JP4693500B2 - Method for producing multilayer film - Google Patents

Method for producing multilayer film Download PDF

Info

Publication number
JP4693500B2
JP4693500B2 JP2005155516A JP2005155516A JP4693500B2 JP 4693500 B2 JP4693500 B2 JP 4693500B2 JP 2005155516 A JP2005155516 A JP 2005155516A JP 2005155516 A JP2005155516 A JP 2005155516A JP 4693500 B2 JP4693500 B2 JP 4693500B2
Authority
JP
Japan
Prior art keywords
film
multilayer film
laminated
thickness
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005155516A
Other languages
Japanese (ja)
Other versions
JP2006327079A (en
Inventor
庸介 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2005155516A priority Critical patent/JP4693500B2/en
Publication of JP2006327079A publication Critical patent/JP2006327079A/en
Application granted granted Critical
Publication of JP4693500B2 publication Critical patent/JP4693500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

本発明は、熱可塑性の高分子重合体(以下、“ポリマー”という)が多層に積層された多層フィルムの製造方法に関する。   The present invention relates to a method for producing a multilayer film in which thermoplastic polymer polymers (hereinafter referred to as “polymers”) are laminated in multiple layers.

多層フィルムは、例えば屈折率の高い薄膜層と低い薄膜層を交互に多数積層すると、これら層間での光干渉によって特定波長の光を選択的に反射または透過する光学干渉フィルムとなる。このような積層フィルムは選択的に反射または透過する光の波長領域を可視光領域とすることによって、例えば、反射型の偏光板や発色フィルム、金属光沢を有するフィルムあるいは反射ミラーフィルムなどへの用途が広がりつつある。また、積層数と層間厚みを調整することによって、紫外線を選択的にカットするフィルムとして用いることができ、また、防虫用の農業用フィルムとしても用いることができる。更に、近赤外を選択的にカットするようにすれば、日射カット用の窓張り用フィルム、あるいはプラズマディスプレイ等の映像表示パネル用のフィルムとしても有用であって、周辺機器への誤作動を防止するためのフィルムとして用いることができる。さらに、ショウウィンドウに映像を投影するために、RGB(赤、緑、青)の各色相を選択的に適度に透過させる多層フィルムを貼り合わせたフィルムを用いたホログラム用フィルムとしても有望である。   For example, when a plurality of thin film layers having a high refractive index and a plurality of thin film layers having a high refractive index are alternately laminated, the multilayer film becomes an optical interference film that selectively reflects or transmits light having a specific wavelength by optical interference between these layers. Such a laminated film can be used for, for example, a reflective polarizing plate, a coloring film, a film having a metallic luster, or a reflective mirror film by setting the wavelength region of light that is selectively reflected or transmitted to the visible light region. Is spreading. Moreover, it can be used as a film that selectively cuts ultraviolet rays by adjusting the number of layers and the interlayer thickness, and can also be used as an agricultural film for insect repellent. Furthermore, if the near infrared is selectively cut, it is useful as a film for window covering for solar radiation or a film for a video display panel such as a plasma display. It can be used as a film for preventing. Further, in order to project an image on a show window, it is also promising as a hologram film using a film in which a multilayer film that selectively transmits each hue of RGB (red, green, blue) appropriately and appropriately is bonded.

そこで、従来より、このような各種用途に使用できる多層に積層されたフィルムを製造する各種の方法及びそのための装置が提案されてきた。例えば、特開平4−278324号公報あるいは特開2004−34299号公報において、溶融した2種の熱可塑製高分子重合体(以下、“ポリマー”と称する)を多層フィードブロックで所定の積層数に交互積層した積層流を形成させ、この積層流を分割した後に再積層して層数を増やすことを特徴とする多層フィルムの製造方法とそのための装置が提案されている。   In view of this, various methods and apparatuses for manufacturing a multi-layered film that can be used for various applications have been proposed. For example, in Japanese Patent Application Laid-Open No. 4-278324 or Japanese Patent Application Laid-Open No. 2004-34299, two types of molten thermoplastic polymer polymers (hereinafter referred to as “polymers”) are formed into a predetermined number of layers using a multilayer feed block. A multilayer film manufacturing method and an apparatus therefor have been proposed, in which alternately stacked layered flows are formed, the layered flows are divided and then re-laminated to increase the number of layers.

しかしながら、このような従来技術では、例えば図3(a)に示すように、多層フィードブロック内で形成する矩形断面を有する積層流の端部22に積層状態の悪い部分が生じると、これを図3(a)に示したようにF面で分割して、図3(b)に示すように再積層をすると、分割再積層を繰り返すたびに厚み分布が悪い部分22(層の厚みが不均一となった部分)がフィルム中央部に出現する。   However, in such a conventional technique, for example, as shown in FIG. 3A, when a poorly laminated portion is generated at the end portion 22 of the laminated flow having a rectangular cross section formed in the multilayer feed block, this is illustrated. As shown in FIG. 3 (a), when the layer is divided on the F-plane and re-stacked as shown in FIG. 3 (b), the portion 22 having a poor thickness distribution (the layer thickness is uneven) Appears in the center of the film.

なお、矩形流路断面を有する多層フィードブロック内で積層流に層の不均一が生じる理由については、その断面の4つの角部近傍で流速が遅くなるよどみ部が存在し、これが原因で層の厚みが変化するためと考えられる。特に、外層部の近傍であって、かつフィルム幅方向の両端近傍は、溶融流動状態のポリマーが管壁部分を通過するため、流速が遅くなって、各層厚みに意図しない分布がついてしまい、層の歪曲や層厚の不均一分布の原因となっているものと考えられる。
このようにして、積層数を増して最終的に得られる多層フィルムの中に含まれる層厚の不良な部分の割合が増えてしまうと、各層が歪曲されたり、層厚が不均一に分布したりすることにより、多層フィルムの光学特性がばらついてしまう。
The reason why the layer flow is nonuniform in the multi-layer feed block having a rectangular channel cross section is that there is a stagnation part where the flow velocity becomes slow in the vicinity of the four corners of the cross section. This is probably because the thickness changes. In particular, in the vicinity of the outer layer portion and in the vicinity of both ends in the film width direction, since the polymer in a melt flow state passes through the tube wall portion, the flow rate becomes slow, and an unintended distribution is attached to each layer thickness. This is considered to be a cause of distortion and non-uniform distribution of layer thickness.
In this way, increasing the number of layers and increasing the proportion of defective layers included in the finally obtained multilayer film will cause each layer to be distorted or the layer thickness to be unevenly distributed. As a result, the optical properties of the multilayer film vary.

特開平04−278324号公報JP 04-278324 A 特開2004−34299号公報JP 2004-34299 A

本発明の目的は、従来技術が有する前記諸問題を解決し、均一な厚みを有する多層フィルムであって、光学的特性などにばらつきが少ない多層フィルムの製造方法を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art and provide a method for producing a multilayer film having a uniform thickness and having little variation in optical characteristics and the like.

ここに、前記課題は、本発明に係わる、(1) 多層フィードブロックにおいて少なくとも2種の溶融高分子重合体を3層以上に交互に積層した矩形断面を有する積層流を形成し、該積層流を積層面に垂直な断面で分割して独立した分岐流を形成し、積層数が増えるように前記各分岐流を積層面同士が互いに平行且つ互いに接するように再配置して再合流し、積層数を増やして多層フィルムを製造する際に、前記多層フィードブロックによって形成する積層流の外層部の厚み(w)内層部の厚み(t)との比(w/t)を5〜200とすることを特徴とする多層フィルムの製造方法により達成できる。
さらに好ましい態様として、(2) 多層フィルムの層数が11層以上であることを特徴とする、(1)に記載の多層フィルムの製造方法、(3) 多層フィルムを縦一軸延伸して製品とすることを特徴とする、(1)〜(2)のいずれかに記載の多層フィルムの製造方法によって解決することができる。
Here, the above-mentioned problems are related to the present invention. (1) In a multilayer feed block, a laminated flow having a rectangular cross section in which at least two types of molten polymer are alternately laminated in three or more layers is formed. Are divided by a cross section perpendicular to the laminated surface to form independent branched flows, and the branched flows are rearranged so that the laminated surfaces are parallel to and in contact with each other so as to increase the number of laminated layers, and recombined. When manufacturing a multilayer film by increasing the number, the ratio (w / t) of the outer layer portion thickness (w) to the inner layer portion thickness (t) of the laminated flow formed by the multilayer feed block is 5 to 200. This can be achieved by a method for producing a multilayer film.
As a more preferred embodiment, (2) the number of layers of the multilayer film is 11 or more, the method for producing a multilayer film according to (1), and (3) a product obtained by longitudinally uniaxially stretching the multilayer film This can be solved by the method for producing a multilayer film according to any one of (1) to (2) .

以上に述べた本発明によれば、層の歪曲や層厚の不均一分布を惹起する外層部を厚くし、逆に、層の歪曲や層厚の不均一分布が小さい内層部の厚さを小さくしている。したがって、光学特性を担う内層部を構成する各層は均一な厚みに積層することができ、これによって、光学特性が幅方向に均一な多層フィルムを生産できるという極めて顕著な効果を奏する。   According to the present invention described above, the outer layer portion causing the layer distortion and the non-uniform distribution of the layer thickness is increased, and conversely, the thickness of the inner layer portion having the small layer distortion and the non-uniform distribution of the layer thickness is reduced. It is small. Therefore, each layer constituting the inner layer portion that bears the optical characteristics can be laminated with a uniform thickness, thereby producing a very remarkable effect that a multilayer film with uniform optical characteristics in the width direction can be produced.

以下、本発明の実施形態について図面を参照しながら説明する。
図1は、本発明の一つの実施形態を例示した図であり、溶融状態で多層に積層された流れを分割、配置、再積層するまでの様子を示している。図2は特別な最外層のない従来の多層フィルムの断面で分割再積層の層分布の様子を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating one embodiment of the present invention, and shows how a flow laminated in multiple layers in a molten state is divided, arranged, and re-laminated. FIG. 2 shows the state of the layer distribution of split relamination in a cross section of a conventional multilayer film without a special outermost layer.

図1において、Pは予め多層に積層された矩形断面を有する積層ポリマー流(以下、単に“積層流”という)、1は両端に配置された外層部、2は前記外層部1に挟まれた内層部、PとPは矩形断面を有する前記積層流Pからそれぞれ分割されて分岐させられた分岐ポリマー流(以下、単に“分岐流”という)、6は多層の歪曲部、S1は矩形断面を有する積層流Pを分割して分岐する分割分岐操作、S2は分割して分岐された積層流Pの位置が積層位置へと再配置される再配置操作、S3は各分岐流PとPが層面が平行となり且つ層面が互いに接するように積層される積層操作、Fは矩形断面を有する積層流Pの層面に対して垂直な断面(切断面)、C、C、C及びCは矩形断面を有する積層流の4つの角部、そして、wとtは外層部と内層部の厚み(図2参照)をそれぞれ示す。 In FIG. 1, P 0 is a laminated polymer flow (hereinafter simply referred to as “laminated flow”) having a rectangular cross section laminated in advance in multiple layers, 1 is an outer layer portion disposed at both ends, and 2 is sandwiched between the outer layer portions 1 The inner layer portions P 1 and P 2 are branched polymer flows (hereinafter simply referred to as “branch flows”) that are divided and branched from the laminated flow P 0 having a rectangular cross section, 6 is a multi-layered distortion portion, and S 1 Is a split branch operation for splitting and splitting the laminated flow P 0 having a rectangular cross section, S2 is a rearrangement operation for rearranging the position of the split split flow P 0 to the stack position, and S3 for each branch. laminating operation flow P 1 and P 2 is and Somen becomes parallel layer surface is laminated in contact with each other, F is the cross section perpendicular to the layer surface of the laminated flow P 0 having a rectangular cross section (cutting plane), C 1, C 2, C 3 and C 4 is the fourth laminated stream having a rectangular cross-section Corners of, and, w and t is the outer layer and inner layer portions of the thickness (see FIG. 2), respectively.

前記図1に例示したように行われる多層フィルムの製造方法において、矩形断面を有する前記積層流Pは、例えば特開2003−251675号公報あるいは特開2003−112355号公報などに記載されている多層フィードブロックを使用することによって、定法にしたがって形成することができる。したがって、その詳細説明はここでは省略する。 In the multilayer film manufacturing method performed as illustrated in FIG. 1, the laminated flow P 0 having a rectangular cross section is described in, for example, Japanese Patent Application Laid-Open No. 2003-251675 or Japanese Patent Application Laid-Open No. 2003-112355. By using a multilayer feed block, it can be formed according to a conventional method. Therefore, the detailed description is abbreviate | omitted here.

先ず、本発明において、多層フィードブロックで形成された矩形断面を有する積層流Pは、分割分岐操作S1において切断面Fで分割された後、分岐流Pと分岐流Pにそれぞれ分岐させられる。次いで、再配置操作S2において、それぞれ分岐させられた分岐流Pと分岐流Pは層数が増加するように、各分岐流PとPの層面同士が互いに平行で、かつ、その層面同士が互いに接するように再配置させられる。 First, in the present invention, a laminated flow P 0 having a rectangular cross section formed by a multilayer feed block is divided by a cutting plane F in a division branch operation S1, and then branched into a branch flow P 1 and a branch flow P 2 , respectively. It is done. Then, the rearrangement operation S2, the branch flow P 1 and the branch flow P 2 that is allowed to branch, respectively, as the number of layers increases, the layer surfaces of the respective branched flow P 1 and P 2 are parallel to each other and that The layer surfaces are rearranged so that they are in contact with each other.

そして、再配置操作S2によって再配置された分岐流PとPは、積層操作S3によって層数の増える向きに互いに貼り合わされて再積層される。この積層操作S3において、外層部1の厚み(w)を内層部2の厚み(t)よりも厚くしない場合、得られた多層フィルムの光学特性が幅方向にばらつくという問題が生じる。そこで、この点について、図2を参照しながら以下に説明する。 The relocation operation S2 branch flow P 1 and P 2 which are rearranged by is re stacked are attached to each other together in the direction increasing number of layers by lamination operation S3. If the thickness (w) of the outer layer portion 1 is not made thicker than the thickness (t) of the inner layer portion 2 in this lamination operation S3, there arises a problem that the optical properties of the obtained multilayer film vary in the width direction. This point will be described below with reference to FIG.

図2に例示したように、多層フィードブロックで形成された積層流Pに対して、分割分岐操作S1、再配置操作S2及び積層操作S3を順次行って、多層フィルムにする場合、積層流Pの4つの角部C、C、C及びCに対応する部分で層の厚みが相対的に厚くなってしまい、外層部1で層厚が不均一な部分が生じてしまう。その理由としては、角部C、C、C及びCにおいてポリマー流の流速が遅くなる淀み点が存在して、このために層変化が生じるものと考えられる。 As illustrated in FIG. 2, when the multilayer flow P 0 formed by the multilayer feed block is sequentially subjected to the split branch operation S 1, the rearrangement operation S 2, and the lamination operation S 3 to form a multilayer film, The portions corresponding to the four corners C 1 , C 2 , C 3, and C 4 of 0 are relatively thick, and the outer layer portion 1 has a non-uniform layer thickness. The reason for this is considered to be a stagnation point at which the flow rate of the polymer flow becomes slow at the corners C 1 , C 2 , C 3 and C 4 , and this is considered to cause a layer change.

これに対して、内層部2では、図示したように、中心部へ行くに従って層厚が均一な積層部が存在する。そこで、このように層に歪みが生じず、しかも層厚が均一になる内層部2に、多層フィルムの光学特性を付与しておけば、光学特性を担う内層部2を構成する各層は均一な厚みに積層することができ、これによって、光学特性が幅方向に均一な多層フィルムを生産できる。なお、図2では説明の都合上、外層部1も多層構造を有するように記載してあるが、この部分は単一層であっても良い。   On the other hand, in the inner layer part 2, as shown in the figure, there is a laminated part having a uniform layer thickness as it goes to the center part. Therefore, if the optical properties of the multilayer film are imparted to the inner layer portion 2 in which the layers are not distorted and the layer thickness is uniform, each layer constituting the inner layer portion 2 that bears the optical properties is uniform. It can be laminated to a thickness, whereby a multilayer film with uniform optical properties in the width direction can be produced. In FIG. 2, for convenience of explanation, the outer layer portion 1 is also described as having a multilayer structure, but this portion may be a single layer.

その際、図1及び図2に例示したように、外層部1の厚み(w)は、前述のような理由から内層部2の層の厚み(t)より厚くしておくことが肝要である。このとき、その比(w/t)は、多層フィルムを構成する各層の厚みを均一にした状態で積層して層数を増加できることから、5〜200とすることが必要である。なお、(w/t)が200より大きくなると、多層フィルムのトータル厚みが大きくなり、その用途が限られる場合がある。他方、(w/t)が5より小さくなると、外層部1の角部C、C、C及びCに対応する部分で層の厚みが相対的に厚くなってしまい、層厚の不均一部が生じるため、光学特性が幅方向にばらつくという問題が生じる。 At that time, as illustrated in FIGS. 1 and 2, it is important that the thickness (w) of the outer layer portion 1 is made larger than the thickness (t) of the inner layer portion 2 for the reason described above. . At this time, the ratio (w / t) needs to be 5 to 200 because the number of layers can be increased by laminating the layers constituting the multilayer film in a uniform thickness. In addition, when (w / t) is larger than 200, the total thickness of the multilayer film becomes large, and its application may be limited. On the other hand, when (w / t) is smaller than 5, the thickness of the layer becomes relatively thick at the portions corresponding to the corner portions C 1 , C 2 , C 3 and C 4 of the outer layer portion 1, Since the non-uniform portion is generated, there arises a problem that the optical characteristics vary in the width direction.

本発明において使用するポリマーは、少なくとも2種からなる。例えば、最小構成としてポリマーを2種使用する場合、内層部2において2種のポリマーを交互に積層して多層化し、多層部(内層部2)で用いたポリマーの何れか一方を外層部1に用いることができる。また、3種のポリマーを使用する場合には、外層部1を交互積層体を構成する内層部2と別のポリマーを用いることができ、例えば本発明の方法によって製造した多層フィルムを再溶融した再生ポリマーなどを外層部1に用いてもよい。 The polymer used in the present invention comprises at least two kinds. For example, when two types of polymers are used as the minimum configuration, two types of polymers are alternately laminated in the inner layer portion 2 to form a multilayer, and either one of the polymers used in the multilayer portion (inner layer portion 2) is formed in the outer layer portion 1. Can be used. Moreover, when using 3 types of polymers, the outer layer part 1 can use another polymer with the inner layer part 2 which comprises an alternating laminated body, for example, the multilayer film manufactured by the method of this invention was remelted. but it may also be used, such as playback polymer in the outer layer portion 1.

次に、本発明において製造するフィルムの好ましい層数は、11〜4800層であり、少なくとも2種類のポリマーを交互に積層し、各ポリマーの屈折率の差を利用しフィルムへの入射光を選択的に透過、反射及び屈折させる目的、あるいは層数を増すことによってフィルムの強度を高める目的で利用することが好ましい。一方、多層フィードブロックで形成する矩形断面を有する積層流Pの層数は3〜301層が好ましい。 Next, the preferred number of layers of the film produced in the present invention is 11 to 4800 layers, and at least two kinds of polymers are alternately laminated, and the incident light to the film is selected using the difference in refractive index of each polymer. In particular, it is preferably used for the purpose of transmission, reflection and refraction, or the purpose of increasing the strength of the film by increasing the number of layers. On the other hand, the number of layers of laminated flow P 0 having a rectangular cross-section to form a multilayer feed block is preferably 3-301 layers.

以上に述べた本発明の多層フィルムは、前述の積層操作S3によって溶融状態で多層に積層したポリマー流をダイから押し出して未延伸の多層シートを形成させ、周知の方法で定法に従って、未延伸の多層シートを所定の温度で、縦および/または横方向に延伸し、所定の温度で熱処理し、必要によっては熱弛緩処理し、また必要によっては再縦および/または再横延伸し巻き取り、多層フィルムとすることができる。なお、その際、多層フィルムの製造工程中または製造後にフィルムに塗液を塗布し乾燥する工程を設けても良い。   The multi-layer film of the present invention described above is formed by extruding a polymer stream laminated in multiple layers in the molten state by the above-described laminating operation S3 from a die to form an unstretched multi-layer sheet. The multilayer sheet is stretched in the machine direction and / or transverse direction at a predetermined temperature, heat-treated at a predetermined temperature, heat-relaxed if necessary, and re-longitudinal and / or re-laterally stretched and wound as necessary. It can be a film. In addition, you may provide the process of apply | coating a coating liquid to a film and drying during the manufacturing process of a multilayer film in that case, or in that case.

このようにして製造される本発明の多層フィルムは、各層に歪曲がなく、しかも、層厚分布も均一となっているために、フィルムの中心部から端部近傍まで要求される光学特性を充分満足できるものである。したがって、例えば未延伸フィルムを縦一軸延伸し、必要に応じ熱固定などの処理をする偏向フィルム用途において、良品部の幅を広く取れるといった特徴を有する。すなわち、本発明の場合縦一軸延伸であっても広幅の製品を効率よく採取できる。これに対して、従来法の縦−横延伸するフィルムでは未延伸フィルムの良品部が少ない場合に、良品部を幅方向に拡張する横延伸を行って、用途にあった製品幅まで広げることが要求される。   Since the multilayer film of the present invention thus produced has no distortion in each layer and the layer thickness distribution is uniform, the optical properties required from the center to the vicinity of the end of the film are sufficient. Satisfied. Therefore, for example, in a deflection film application in which an unstretched film is longitudinally uniaxially stretched and subjected to a treatment such as heat setting as necessary, it has a feature that the width of a good product portion can be widened. That is, in the case of the present invention, a wide product can be efficiently collected even with longitudinal uniaxial stretching. On the other hand, when the non-stretched film has a small number of non-defective parts in the longitudinal-transversely stretched film of the conventional method, it is possible to extend the non-defective part in the width direction to extend the product width to suit the application. Required.

ここで、本発明において多層フィルムを構成するポリマーは、延伸可能なポリマーを主成分とする熱可塑性ポリマーを用いることができ、例えばポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリブチレンテレフタレートのような芳香族ポリエステル、ポリエチレン、ポリプロピレンのようなポリオレフィン、ポリスチレンのようなポリビニル、ナイロン6(ポリカプロラクタム)、ナイロン66(ポリ(ヘキサメチレンジアミン−co−アジピン酸))のようなポリアミド、ビスフェノールAポリカーボネートのような芳香族ポリカーボネート、ポリスルフォン等の単独重合体或いはこれらの共重合体を主成分とするポリマーを挙げることができる。共重合成分としては、イソフタル酸共重合ポリエチレンテレフタレート、2,6−ナフタレンジカルボン酸共重合ポリエチレンテレフタレートを例示できる。上記熱可塑性ポリマーの中では、延伸による分子配向が可能な芳香族ポリエステル、ポリオレフィン、ポリアミドが好ましく、分子が二軸配向した際に光学的、機械的、熱的特性が優れたものになるポリエチレン−2,6−ナフタレートも好ましい。これらのポリマーには、必要に応じて耐候剤や滑剤、帯電防止剤、顔料などの添加剤が配合されていても良い。   Here, as the polymer constituting the multilayer film in the present invention, a thermoplastic polymer mainly composed of a stretchable polymer can be used, such as polyethylene terephthalate, polyethylene-2,6-naphthalate, and polybutylene terephthalate. Aromatic polyester, Polyolefin such as polyethylene and polypropylene, Polyvinyl such as polystyrene, Polyamide such as nylon 6 (polycaprolactam), nylon 66 (poly (hexamethylenediamine-co-adipic acid)), and bisphenol A polycarbonate Examples thereof include homopolymers such as aromatic polycarbonate and polysulfone, and polymers mainly composed of these copolymers. Examples of the copolymer component include isophthalic acid copolymerized polyethylene terephthalate and 2,6-naphthalenedicarboxylic acid copolymerized polyethylene terephthalate. Among the above thermoplastic polymers, aromatic polyesters, polyolefins, and polyamides capable of molecular orientation by stretching are preferred, and polyethylene that exhibits excellent optical, mechanical, and thermal properties when the molecules are biaxially oriented. 2,6-naphthalate is also preferred. These polymers may be blended with additives such as weathering agents, lubricants, antistatic agents, and pigments as necessary.

以下、実施例によって本発明を更に説明する。なお、例中の物性は下記の方法で測定した。
(1)色
サンプルフィルムを切り出し、その色の強さを蛍光灯のもとで目視観察した。
(2)偏向
1軸延伸したフィルムサンプルは偏向めがねで偏向の有無を目視観察した。
(3)最大反射率
島津製作所製分光光度計MPC−3100を用い、各波長でのアルミ蒸着したミラーとの相対鏡面反射率を波長350〜2100nmの範囲で測定する。その測定された反射率の中で最大のものを,最大反射率とする。測定位置はフィルム幅方向の両エッジを含む5点(等間隔)とした。
(4)外層部、内層部の厚み
サンプルを三角形に切り出し、包理カプセルに固定後、エポキシ樹脂にて包理する。そして、包理されたサンプルをミクロト−ム(ULTRACUT−S)で縦方向に平行な断面を50nm厚みの薄膜切片にしたあと、透過型電子顕微鏡を用いて、加速電子100kvにて観察・投影し、写真から各層の厚みを測定して、外層部と内層部の厚みを得た。ただし、測定した厚みが幅方向にばらつきを有している場合、最小値と最大値の平均値をその層の厚みとした。
Hereinafter, the present invention will be further described by way of examples. The physical properties in the examples were measured by the following methods.
(1) Color A sample film was cut out and the intensity of the color was visually observed under a fluorescent lamp.
(2) Deflection Uniaxially stretched film samples were visually observed for the presence or absence of deflection with deflection glasses.
(3) Maximum reflectance Using a spectrophotometer MPC-3100 manufactured by Shimadzu Corporation, the relative specular reflectance with an aluminum-deposited mirror at each wavelength is measured in the wavelength range of 350 to 2100 nm. The largest of the measured reflectances is the maximum reflectance. The measurement positions were 5 points (equal intervals) including both edges in the film width direction.
(4) Thickness of outer layer portion and inner layer portion A sample is cut into a triangle, fixed to an embedding capsule, and then embedded with an epoxy resin. Then, the embedded sample was made into a thin film slice having a thickness of 50 nm in a longitudinal direction with a microtome (ULTRACUT-S), and then observed and projected at 100 kv using a transmission electron microscope. The thickness of each layer was measured from the photographs to obtain the thickness of the outer layer portion and the inner layer portion. However, when the measured thickness has variation in the width direction, the average value of the minimum value and the maximum value is defined as the thickness of the layer.

[実施例1]
図1に示す装置で、層数が402層であり、トータル厚みが42μmの多層フィルムを作成した。
まず、二種類のポリマーを用意し、一方は固有粘度(オルトクロロフェノール、35℃)0.62dl/gのポリエチレン−2,6−ナフタレート(PEN)であって真球状シリカ粒子(平均粒径:0.12μm、長径と短径の比:1.02、粒径の平均偏差:0.1)を0.11wt%添加した。他方は、固有粘度(オルトクロロフェノール、35℃)0.63dl/gのポリエチレンテレフタレート(PET)と固有粘度(オルトクロロフェノール、35℃)0.62dl/gのポリエチレン−2,6−ナフタレート(PEN)を重量%で50:50にブレンドしたものを準備した。
[Example 1]
With the apparatus shown in FIG. 1, a multilayer film having 402 layers and a total thickness of 42 μm was prepared.
First, two types of polymers are prepared, one of which is polyethylene-2,6-naphthalate (PEN) having an intrinsic viscosity (orthochlorophenol, 35 ° C.) of 0.62 dl / g, and spherical silica particles (average particle diameter: 0.11 μm, 0.12 μm, ratio of major axis to minor axis: 1.02, average deviation of particle diameter: 0.1) was added. The other is polyethylene terephthalate (PET) having an intrinsic viscosity (orthochlorophenol, 35 ° C.) of 0.63 dl / g and polyethylene-2,6-naphthalate (PEN) having an intrinsic viscosity (orthochlorophenol, 35 ° C.) of 0.62 dl / g. ) Was blended at a weight percentage of 50:50.

各ポリマーのペレットを160℃で5時間乾燥後、別個の押出機に供給して溶融し、ギアポンプで計量しつつポリマーフィルターで濾過し、公知の多層フィードブロックへ導いた。ついで多層フィードブロック内で2つのポリマーを内層部2において交互に201層に積層し、さらに外層部1は(w/t)が10となるように調整して積層し、矩形断面の流路へ導いた後、図1の装置において、断面Fにおいて2分割して分岐流Pと分岐流Pに分岐し、最配置させたあとに積層して貼り合せ、この積層状態を維持したままダイヘと導き、キャスティングドラム上にキャストして積層未延伸シートを作成した。 Each polymer pellet was dried at 160 ° C. for 5 hours, fed to a separate extruder, melted, filtered through a polymer filter while metering with a gear pump, and led to a known multilayer feedblock. Next, two polymers are alternately laminated in 201 layers in the inner layer part 2 in the multilayer feed block, and further, the outer layer part 1 is laminated so that (w / t) becomes 10, and the flow path has a rectangular cross section. In the apparatus shown in FIG. 1, after being guided, it is divided into two in the cross section F and branched into the branch flow P 1 and the branch flow P 2 , and after being arranged, they are laminated and bonded together. And cast on a casting drum to prepare a laminated unstretched sheet.

この未延伸積層シートを150℃の温度で縦方向に3.2倍に延伸し、更に155℃の延伸温度で横方向に3.5倍に延伸し、230℃で3秒間の熱固定処理を行いテンターから取り出したあと、両エッジを約200mmずつトリミングし1200mm幅の多層フィルムを得た。得たフィルムは可視光のうち約550nmの波長の光を反射するフィルムであり、目視で赤色に見えるフィルムであった。測定値を表1に示す。   This unstretched laminated sheet was stretched 3.2 times in the machine direction at a temperature of 150 ° C., further stretched 3.5 times in the transverse direction at a stretch temperature of 155 ° C., and heat-fixed at 230 ° C. for 3 seconds. After removing from the tenter, both edges were trimmed by about 200 mm to obtain a multilayer film having a width of 1200 mm. The obtained film was a film that reflects light having a wavelength of about 550 nm out of visible light, and was a film that looked red visually. The measured values are shown in Table 1.

[実施例2]
w/t=100とし、トータル厚みが70μmとなるよう調整した以外は実施例1と同じ条件で402層フィルムを採取した。
[Example 2]
A 402-layer film was collected under the same conditions as in Example 1 except that w / t = 100 and that the total thickness was adjusted to 70 μm.

[実施例3]
実施例1において、矩形断面を有する積層流Pにおいて、分岐流が3つになるよう分割して分岐させ、3つの各分岐流の流量比が1:1.3:1.8になるよう調整し、得られた未延伸多層シートを縦方向に6.5倍で延伸して多層フィルムを得た。なお、このとき横延伸は省略した。そして、得られた多層フィルムの両エッジを約70mmずつトリミングして350mm幅の縦一軸多層フィルムを得た。そのフィルムの偏向の有無などを調べた。
[Example 3]
In the first embodiment, the laminated flow P 0 having a rectangular cross section is divided and divided so that there are three branch flows, and the flow ratio of each of the three branch flows is 1: 1.3: 1.8. The unstretched multilayer sheet thus obtained was stretched 6.5 times in the longitudinal direction to obtain a multilayer film. At this time, lateral stretching was omitted. Then, both edges of the obtained multilayer film were trimmed by about 70 mm to obtain a longitudinal uniaxial multilayer film having a width of 350 mm. The film was checked for deflection.

[比較例]
実施例1において、内層部2の外側に特別な最外層を設けないよう調整し、トータル厚みが38μmとなるよう調整した以外は実施例1と同じ条件で402層フィルムを採取した。フィルムは、エッジ部で赤色の発色が弱く、目視で幅方向に色のばらつきが判るフィルムであった。なお、外層部と内層部との厚み比(w/t)は0.4とした。
[Comparative example]
In Example 1, a 402-layer film was sampled under the same conditions as in Example 1 except that the outermost layer 2 was adjusted not to have a special outermost layer and the total thickness was adjusted to 38 μm. The film was a film in which red color development was weak at the edge portion, and color variation was found visually in the width direction. The thickness ratio (w / t) between the outer layer portion and the inner layer portion was 0.4.

Figure 0004693500
Figure 0004693500

本発明の製造方法によれば、光学特性を担う内層部を構成する各層は均一な厚みに積層することができ、光学特性が幅方向に均一な多層フィルムを効率よく生産できる。   According to the manufacturing method of the present invention, the layers constituting the inner layer portion that bears the optical characteristics can be laminated with a uniform thickness, and a multilayer film with uniform optical characteristics in the width direction can be efficiently produced.

本発明の方法を説明するための概念図であり、溶融状態で多層に積層された流れを分割分岐、再配置、積層するまでの操作手順を説明した図である。It is a conceptual diagram for demonstrating the method of this invention, and is the figure explaining the operation procedure until the division | segmentation branching, rearrangement, and lamination | stacking of the flow laminated | stacked in the multilayer in the molten state. 外層部に生じる不良部分と内層部に生じる均一層とを説明するための図である。It is a figure for demonstrating the defective part which arises in an outer layer part, and the uniform layer which arises in an inner layer part. 従来法において生じる不良箇所を説明するための図である。It is a figure for demonstrating the defective location which arises in the conventional method.

符号の説明Explanation of symbols

1 :外層部
2 :内層部
S1:分割分岐操作
S2:再配置操作
S3:積層操作
F :積層流Pの切断面
、C、C、C:角部
:矩形断面を有する積層流
,P:各分岐流
t :内層部の層厚
w :外層部の層厚
1: outer layer 2: inner layer portion S1: dividing Branch Operation S2: Relocation Operation S3: laminating operation F: cut surface C 1 of the laminated flow P 0, C 2, C 3 , C 4: corners P 0: rectangular section Laminar flow P 1 , P 2 having : each branch flow t: inner layer thickness w: outer layer thickness

Claims (3)

多層フィードブロックにおいて少なくとも2種の溶融高分子重合体を3層以上に交互に積層した矩形断面を有する積層流を形成し、該積層流を積層面に垂直な断面で分割して独立した分岐流を形成し、積層数が増えるように前記各分岐流を積層面同士が互いに平行且つ互いに接するように再配置して再合流し、積層数を増やして多層フィルムを製造する際に、前記多層フィードブロックによって形成する積層流の外層部の厚み(w)内層部の厚み(t)との比(w/t)を5〜200とすることを特徴とする多層フィルムの製造方法。 In the multilayer feed block, a laminar flow having a rectangular cross section in which at least two types of molten polymer are alternately laminated in three or more layers is formed, and the laminar flow is divided by a cross section perpendicular to the laminating surface to be an independent branch flow When the multi-layer film is manufactured by increasing the number of layers, the multi-layer feed is re-arranged so that each of the branched flows is parallel and in contact with each other so that the number of layers increases. The manufacturing method of the multilayer film characterized by making ratio (w / t) of the thickness (w) of the outer-layer part of the laminated flow formed by a block, and the thickness (t) of an inner-layer part into 5-200 . 多層フィルムの層数が11層以上であることを特徴とする、請求項1記載の多層フィルムの製造方法 The method for producing a multilayer film according to claim 1, wherein the number of layers of the multilayer film is 11 or more . 多層フィルムを縦一軸延伸して製品とすることを特徴とする、請求項1又は2に記載の多層フィルムの製造方法 The method for producing a multilayer film according to claim 1 or 2, wherein the multilayer film is longitudinally uniaxially stretched into a product .
JP2005155516A 2005-05-27 2005-05-27 Method for producing multilayer film Active JP4693500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005155516A JP4693500B2 (en) 2005-05-27 2005-05-27 Method for producing multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005155516A JP4693500B2 (en) 2005-05-27 2005-05-27 Method for producing multilayer film

Publications (2)

Publication Number Publication Date
JP2006327079A JP2006327079A (en) 2006-12-07
JP4693500B2 true JP4693500B2 (en) 2011-06-01

Family

ID=37549275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005155516A Active JP4693500B2 (en) 2005-05-27 2005-05-27 Method for producing multilayer film

Country Status (1)

Country Link
JP (1) JP4693500B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702012B2 (en) * 2005-11-29 2011-06-15 東レ株式会社 Laminate flow forming apparatus, laminated sheet manufacturing apparatus and manufacturing method
JP5492890B2 (en) * 2008-08-05 2014-05-14 ユニバーシティ オブ マサチューセッツ ローウェル Laminate manufacturing method and manufacturing apparatus
EP2578377B1 (en) * 2010-05-25 2016-11-16 Kuraray Co., Ltd. Manufacturing method for multi-layered body and manufacturing equipment for the same
US10492006B2 (en) * 2016-01-15 2019-11-26 Panasonic Intellectual Property Management Co., Ltd. Electroacoustic transducer and display apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278324A (en) * 1990-12-21 1992-10-02 Dow Chem Co:The Method and device for producing boundary surface
JPH08501994A (en) * 1992-10-02 1996-03-05 ザ・ダウ・ケミカル・カンパニー Multilayer extrudate with protective boundary layer and extrusion apparatus
JP2002509270A (en) * 1998-01-13 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー Multilayer optical film manufacturing method
JP2003251675A (en) * 2002-02-28 2003-09-09 Teijin Dupont Films Japan Ltd Method and apparatus for manufacturing multilayered film
JP2004034299A (en) * 2002-06-28 2004-02-05 Toray Ind Inc Laminated film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278324A (en) * 1990-12-21 1992-10-02 Dow Chem Co:The Method and device for producing boundary surface
JPH08501994A (en) * 1992-10-02 1996-03-05 ザ・ダウ・ケミカル・カンパニー Multilayer extrudate with protective boundary layer and extrusion apparatus
JP2002509270A (en) * 1998-01-13 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー Multilayer optical film manufacturing method
JP2003251675A (en) * 2002-02-28 2003-09-09 Teijin Dupont Films Japan Ltd Method and apparatus for manufacturing multilayered film
JP2004034299A (en) * 2002-06-28 2004-02-05 Toray Ind Inc Laminated film

Also Published As

Publication number Publication date
JP2006327079A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4620526B2 (en) Multilayer film manufacturing method and apparatus
DE69616075T2 (en) ELECTROLUMINESCENT LAMP WITH OPTICAL MULTILAYER FILM
DE69423651T2 (en) MULTI-LAYER OPTICAL FILM
US6157490A (en) Optical film with sharpened bandedge
US5962114A (en) Polarizing beam-splitting optical component
DE69617016T2 (en) Transparent multi-layer device
US6967778B1 (en) Optical film with sharpened bandedge
KR101792319B1 (en) Uniaxially oriented multi-layer laminate film
JP4816419B2 (en) Laminated film
KR101983629B1 (en) Laminate film and automotive window glass using same
WO1999036804A1 (en) Anti-reflective polymer constructions and method for producing same
CA2316163A1 (en) Color shifting film
KR20080005427A (en) Multilayer reflector comprising optically thick layers with a non-uniform layer thickness profile
KR20070007117A (en) Laminated film
JP4693500B2 (en) Method for producing multilayer film
JP4765504B2 (en) Optical filter
JP2002160339A (en) Multi-layer laminated stretched film
JP2006159537A (en) Manufacturing method of multilayered sheet and manufacturing method of multilayered film
JP4665421B2 (en) Laminated film
JP5897884B2 (en) Reflective film and reflective material
JP2017043083A (en) Laminate polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4693500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250