JP4620228B2 - Light scattering transmission sheet defect inspection device - Google Patents

Light scattering transmission sheet defect inspection device Download PDF

Info

Publication number
JP4620228B2
JP4620228B2 JP2000230146A JP2000230146A JP4620228B2 JP 4620228 B2 JP4620228 B2 JP 4620228B2 JP 2000230146 A JP2000230146 A JP 2000230146A JP 2000230146 A JP2000230146 A JP 2000230146A JP 4620228 B2 JP4620228 B2 JP 4620228B2
Authority
JP
Japan
Prior art keywords
light
transmission sheet
light scattering
scattering transmission
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000230146A
Other languages
Japanese (ja)
Other versions
JP2002048726A (en
JP2002048726A5 (en
Inventor
英人 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2000230146A priority Critical patent/JP4620228B2/en
Publication of JP2002048726A publication Critical patent/JP2002048726A/en
Publication of JP2002048726A5 publication Critical patent/JP2002048726A5/ja
Application granted granted Critical
Publication of JP4620228B2 publication Critical patent/JP4620228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はシートにおける欠点の有無を光学的に検査する技術分野に属する。特に、光散乱透過シートにおける異物欠点と光散乱欠点の両方を一回の検査で検出することができる欠点検査装置に関する。
【0002】
【従来技術】
光散乱透過シートにおける主要な欠点の1つは、光散乱特性が所定の特性から外れる欠点である。特に、光散乱特性がシートの部分によって異なる光散乱ムラが問題となる。また、主要な欠点の1つは、光散乱透過シートに含まれる異物である。この異物はもともとの材料中に含まれているもの、製造過程で付着混入するものが存在する。光散乱透過シートにおいては、特に光学的特性が重要視されるため、いずれの欠点も重欠点と見なされている。
【0003】
【発明が解決しようとする課題】
この光散乱透過シートの欠点検査は、従来は、もっぱら目視検査によって行なわれている。光散乱が存在するところで異物を検出することも、微妙な光散乱そのものを検出することも、機械検出では極めて困難なためである。しかし、人間にとってこの検査は常に精神の緊張と集中を強いられ、作業負荷が大きく、多くの時間を必要とし、費用負担も大きい。その上、人間が検査する以上、検査基準のバラツキ、欠点の見逃しが避けられない。
【0004】
本発明はこのような課題を解決するためになされたものである。その目的は、光散乱透過シートにおける異物欠点と光散乱欠点の両方を一回の検査で高感度にかつ高速に検出することができる欠点検査装置を提供することにある。
【0005】
【課題を解決するための手段】
上記課題は下記の本発明によって解決される。すなわち、本発明の請求項1に係る欠点検査装置は、移送される光散乱透過シートにおける欠点の有無を検査する欠点検査装置であって、ラインセンサカメラと、ライン状光源と、帯状調光部材を具備し、前記ラインセンサカメラは、ライン状の撮像領域を有し、その撮像光軸と前記光散乱透過シートの表面との成す角度は∠20°〜∠70°の鋭角となる範囲でであって、前記光散乱透過シートの移送方向と直角方向に走査を行い前記光散乱透過シートを撮像して撮像信号を出力し、
前記ライン状光源は、前記ラインセンサカメラが前記散乱透過シートを散乱透過する光線によって撮像するためのライン状の発光領域を有する光源であって、その発光領域の方向と前記撮像領域の方向は平行方向であり、前記光散乱透過シートの非撮像側の位置に前記ラインセンサカメラの撮像光軸の延長上から離れて前記鋭角を反対側から見込む側の位置に設けられ、前記帯状調光部材は、前記光散乱透過シートの背面側から前記ラインセンサカメラの撮像領域に入射する光線を調整するための黒色かつマット状の表面を有する帯状の部材であって、その部材の方向と前記撮像領域の方向は平行方向であり、前記ラインセンサカメラの撮像光軸の延長上に、その表面が前記光散乱透過シートの表面と平行となるように設けられるようにしたものである。
【0006】
本発明によれば、光散乱透過シートの移送方向と直角方向の走査を行って光散乱透過シートを撮像するラインセンサカメラと、そのラインセンサカメラが散乱透過シートを散乱透過する光線によって撮像するためのライン状の発光領域を有するライン状光源と、黒色かつマット状の表面を有する帯状調光部材により欠点検査装置が構成されている。この構成により、光散乱透過シートにおける異物欠点と光散乱欠点の両方が一回の検査で極めて高感度にかつ高速に検出される。
【0010】
また本発明の請求項2係る欠点検査装置は、請求項1または2に記載の欠点検査装置において、データ処理部を具備し、そのデータ処理部は、すくなくとも前記光散乱透過シートにおける異物欠点を検出する処理と光散乱欠点を検出する処理を行い、検出結果を欠点内容が判るように出力するようにしたものである。本発明によれば、欠点内容が判るように検出結果が出力される。
【0011】
【発明の実施の形態】
次に、本発明について実施の形態を説明する。本発明の欠点検査装置における検出系の構成の一例を図1に示す。図1において、1はラインセンサカメラ、2はライン状光源、3は帯状聴講部材、100は光散乱透過シートである。また、矢印(→)は光散乱透過シート100の移送方向を示す。光散乱透過シート100は、図1においては、左側から右側に移送されているが、この移送方向は逆方向であっても同様で差異がない。
【0012】
ラインセンサカメラ1はライン状の撮像領域を有するカメラである。たとえば、多数の(500〜5000程度の)受光画素を一次元に配列したCCD(charge coupled device)型、MOS(metal oxide semiconductor)型、等の光センサを用いたカメラである。このラインセンサカメラ1はその一次元に配列した受光画素の走査を行って撮像信号を出力する。図1に示すように、ラインセンサカメラ1はその走査方向が光散乱透過シート100の移送方向に対して直角方向となるように検出系において設置されている。
【0013】
ラインセンサカメラ1の撮像光軸と光散乱透過シート100の表面との成す角度は∠20°〜∠70°の鋭角となる範囲とすると多くの種類の光散乱透過シート100において好適である。この範囲における具体的な値は、検査対象となる光散乱透過シート100に応じて適正に決められる。このように設置することより、光散乱透過シート100における異物欠点と光散乱欠点の両方を高い感度で検出することが可能となる。
【0014】
ライン状光源2はライン状の発光領域を有する光源である。たとえば、蛍光灯、ネオン管、キセノンランプ、ハロゲンランプ、等の直管形状の光源を適用できる。また、光ファイバー、光伝達部材、レンズ、等を用いて直線状の発光領域を形成したものを適用できる。また、LED(light emitting diode)のような点光源を一次元に配列して擬似的に直線状の発光領域を形成したものを適用できる。
【0015】
このライン状光源2はその発光領域の方向とラインセンサカメラ1撮像領域の方向とが平行方向となるように設置される。また、ライン状光源2はラインセンサカメラ1が散乱透過シート100を散乱透過する光線によって撮像するための光源である。したがって、図1に示すように、光散乱透過シート100の非撮像側の位置に設置されている。
【0016】
また、図1に示すように、ライン状光源2は、前述のラインセンサカメラ1の撮像光軸と光散乱透過シート100の表面とが成す鋭角を反対側から見込む側の位置に設置されている。また、ライン状光源2はラインセンサカメラ1の撮像光軸の延長上から離れて設置されている。このように設置することより、光散乱透過シート100における異物欠点と光散乱欠点の両方を高い感度で検出することが可能となる。
【0017】
帯状調光部材3は光散乱透過シート100の背面側からラインセンサカメラ1の撮像領域に入射する光線を調整するための帯状の部材である。図1に示すように、その帯状調光部材3の方向と撮像領域の方向は平行方向となるように、また、ラインセンサカメラ1の撮像光軸の延長上となるように設置されている。
【0018】
帯状調光部材3は黒色かつマット状の表面とすると好適である。また、帯状調光部材3はその表面が光散乱透過シート1の表面と平行となるように設置すると好適である。このようにすることにより、帯状調光部材3による光線の調整を効果的に行なうことができる。その結果として、光散乱透過シート100における異物欠点と光散乱欠点の両方を高い感度で検出することが可能となる。
【0019】
ラインセンサカメラ1のライン状の撮像領域に入射する光線は、ライン状光源2が発する光線によっている。しかし、光散乱透過シート100が、その光線を散乱し透過するため、撮像領域に入射する光線は、極めて複雑な光線となる。上述の配置によれば、ライン状光源2が発する光線をラインセンサカメラ1は直接的には撮像しない(直接的には受光しない)。ラインセンサカメラ1が撮像するのは光散乱透過シート100である。しかし、光散乱の程度にもよるが、同時に光散乱透過シート100の背景側も撮像している。光散乱透過シート100が極めて光散乱の小さい透明シートとみなせるとき、帯状調光部材3が存在するときにはラインセンサカメラ1が撮像するのは帯状調光部材3の表面である。
【0020】
この帯状調光部材3の表面には光散乱透過シート100の広い領域から散乱する光線が達している。すなわち、光散乱透過シート100の広い領域の光学的な特性に影響されて帯状調光部材3の表面の明るさがレベル変化する、または変動することになる。その結果、ラインセンサカメラ1の撮像信号には、ラインセンサカメラ1が撮像しようとしている撮像領域の光学的な特性だけでなく、光散乱透過シート100の広い領域の影響が外乱として含まれてしまう。帯状調光部材3を黒色かつマット状の表面とし、その表面が光散乱透過シート1の表面と平行となるようにする理由の1つは、この外乱を避けることにある。
【0021】
勿論、帯状調光部材3は光散乱透過シート100の背景側において発せられる光線を、ラインセンサカメラ1が直接的には撮像しないように、その光線を遮光する役割を有する。帯状調光部材3が存在することによって帯状調光部材3より奥の背景側が外乱となることを防いでいる。
【0022】
前述において、ラインセンサカメラ1はライン状光源2が発する光線を直接的には撮像しないことを述べた。しかし、実際のライン状光源2は理想的な線で発光する光源ではなく、相応の発光面積を有している。また、光散乱透過シート100が光線を散乱し透過するため、撮像領域に入射する光線は極めて複雑な光線となる。したがって、ライン状光源2がラインセンサカメラ1の撮像光軸の延長上から離れて設置されているにもかかわらず、ラインセンサカメラ1が撮像する光線には、散乱光線だけでなく実質的には直接光線とみなせる成分が含まれることとなる。
【0023】
帯状調光部材3は、この散乱光線と直接光線との成分比を調節することができる。帯状調光部材3によって、ライン状光源2を隠す程度を大きくすると散乱光線の成分比が大きくなる。帯状調光部材3によって、ライン状光源2を隠す程度を小さくすると直接光線の成分比が大きくなる。この散乱光線と直接光線との成分比を適正にすることにより、光散乱透過シート100における異物欠点と光散乱欠点の両方を高い感度で検出することが可能となる。
【0024】
次に、ラインセンサカメラ1から出力される撮像信号の処理について説明する。本発明の欠点検査装置における処理系の構成の一例を図2に示す。図2において図1と同一部分には同一符号を付してある。図2において、4は処理系の本体、5は入力部、6は出力部である。また、処理系の本体4において、41はA/D(analog-to-digital)変換部、42は記憶部、43は処理部である。
【0025】
本体4は、パーソナルコンピュータ、画像処理システム、等のデータ処理装置の本体である。本発明の欠点検査装置における処理系は、データ処理装置と周辺機器のハードウェアとソフトウェアによって構成することができる。入力部5は、オペレータが欠点検査装置に対して、設定入力、指示入力、等を行なう部分である。入力部5は、たとえばキーボード、マウス、等から成る。出力部は、欠点検査装置における設定内容、動作状態、検査結果、等を出力する部分である。出力部は、たとえば、ディスプレイ、警報器、等から成る。
【0026】
ラインセンサカメラ1が出力する撮像信号は本体4のA/D変換部41によって入力が行なわれる。撮像信号は、ラインセンサカメラ1が光散乱透過シート100の移送方向と直角方向に走査を行い光散乱透過シートを撮像して得た撮像信号である。A/D変換部41は、その撮像信号をディジタルデータに変換して記憶部42に記憶する。
【0027】
記憶する撮像信号における走査線(1走査の信号)の数は1つとは限らない、検出しようとする欠点の種類、寸法によって、同時に(関連付けて)処理すべき走査線の数は異なる。一般的に、点状の小さな欠点の場合には同時に処理すべき走査線の数は少なくて済む。また、広域に及ぶ欠点の場合には同時に処理すべき走査線の数を多くする必要性がある。
【0028】
したがって、記憶部42に記憶されている撮像信号のデータは、光散乱透過シート100における特定の部位を撮像して得た2次元のデータ、すなわち画像データである。この記憶部42に記憶されている画像データは、光散乱透過シート100の移送にともない更新される。連続的に更新を行なうため、たとえば、記憶部42を2つ以上に領域分割し、新規画像データの読み込みと欠点検出のデータ処理とが、同じ領域では同時には起こらないようにする。
【0029】
この記憶部42に記憶されている画像データに基づいて、処理部43は欠点を検出する処理を行なう。処理部43は、すくなくとも光散乱透過シート100における異物欠点を検出する処理と光散乱欠点を検出する処理を行う。異物欠点は寸法の小さいものが多い。小さな欠点を検出する処理としては、たとえば、ラプラシアン・オペレータ、等を用いて画像データを微分処理し、所定の閾値で2値化する。小さな光散乱欠点も同様の処理で検出できる。
【0030】
光散乱欠点は広域に及ぶものが多い。広域の欠点を検出処理としては、画像データに含まれる、シェーディング、等の広域の撮像ムラ、等の誤差を除去する処理を行なって、所定の許容範囲に含まれているか否かを判定する。大きな異物欠点も同様の処理で検出できる。
なお基準となる画像データを検査前に得ておき、それとの差分を演算することで誤差の除去と検出とを同時に行なってもよい。
【0031】
この処理部43における検出結果は欠点内容が判るように出力部6において出力が行なわれる。
【0032】
【発明の効果】
以上のとおりであるから、本発明の請求項1に係る欠点検査装置によれば、光散乱透過シートにおける異物欠点と光散乱欠点の両方を一回の検査で極めて高感度にかつ高速に検出することができる。また本発明の請求項2係る欠点検査装置によれば、欠点内容が判るように検出結果を出力することができる。
【図面の簡単な説明】
【図1】本発明の光散乱透過シートの欠点検査装置における検出系の構成の一例を示す図である。
【図2】本発明の光散乱透過シートの欠点検査装置における処理系の構成の一例を示す図である。
【符号の説明】
1 ラインセンサカメラ
2 ライン状光源
3 帯状聴講部材
4 処理系の本体
5 入力部
6 出力部
41 A/D 変換部
42 記憶部
43 処理部
100 光散乱透過シート
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of optically inspecting a sheet for defects. In particular, the present invention relates to a defect inspection apparatus that can detect both foreign matter defects and light scattering defects in a light-scattering transmission sheet in a single inspection.
[0002]
[Prior art]
One of the main drawbacks of the light scattering transmission sheet is that the light scattering characteristics deviate from predetermined characteristics. In particular, light scattering unevenness in which the light scattering characteristics vary depending on the sheet portion is a problem. One of the main drawbacks is foreign matter contained in the light scattering transmission sheet. Some of these foreign substances are contained in the original material, and some are attached and mixed in the manufacturing process. In the light-scattering / transmitting sheet, since optical characteristics are regarded as particularly important, any defect is regarded as a heavy defect.
[0003]
[Problems to be solved by the invention]
Conventionally, the defect inspection of the light-scattering / transmitting sheet is performed exclusively by visual inspection. This is because it is extremely difficult to detect foreign matter where light scattering exists and to detect subtle light scattering itself by mechanical detection. However, for humans, this test is always stressed and focused, has a heavy workload, requires a lot of time, and is costly. Furthermore, as long as human inspections are performed, variations in inspection standards and oversight of defects are inevitable.
[0004]
The present invention has been made to solve such problems. The object is to provide a defect inspection apparatus capable of detecting both foreign matter defects and light scattering defects in a light scattering transmission sheet with high sensitivity and high speed by a single inspection.
[0005]
[Means for Solving the Problems]
The above problems are solved by the present invention described below. That is, the defect inspection apparatus according to claim 1 of the present invention is an inspection apparatus for inspecting the presence or absence of defects in a transported light scattering transmission sheet, and includes a line sensor camera, a line light source, and a strip-shaped light control member. The line sensor camera has a line-shaped imaging region, and an angle formed between the imaging optical axis and the surface of the light scattering transmission sheet is an acute angle of ∠20 ° to ∠70 °. And scanning in the direction perpendicular to the direction of transport of the light scattering transmission sheet and imaging the light scattering transmission sheet to output an imaging signal,
The line-shaped light source is a light source having a line-shaped light emitting region for the line sensor camera to pick up an image with light rays scattered and transmitted through the scattering transmission sheet, and the direction of the light emitting region and the direction of the imaging region are parallel. Is provided at a position on the non-imaging side of the light scattering transmission sheet at a position on the side away from the extension of the imaging optical axis of the line sensor camera and looking at the acute angle from the opposite side, A band-shaped member having a black and matte surface for adjusting light incident on the imaging region of the line sensor camera from the back side of the light scattering transmission sheet, the direction of the member and the imaging region The direction is a parallel direction, and on the extension of the imaging optical axis of the line sensor camera, the surface is provided so as to be parallel to the surface of the light scattering transmission sheet. Than is.
[0006]
According to the present invention, the line sensor camera that scans the light scattering transmission sheet by scanning in the direction perpendicular to the transfer direction of the light scattering transmission sheet, and the line sensor camera images the scattering transmission sheet with the light that is scattered and transmitted. The defect inspection apparatus is composed of a line-shaped light source having a line-shaped light emitting region and a strip-shaped light adjusting member having a black and matte surface . With this configuration, both the foreign matter defect and the light scattering defect in the light scattering transmission sheet are detected with extremely high sensitivity and high speed in one inspection.
[0010]
A defect inspection apparatus according to claim 2 of the present invention is the defect inspection apparatus according to claim 1 or 2, further comprising a data processing unit, and the data processing unit detects at least a foreign object defect in the light scattering transmission sheet. And a process for detecting a light scattering defect, and a detection result is output so that the contents of the defect can be understood. According to the present invention, the detection result is output so that the content of the defect can be understood.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described. An example of the configuration of a detection system in the defect inspection apparatus of the present invention is shown in FIG. In FIG. 1, 1 is a line sensor camera, 2 is a line-shaped light source, 3 is a strip-shaped auditory member, and 100 is a light scattering transmission sheet. Moreover, the arrow (→) indicates the transfer direction of the light scattering transmission sheet 100. In FIG. 1, the light scattering transmission sheet 100 is transferred from the left side to the right side, but this transfer direction is the same even if the transfer direction is the reverse direction.
[0012]
The line sensor camera 1 is a camera having a line-shaped imaging region. For example, it is a camera using a photosensor such as a charge coupled device (CCD) type or a metal oxide semiconductor (MOS) type in which a large number of light receiving pixels (about 500 to 5000) are arranged one-dimensionally. The line sensor camera 1 scans the light receiving pixels arranged in one dimension and outputs an imaging signal. As shown in FIG. 1, the line sensor camera 1 is installed in the detection system so that the scanning direction is a direction perpendicular to the transport direction of the light scattering transmission sheet 100.
[0013]
The angle formed by the imaging optical axis of the line sensor camera 1 and the surface of the light scattering / transmitting sheet 100 is suitable for many types of light scattering / transmitting sheets 100 when the angle is in the range of ∠20 ° to ∠70 °. A specific value in this range is appropriately determined according to the light scattering transmission sheet 100 to be inspected. By installing in this way, it becomes possible to detect both the foreign substance defect and the light scattering defect in the light scattering transmission sheet 100 with high sensitivity.
[0014]
The line-shaped light source 2 is a light source having a line-shaped light emitting region. For example, a straight tube-shaped light source such as a fluorescent lamp, a neon tube, a xenon lamp, or a halogen lamp can be applied. In addition, it is possible to apply one in which a linear light emitting region is formed using an optical fiber, a light transmission member, a lens, or the like. Further, it is possible to apply one in which point light sources such as LEDs (light emitting diodes) are arranged one-dimensionally to form a pseudo linear light emitting region.
[0015]
The line light source 2 is installed such that the direction of the light emitting area and the direction of the imaging area of the line sensor camera 1 are parallel to each other. The line light source 2 is a light source for the line sensor camera 1 to take an image with light rays scattered and transmitted through the scattering transmission sheet 100. Therefore, as shown in FIG. 1, the light scattering transmission sheet 100 is installed at a position on the non-imaging side.
[0016]
As shown in FIG. 1, the linear light source 2 is installed at a position on the side where the acute angle formed by the imaging optical axis of the above-described line sensor camera 1 and the surface of the light scattering transmission sheet 100 is viewed from the opposite side. . Further, the line light source 2 is installed away from the extension of the imaging optical axis of the line sensor camera 1. By installing in this way, it becomes possible to detect both the foreign substance defect and the light scattering defect in the light scattering transmission sheet 100 with high sensitivity.
[0017]
The strip-shaped light adjusting member 3 is a strip-shaped member for adjusting the light beam incident on the imaging region of the line sensor camera 1 from the back side of the light scattering transmission sheet 100. As shown in FIG. 1, the strip-shaped light adjusting member 3 and the imaging region are installed so that the direction of the strip-shaped light control member 3 is parallel to the direction of the imaging region and the extension of the imaging optical axis of the line sensor camera 1.
[0018]
The strip-shaped light control member 3 is preferably a black and matte surface. Further, it is preferable that the strip-shaped light adjusting member 3 is installed so that the surface thereof is parallel to the surface of the light scattering transmission sheet 1. By doing in this way, adjustment of the light beam by the strip | belt-shaped light control member 3 can be performed effectively. As a result, it is possible to detect both foreign matter defects and light scattering defects in the light scattering transmission sheet 100 with high sensitivity.
[0019]
The light beam incident on the line-shaped imaging region of the line sensor camera 1 is a light beam emitted from the line-shaped light source 2. However, since the light-scattering / transmitting sheet 100 scatters and transmits the light, the light incident on the imaging region becomes a very complicated light. According to the above arrangement, the line sensor camera 1 does not directly capture the light emitted from the linear light source 2 (not directly receive light). The line sensor camera 1 images the light scattering transmission sheet 100. However, depending on the degree of light scattering, the background side of the light scattering transmission sheet 100 is also imaged at the same time. When the light scattering transmission sheet 100 can be regarded as a transparent sheet with very little light scattering, the line sensor camera 1 captures the surface of the band light control member 3 when the band light control member 3 is present.
[0020]
Light rays scattered from a wide area of the light-scattering / transmitting sheet 100 reach the surface of the strip-shaped light control member 3. That is, the brightness of the surface of the strip-shaped light adjusting member 3 changes or varies depending on the optical characteristics of a wide area of the light scattering transmission sheet 100. As a result, the imaging signal of the line sensor camera 1 includes not only the optical characteristics of the imaging area that the line sensor camera 1 intends to image, but also the influence of a wide area of the light scattering transmission sheet 100 as a disturbance. . One of the reasons for making the strip-shaped light control member 3 a black and matte surface and making the surface parallel to the surface of the light scattering transmission sheet 1 is to avoid this disturbance.
[0021]
Of course, the strip-shaped light adjusting member 3 has a role of shielding the light beam emitted from the background side of the light scattering transmission sheet 100 so that the line sensor camera 1 does not directly capture the light beam. The presence of the strip-shaped light control member 3 prevents the background side behind the strip-shaped light control member 3 from being disturbed.
[0022]
In the foregoing, it has been described that the line sensor camera 1 does not directly image the light emitted by the line light source 2. However, the actual line light source 2 is not a light source that emits light with an ideal line but has a corresponding light emitting area. In addition, since the light-scattering / transmitting sheet 100 scatters and transmits the light, the light incident on the imaging region is a very complicated light. Therefore, although the line light source 2 is installed away from the extension of the imaging optical axis of the line sensor camera 1, the light beam captured by the line sensor camera 1 is substantially not only a scattered light beam but also substantially a scattered light beam. Components that can be regarded as direct rays are included.
[0023]
The strip-shaped light control member 3 can adjust the component ratio of the scattered light and the direct light. When the extent to which the line-shaped light source 2 is hidden by the strip-shaped light adjusting member 3 is increased, the component ratio of scattered light increases. If the extent to which the line-shaped light source 2 is hidden is reduced by the strip-shaped light adjusting member 3, the component ratio of the direct light increases. By optimizing the component ratio of the scattered light and the direct light, it is possible to detect both the foreign matter defect and the light scattering defect in the light scattering transmission sheet 100 with high sensitivity.
[0024]
Next, processing of the imaging signal output from the line sensor camera 1 will be described. An example of the configuration of the processing system in the defect inspection apparatus of the present invention is shown in FIG. In FIG. 2, the same parts as those in FIG. In FIG. 2, 4 is a main body of the processing system, 5 is an input unit, and 6 is an output unit. In the main body 4 of the processing system, 41 is an A / D (analog-to-digital) conversion unit, 42 is a storage unit, and 43 is a processing unit.
[0025]
The main body 4 is a main body of a data processing apparatus such as a personal computer or an image processing system. The processing system in the defect inspection apparatus of the present invention can be constituted by hardware and software of a data processing apparatus and peripheral devices. The input unit 5 is a part where an operator performs setting input, instruction input, and the like for the defect inspection apparatus. The input unit 5 includes a keyboard, a mouse, and the like, for example. The output unit is a part that outputs setting contents, operation states, inspection results, and the like in the defect inspection apparatus. An output part consists of a display, an alarm device, etc., for example.
[0026]
An imaging signal output from the line sensor camera 1 is input by the A / D converter 41 of the main body 4. The imaging signal is an imaging signal obtained by the line sensor camera 1 scanning in the direction perpendicular to the transfer direction of the light scattering transmission sheet 100 and imaging the light scattering transmission sheet. The A / D conversion unit 41 converts the imaging signal into digital data and stores it in the storage unit 42.
[0027]
The number of scanning lines (one scanning signal) in the stored imaging signal is not limited to one, and the number of scanning lines to be processed simultaneously (associated) differs depending on the type and size of the defect to be detected. In general, in the case of a small dot-like defect, the number of scanning lines to be processed simultaneously is small. Further, in the case of a defect extending over a wide area, it is necessary to increase the number of scanning lines to be processed simultaneously.
[0028]
Therefore, the data of the imaging signal stored in the storage unit 42 is two-dimensional data obtained by imaging a specific part in the light scattering transmission sheet 100, that is, image data. The image data stored in the storage unit 42 is updated as the light scattering transmission sheet 100 is transferred. In order to update continuously, for example, the storage unit 42 is divided into two or more regions so that reading of new image data and data processing for defect detection do not occur simultaneously in the same region.
[0029]
Based on the image data stored in the storage unit 42, the processing unit 43 performs a process of detecting a defect. The processing unit 43 performs at least processing for detecting foreign matter defects in the light scattering transmission sheet 100 and processing for detecting light scattering defects. Many foreign object defects have small dimensions. As a process for detecting a small defect, for example, image data is differentiated using a Laplacian operator or the like, and binarized with a predetermined threshold value. Small light scattering defects can be detected by the same process.
[0030]
Many light scattering defects cover a wide area. As a process for detecting a defect in a wide area, a process for removing errors such as shading and other wide-area imaging unevenness included in image data is performed to determine whether or not the image is included in a predetermined allowable range. Large foreign object defects can be detected by the same process.
It should be noted that reference image data may be obtained before inspection, and error removal and detection may be performed at the same time by calculating the difference between them.
[0031]
The detection result in the processing unit 43 is output in the output unit 6 so that the content of the defect can be understood.
[0032]
【The invention's effect】
As described above, according to the defect inspection apparatus of the first aspect of the present invention, both the foreign matter defect and the light scattering defect in the light scattering transmission sheet are detected with extremely high sensitivity and high speed by one inspection. be able to. According to the defect inspection apparatus of the second aspect of the present invention, the detection result can be output so that the contents of the defect can be understood.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of a configuration of a detection system in a defect inspection apparatus for a light scattering transmission sheet according to the present invention.
FIG. 2 is a diagram showing an example of a configuration of a processing system in a defect inspection apparatus for a light scattering transmission sheet according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Line sensor camera 2 Line-shaped light source 3 Band-shaped auditory member 4 Processing system main body 5 Input part 6 Output part 41 A / D conversion part 42 Storage part 43 Processing part 100 Light scattering transmission sheet

Claims (2)

移送される光散乱透過シートにおける欠点の有無を検査する欠点検査装置であって、ラインセンサカメラと、ライン状光源と、帯状調光部材を具備し、
前記ラインセンサカメラは、ライン状の撮像領域を有し、その撮像光軸と前記光散乱透過シートの表面との成す角度は∠20°〜∠70°の鋭角となる範囲であって、前記光散乱透過シートの移送方向と直角方向に走査を行い前記光散乱透過シートを撮像して撮像信号を出力し、
前記ライン状光源は、前記ラインセンサカメラが前記散乱透過シートを散乱透過する光線によって撮像するためのライン状の発光領域を有する光源であって、その発光領域の方向と前記撮像領域の方向は平行方向であり、前記光散乱透過シートの非撮像側の位置に前記ラインセンサカメラの撮像光軸の延長上から離れて前記鋭角を反対側から見込む側の位置に設けられ、
前記帯状調光部材は、前記光散乱透過シートの背面側から前記ラインセンサカメラの撮像領域に入射する光線を調整するための黒色かつマット状の表面を有する帯状の部材であって、その部材の方向と前記撮像領域の方向は平行方向であり、前記ラインセンサカメラの撮像光軸の延長上に、その表面が前記光散乱透過シートの表面と平行となるように設けられる、
ことを特徴とする欠点検査装置。
A defect inspection apparatus for inspecting the presence or absence of defects in the transported light-scattering transmission sheet, comprising a line sensor camera, a line-shaped light source, and a strip-shaped light control member,
The line sensor camera has a line-shaped imaging region, and an angle formed between the imaging optical axis and the surface of the light scattering transmission sheet is an acute angle of の 20 ° to ∠70 °, and the light Scanning in the direction perpendicular to the transport direction of the scattering transmission sheet and imaging the light scattering transmission sheet to output an imaging signal,
The line-shaped light source is a light source having a line-shaped light emitting region for the line sensor camera to pick up an image with light rays scattered and transmitted through the scattering transmission sheet, and the direction of the light emitting region and the direction of the imaging region are parallel. The light scattering transmission sheet is provided at a position on the non-imaging side of the light scattering transmission sheet and on the side where the acute angle is viewed from the opposite side away from the extension of the imaging optical axis of the line sensor camera,
The band-shaped light adjusting member is a band-shaped member having a black and matte surface for adjusting light rays incident on the imaging region of the line sensor camera from the back side of the light scattering transmission sheet, The direction and the direction of the imaging region are parallel directions, and are provided on the extension of the imaging optical axis of the line sensor camera so that the surface thereof is parallel to the surface of the light scattering transmission sheet.
A defect inspection apparatus characterized by that.
請求項1に記載の欠点検査装置において、データ処理部を具備し、そのデータ処理部は、すくなくとも前記光散乱透過シートにおける異物欠点を検出する処理と光散乱欠点を検出する処理を行い、検出結果を欠点内容が判るように出力することを特徴とする欠点検査装置。 The defect inspection apparatus according to claim 1, further comprising a data processing unit, wherein the data processing unit performs at least processing for detecting foreign matter defects in the light scattering transmission sheet and processing for detecting light scattering defects, and results of detection. Is output so that the content of the defect can be understood.
JP2000230146A 2000-07-31 2000-07-31 Light scattering transmission sheet defect inspection device Expired - Fee Related JP4620228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000230146A JP4620228B2 (en) 2000-07-31 2000-07-31 Light scattering transmission sheet defect inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000230146A JP4620228B2 (en) 2000-07-31 2000-07-31 Light scattering transmission sheet defect inspection device

Publications (3)

Publication Number Publication Date
JP2002048726A JP2002048726A (en) 2002-02-15
JP2002048726A5 JP2002048726A5 (en) 2007-08-23
JP4620228B2 true JP4620228B2 (en) 2011-01-26

Family

ID=18723147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000230146A Expired - Fee Related JP4620228B2 (en) 2000-07-31 2000-07-31 Light scattering transmission sheet defect inspection device

Country Status (1)

Country Link
JP (1) JP4620228B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345062A (en) * 2013-08-07 2015-02-11 日东电工株式会社 An optical component checking method, an optical product manufacturing method, and an optical component checking device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294644A (en) * 2002-04-02 2003-10-15 Dainippon Printing Co Ltd Apparatus for inspecting defect in light-scattering transmission sheet
JP5375239B2 (en) * 2009-03-24 2013-12-25 東京電力株式会社 Image processing apparatus, inspection apparatus for long objects, and computer program
JP2014234999A (en) * 2013-05-30 2014-12-15 住友化学株式会社 Defect inspection device and production system of optical display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151359A (en) * 1987-12-08 1989-06-14 Canon Inc Original reader
JPH03134932A (en) * 1989-10-20 1991-06-07 Koito Mfg Co Ltd Discharge lamp device
JPH0815169A (en) * 1994-06-28 1996-01-19 Canon Inc Foreign matter inspection apparatus and manufacture of semiconductor device using the same
JPH10176995A (en) * 1996-12-18 1998-06-30 Futec Inc Method and apparatus for inspection for transparent object
JPH11248643A (en) * 1998-03-02 1999-09-17 Sekisui Chem Co Ltd Detection device for foreign matter in transparent film
JPH11304724A (en) * 1998-04-24 1999-11-05 Mitsubishi Rayon Co Ltd Device and method for inspecting hole of light-transmission sheet
JP2000137001A (en) * 1998-11-02 2000-05-16 Toyobo Co Ltd Film optical defect inspection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208702A (en) * 2000-01-31 2001-08-03 Nippon Sheet Glass Co Ltd Method and apparatus for inspecting defects

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151359A (en) * 1987-12-08 1989-06-14 Canon Inc Original reader
JPH03134932A (en) * 1989-10-20 1991-06-07 Koito Mfg Co Ltd Discharge lamp device
JPH0815169A (en) * 1994-06-28 1996-01-19 Canon Inc Foreign matter inspection apparatus and manufacture of semiconductor device using the same
JPH10176995A (en) * 1996-12-18 1998-06-30 Futec Inc Method and apparatus for inspection for transparent object
JPH11248643A (en) * 1998-03-02 1999-09-17 Sekisui Chem Co Ltd Detection device for foreign matter in transparent film
JPH11304724A (en) * 1998-04-24 1999-11-05 Mitsubishi Rayon Co Ltd Device and method for inspecting hole of light-transmission sheet
JP2000137001A (en) * 1998-11-02 2000-05-16 Toyobo Co Ltd Film optical defect inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345062A (en) * 2013-08-07 2015-02-11 日东电工株式会社 An optical component checking method, an optical product manufacturing method, and an optical component checking device
CN104345062B (en) * 2013-08-07 2018-09-28 日东电工株式会社 The check device of the inspection method of optical component, the manufacturing method of optical articles and optical component

Also Published As

Publication number Publication date
JP2002048726A (en) 2002-02-15

Similar Documents

Publication Publication Date Title
TWI408360B (en) Apparatus for detecting particles on a glass surface and a method thereof
JP2016085212A (en) Defect detection system and method
KR102162693B1 (en) System and method for defect detection
JP2013246059A (en) Defect inspection apparatus and defect inspection method
JPH10148619A (en) Method and device for inspecting face defect of substrate under inspection
JP2001201429A (en) Method and device for inspecting defect in inspected base body
JP4620228B2 (en) Light scattering transmission sheet defect inspection device
JP4025859B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
JP2004309287A (en) Defect detection device and defect detection method
JP5948974B2 (en) Surface defect inspection equipment
JPH07104290B2 (en) Bottle inspection equipment
KR0160655B1 (en) Method and apparatus for inspecting panel
JP4285613B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
JP2003294644A (en) Apparatus for inspecting defect in light-scattering transmission sheet
JP2003202300A (en) Device for checking foreign matter on bottom of bottle
JP2003139524A (en) Inspection device
JP2005351825A (en) Defect inspection device
JPH0236339A (en) Defect inspecting device by light beam
JPH11281588A (en) Surface inspecting apparatus
JP2001165864A (en) Surface inspection device and method
JP2004246171A (en) Defect detection method and device of transparent plate
JPH0755720A (en) Defect inspecting apparatus for transparent and opaque films
JP2002014058A (en) Method and apparatus for checking
JPH085573A (en) Method and apparatus for inspecting work surface
JP2000121574A (en) Flaw inspection apparatus for steel plate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4620228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees