JP4620526B2 - Multilayer film manufacturing method and apparatus - Google Patents

Multilayer film manufacturing method and apparatus Download PDF

Info

Publication number
JP4620526B2
JP4620526B2 JP2005150627A JP2005150627A JP4620526B2 JP 4620526 B2 JP4620526 B2 JP 4620526B2 JP 2005150627 A JP2005150627 A JP 2005150627A JP 2005150627 A JP2005150627 A JP 2005150627A JP 4620526 B2 JP4620526 B2 JP 4620526B2
Authority
JP
Japan
Prior art keywords
flow
laminated
divided
multilayer
flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005150627A
Other languages
Japanese (ja)
Other versions
JP2006326891A (en
Inventor
庸介 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin DuPont Films Japan Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2005150627A priority Critical patent/JP4620526B2/en
Publication of JP2006326891A publication Critical patent/JP2006326891A/en
Application granted granted Critical
Publication of JP4620526B2 publication Critical patent/JP4620526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/695Flow dividers, e.g. breaker plates
    • B29C48/70Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows
    • B29C48/71Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows for layer multiplication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces

Description

本発明は、複数種の溶融樹脂を多層に積層して形成した多層フィルムの製造方法及びその製造装置に関する。   The present invention relates to a method for producing a multilayer film formed by laminating a plurality of types of molten resins into a multilayer and a production apparatus therefor.

多層フィルムは、例えば屈折率の高い層と低い層を交互に多数積層すると、これら層間での光干渉によって特定波長の光を選択的に反射または透過する光学干渉フィルムとなる。このような積層フィルムは選択的に反射または透過する光の波長領域を可視光領域とすることによって、例えば、反射型の偏光板や発色フィルム、金属光沢を有するフィルムあるいは反射ミラーフィルムなどへの用途が広がりつつある。また、積層数と層間厚みを調整することによって、紫外線を選択的にカットするフィルムとして用いることができ、また、防虫用の農業用フィルムとしても用いることができる。更に、近赤外を選択的にカットするようにすれば、日射カット用の窓張り用フィルム、あるいはプラズマディスプレイ等の映像表示パネル用のフィルムとしても有用であって、周辺機器への誤作動を防止するためのフィルムとして用いることができる。さらに、ショウウィンドウに映像を投影するために、RGB(赤、緑、青)の各色相を選択的に適度に透過させる多層フィルムを貼り合わせたフィルムを用いたホログラム用フィルムとしても有望である。   For example, when a large number of layers having a high refractive index and a plurality of layers having a low refractive index are alternately laminated, the multilayer film becomes an optical interference film that selectively reflects or transmits light having a specific wavelength by optical interference between these layers. Such a laminated film can be used for, for example, a reflective polarizing plate, a coloring film, a film having a metallic luster, or a reflective mirror film by setting the wavelength region of light that is selectively reflected or transmitted to the visible light region. Is spreading. Moreover, it can be used as a film that selectively cuts ultraviolet rays by adjusting the number of layers and the interlayer thickness, and can also be used as an agricultural film for insect repellent. Furthermore, if the near infrared is selectively cut, it is useful as a film for window covering for solar radiation or a film for a video display panel such as a plasma display. It can be used as a film for preventing. Furthermore, in order to project an image on a show window, it is also promising as a hologram film using a film in which a multilayer film that selectively transmits each hue of RGB (red, green, blue) appropriately and appropriately is bonded.

そこで、従来より、このような各種用途に使用できる多層に積層されたフィルムを製造する各種の方法及びそのための装置が提案されてきた。例えば、特開平4−278324号公報あるいは特開2004−34299号公報において、溶融した2種の熱可塑製高分子重合体(以下、“ポリマー”と称する)を多層フィードブロックで所定の積層数に交互積層した積層流を形成させ、この積層流を分割した後に再積層して層数を増やすことを特徴とする多層フィルムの製造方法とそのための装置が提案されている。   In view of this, various methods and apparatuses for manufacturing a multi-layered film that can be used for various applications have been proposed. For example, in Japanese Patent Application Laid-Open No. 4-278324 or Japanese Patent Application Laid-Open No. 2004-34299, two types of molten thermoplastic polymer polymers (hereinafter referred to as “polymers”) are formed into a predetermined number of layers using a multilayer feed block. A multilayer film manufacturing method and an apparatus therefor have been proposed, in which alternately stacked layered flows are formed, the layered flows are divided and then re-laminated to increase the number of layers.

しかしながら、このような従来技術では、例えば図3(a)に示すように、矩形断面を有する積層流の端部22に積層状態の悪い部分が生じると、これを図3(a)に示したようにC’面で分割して、図3(b)に示すように再積層をすると、分割際積層を繰り返すたびに厚み分布が悪い部分22がフィルム中央部にも層の厚みが不均一となった部分として現れる。なお、矩形流路断面で積層流に層の不均一が生じる理由については、その断面の4つの角部近傍で流速が遅くなるよどみ部が存在し、これが原因で層厚みが変化しているためと考えられる。そうすると、積層数を増して最終的に得られる多層フィルムの中に含まれる層厚の不良な部分の割合が増えてしまうことになる。 However, in such a prior art, for example, as shown in FIG. 3A, when a poorly laminated portion is generated at the end 22 of the laminated flow having a rectangular cross section, this is shown in FIG. divided by C 1 'surface so as, when the re-stacked as shown in FIG. 3 (b), the thickness distribution is poor portion 22 each time repeating the lamination time division the thickness of the layer to the film center portion heterogeneous It appears as the part that became. Note that the reason why the layer flow is nonuniform in the cross section of the rectangular channel is because the stagnation part where the flow velocity becomes slow exists in the vicinity of the four corners of the cross section, and this causes the layer thickness to change. it is conceivable that. If it does so, the ratio of the defective part of the layer thickness contained in the multilayer film finally obtained by increasing the number of lamination | stacking will increase.

特開平4−278324号公報JP-A-4-278324 特開2004−34299号公報JP 2004-34299 A

前述の従来技術が有する問題に鑑み、本発明が解決しようとする課題は、各層の厚みが均一に積層された多層フィルムを製造することによって、光学的特性や機械的特性に優れた多層フィルムの製造方法およびそのための装置を提供することにある。   In view of the problems of the above-described conventional technology, the problem to be solved by the present invention is to manufacture a multilayer film in which the thickness of each layer is uniformly laminated, thereby producing a multilayer film excellent in optical characteristics and mechanical characteristics. A manufacturing method and an apparatus therefor are provided.

ここに、前記課題を解決するための多層フィルムの製造方法として、
(1) 少なくとも2つの溶融樹脂を多層フィードブロック内で交互に積層して矩形断面を有する積層流を形成し、該積層流を積層面に対して垂直に複数箇所で分割して矩形断面を有する複数の分割積層流からなる分岐流を形成し、該分岐流の積層面が互いに上下で重なり合って接するように再配置すると共に各分岐流の寸法をそれぞれ調整し、寸法調整した分岐流を互いに合流させて貼り合せ、最終的に積層数を増やした多層の交互積層体を形成する方法であって、
該方法は、分割直前の前記積層流の断面積をAとし、該積層流の両端に位置する各分割積層流の分割前の断面積をそれぞれA及びAと定義したとき、前記A,A及びAが「5<(A+A)/A×100<30」という条件を満足するように、前記積層流の両端部を分割して切り取り、且つ分割前に両端に位置した部分の前記分割積層流を静的に混合することを特徴とする多層フィルムの製造方法が提供される。
Here, as a method for producing a multilayer film for solving the above problems,
(1) At least two molten resins are alternately laminated in a multilayer feed block to form a laminated flow having a rectangular cross section, and the laminated flow is divided at a plurality of locations perpendicular to the laminated surface to have a rectangular cross section. A branched flow consisting of a plurality of divided laminated flows is formed, rearranged so that the laminated surfaces of the branched flows overlap and contact each other at the top and bottom, the dimensions of each branched flow are adjusted individually, and the adjusted branched flows are merged with each other And laminating and finally forming a multi-layered alternating laminate with an increased number of layers,
In this method, when the cross-sectional area of the laminated flow immediately before the division is defined as A and the cross-sectional areas before division of the divided laminated flows located at both ends of the laminated flow are defined as A 1 and A 2 , respectively, as a 1 and a 2 satisfy the condition "5 <(a 1 + a 2 ) / a × 100 <30 ", Ri cut by dividing the both end portions of the laminated flow, and located at both ends before splitting producing how the multilayer film is provided the split multilayer flow portion characterized that you mixed statically.

また、前記課題を解決するための多層フィルムの製造装置として、
) 少なくとも2つの溶融樹脂を交互に積層して矩形断面を有する多層の積層流を形成する多層フィードブロックと、該多層フィードで積層された積層流を積層面に対して垂直に複数箇所で分割して積層流の両端を切り取る分割切取手段と、分割された各分割積層流をそれぞれ独立した分岐流に分岐させる分岐手段と、前記各分岐流をその積層面が互いに上下で重なり合って接するようにそれぞれ再配置すると共に各分岐流の寸法を調整する再配置手段と、寸法調整された分岐流を互いに多層に合流させて貼り合わせて多層の交互積層流を形成させて該多層交互積層流を薄膜状に吐出するダイと、前記積層流の矩形断面の両端から分割して切り取った分割積層流を静的に混合するスタティックミキサーとを含む多層フィルムの製造装置であって、
前記分割切取手段が、前記多層フィードブロックから出た分割前の積層流の断面積Aとし、該積層流の両端で分割される各分割積層流の分割前の断面積をA及びAと定義したとき、前記A,A及びAが「5<(A+A)/A×100<30」という条件で分割して切り取る手段であることを特徴とする多層フィルムの製造装置が提供される。
Moreover, as a multilayer film manufacturing apparatus for solving the above problems,
( 2 ) A multi-layer feed block that forms a multi-layer laminar flow having a rectangular cross section by alternately laminating at least two molten resins, and the multi-layer flow laminated by the multi-layer feed is perpendicular to the laminating surface at a plurality of locations. Dividing and cutting means that divides and cuts both ends of the laminated flow; branching means that divides each divided laminated flow into independent branch flows; and each of the branched flows so that their laminated surfaces overlap each other vertically. And rearrangement means for adjusting the size of each branch flow, and the dimension-adjusted branch flows are joined to each other in multiple layers to form a multilayer alternating laminate flow, in the manufacturing apparatus of a multilayer film including a die for discharging a thin film, and a static mixer for mixing statically the divided cut split laminated flow from both ends of the rectangular cross section of the stacked flow I,
The divided cutting means sets the cross-sectional area A of the laminated flow before division from the multilayer feed block as A, and the cross-sectional area before division of each divided laminated flow divided at both ends of the laminated flow as A 1 and A 2 when defined, the a, production equipment of a multilayer film, characterized in that a 1 and a 2 are the means to cut and divided under the condition "5 <(a 1 + a 2 ) / a × 100 <30 " Is provided.

以上に述べた本発明によって得られる多層フィルムは、図3に例示した従来技術が有する問題を解決することができるという大きな効果を奏する。すなわち、図3において説明したように、矩形断面を有するポリマーをC’で分割して層数を増やすために、図3(b)のように再積層する際に、図3(a)に例示した層厚みの不均一な部分21が図3(b)に例示した、22の部分のように引き伸ばされて、厚みの良好部分が極めて少なくなるような現象を防止できる。このため、各層の厚みが均一である、極めて多くの層数を有する多層フィルムを良好に製造することができる。このことから、本発明によって製造される多層フィルムは、光学的特性や機械的特性に優れている。 The multilayer film obtained by the present invention described above has a great effect that the problem of the conventional technique illustrated in FIG. 3 can be solved. That is, as described in FIG. 3, in order to increase the number of layers by dividing a polymer having a rectangular cross section by C 1 ′, when restacking as shown in FIG. The portion 21 having a non-uniform layer thickness illustrated in FIG. 3B is stretched like the portion 22 illustrated in FIG. 3B, thereby preventing a phenomenon in which the portion having a good thickness is extremely small. For this reason, it is possible to satisfactorily produce a multilayer film having a very large number of layers in which the thickness of each layer is uniform. From this, the multilayer film manufactured by this invention is excellent in an optical characteristic and a mechanical characteristic.

特に、図3に例示した分割と再積層とからなる工程を一度で終わらずに、幾度も繰り返す場合、従来技術では層厚みの良好部分がほとんど消失することになる。これに対して、本発明では、図3(a)に示した「層が不均一な部分21」を必要最小限の量だけ切り取っておくため、層厚みが極めて良好な積層流だけを効果的に引き伸ばして層数を2倍、3倍と増やすことが可能である。   In particular, when the process consisting of the division and the re-stacking illustrated in FIG. 3 is not repeated once and repeated many times, in the related art, a portion having a good layer thickness is almost lost. On the other hand, in the present invention, since the “layer non-uniform portion 21” shown in FIG. 3A is cut out by a necessary minimum amount, only a laminar flow having an extremely good layer thickness is effective. It is possible to increase the number of layers by 2 to 3 times.

以下、図面を参照しながら本発明の実施形態を説明する。
図1は、少なくとも2種の熱可塑性高分子重合体(ポリマーP,P)を多層フィードブロック1を使用して多層に交互積層した積層流Pを形成させるための方法とその装置を例示した模式説明図であって、図1(a)は平面図、図1(b)は図3(a)の要部を拡大した拡大平面図、そして、図1(c)及び図1(d)は、図3(b)におけるX−X矢視方向及びY−Y矢視方向の断面図をそれぞれ示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a method and apparatus for forming a laminar flow P 0 in which at least two thermoplastic polymer polymers (polymers P A , P B ) are laminated in multiple layers using a multilayer feed block 1. FIG. 1 (a) is a plan view, FIG. 1 (b) is an enlarged plan view of an enlarged main part of FIG. 3 (a), and FIGS. 1 (c) and 1 (c). d) shows sectional views in the direction of arrows XX and YY in FIG. 3 (b), respectively.

図1(a)において、少なくとも2種のポリマー(図1では2種のポリマーP及びPの例を示した)は、図の左側からそれぞれ供給され、これらポリマーP及びPは、それぞれ流入口6a,6bから多層フィードブロック1に導入され、多層フィードブロック1によって交互に積層された後、積層流Pとなって流出口8から出る。なお、この多層フィードブロック1自体は、例えば、特開2003−112355号公報などで開示されているように公知であり、本発明においてもこのような公知の多層フィードブロック1を好適に使用することができる。なお、本発明の一大特徴を説明する都合上、先ず図1(a)〜図1(d)に例示した多層フィードブロック1について以下に簡単に説明しておく。 1 (a), the at least two polymers (an example of FIG. 1, two polymers P A and P B) are supplied from the left side of the figure, these polymers P A and P B, After being introduced into the multi-layer feed block 1 from the inlets 6a and 6b and alternately laminated by the multi-layer feed block 1, they become the laminated flow P 0 and exit from the outlet 8. The multilayer feed block 1 itself is known as disclosed in, for example, Japanese Patent Laid-Open No. 2003-112355, and such a known multilayer feed block 1 is preferably used in the present invention. Can do. For convenience of explaining the main features of the present invention, the multilayer feed block 1 illustrated in FIGS. 1 (a) to 1 (d) will be briefly described below.

なお、図1(a)〜図1(d)において、多層フィードブロック1は、上側抑えブロック2a及び下側抑えブロック2b、上側分岐ブロック3a及び下側分岐ブロック3b、そして合流ブロック4を含んで構成されている。このとき、図1(a) の要部を拡大した図1(b)に例示したように、前記上側分岐ブロック3a及び下側分岐ブロック3bには、図1(c)及び図1(d)に例示したように、矩形断面を有するポリマー供給孔7a及び7bがそれぞれ交互に上下で穿設されている。   1A to 1D, the multilayer feed block 1 includes an upper restraining block 2a and a lower restraining block 2b, an upper branch block 3a and a lower branch block 3b, and a merge block 4. It is configured. At this time, as illustrated in FIG. 1 (b) in which the main part of FIG. 1 (a) is enlarged, the upper branch block 3a and the lower branch block 3b are provided in FIGS. 1 (c) and 1 (d). As illustrated in Fig. 1, polymer supply holes 7a and 7b having a rectangular cross section are alternately formed in the upper and lower sides.

したがって、多数の隔壁板9を等間隔で平行に設けてポリマーPの流れとPの流れとを互いに隔てる平行流路8a及び8bへは、前記ポリマー供給孔7a及び7bからポリマーP及びPを交互に供給できる構造となっている。次に、前記平行流路8a,8bから出た各ポリマーP,Pは、平行流路8a及び8bから出た直後に合流して貼り合わされ、その結果として、交互に積層された、矩形断面を有する積層流Pとなって流出口8から一点鎖線で示した有向線分の矢印方向へと流出する。 Thus, the parallel flow paths 8a and 8b separating the flow of a large number of the partition plate 9 is provided in parallel at equal intervals of a polymer P A flow and P B to each other, and polymers P A from the polymer feed holes 7a and 7b P B can be supplied alternately. Next, the polymers P A and P B coming out of the parallel flow paths 8a and 8b are merged and bonded immediately after coming out of the parallel flow paths 8a and 8b, and as a result, alternately stacked rectangular shapes It becomes a laminated flow P 0 having a cross section and flows out from the outlet 8 in the direction of the arrow indicated by the one-dot chain line.

以上に述べたようにして多層フィードブロック1によって形成される積層流Pは、その積層数が2〜1000層となるように形成することができるが、積層数を余りにも多くすると良好な積層状態を形成することが難しく、より好ましい積層流Pを形成するための積層数は3〜301層である。次に、本発明の一大特徴である均一な層厚を有しながらも極めて多数の層数とする方法とその装置について、図2を参照しながら、以下に詳細に説明する。 As described above, the laminated flow P 0 formed by the multilayer feed block 1 can be formed so that the number of laminations is 2 to 1000. However, if the number of laminations is too large, good lamination it is difficult to form a state more preferable number of stacked to form a multilayer stream P 0 is 3-301 layers. Next, a method and apparatus for forming an extremely large number of layers while having a uniform layer thickness, which is one of the main features of the present invention, will be described in detail with reference to FIG.

この図2において、図2(a)は、前記積層流Pが分割された後、再配置されて再積層されて多層フィルム化されるまでの各操作を示した操作説明図であり、図2(b)は前記各操作を具現化するための装置例を示した斜視図である。なお、図2(a)における各操作要素に対応する装置要素については、図2(b)との関連を把握できるように、各参照符号に括弧を付して記載してある。 In FIG. 2, FIG. 2 (a), after said laminating stream P 0 is divided, an operation explanatory view showing the respective operations until the multi-layer film of being re-stacked are rearranged, FIG 2 (b) is a perspective view showing an example of an apparatus for embodying each operation. In addition, about the device element corresponding to each operation element in Fig.2 (a), in order to grasp | ascertain the relationship with FIG.2 (b), each reference code is attached | subjected and described.

ここで、本発明においては、前述のように、多層フィードブロック1でポリマーPとポリマーPとが交互に複数に積層された矩形断面(その断面積を“A”とする)を有する積層流Pが形成される。次に、このようにして形成された積層流Pは、図2(a)に例示したように、分割切取操作、分岐操作(必要に応じて、静的混合操作)、再配置操作、そして、合流貼合操作がこの順に行われて未延伸の多層シート(積層体)に成形される。 Here, in the present invention, as described above, the multilayer feed block 1 has a rectangular cross section in which a plurality of polymers P A and polymers P B are alternately stacked (the cross-sectional area is “A”). A stream P 0 is formed. Next, as illustrated in FIG. 2A, the laminated flow P 0 thus formed is divided and cut, branched (if necessary, static mixing), rearranged, and The merging and bonding operations are performed in this order to form an unstretched multilayer sheet (laminate).

このとき、図2(b)に例示したように、前記分割切取操作は分割切取手段11によって行われ、前期分岐操作は分岐手段12によって行われ、前期再配置操作は再配置手段13によって行われ、そして、前記再配置操作はダイ14によって行われる。なお、必要に応じて分岐操作中に行われる静的混合操作については、図2(b)には図示省略したが、分岐流路12a,12b,12c,12d中の両端部の分岐流路12a及び12d中にスタティックミキサーを設置することによって行われる。したがって、両端部の分岐流路12a及び12dは設置するスタティックミキサーの形式(例えば、ケニックス型スタティックミキサー)によっては、矩形断面流路ではなく、円形断面流路が採用されることは言うまでもない。   At this time, as illustrated in FIG. 2B, the division cut operation is performed by the division cut unit 11, the previous branch operation is performed by the branch unit 12, and the previous rearrangement operation is performed by the rearrangement unit 13. The relocation operation is performed by the die 14. Note that the static mixing operation performed during the branching operation as necessary is omitted in FIG. 2B, but the branching channel 12a at both ends in the branching channels 12a, 12b, 12c, and 12d. And by installing a static mixer in 12d. Therefore, it goes without saying that the branch flow paths 12a and 12d at both ends may adopt a circular cross-section flow path instead of a rectangular cross-section flow path depending on the type of static mixer to be installed (for example, a Kenix type static mixer).

以下、前記分割切取操作、分岐操作(必要に応じて、静的混合操作を含む)、再配置操作、そして、合流貼り合せ操作について詳細に説明する。
先ず、分割操作では、前記積層流Pをその積層面に対して垂直に複数箇所(図ではC,C,C)でそれぞれ分割して、分割積層流P,P,P及びPを生成する操作が行われる。その際、本発明においては、前記積層流Pの分割前の矩形断面積をAとし、積層流Pの両端部から由来する分割後の分割積層流PとPの断面積をそれぞれAとAと定義すると、分割積層流PとPは、下記の(1)式で規定される条件を満足するように分割されて切り取られる。
5<(A+A)/A×100<30 …… (1)
なお、本例では,積層流Pを4分割して、4つの分割積層流P,P,P及びPとしているが、5分割以上にすることもでき、より好ましい積層流Pの分割数は4〜6分割である。
Hereinafter, the split cutting operation, the branching operation (including the static mixing operation as necessary), the rearrangement operation, and the merging and bonding operation will be described in detail.
First, in the dividing operation, the laminated flow P 0 is divided at a plurality of locations (C 1 , C 2 , C 3 in the figure) perpendicular to the laminated surface, respectively, and divided laminated flows P 1 , P 2 , P 3 and the operation of generating a P 4 is performed. At that time, in the present invention, the rectangular cross-sectional area before the division of the laminated flow P 0 is A, and the sectional areas of the divided laminated flows P 1 and P 4 after the division originating from both ends of the laminated flow P 0 are respectively represented. When defined as A 1 and A 2 , the divided laminated flows P 1 and P 4 are divided and cut so as to satisfy the condition defined by the following equation (1).
5 <(A 1 + A 2 ) / A × 100 <30 (1)
In this example, the laminated flow P 0 is divided into four to be four divided laminated flows P 1 , P 2 , P 3 and P 4 , but can be divided into five or more, and a more preferable laminated flow P The division number of 0 is 4 to 6 divisions.

以上に述べたようにして分割操作が完了すると、分割した積層流P,P,P及びPをそれぞれ独立した分岐流とする分岐操作を行う。なお、この分岐操作において、両端部の分割積層流P及びPは前記(1)式で規定される条件を満足するように切り取られるが、その際、「(A+A)/A×100」を「R」で定義すると、このRが5(%)以下であると、層の不均一部分を十分切り取ることができず、両端の層厚が不均一となる部分を残してしまうことになって好ましくない。 When the division operation is completed as described above, a branch operation is performed in which the divided laminated flows P 1 , P 2 , P 3, and P 4 are respectively made into independent branch flows. In this branching operation, the divided laminated flows P 1 and P 4 at both ends are cut out so as to satisfy the condition defined by the above expression (1). In this case, “(A 1 + A 2 ) / A When “× 100” is defined as “R”, if this R is 5 (%) or less, a non-uniform portion of the layer cannot be sufficiently cut out, and a portion where the layer thickness at both ends is non-uniform is left. That is not preferable.

逆に、30(%)以上切り取られると、両端部の不良部が占める割合が余りにも大きくなって、両端部の不良箇所を修正する意味がなくなってしまう。なお、Rが30(%)以上となる場合は、多層フィードブロック1内での積層流Pの形成方法に問題があることを意味しており、積層流Pを良好に形成することの方が肝要である。したがって、通常の条件では30(%)以上切り取る必要はない。しかも、積層流Pの両端部を30%以上切り取るとなると、均一な交互積層流を形成する分岐流Pと分岐流Pに相当する部分のポリマー流量が極端に少なくなり、非効率な多層フィルムの製造方法となってしまい、好ましくない。 On the other hand, when 30% or more is cut off, the proportion of the defective portions at both ends becomes too large, and the meaning of correcting the defective portions at both ends is lost. In the case where R is 30% or higher, it means that there is a problem with the method of forming the laminated flow P 0 of within the multilayer feed block 1, of possible to satisfactorily form a laminated flow P 0 Is more important. Therefore, it is not necessary to cut out 30% or more under normal conditions. In addition, if both ends of the laminated flow P 0 are cut off by 30% or more, the polymer flow rate in the portion corresponding to the branched flow P 3 and the branched flow P 4 forming a uniform alternating laminated flow is extremely reduced, which is inefficient. It becomes a manufacturing method of a multilayer film, and is not preferable.

なお、このとき、積層流Pの両端部の分割積層流P及びPに対して、図示したように、ポリマーPとポリマーPとで形成された交互積層体が喪失するように、静的混合操作を行うようにすることが必要である。なお、この静的混合操作は、例えば、Sulzer Ltd. 、Koch-Glitsch Inc. 、Chemineer Incなどから提供される各種の静的混合素子(例えば、ケニックス型スタティックミキサー、スルザー型スタティックミキサーなど)を使用して行うことができる。 At this time, as shown in the figure, the alternate laminated body formed of the polymer P A and the polymer P B is lost with respect to the divided laminated flows P 1 and P 4 at both ends of the laminated flow P 0. It is necessary to perform a static mixing operation. In addition, this static mixing operation uses various static mixing elements (for example, Kenix type static mixer, sulzer type static mixer, etc.) provided by Sulzer Ltd., Koch-Glitsch Inc., Chemineer Inc, etc. Can be done.

このようにして、混合操作が両端部の分割積層流P及びPに対して行われると、ポリマーPとポリマーPの交互積層部が喪失して、ポリマーPとポリマーPとがほぼ均一に混ざり合ったポリマー流P’及びP’が形成される。なお、このようなポリマーPとポリマーPとがほぼ均一に混ざり合ったポリマー流P’及びP’が形成されると、例えば不均一層が可視光を反射してしまって虹色のフィルムになってしまう弊害や、フィルムを延伸する過程で延伸ムラによる厚みムラができる弊害を防止できる。 In this way, the mixing operation is performed on the divided laminated flow P 1 and P 4 at both ends, and loss of alternate lamination of the polymers P A and polymer P B, the polymer P A and polymer P B Are formed into a polymer stream P 1 ′ and P 4 ′ that are almost uniformly mixed. Incidentally, when such polymers P A and polymer P B and the polymer stream P 1 were mixed to almost homogeneous 'and P 4' is formed, for example, nonuniform layer is accidentally reflected visible light iridescence It is possible to prevent the adverse effect of becoming a film of the present invention and the adverse effect of uneven thickness due to uneven stretching in the process of stretching the film.

以上に述べたように、分割操作で分割した各分割積層流P,P,P,Pをそれぞれ独立に分岐させて分岐流を形成する分岐操作、及び/又は必要に応じて両端部の分割積層流P及びPを静的混合する操作が完了すると、次に、再配置操作を行う。この再配置操作とは、分岐流P’,P’,P’,P’の積層面が互いに上下で重なり合って接するように再配置すると共に、各分割積層流の幅方向の寸法をそれぞれ調整する操作である。 As described above, each of the divided laminated flows P 1 , P 2 , P 3 , P 4 divided by the division operation is branched independently to form a branch flow, and / or both ends as necessary. When the operation of statically mixing the divided laminar flows P 1 and P 4 is completed, a rearrangement operation is then performed. This rearrangement operation means rearrangement so that the laminated surfaces of the branch flows P 1 ′, P 2 ′, P 3 ′, and P 4 ′ overlap each other in the upper and lower directions, and the widthwise dimension of each divided laminated flow Is an operation to adjust each.

この再配置操作によると、図2(a)に例示したように、両端部の分岐流P’とP’は、再配置操作前には幅がWと狭く、逆に厚みが大きな縦長の短冊形状(矩形形状)を呈している。これに対して、再配置操作後のポリマー流P”及びP”は、図示したように幅方向に大きく伸ばされて、その幅がWからW’へと拡幅されるのに対して、逆に厚みは薄くされて横長の矩形形状を呈するように変形させられる。 According to this rearrangement operation, as illustrated in FIG. 2A, the branched flows P 1 ′ and P 4 ′ at both ends are narrow with a width of W before the rearrangement operation, and conversely with a large thickness. The strip shape (rectangular shape) is exhibited. In contrast, the polymer flows P 1 ″ and P 4 ″ after the rearrangement operation are greatly stretched in the width direction as shown in the figure, and the width is widened from W to W ′. On the other hand, the thickness is reduced and deformed so as to exhibit a horizontally long rectangular shape.

このため、両端部で切り取る分岐流P’とP’の量、すなわち、「(A+A)/A×100」で定義される「R」を30(%)より小さくすれば、再配置操作後のポリマー流P”及びP”の厚みは小さくなって、P”とP”が全体の多層フィルムの厚みに寄与する度合いを低下させることができる。しかしながら、「R」が5(%)より小さくなってしまうと、厚みむらが生じた不良部分が残ってしまうことになって好ましくない。 For this reason, if the amount of branch flows P 1 ′ and P 4 ′ cut off at both ends, that is, “R” defined by “(A 1 + A 2 ) / A × 100” is smaller than 30 (%), The thickness of the polymer streams P 1 ″ and P 4 ″ after the rearrangement operation can be reduced to reduce the degree to which P 1 ″ and P 4 ″ contribute to the overall multilayer film thickness. However, if “R” becomes smaller than 5 (%), it is not preferable because a defective portion with uneven thickness remains.

その際、図2(a)に示した再配置操作に関し簡単に付言するならば、P’→P”、P’→P”、P’→P”及びP’→P”というような再配置操作とせずに、P’→P”、P’→P”、P’→P”及びP’→P”といった再配置操作、あるいは、P’→P”、P’→P”、P’→P”及びP’→P”といった再配置操作を行うこともできる。そして、このような再配置操作を行うと、均一な厚さに交互積層された部分を多層フィルムの前面に集中させ、不均一に交互積層された部分をその反対面である背面に集中させた多層フィルムを製造できる。 At that time, if the relocation operation shown in FIG. 2 (a) is briefly described, P 1 ′ → P 1 ″, P 2 ′ → P 2 ″, P 3 ′ → P 3 ″ and P 4 ′ → "without relocation operation as that a, P 1 '→ P 3" , P 2' P 4 → P 1 ", P 3 relocation operations such '→ P 2" and P 4' P 4 ", or , P 1 ′ → P 4 ″, P 2 ′ → P 1 ″, P 3 ′ → P 2 ″ and P 4 ′ → P 3 ″ can be performed. And when such a rearrangement operation was performed, the portions alternately laminated to a uniform thickness were concentrated on the front surface of the multilayer film, and the non-uniformly alternately laminated portions were concentrated on the back surface which is the opposite surface. A multilayer film can be produced.

このとき、前記再配置操作に関しては、図2(b)に示した合流流路13a,13b,13c,13dを入れ替えることによって具現化することができることは言うまでもない。例えば、前記P’→P”、P’→P”、P’→P”及びP’→P”といった再配置操作は、図2(b)に示した合流流路13a,13b,13c及び13dといった再配置の順序を合流流路13c,13a,13b及び13dと入れ替えることによって具現化できる。 At this time, it goes without saying that the rearrangement operation can be realized by replacing the merging flow paths 13a, 13b, 13c, and 13d shown in FIG. For example, the rearrangement operations such as P 1 ′ → P 3 ″, P 2 ′ → P 1 ″, P 3 ′ → P 2 ″ and P 4 ′ → P 4 ″ are performed as shown in FIG. This can be realized by replacing the rearrangement order such as the paths 13a, 13b, 13c and 13d with the merging flow paths 13c, 13a, 13b and 13d.

このようにして再配置操作が完了すると、再配置操作前のポリマー流P’,P’,P’,P’は、その幅方向の寸法が全て同一の幅W’を有するように調整されたポリマー流P”,P”,P”,P”となる。したがって、このような全て同一の幅W’を有するように調整されたポリマー流P”,P”,P”,P”を次の合流貼り合せ操作で合流させて貼り合せることを容易かつ良好に行うことができる。 When the rearrangement operation is completed in this way, the polymer flows P 1 ′, P 2 ′, P 3 ′, and P 4 ′ before the rearrangement operation all have the same width W ′ in the width direction. The polymer streams P 1 ″, P 2 ″, P 3 ″, P 4 ″ adjusted to Therefore, the polymer flows P 1 ″, P 2 ″, P 3 ″, and P 4 ″ all adjusted so as to have the same width W ′ are merged by the next merging / laminating operation and bonded. It can be done easily and satisfactorily.

以上に述べたようにして、合流貼り合せ操作を行う準備が完了すると、図2(a)及び図2(b)に例示したように、例えばダイ14の入口部でポリマー流P”,P”,P”,P”を合流させ、ダイ14によって合流させたポリマーを薄膜状ポリマーSに成形した未延伸の多層シート(積層体)Sとしてダイ14から吐出することができる。 As described above, when the preparation for performing the merging and bonding operation is completed, as illustrated in FIGS. 2A and 2B, for example, the polymer flow P 1 ″, P at the inlet of the die 14 2 ″, P 3 ″, P 4 ″ are merged, and the polymer merged by the die 14 can be discharged from the die 14 as an unstretched multilayer sheet (laminate) S formed into a thin film polymer S.

なお、このようにして得られた未延伸の多層シートSに関しては、当業者であれば、従来周知の方法と装置を用いて多層フィルムとすることができるので、その詳細説明は省略して、簡単な説明にとどめておく。すなわち、前記未延伸の多層シートは、例えば、定法にしたがって、所定の温度に加熱して縦および/または横方向に延伸し、所定の温度で熱処理し、必要によっては熱弛緩処理し、また必要に応じて再縦および/または再横延伸して巻き取ることによって多層フィルムとすることができる。なお、このとき、多層フィルムの製造工程中、または製造後にフィルムに何らかの機能性を付与するための塗液を塗布し乾燥する工程を設けても良い。   In addition, regarding the unstretched multilayer sheet S obtained in this way, those skilled in the art can form a multilayer film by using a conventionally known method and apparatus, and therefore detailed description thereof is omitted. Keep a simple explanation. That is, the unstretched multi-layer sheet is heated to a predetermined temperature and stretched in the longitudinal and / or transverse direction according to a conventional method, heat-treated at the predetermined temperature, and heat-relaxed if necessary, or necessary. Accordingly, the film can be formed into a multilayer film by re-longitudinal and / or re-lateral stretching and winding. At this time, a step of applying and drying a coating liquid for imparting some functionality to the film may be provided during or after the production process of the multilayer film.

以上に述べた本発明によって得られる多層フィルムの大きな特徴は、図3に例示した従来技術が有する問題を解決できることにある。すなわち、図3において矩形断面1を21で分割し再積層する際に、図3(a)に示した層厚の不均一な部分21が図3(b)に示した22の部分ように引き伸ばされ、厚みの良好部分が極めて少なくなる。特に、図3の例からすれば分割再積層を幾度も繰り返す場合、層厚みの良好部分がほとんど消失することになる。従って、図2に例示したように、層厚が不均一となった両端部の分岐流P’と分岐流P’を必要最小限の量だけ切り取っておくと、層厚が極めて良好な分岐流P’と分岐流P’だけを効果的に再配置して引き伸ばすことによって、層厚が均一な多層フィルムの層数を2倍、3倍と増やすことが可能になる。 A major feature of the multilayer film obtained by the present invention described above is that the problem of the prior art illustrated in FIG. 3 can be solved. That is, when the rectangular cross section 1 is divided by 21 and re-stacked in FIG. 3, the non-uniform portion 21 of the layer thickness shown in FIG. 3 (a) is stretched to the portion 22 shown in FIG. 3 (b). As a result, the portion with good thickness is extremely reduced. In particular, according to the example of FIG. 3, when divisional re-stacking is repeated many times, a portion having a good layer thickness is almost lost. Therefore, as illustrated in FIG. 2, if the branch flow P 1 ′ and the branch flow P 4 ′ at both ends where the layer thickness is not uniform are cut out by a necessary minimum amount, the layer thickness is extremely good. By effectively rearranging and stretching only the branch flow P 2 ′ and the branch flow P 3 ′, it becomes possible to increase the number of layers of a multilayer film having a uniform layer thickness by a factor of two or three.

以上に述べた本発明によって得られる多層フィルムの好ましい層数は5〜4800層であり、このような層は、既に詳細に説明したように、少なくと2種類のポリマーを交互に積層して製造される。なお、本発明によって得られる多層フィルムは、各ポリマーの屈折率の差を利用しフィルムへの入射光を選択的に透過と反射をさせる目的、フィルムの強度を高める目的、あるいはガスバリア性などのフィルムが有する機能性を向上させる目的で利用することが好ましい。   The preferred number of layers of the multilayer film obtained by the present invention described above is 5 to 4800, and such layers are produced by alternately laminating at least two kinds of polymers as already described in detail. Is done. In addition, the multilayer film obtained by the present invention is a film for the purpose of selectively transmitting and reflecting the incident light to the film by utilizing the difference in refractive index of each polymer, the purpose of increasing the strength of the film, or the gas barrier property. It is preferably used for the purpose of improving the functionality possessed by.

その際、本発明において多層フィルムを構成するポリマーは、延伸可能なポリマーを主成分とする熱可塑性樹脂を用いることができ、例えばポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリブチレンテレフタレートのような芳香族ポリエステル、ポリエチレン、ポリプロピレンのようなポリオレフィン、ポリスチレンのようなポリビニル、ナイロン6(ポリカプロラクタム)、ナイロン66(ポリ(ヘキサメチレンジアミン−co−アジピン酸))のようなポリアミド、ビスフェノールAポリカーボネートのような芳香族ポリカーボネート、ポリスルフォン等の単独重合体或いはこれらの共重合体を主成分とする樹脂を挙げることができる。共重合成分としては、イソフタル酸共重合ポリエチレンテレフタレート、2,6−ナフタレンジカルボン酸共重合ポリエチレンテレフタレートを例示できる。上記熱可塑性樹脂の中では、延伸による分子配向が可能な芳香族ポリエステル、ポリオレフィン、ポリアミドが好ましく、分子が二軸配向した際に光学的、機械的、熱的特性が優れたものになるポリエチレン−2,6−ナフタレートも好ましい。これらの樹脂には、必要に応じて耐候剤や滑剤、帯電防止剤、顔料などの添加剤が配合されていても良い。   In that case, the polymer which comprises a multilayer film in this invention can use the thermoplastic resin which has a drawable polymer as a main component, for example, polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, etc. Aromatic polyester, Polyolefin such as polyethylene and polypropylene, Polyvinyl such as polystyrene, Polyamide such as nylon 6 (polycaprolactam), nylon 66 (poly (hexamethylenediamine-co-adipic acid)), and bisphenol A polycarbonate Examples thereof include homopolymers such as aromatic polycarbonate and polysulfone, and resins mainly composed of these copolymers. Examples of the copolymer component include isophthalic acid copolymerized polyethylene terephthalate and 2,6-naphthalenedicarboxylic acid copolymerized polyethylene terephthalate. Among the above thermoplastic resins, aromatic polyesters, polyolefins, and polyamides capable of molecular orientation by stretching are preferred, and polyethylene that exhibits excellent optical, mechanical, and thermal properties when the molecules are biaxially oriented. 2,6-naphthalate is also preferred. These resins may contain additives such as weathering agents, lubricants, antistatic agents, and pigments as necessary.

以下、実施例によって本発明を更に説明する。なお、例中の各物性は下記の方法で測定した。
(1)色
フィルムサンプルの色とその強さを蛍光灯のもとで目視観察した。
(2)最大反射率
島津製作所製分光光度計MPC−3100を用い、各波長でのアルミ蒸着したミラーとの相対鏡面反射率を波長350〜2100nmの範囲で測定する。その測定された反射率の中で最大のものを,最大反射率とする。測定位置はフィルム幅方向の両エッジを含む5点(等間隔)とした。
Hereinafter, the present invention will be further described by way of examples. In addition, each physical property in an example was measured with the following method.
(1) Color The color of the film sample and its intensity were visually observed under a fluorescent lamp.
(2) Maximum reflectance Using a spectrophotometer MPC-3100 manufactured by Shimadzu Corporation, the relative specular reflectance with an aluminum-deposited mirror at each wavelength is measured in a wavelength range of 350 to 2100 nm. The largest of the measured reflectances is the maximum reflectance. The measurement positions were 5 points (equal intervals) including both edges in the film width direction.

[実施例1]
まず、2種類のポリマーP及びPを用意した。一方のポリマーPは、固有粘度(35℃のオルトクロロフェノール中で測定した値)0.62dl/gのポリエチレン−2,6−ナフタレート(PEN)であって真球状シリカ粒子(平均粒径:0.12μm、長径と短径の比:1.02、粒径の平均偏差:0.1)を0.11wt%添加した。他方のポリマーPは、固有粘度(35℃のオルトクロロフェノール中で測定した値)が0.63dl/gのポリエチレンテレフタレート(PET)と固有粘度(35℃のオルトクロロフェノール中で測定した値)が0.62dl/gのポリエチレン−2,6−ナフタレート(PEN)を重量%で50:50にブレンドしたものを準備した。
[Example 1]
First, it was prepared two polymers P A and P B. One of the polymers P A is (a value measured in o-chlorophenol of 35 ° C.) intrinsic viscosity 0.62 dl / g a polyethylene-2,6-naphthalate (PEN) with spherical silica particles (average particle size of: 0.11 μm, 0.12 μm, ratio of major axis to minor axis: 1.02, average deviation of particle diameter: 0.1) was added. The other polymer P B has an intrinsic viscosity (measured in 35 ° C. orthochlorophenol) of 0.63 dl / g of polyethylene terephthalate (PET) and an intrinsic viscosity (measured in 35 ° C. orthochlorophenol). Of 0.62 dl / g of polyethylene-2,6-naphthalate (PEN) blended at a weight percentage of 50:50 was prepared.

次に、ペレット化した各ポリマーP,Pを160℃で5時間乾燥後、別個の押出機に供給して溶融し、ギアポンプで計量しつつポリマーフィルターで濾過し、図1に例示した多層フィードブロック1へ導いた。ついで、前記多層フィードブロック1内で2つの溶融ポリマーP及びPを交互に101層に積層した矩形断面を有する積層流Pを形成させ、図2に例示した装置10に導いた。 Next, the pelletized polymers P A and P B were dried at 160 ° C. for 5 hours, then fed to a separate extruder, melted, filtered through a polymer filter while metering with a gear pump, and the multilayer illustrated in FIG. Leaded to feed block 1. Then, the to form a laminated flow P 0 having a rectangular cross-section are stacked in 101 layers alternately two molten polymer P A and P B in the multilayer feed block within 1, led to the illustrated apparatus 10 in FIG.

そして、この矩形断面を有する積層流Pを積層面に対して垂直に3箇所で分割して矩形断面を有する4つの分割積層流P,P,P及びPからなる分岐流を形成した。このとき、分割直前の前記積層流Pの断面積をAとし、該積層流Pの両端に位置する各分割積層流P及びPの分割前の断面積をそれぞれA及びAに関しては、A=A、(A+A)/A×100=30(%)となるように、分割切取手段11によって切り取り、分岐流P ’と分岐流P ’を9エレメントのケニックス型スタティックミキサーで混合し、トータル厚みが55μmとなるよう調整した。このとき、分割積層流PとPについては、同一の流量となるように分割位置を調整した。 Then, the laminated flow P 0 having the rectangular cross section is divided at three points perpendicular to the laminated surface, and a branched flow comprising four divided laminated flows P 1 , P 2 , P 3 and P 4 having the rectangular cross section is obtained. Formed. At this time, the cross-sectional area of the laminated flow P 0 immediately before the division is A, and the cross-sectional areas before division of the divided laminated flows P 1 and P 2 positioned at both ends of the laminated flow P 0 are respectively A 1 and A 2. Is divided by the dividing / cutting means 11 so that A 1 = A 2 , (A 1 + A 2 ) / A × 100 = 30 (%), and the branch flow P 1 ′ and the branch flow P 4 ′ are divided into nine elements. Were mixed with a Kenix type static mixer to adjust the total thickness to 55 μm. At this time, the divided laminated flow P 2 and P 3 were adjusted split position to be the same flow rate.

次に、このようにして分割した分割積層流P〜Pをそれぞれ独立した分岐流路12a〜12dへと導き、分岐流P’〜P’を形成させた。そして、この分岐流P’〜P’の各積層面が互いに上下で重なり合って接するように再配置手段13によって各分岐流P’〜P’の幅寸法が同一幅となるように再配置したポリマー流P”〜P”を形成させた。次いで、再配置した各ポリマー流P”〜P”を合流貼合手段を兼ねるダイ14ヘと導き合流させて互いに貼り合せて再積層させた後、その積層状態を維持したままダイ14からキャスティングドラム上にキャストして、分割積層流P及びPから由来の積層数が202層である未延伸の多層シート(積層体)Sを作成した。 Next, the divided laminated flows P 1 to P 4 divided in this way were led to the independent branch flow paths 12 a to 12 d to form the branch flows P 1 ′ to P 4 ′. Then, the rearrangement means 13 makes the width dimensions of the branch flows P 1 ′ to P 4 ′ have the same width so that the stacked surfaces of the branch flows P 1 ′ to P 4 ′ overlap and touch each other. A rearranged polymer stream P 1 ″ to P 4 ″ was formed. Next, the rearranged polymer streams P 1 ″ to P 4 ″ are guided to the die 14 which also serves as a merging and pasting means, joined together and re-laminated, and then the die 14 is maintained while maintaining the laminated state. was cast onto a casting drum, unstretched multilayer sheet (laminate) lamination number derived from split multilayer flow P 2 and P 3 are 202 layers was created S.

この未延伸積層シートSを定法に従って、150℃の温度で縦方向に3.2倍に延伸し、更に155℃の延伸温度で横方向に3.5倍に延伸し、230℃で3秒間の熱固定処理を行いテンターから取り出した後、両エッジを約200mmずつトリミングし、1200mm幅の多層フィルムを得た。得られた多層フィルムは可視光の内、約550nmの波長の光を反射するフィルムであり、目視で赤色に見えるフィルムであった。このとき得られた測定値を表1に示す。   This unstretched laminated sheet S is stretched 3.2 times in the longitudinal direction at a temperature of 150 ° C., and further stretched 3.5 times in the transverse direction at a stretching temperature of 155 ° C., and at 230 ° C. for 3 seconds. After heat setting and taking out from the tenter, both edges were trimmed by about 200 mm to obtain a multilayer film having a width of 1200 mm. The obtained multilayer film was a film that reflected light having a wavelength of about 550 nm out of visible light, and was a film that looked red visually. The measured values obtained at this time are shown in Table 1.

[比較例1]
図3に示した2分割の方法を用い、トータル厚みが25μmとなるよう調整した以外は実施例1と同じ条件で202層の多層フィルムを採取した。採取した多層フィルムは、エッジ部で赤色の発色が弱く緑色がやや混じる感じであった。なお、このとき得られた結果を表1に示す。
[Comparative Example 1]
A 202-layer multilayer film was sampled under the same conditions as in Example 1 except that the total thickness was adjusted to 25 μm using the two-division method shown in FIG. The collected multilayer film had a weak red color at the edges and a slight green color. The results obtained at this time are shown in Table 1.

Figure 0004620526
Figure 0004620526

本発明の製造方法によれば、各層の厚みが均一である、極めて多くの層数を有する高品位の多層フィルムを良好に製造することができる。しかも、得られる多層フィルムは、光学的特性や機械的特性に優れている。   According to the production method of the present invention, a high-quality multilayer film having an extremely large number of layers in which the thickness of each layer is uniform can be produced satisfactorily. Moreover, the obtained multilayer film is excellent in optical characteristics and mechanical characteristics.

少なくとも2種のポリマーを多層フィードブロックを使用して多層に交互積層した積層流を形成させるための方法とその装置を説明するための説明図である。It is explanatory drawing for demonstrating the method and its apparatus for forming the lamination | stacking flow which laminated | stacked the at least 2 sort (s) of polymer in multiple layers using the multilayer feed block. 多層フィードブロックで得られた積層流を分割切取、分岐、再配置及び合流貼合を行うための本発明の方法とその装置に係わる一つの実施形態を模式的に例示した説明図である。It is explanatory drawing which illustrated typically one Embodiment concerning the method of this invention and its apparatus for performing the division | segmentation cutting, branching, rearrangement, and merge bonding of the laminated flow obtained by the multilayer feed block. 従来技術による分割再積層の操作の様子を例示した説明図である。It is explanatory drawing which illustrated the mode of operation of the division | segmentation restacking by a prior art.

符号の説明Explanation of symbols

10:多層フィードブロックで得られた積層流を分割切取、分岐、再配置及び合流貼合を行うための装置
11:分割切取手段
12:分岐手段
12a,12b,12c,12d:各分岐流路
13:再配置手段
13a,13b,13c,13d:各合流流路
14:ダイ(合流貼合手段)
A:分割直前の積層流の断面積
,A:分割直後の両端部に位置する各分割積層流
〜C:各分割位置
〜P:各分割積層流
’〜P’:各分岐流
”〜P”:再配置されて寸法調整された各分岐流
W:寸法調整前の分岐流の幅
W’:寸法調整された後のポリマー流の幅
10: Apparatus for performing split cutting, branching, rearrangement, and merging and laminating of a laminated flow obtained by a multilayer feed block 11: Split cutting means 12: Branch means 12a, 12b, 12c, 12d: Each branch flow path 13 : Relocation means 13a, 13b, 13c, 13d: Each merging flow path 14: Die (merging and bonding means)
A: Cross-sectional area of the laminated flow immediately before the division A 1 , A 2 : Each divided laminated flow C 1 to C 3 positioned at both ends immediately after the division: Each divided position P 1 to P 4 : Each divided laminated flow P 1 ′ ˜P 4 ′: each branch flow P 1 ″ to P 4 ″: each branch flow rearranged and adjusted in size W: width of the branch flow before size adjustment W ′: width of the polymer flow after size adjustment

Claims (2)

少なくとも2つの溶融樹脂を多層フィードブロック内で交互に積層して矩形断面を有する積層流を形成し、該積層流を積層面に対して垂直に複数箇所で分割して矩形断面を有する複数の分割積層流からなる分岐流を形成し、該分岐流の積層面が互いに上下で重なり合って接するように再配置すると共に各分岐流の寸法をそれぞれ調整し、寸法調整した分岐流を互いに合流させて貼り合せ、最終的に積層数を増やした多層の交互積層体を形成する方法であって、
該方法は、分割直前の前記積層流の断面積をAとし、該積層流の両端に位置する各分割積層流の分割前の断面積をそれぞれA及びAと定義したとき、前記A,A及びAが「5<(A+A)/A×100<30」という条件を満足するように、前記積層流の両端部を分割して切り取り、且つ分割前に両端に位置した部分の前記分割積層流を静的に混合することを特徴とする多層フィルムの製造方法。
At least two molten resins are alternately laminated in a multilayer feed block to form a laminated flow having a rectangular cross section, and the laminated flow is divided at a plurality of locations perpendicular to the lamination surface to obtain a plurality of divisions having a rectangular cross section. A branched flow consisting of a laminated flow is formed, rearranged so that the laminated surfaces of the branched flows overlap and touch each other, the dimensions of each branched flow are adjusted, and the sized adjusted branched flows are joined together and pasted A method of forming a multi-layered alternating laminate with a finally increased number of layers,
In this method, when the cross-sectional area of the laminated flow immediately before the division is defined as A and the cross-sectional areas before division of the divided laminated flows located at both ends of the laminated flow are defined as A 1 and A 2 , respectively, as a 1 and a 2 satisfy the condition "5 <(a 1 + a 2 ) / a × 100 <30 ", Ri cut by dividing the both end portions of the laminated flow, and located at both ends before splitting method of manufacturing a multilayer film characterized that you mixed portion of the divided stack flow statically.
少なくとも2つの溶融樹脂を交互に積層して矩形断面を有する多層の積層流を形成する多層フィードブロックと、該多層フィードで積層された積層流を積層面に対して垂直に複数箇所で分割して積層流の両端を切り取る分割切取手段と、分割された各分割積層流をそれぞれ独立した分岐流に分岐させる分岐手段と、前記各分岐流をその積層面が互いに上下で重なり合って接するようにそれぞれ再配置すると共に各分岐流の寸法を調整する再配置手段と、寸法調整された分岐流を互いに多層に合流させて貼り合わせて多層の交互積層流を形成させて該多層交互積層流を薄膜状に吐出するダイと、前記積層流の矩形断面の両端から分割して切り取った分割積層流を静的に混合するスタティックミキサーとを含む多層フィルムの製造装置であって、A multilayer feed block that forms a multilayer laminar flow having a rectangular cross section by laminating at least two molten resins alternately, and the laminar flow laminated by the multilayer feed is divided at a plurality of locations perpendicular to the laminating surface. Divided cutting means for cutting off both ends of the laminated flow, branching means for branching each divided laminated flow into independent branch flows, and each of the branched flows are re-applied so that their laminated surfaces overlap each other vertically. A rearrangement means for arranging and adjusting the dimensions of each branch flow, and the branch flows adjusted in size are joined to each other in multiple layers to form a multilayer alternate laminate flow, thereby forming the multilayer alternate laminate flow into a thin film An apparatus for producing a multilayer film comprising: a die to be discharged; and a static mixer for statically mixing a divided laminated flow divided and cut from both ends of a rectangular cross section of the laminated flow,
前記分割切取手段が、前記多層フィードブロックから出た分割前の積層流の断面積Aとし、該積層流の両端で分割される各分割積層流の分割前の断面積をA  The divided cutting means sets the cross-sectional area A of the laminated flow before division from the multilayer feed block as A, and the sectional area before division of each divided laminated flow divided at both ends of the laminated flow as A 1 及びAAnd A 2 と定義したとき、前記A,AA, A 1 及びAAnd A 2 が「5<(AIs "5 <(A 1 +A+ A 2 )/A×100<30」という条件で分割して切り取る手段であることを特徴とする多層フィルムの製造装置。) / A × 100 <30 ”means for dividing and cutting the multilayer film manufacturing apparatus.
JP2005150627A 2005-05-24 2005-05-24 Multilayer film manufacturing method and apparatus Active JP4620526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005150627A JP4620526B2 (en) 2005-05-24 2005-05-24 Multilayer film manufacturing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005150627A JP4620526B2 (en) 2005-05-24 2005-05-24 Multilayer film manufacturing method and apparatus

Publications (2)

Publication Number Publication Date
JP2006326891A JP2006326891A (en) 2006-12-07
JP4620526B2 true JP4620526B2 (en) 2011-01-26

Family

ID=37549109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005150627A Active JP4620526B2 (en) 2005-05-24 2005-05-24 Multilayer film manufacturing method and apparatus

Country Status (1)

Country Link
JP (1) JP4620526B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682783A (en) * 2013-11-15 2016-06-15 陶氏环球技术有限责任公司 Interfacial surface generators and methods of manufacture thereof

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135834B2 (en) * 2007-03-16 2013-02-06 東レ株式会社 Method and apparatus for branching and joining fluid flows
CN102470599B (en) * 2009-06-30 2014-12-17 3M创新有限公司 Extrusion die element, extrusion die and method for making multiple stripe extrudate from multilayer extrudate
KR101841786B1 (en) 2010-05-07 2018-03-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Feedblock for manufacturing multilayer polymeric films
EP2578377B1 (en) * 2010-05-25 2016-11-16 Kuraray Co., Ltd. Manufacturing method for multi-layered body and manufacturing equipment for the same
US9004001B2 (en) 2010-12-17 2015-04-14 Palo Alto Research Center Incorporated Interdigitated finger coextrusion device
US9589692B2 (en) 2010-12-17 2017-03-07 Palo Alto Research Center Incorporated Interdigitated electrode device
JP6019036B2 (en) * 2011-01-12 2016-11-02 テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニムTetra Laval Holdings & Finance S.A. Multi-layering device for fluids with high viscosity
JP5860637B2 (en) * 2011-08-31 2016-02-16 積水化学工業株式会社 Multilayer structure and method for producing multilayer structure
US20130316159A1 (en) * 2011-08-31 2013-11-28 Kensuke Tsumura Multilayered resin molded body and method for manufacturing same
JP5167427B1 (en) * 2011-08-31 2013-03-21 積水化学工業株式会社 Resin multilayer molded body and method for producing the same
JP2013178336A (en) * 2012-02-28 2013-09-09 Sumitomo Chemical Co Ltd Method for manufacturing optical multilayer film
JP5623445B2 (en) * 2012-03-02 2014-11-12 富士フイルム株式会社 Manufacturing method of optical film
US9108218B2 (en) * 2012-04-19 2015-08-18 Nordson Corporation System and method for making multilayer films and a layer multiplication device
US9590232B2 (en) 2012-12-27 2017-03-07 Palo Alto Research Center Incorporated Three dimensional co-extruded battery electrodes
US9012090B2 (en) 2012-12-27 2015-04-21 Palo Alto Research Center Incorporated Advanced, high power and energy battery electrode manufactured by co-extrusion printing
US9899669B2 (en) 2012-12-27 2018-02-20 Palo Alto Research Center Incorporated Structures for interdigitated finger co-extrusion
US10923714B2 (en) 2012-12-27 2021-02-16 Palo Alto Research Center Incorporated Structures for interdigitated finger co-extrusion
US9337471B2 (en) 2012-12-27 2016-05-10 Palo Alto Research Center Incorporated Co-extrusion print head for multi-layer battery structures
US10800086B2 (en) 2013-08-26 2020-10-13 Palo Alto Research Center Incorporated Co-extrusion of periodically modulated structures
US9882200B2 (en) 2014-07-31 2018-01-30 Palo Alto Research Center Incorporated High energy and power Li-ion battery having low stress and long-term cycling capacity
US20160322131A1 (en) 2015-04-29 2016-11-03 Palo Alto Research Center Incoporated Co-extrusion printing of filaments for superconducting wire
US9755221B2 (en) 2015-06-26 2017-09-05 Palo Alto Research Center Incorporated Co-extruded conformal battery separator and electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154128A (en) * 1979-05-21 1980-12-01 Toray Ind Inc Preparing device for sheetlike article
JPH04278324A (en) * 1990-12-21 1992-10-02 Dow Chem Co:The Method and device for producing boundary surface
JPH08501994A (en) * 1992-10-02 1996-03-05 ザ・ダウ・ケミカル・カンパニー Multilayer extrudate with protective boundary layer and extrusion apparatus
JP2003112355A (en) * 2001-10-04 2003-04-15 Teijin Dupont Films Japan Ltd Method and apparatus for manufacturing multilayer film
JP2004034299A (en) * 2002-06-28 2004-02-05 Toray Ind Inc Laminated film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154128A (en) * 1979-05-21 1980-12-01 Toray Ind Inc Preparing device for sheetlike article
JPH04278324A (en) * 1990-12-21 1992-10-02 Dow Chem Co:The Method and device for producing boundary surface
JPH08501994A (en) * 1992-10-02 1996-03-05 ザ・ダウ・ケミカル・カンパニー Multilayer extrudate with protective boundary layer and extrusion apparatus
JP2003112355A (en) * 2001-10-04 2003-04-15 Teijin Dupont Films Japan Ltd Method and apparatus for manufacturing multilayer film
JP2004034299A (en) * 2002-06-28 2004-02-05 Toray Ind Inc Laminated film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682783A (en) * 2013-11-15 2016-06-15 陶氏环球技术有限责任公司 Interfacial surface generators and methods of manufacture thereof

Also Published As

Publication number Publication date
JP2006326891A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4620526B2 (en) Multilayer film manufacturing method and apparatus
CN1046664C (en) Multilayered optical film
JP4816419B2 (en) Laminated film
JP5200709B2 (en) Polarized reflector and method for manufacturing the same
CN102811849A (en) Feedblock for making multilayered films
KR102127018B1 (en) Composition of compensate layer for dispersion type reflective polizer and dispersion type reflective polizer using that
JP4693500B2 (en) Method for producing multilayer film
TWI519833B (en) Method and apparatus for manufacturing polymer-dispersed reflective polarizer
KR101122369B1 (en) Multilayer optical film adjustable in reflected wavelength band and manufacturing method thereof
JP2006130910A (en) Laminated sheet manufacturing apparatus and laminated sheet manufacturing method
TWI543865B (en) Polymer-dispersed reflective polarizer
KR101940319B1 (en) Multilayer reflective polizer
KR101264274B1 (en) Manufacturing method of reflective polizer dispered polymer and device thereof
KR101340243B1 (en) Manufacturing method of reflective polizer dispered polymer and device thereof
TWI510823B (en) Multilayer reflective polarizer
KR101906251B1 (en) Multilayer reflective polizer and Manufacturing method thereof
KR101354364B1 (en) Multilayer reflective polizer
KR101931378B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
KR101930960B1 (en) Integrated optical film
KR101930547B1 (en) Manufacturing method of multilayer reflective polizer and device thereof
JP2006069139A (en) Manufacturing apparatus and manufacturing method of multilayered sheet and multilayered sheet
KR101931376B1 (en) Manufacturing method of reflective polizer dispered polymer and device thereof
TWI509298B (en) Method and apparatus for manufacturing multilayer reflective polarizer
KR101354271B1 (en) Manufacturing method of reflective polizer dispered polymer and device thereof
KR101311090B1 (en) Reflective polizer dispered polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4620526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250