JP4623889B2 - Phase shift keying signal demodulator for data carrier device - Google Patents

Phase shift keying signal demodulator for data carrier device Download PDF

Info

Publication number
JP4623889B2
JP4623889B2 JP2001261865A JP2001261865A JP4623889B2 JP 4623889 B2 JP4623889 B2 JP 4623889B2 JP 2001261865 A JP2001261865 A JP 2001261865A JP 2001261865 A JP2001261865 A JP 2001261865A JP 4623889 B2 JP4623889 B2 JP 4623889B2
Authority
JP
Japan
Prior art keywords
signal
reference signal
phase
demodulator
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001261865A
Other languages
Japanese (ja)
Other versions
JP2003078578A (en
Inventor
茂 佐武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idec Auto ID Solutions Co Ltd
Original Assignee
Welcat Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Welcat Inc filed Critical Welcat Inc
Priority to JP2001261865A priority Critical patent/JP4623889B2/en
Publication of JP2003078578A publication Critical patent/JP2003078578A/en
Application granted granted Critical
Publication of JP4623889B2 publication Critical patent/JP4623889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リーダライタとデータキャリアとの間で無線通信によりデータを送受するデータキャリア装置に組み込まれた位相偏移変調信号の復調器に関するものである。
【0002】
【従来の技術】
特定な部屋への入退室管理、物流の管理、商品在庫の管理、スキー場のリフト券、鉄道の乗車券、駐車場の入出車管理、高速道路の通行券、電子マネーなどにデータキャリ装置が使用されている。装置は、リーダライタと呼ばれる固定設置型の質問器と、携帯型のIC(Integral Circuit:集積回路)からなるデータキャリアと呼ばれる応答器とが、無線通信により連結されているものである。質問器および応答器の夫々には、かかる無線通信のためのデジタル信号の変調器と復調器を備えている。
【0003】
従来、デジタルデータの変調にはBPSK(Bi-Phase-shift Keying: 2値位相偏移変調)方式が採用されていた。BPSKによる信号の変調および復調について説明する。図7のタイムチャートに示すように、搬送すべきデジタルデータ信号(A)は、BPSK変調信号(B)に変調される。すなわち、データ信号(A)の"0"は0°のBPSK位相、データ信号(A)の"1"は180°のBPSK位相に切り替えられる。このBPSK変調信号(B)が送信側から発振される。データキャリア装置の受信側では基準信号(C)を生成し、受信したBPSK変調信号(B)と位相を比較し、その比較出力(アンド出力)の信号(D)を検波(二値化)して復調信号(E)が得られる。
【0004】
【発明が解決しようとする課題】
上記した従来のデータキャリア装置では、送信側に対して受信側の応答タイミングが僅かでもばらつくと同期を取ることができず、正確に復調することが困難であり、通信の安定性を劣化させる要因となっていた。例えば図8のタイムチャートに示すように、基準信号(C)の立ち上がりが、データ信号(A)を変調したBPSK変調信号(B)の立ち上がりから僅かに遅れていると(Δ参照)、基準信号(C)とBPSK変調波(B)との比較信号(D)は、データ信号(A)の"0"に対応する領域でもパルスを出してしまう。そのため比較出力信号(D)を検波、二値化した復調信号(E)は、データ信号(A)に対応しないものとなってしまう。
【0005】
本発明は、データキャリア装置におけるこのような通信の安定性の劣化要因を除去するためになされたもので、BPSK変調信号から正確に信号を復調でき、質問器、応答器の両方に適用できる復調器を提供することを目的としている。
【0006】
【課題を解決するための手段】
前記の目的を達成するためになされた本発明のデータキャリア装置の位相偏移変調信号復調器は、データキャリア装置の無線受信装置を構成する位相偏移変調信号の復調器であって、第1基準信号を生成する手段と、第1基準信号に同一周波数であって90°の位相差を持つ第2基準信号を生成する手段と、第1の基準信号と第2の基準信号との論理積の復調基準信号を生成する手段と、該復調基準信号と位相偏移変調信号との論理積の比較信号を生成する手段と、該比較信号を2値化して復調信号を生成する検波手段を有する。
【0007】
第2基準信号を生成する手段から復調基準信号を生成する手段にいたる途中に第2基準信号の位相を180°切り替える手段を有することで適切に実施できる。
【0008】
該位相切替手段は該復調信号の位相誤差検出したことにより作動する。
【0009】
該位相切替手段のトリガとして該復調信号の位相誤差を検出する検出器を有する。
【0010】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を、図面を参照して詳細に説明する。
【0011】
図1は、本発明を適用するデータキャリア装置の位相偏移変調信号復調器(BPSK復調器)の一実施例を示すブロック回路図である。このBPSK復調器は、受信回路とともにデータキャリア装置内の回路の一部として存在する。
【0012】
図1に示すように、BPSK復調器は、第1基準信号(I信号)を生成する手段が第1発振器1、第2基準信号(Q信号)を生成する手段が第2発振器2、復調基準信号を生成する手段があるアンドゲート3、復調基準信号と位相偏移変調信号(BPSK信号)との比較信号を生成する手段がアンドゲート5、比較信号を2値化する手段が検波器8である。第1発振器1の出力であるI信号と第2発振器2の出力であるQ信号は、同一周波数であるが、位相が90°ずれている。第1発振器1の出力がアンドゲート3の一方の入力に接続され、もう一方の入力には、第2発振器2の出力がエクスクルシブオアゲート4を経て接続されている。アンドゲート3の出力はアンドゲート5の一方の入力に接続され、もう一方の入力には、BPSK信号が入力するようになっている。アンドゲート5の出力は、検波器8に接続されている。検波器8の出力は、復調信号を出力するとともに、位相誤差検出器7を経てエクスクルシブオアゲート4の入力に接続されている。
【0013】
図1に示すBPSK復調器の動作を図2、図3、図4のタイミングチャート図を参照しながら説明する。デジタルデータ信号(A)は、BPSK変調信号(B)に変調されて受信回路で受信され、復調器に入力する。BPSK復調器では、当初、第1発振器1からのI信号と第2発振器2からのQ信号(Q=I+90°)とのアンドゲート3の出力が復調基準信号(F)として、アンドゲート5によりBPSK変調信号(B)に比較される。
【0014】
図2に示すように、BPSK変調信号(B)とI信号にタイミングのずれがなければ、アンドゲート5からの比較信号(D)は潤沢に出力され、検波器8で二値化されて復調信号(E)が得られる。復調信号(E)はデータ信号(A)に対応したもとなる。
【0015】
図3に示すように、BPSK変調信号(B)とI信号にタイミングのずれΔがあると、復調基準信号(F)もBPSK変調信号(B)とタイミングのずれΔがある。そのため、復調基準信号(F)の"1"におけるパルス幅がBPSK変調信号(B)の"1"におけるパルス幅からはみだしてしまい、復調基準信号(F)とBPSK変調信号(B)のアンド出力である比較信号(D)は、データ信号(A)の"0"に対応する領域でもパルスを出してしまう。したがって、検波した復調信号(E)にもノイズパルスgが混入してデータ信号(A)を正しく復調できない。
【0016】
位相誤差検出器7は、このノイズパルスgを検出してエクスクルシブオアゲート4に"1"の信号を送るから、これがQ信号のトグルフラグとなり、エクスクルシブオアゲート4を経た出力(Q’信号)は反転し、信号の位相が180°切り替えられる。図2に示すように、I信号との位相は−90°ずれる(Q’=I−90°)。そのため、I信号とQ’信号とのアンドゲート3の出力である復調基準信号(F’)の"1"におけるパルス幅がBPSK変調信号(B)の"1"におけるパルス幅の範囲内に入るから、復調基準信号(F’)とBPSK変調信号(B)のアンド出力である比較信号(D)は、データ信号(A)の"0"に対応する領域でパルスを出さない。その結果、BPSK変調信号(B)とI信号にタイミングのずれΔがあっても、検波した復調信号(E)にはノイズがなくデータ信号(A)を正しく復調できる。
【0017】
本発明のBPSK復調器は、図5に示すデータキャリア装置に組み込まれる。
データキャリア装置は、マイクロプロセッサユニット(MPU)10、フィールドプログラマブルゲートアレイ(Field Programmable Gate Array: FPGA)11を有し、FPGA11のなかにBPSK復調器を持っている。この他、データキャリア装置には発振増幅器12、受信増幅器13、送受信アンテナアレイ14を備えている。
【0018】
この例のデータキャリア装置では、FPGA11内のBPSK復調器で得た復調信号(受信データ)をMPUが受け取り、MPUが受信データは正常でないと判断した場合にQ信号のトグルフラグを出し、Q信号の位相を180°切り替える。このようにMPUで受信データの位相誤差検出機能を受け持つ場合には、図1に示すBPSK復調器に位相誤差検出器7を設ける必要はなくなる。
【0019】
また、図1に示すBPSK復調器では、第1基準信号を生成する手段としての第1発振器1と第2基準信号を生成する手段としての第2発振器2とを別個に設けた例を示してあるが、図6に示すように、I信号に対する遅延回路9を設けQ信号を得ることもできる。遅延回路9はI信号の位相を90°遅れるQ信号と、Q信号を180°反転するQ’信号を、トグルフラグにより切り替える。このQ信号トグルフラグは前述した位相誤差検出器7、またはMPUでの受信データの位相誤差検出機能によって得られる。
【0020】
尚、Q信号に限らず、I信号の発振についても、前記のように独立の第1発振器を設けなくても、MPUやFPGAに内蔵されるクロックの周波数を周波数逓倍器によって所定のI信号を得ることは任意である。
【0021】
【発明の効果】
以上、詳細に説明したとおり、本発明を適用するデータキャリア装置のBPSK復調器は、送信側に対して受信側の応答タイミングがばらついても、常に同期を合わせることが可能であり、BPSK変調信号からデータ信号に忠実な復調信号を正確に再現できる。したがってデータキャリア装置の安定した無線通信を実現できるようになった。
【図面の簡単な説明】
【図1】本発明を適用するデータキャリア装置のBPSK復調器の実施例を示すブロック回路図である。
【図2】本発明を適用するBPSK復調器の動作タイミングチャートの例を示す図である。
【図3】本発明を適用するBPSK復調器の動作タイミングチャートの例を示す図である。
【図4】本発明を適用するBPSK復調器の動作タイミングチャートの例を示す図である。
【図5】本発明を適用するBPSK復調器を備えたデータキャリア装置の実施例を示すブロック回路図である。
【図6】本発明を適用するBPSK復調器の要部の実施例を示すブロック回路図である。
【図7】従来のBPSK復調器の動作タイミングチャートの例を示す図である。
【図8】従来のBPSK復調器の動作タイミングチャートの例を示す図である。
【符号の説明】
1は第1発振器、2は第2発振器、3・5はアンドゲート、4はエクスクルシブオアゲート、7は位相誤差検出器、8は検波器、9は遅延回路、10はMPU、11はFPGA、12は発振増幅器、13は受信増幅器、14は送受信アンテナアレイである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a demodulator of a phase shift keying signal incorporated in a data carrier device that transmits and receives data by wireless communication between a reader / writer and a data carrier.
[0002]
[Prior art]
Data carrier equipment for entry / exit management of specific rooms, logistics management, product inventory management, ski lift tickets, railway tickets, parking entry / exit management, highway traffic tickets, electronic money, etc. in use. In the apparatus, a fixed installation type interrogator called a reader / writer and a responder called a data carrier composed of a portable IC (Integral Circuit) are connected by wireless communication. Each of the interrogator and the responder includes a digital signal modulator and demodulator for such wireless communication.
[0003]
Conventionally, BPSK (Bi-Phase-shift Keying) method has been adopted for modulation of digital data. Signal modulation and demodulation by BPSK will be described. As shown in the time chart of FIG. 7, the digital data signal (A) to be transported is modulated into a BPSK modulation signal (B). That is, “0” of the data signal (A) is switched to a BPSK phase of 0 °, and “1” of the data signal (A) is switched to a BPSK phase of 180 °. This BPSK modulation signal (B) is oscillated from the transmission side. The receiving side of the data carrier device generates a reference signal (C), compares the phase with the received BPSK modulated signal (B), and detects (binarizes) the signal (D) of the comparison output (and output). Thus, a demodulated signal (E) is obtained.
[0004]
[Problems to be solved by the invention]
In the above-described conventional data carrier device, even if the response timing on the receiving side varies slightly with respect to the transmitting side, synchronization cannot be achieved, and it is difficult to accurately demodulate, and the factor that degrades the stability of communication It was. For example, as shown in the time chart of FIG. 8, when the rising edge of the reference signal (C) is slightly delayed from the rising edge of the BPSK modulation signal (B) obtained by modulating the data signal (A) (see Δ), the reference signal The comparison signal (D) between (C) and the BPSK modulated wave (B) generates a pulse even in a region corresponding to “0” of the data signal (A). Therefore, the demodulated signal (E) obtained by detecting and binarizing the comparative output signal (D) does not correspond to the data signal (A).
[0005]
The present invention has been made to eliminate such a deterioration factor of communication stability in a data carrier device, and can accurately demodulate a signal from a BPSK modulated signal and can be applied to both an interrogator and a responder. The purpose is to provide a vessel.
[0006]
[Means for Solving the Problems]
The phase shift keying signal demodulator of the data carrier device of the present invention made to achieve the above object is a first phase shift keying signal demodulator that constitutes a radio receiving device of the data carrier device. Logical product of means for generating a reference signal, means for generating a second reference signal having the same frequency as the first reference signal and a phase difference of 90 °, and the first reference signal and the second reference signal Means for generating a demodulation reference signal, a means for generating a comparison signal of a logical product of the demodulation reference signal and the phase shift keying signal, and a detection means for generating a demodulation signal by binarizing the comparison signal .
[0007]
This can be appropriately implemented by having means for switching the phase of the second reference signal by 180 ° midway from the means for generating the second reference signal to the means for generating the demodulation reference signal.
[0008]
The phase switching means operates by detecting the phase error of the demodulated signal.
[0009]
A detector for detecting a phase error of the demodulated signal is provided as a trigger for the phase switching means.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
FIG. 1 is a block circuit diagram showing one embodiment of a phase shift keying signal demodulator (BPSK demodulator) of a data carrier device to which the present invention is applied. This BPSK demodulator exists as a part of the circuit in the data carrier device together with the receiving circuit.
[0012]
As shown in FIG. 1, the BPSK demodulator includes a first oscillator 1 as a means for generating a first reference signal (I signal), a second oscillator 2 as a means for generating a second reference signal (Q signal), and a demodulation reference. The AND gate 3 having a means for generating a signal, the means for generating a comparison signal between the demodulation reference signal and the phase shift keying signal (BPSK signal) are the AND gate 5, and the means for binarizing the comparison signal is the detector 8. is there. The I signal that is the output of the first oscillator 1 and the Q signal that is the output of the second oscillator 2 have the same frequency, but are 90 degrees out of phase. The output of the first oscillator 1 is connected to one input of the AND gate 3, and the output of the second oscillator 2 is connected to the other input via the exclusive OR gate 4. The output of the AND gate 3 is connected to one input of the AND gate 5, and the BPSK signal is input to the other input. The output of the AND gate 5 is connected to the detector 8. The output of the detector 8 outputs a demodulated signal and is connected to the input of the exclusive OR gate 4 via the phase error detector 7.
[0013]
The operation of the BPSK demodulator shown in FIG. 1 will be described with reference to the timing charts of FIGS. The digital data signal (A) is modulated into a BPSK modulated signal (B), received by a receiving circuit, and input to a demodulator. In the BPSK demodulator, the output of the AND gate 3 of the I signal from the first oscillator 1 and the Q signal (Q = I + 90 °) from the second oscillator 2 is initially used as the demodulation reference signal (F) by the AND gate 5. Compared to the BPSK modulated signal (B).
[0014]
As shown in FIG. 2, if there is no timing difference between the BPSK modulation signal (B) and the I signal, the comparison signal (D) from the AND gate 5 is output abundantly and binarized by the detector 8 and demodulated. A signal (E) is obtained. The demodulated signal (E) corresponds to the data signal (A).
[0015]
As shown in FIG. 3, if there is a timing difference Δ between the BPSK modulation signal (B) and the I signal, the demodulation reference signal (F) also has a timing difference Δ from the BPSK modulation signal (B). Therefore, the pulse width at “1” of the demodulation reference signal (F) protrudes from the pulse width at “1” of the BPSK modulation signal (B), and the AND output of the demodulation reference signal (F) and the BPSK modulation signal (B). The comparison signal (D) is a pulse even in a region corresponding to “0” of the data signal (A). Therefore, the noise signal g is also mixed in the detected demodulated signal (E), and the data signal (A) cannot be demodulated correctly.
[0016]
Since the phase error detector 7 detects the noise pulse g and sends a signal of “1” to the exclusive OR gate 4, this becomes a toggle flag of the Q signal, and the output (Q ′ signal) via the exclusive OR gate 4. Is inverted, and the phase of the signal is switched by 180 °. As shown in FIG. 2, the phase with the I signal is shifted by −90 ° (Q ′ = I−90 °). Therefore, the pulse width at “1” of the demodulation reference signal (F ′) that is the output of the AND gate 3 of the I signal and the Q ′ signal falls within the range of the pulse width at “1” of the BPSK modulation signal (B). Therefore, the comparison signal (D), which is an AND output of the demodulation reference signal (F ′) and the BPSK modulation signal (B), does not output a pulse in a region corresponding to “0” of the data signal (A). As a result, even if there is a timing difference Δ between the BPSK modulated signal (B) and the I signal, the detected demodulated signal (E) has no noise and can correctly demodulate the data signal (A).
[0017]
The BPSK demodulator of the present invention is incorporated in the data carrier device shown in FIG.
The data carrier device has a microprocessor unit (MPU) 10 and a field programmable gate array (FPGA) 11, and the FPGA 11 has a BPSK demodulator. In addition, the data carrier device includes an oscillation amplifier 12, a reception amplifier 13, and a transmission / reception antenna array 14.
[0018]
In the data carrier device of this example, the MPU receives the demodulated signal (received data) obtained by the BPSK demodulator in the FPGA 11, and when the MPU determines that the received data is not normal, it issues a toggle flag for the Q signal, Switch the phase by 180 °. Thus, when the MPU has a function of detecting the phase error of received data, it is not necessary to provide the phase error detector 7 in the BPSK demodulator shown in FIG.
[0019]
The BPSK demodulator shown in FIG. 1 shows an example in which a first oscillator 1 as a means for generating a first reference signal and a second oscillator 2 as a means for generating a second reference signal are separately provided. However, as shown in FIG. 6, a delay circuit 9 for the I signal can be provided to obtain the Q signal. The delay circuit 9 switches between a Q signal that delays the phase of the I signal by 90 ° and a Q ′ signal that inverts the Q signal by 180 ° by a toggle flag. This Q signal toggle flag is obtained by the phase error detector 7 described above or the phase error detection function of received data in the MPU.
[0020]
Not only the Q signal but also the oscillation of the I signal, the frequency of the clock built in the MPU or FPGA can be changed to a predetermined I signal by a frequency multiplier without providing an independent first oscillator as described above. Obtaining is optional.
[0021]
【The invention's effect】
As described above in detail, the BPSK demodulator of the data carrier apparatus to which the present invention is applied can always synchronize even if the response timing of the reception side varies with respect to the transmission side. Therefore, the demodulated signal faithful to the data signal can be accurately reproduced. Therefore, stable wireless communication of the data carrier device can be realized.
[Brief description of the drawings]
FIG. 1 is a block circuit diagram showing an embodiment of a BPSK demodulator of a data carrier apparatus to which the present invention is applied.
FIG. 2 is a diagram showing an example of an operation timing chart of a BPSK demodulator to which the present invention is applied.
FIG. 3 is a diagram showing an example of an operation timing chart of a BPSK demodulator to which the present invention is applied.
FIG. 4 is a diagram illustrating an example of an operation timing chart of a BPSK demodulator to which the present invention is applied.
FIG. 5 is a block circuit diagram showing an embodiment of a data carrier device including a BPSK demodulator to which the present invention is applied.
FIG. 6 is a block circuit diagram showing an embodiment of a main part of a BPSK demodulator to which the present invention is applied.
FIG. 7 is a diagram illustrating an example of an operation timing chart of a conventional BPSK demodulator.
FIG. 8 is a diagram illustrating an example of an operation timing chart of a conventional BPSK demodulator.
[Explanation of symbols]
1 is a first oscillator, 2 is a second oscillator, 3 and 5 are AND gates, 4 is an exclusive OR gate, 7 is a phase error detector, 8 is a detector, 9 is a delay circuit, 10 is an MPU, and 11 is an FPGA , 12 are oscillation amplifiers, 13 is a receiving amplifier, and 14 is a transmitting / receiving antenna array.

Claims (4)

データキャリア装置の無線受信装置を構成する位相偏移変調信号の復調器であって、第1基準信号を生成する手段と、第1基準信号に同一周波数であって90°の位相差を持つ第2基準信号を生成する手段と、第1の基準信号と第2の基準信号との論理積の復調基準信号を生成する手段と、該復調基準信号と位相偏移変調信号との論理積の比較信号を生成する手段と、該比較信号を2値化して復調信号を生成する検波手段を有することを特徴とする復調器。A demodulator of a phase shift keying signal constituting a radio receiver of a data carrier device, the first reference signal generating means and a first reference signal having the same frequency and a phase difference of 90 ° 2 means for generating a reference signal, means for generating a demodulated reference signal of a logical product of the first reference signal and the second reference signal, and comparison of the logical product of the demodulated reference signal and the phase shift keying signal A demodulator comprising means for generating a signal and detection means for binarizing the comparison signal to generate a demodulated signal. 第2基準信号を生成する手段から復調基準信号を生成する手段にいたる途中に第2基準信号の位相を180°切り替える手段を有することを特徴とする請求項1に記載の復調器。2. The demodulator according to claim 1, further comprising means for switching the phase of the second reference signal by 180 [deg.] On the way from the means for generating the second reference signal to the means for generating the demodulation reference signal. 該位相切替手段が該復調信号の位相誤差検出したことにより作動することを特徴とする請求項2に記載の復調器。3. The demodulator according to claim 2, wherein the phase switching means is activated by detecting a phase error of the demodulated signal. 該位相切替手段のトリガとして該復調信号の位相誤差を検出する検出器を有することを特徴とする請求項1に記載の復調器。The demodulator according to claim 1, further comprising a detector that detects a phase error of the demodulated signal as a trigger of the phase switching means.
JP2001261865A 2001-08-30 2001-08-30 Phase shift keying signal demodulator for data carrier device Expired - Fee Related JP4623889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001261865A JP4623889B2 (en) 2001-08-30 2001-08-30 Phase shift keying signal demodulator for data carrier device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261865A JP4623889B2 (en) 2001-08-30 2001-08-30 Phase shift keying signal demodulator for data carrier device

Publications (2)

Publication Number Publication Date
JP2003078578A JP2003078578A (en) 2003-03-14
JP4623889B2 true JP4623889B2 (en) 2011-02-02

Family

ID=19088846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261865A Expired - Fee Related JP4623889B2 (en) 2001-08-30 2001-08-30 Phase shift keying signal demodulator for data carrier device

Country Status (1)

Country Link
JP (1) JP4623889B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223259A (en) * 1984-04-19 1985-11-07 Nippon Kogaku Kk <Nikon> Psk or dpsk demodulating circuit
JPH01202933A (en) * 1988-02-09 1989-08-15 Kyushu Denki Seizo Kk Distribution line carrier signal transmission system using differential phase modulation
JPH02230846A (en) * 1989-03-03 1990-09-13 Nec Corp Demodulation circuit
JPH06205063A (en) * 1992-12-28 1994-07-22 Pioneer Electron Corp Two-phase psk demodulation circuit for rds receiver
JP2001148693A (en) * 1999-11-18 2001-05-29 Tokimec Inc Demodulator circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223259A (en) * 1984-04-19 1985-11-07 Nippon Kogaku Kk <Nikon> Psk or dpsk demodulating circuit
JPH01202933A (en) * 1988-02-09 1989-08-15 Kyushu Denki Seizo Kk Distribution line carrier signal transmission system using differential phase modulation
JPH02230846A (en) * 1989-03-03 1990-09-13 Nec Corp Demodulation circuit
JPH06205063A (en) * 1992-12-28 1994-07-22 Pioneer Electron Corp Two-phase psk demodulation circuit for rds receiver
JP2001148693A (en) * 1999-11-18 2001-05-29 Tokimec Inc Demodulator circuit

Also Published As

Publication number Publication date
JP2003078578A (en) 2003-03-14

Similar Documents

Publication Publication Date Title
US5649296A (en) Full duplex modulated backscatter system
JP3690832B2 (en) Wireless communication system
JPH10209914A (en) Modulation back scatter system and transponder
JP2006325233A (en) Transmitter and method for transmitting data
JPH08186513A (en) Radio card communication equipment
US20080030336A1 (en) Semiconductor integrated circuit device and receiving device
US6867687B2 (en) Sideband diversity reader for electronic identification system
US7242259B2 (en) Active backscatter transponder, communication system comprising the same and method for transmitting data by way of such an active backscatter transponder
EP0915573A2 (en) Direct sequence spread spectrum modulated uplink for modulated backscatter systems
KR20080097115A (en) Radio frequency identification devices
US5164719A (en) Radio system for data transmission with passive terminal station
JP3003980B2 (en) Method and apparatus for demodulating digital high-frequency signal
JPH0693704B2 (en) Baseband signal communication device
JP4623889B2 (en) Phase shift keying signal demodulator for data carrier device
US7978073B2 (en) Transmitter and a method for transmitting data
JPH10229350A (en) Communication system
JP3509493B2 (en) Data communication system, wireless IC card and wireless IC card system
WO2003049275A1 (en) In-phase and quadrature demodulator for rfid system without directional coupler
JP4020206B2 (en) Contactless smart card interrogator
JPH06281731A (en) Moving object identifying device
JP3003981B2 (en) Method and apparatus for compensating for carrier drift in digital high frequency signals
JP2000307465A (en) Bpsk demodulating circuit and noncontact ic card system with the circuit
JP2568563B2 (en) Moving object identification device
JP2516131B2 (en) Transceiver circuit for ID card system
JPH08335890A (en) Reflection type communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Ref document number: 4623889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees