材料を低屈折率防止マスクに用いることで、これをこのまま上クラッドとして利用することが可能となり、低屈折率防止マスクの除去工程が減らせるなど、実用上大きな効果が得られる。
以上に説明した製造方法により、図1に示す光導波路回路の低屈折率部111が容易に形成できる。また、平面視長方形状の低屈折率部であっても、同様に形成できる。
スラブ導波路とアレイ導波路との結合部分の挿入損失は、低屈折率部111のない従来のもので2.5dBであるが、図1に示すように低屈折率部111を設けると、1.5dBにまで低減できる。また、長方形状の低屈折率部であっても、挿入損失を2.0dBにまで低減できる。
低屈折率部111の設置により、入力側スラブ導波路102とアレイ導波路103の接続部における放射損が低減される。また、低屈折率部111のテーパー形状化により、さらに放射損が低減される。
なお、上記の構成、材料、製造方法等は一例に過ぎず、他の材料・方法でも適当に選ぶことは当然可能である。低屈折率化には特に熱処理による方法を例示したが、これに限るものではない。例えば、レーザ照射による方法等であってもよい。
ところで、上述では、低屈折率部を、光の伝搬方向に連続して設けるようにしたが、これに限るものではなく、以下に示すように、複数に分割して設けるようにしてもよい。
図6は、本発明の実施の形態における光導波路回路の他の構成例を示す平面図である。図6の光導波路回路は、伝搬方向に複数に分割された低屈折率部611を備える。他の構成は、図1に示す光導波路回路と同様である。分割された低屈折率部611により、アレイ導波路103と入力側スラブ導波路102の電界分布の差異が、図1に示す構成に比較してさらに緩やかに小さくなっている。
低屈折率部611は、3つの部分から構成され、各部分の幅はいずれも2μmである。また、低屈折率部611の各部分の伝搬方向の長さは、アレイ導波路103に近い側から30μm、10μm、3μmと順に短くなっている。また、隣り合う低屈折率部611の間隔は、いずれも5μmとした。順次短くなる複数の部分から低屈折率部611を構成することで、低屈折率部611の幅を狭くしなくても、アレイ導波路103と入力側スラブ導波路102の電界分布の差異を緩やかに減少させることが可能となる。これは、低屈折率部611の実行屈折率が、平均的には入力側スラブ導波路102からアレイ導波路103に向かって小さくなるためである。
図6に示す構成とした光導波路回路のAWGの挿入損失は、1.5dBと、図1に示す光導波路回路の場合と同様である。また、図6に示す光導波路回路によれば、低屈折率部611の幅を、図1に示す構成に比較して狭くする必要がないため、作製がより容易である。
本発明の実施の形態における光導波路回路の構成例を示す平面図である。 図1(a)におけるAA’線の方向にみた屈折率の変化を示す特性図である。 本発明の実施の形態における光導波路回路の構成例を部分的に示す模式的な断面図である。 図3に示した断面図のB−B’線の断面方向(a)、C−C’線の断面方向(b)における窒素(N)元素及び水素(H)元素の濃度分布を示す分布図である。 本発明の実施の形態における光導波路回路の製造方法を説明する工程図である。 本発明の実施の形態における光導波路回路の他の構成例を示す平面図である。 従来よりあるアレイ導波路格子型光合分波器の構成を示す構成図である。
符号の説明
101…入力導波路、102…入力側スラブ導波路、103…アレイ導波路、104…出力側スラブ導波路、105…出力導波路、111…低屈折率部。

Claims (5)

  1. 基板の上に形成されたクラッド層と、このクラッド層に覆われて水素を含有するSiONから構成されたコアとから構成された導波路を備え、前記導波路は、複数の方向に分岐する分岐点を有する光導波路回路の製造方法において、
    前記分岐点において、前記導波路を構成するコアの分岐する直前の領域に、前記コアの構成元素の状態を変更することで、屈折率が前記コアの屈折率未満で前記クラッドの屈折率以上の低屈折率部を形成する工程を備え、
    前記コアを構成するいずれかの元素の濃度を低減することで、前記コアの構成元素の状態を変更し、
    前記コアを構成するいずれかの元素の濃度の低減は、前記コアを酸化性雰囲気で加熱して外部拡散させることで行うことを特徴とする光導波路回路の製造方法。
  2. 請求項記載の光導波路回路の製造方法において、
    前記コアの加熱は、酸化ガスが含まれた雰囲気で行うことを特徴とする光導波路回路の製造方法。
  3. 請求項又は記載の光導波路回路の製造方法において、
    前記低屈折率部とする前記コアの領域が開放した開口部を備えたマスクを前記コアの上に形成する工程と、
    前記マスクが形成されている状態で前記加熱を行い、前記開口部より外部拡散させることで、前記元素の濃度の低減を行う工程と
    を備えることを特徴とする光導波路回路の製造方法。
  4. 請求項記載の光導波路回路の製造方法において、
    前記マスクを前記コアの上に形成した後、前記マスクの開口部における側部を変形させて前記開口部が底ほど狭くなる形状とし、前記マスクの開口部を変形させた後、前記元素の濃度の低減を行うことを特徴とする光導波路回路の製造方法。
  5. 請求項又は記載の光導波路回路の製造方法において、
    前記マスクは、前記クラッドの少なくとも一部とすることを特徴とする光導波路回路の製造方法。
JP2004044507A 2004-02-20 2004-02-20 光導波路回路の製造方法 Expired - Fee Related JP4626153B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004044507A JP4626153B2 (ja) 2004-02-20 2004-02-20 光導波路回路の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004044507A JP4626153B2 (ja) 2004-02-20 2004-02-20 光導波路回路の製造方法

Publications (2)

Publication Number Publication Date
JP2005234295A JP2005234295A (ja) 2005-09-02
JP4626153B2 true JP4626153B2 (ja) 2011-02-02

Family

ID=35017306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004044507A Expired - Fee Related JP4626153B2 (ja) 2004-02-20 2004-02-20 光導波路回路の製造方法

Country Status (1)

Country Link
JP (1) JP4626153B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074016A (ja) * 2004-08-02 2006-03-16 Nippon Telegr & Teleph Corp <Ntt> 光増幅型アレイ導波路回折格子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360407A (ja) * 1986-08-30 1988-03-16 Fujitsu Ltd Y分岐導波路
JPH05181031A (ja) * 1992-01-06 1993-07-23 Hitachi Cable Ltd 光導波路及びその製造方法
JPH10274719A (ja) * 1997-02-04 1998-10-13 Lucent Technol Inc 光デバイス
JP2002527787A (ja) * 1998-10-15 2002-08-27 インターナショナル・ビジネス・マシーンズ・コーポレーション 光導波路デバイス
JP2003014962A (ja) * 2001-04-25 2003-01-15 Nhk Spring Co Ltd 光合分波器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360407A (ja) * 1986-08-30 1988-03-16 Fujitsu Ltd Y分岐導波路
JPH05181031A (ja) * 1992-01-06 1993-07-23 Hitachi Cable Ltd 光導波路及びその製造方法
JPH10274719A (ja) * 1997-02-04 1998-10-13 Lucent Technol Inc 光デバイス
JP2002527787A (ja) * 1998-10-15 2002-08-27 インターナショナル・ビジネス・マシーンズ・コーポレーション 光導波路デバイス
JP2003014962A (ja) * 2001-04-25 2003-01-15 Nhk Spring Co Ltd 光合分波器

Also Published As

Publication number Publication date
JP2005234295A (ja) 2005-09-02

Similar Documents

Publication Publication Date Title
US6704487B2 (en) Method and system for reducing dn/dt birefringence in a thermo-optic PLC device
US7376317B2 (en) Waveguide structure and method of manufacturing the same
US11125942B2 (en) Optical waveguide element
US10663662B1 (en) High density optical waveguide using hybrid spiral pattern
US20080292239A1 (en) Adiabatic Waveguide Transitions
WO2001059495A1 (fr) Interferometre optique a guide d&#39;ondes
JP3726062B2 (ja) 光合分波器
JP2002303752A (ja) 光導波路およびその製造方法
JP3552159B2 (ja) 温度無依存アレイ導波路格子素子
US7228043B2 (en) Optical waveguide circuit and manufacturing method thereof
US6892004B1 (en) Optical coupling arrangement having low coupling loss and high production yield
US9804328B2 (en) Optical multiplexing and de-multiplexing element and arrayed-waveguide grating-type optical wavelength filter
JP3994860B2 (ja) アレイ導波路型回折格子
US6787868B1 (en) Microlenses for integrated optical devices
KR20020092209A (ko) 광도파로 장치 및 그 제조 방법
Sakamaki et al. Loss uniformity improvement of arrayed-waveguide grating with mode-field converters designed by wavefront matching method
JP2002156539A (ja) 光導波路
JP4626153B2 (ja) 光導波路回路の製造方法
Nasu et al. Ultrasmall 100 GHz 40-channel VMUX/DEMUX based on single-chip 2.5%-Δ PLC
JPH1068833A (ja) 光導波路及びその製造方法並びに光回路
JP3279270B2 (ja) 光導波路及びその作製方法
JP3228233B2 (ja) 光導波路デバイス
KR100563490B1 (ko) 결합 손실 온도 의존성을 억제한 실리카/폴리머하이브리드 광도파로를 이용한 광소자
JP2005215009A (ja) 光導波路回路及びその製造方法
JP4699435B2 (ja) 光モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees