JP4617436B2 - Optical property measuring method of fluorescent sample and optical property measuring apparatus using the same - Google Patents

Optical property measuring method of fluorescent sample and optical property measuring apparatus using the same Download PDF

Info

Publication number
JP4617436B2
JP4617436B2 JP2005112337A JP2005112337A JP4617436B2 JP 4617436 B2 JP4617436 B2 JP 4617436B2 JP 2005112337 A JP2005112337 A JP 2005112337A JP 2005112337 A JP2005112337 A JP 2005112337A JP 4617436 B2 JP4617436 B2 JP 4617436B2
Authority
JP
Japan
Prior art keywords
spectral
sample
fluorescence
light
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005112337A
Other languages
Japanese (ja)
Other versions
JP2006292511A (en
Inventor
健二 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2005112337A priority Critical patent/JP4617436B2/en
Publication of JP2006292511A publication Critical patent/JP2006292511A/en
Application granted granted Critical
Publication of JP4617436B2 publication Critical patent/JP4617436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、蛍光現象を伴う測定試料の分光特性を測定する蛍光試料の光学特性測定方法及びこれを用いた光学特性測定装置に関する。   The present invention relates to a method for measuring optical characteristics of a fluorescent sample for measuring spectral characteristics of a measurement sample accompanied by a fluorescent phenomenon, and an optical characteristic measuring apparatus using the same.

近年、生産されている紙や繊維の多くは、蛍光増白剤によって蛍光増白されており、蛍光の影響を無視して白さ(白色度、ブライトネス)や色彩を評価することができないという事情から、蛍光の影響を配慮した当該紙や繊維に対する測色技術の向上が求められている。   In recent years, many papers and fibers produced have been fluorescently whitened with fluorescent whitening agents, and the whiteness (brightness) and color cannot be evaluated ignoring the influence of fluorescence. Therefore, there is a demand for improvement in colorimetry technology for the paper and fibers in consideration of the influence of fluorescence.

一般的に、反射試料の視覚的な光学特性は、白色との相対比、すなわち或る照明・受光条件において照明、受光された該反射試料からの放射光の、同一条件で照明、受光された完全拡散反射体からの放射光に対する波長λ毎の比である「全分光放射輝度率(B(λ))」で表される。   In general, the visual optical characteristics of a reflected sample are relative to white, that is, illuminated and received under the same conditions of the radiated light from the reflected sample illuminated and received under a certain illumination / light reception condition. It is represented by “total spectral radiance factor (B (λ))”, which is a ratio for each wavelength λ with respect to light emitted from a perfect diffuse reflector.

ところで、蛍光は自発光するので光源色であるが、上記蛍光増白された、つまり蛍光物質を含む試料(以降、蛍光試料という)では、蛍光は反射光に重畳されて物体色として観察される。すなわち、蛍光試料からの放射光は、該蛍光試料からの反射光(反射光成分)と蛍光(蛍光成分)との和として与えられることから、蛍光試料の全分光放射輝度率B(λ)は、上記と同様、或る照明・受光条件において照明、受光された蛍光試料からの反射光及び蛍光それぞれの、同一条件で照明、受光された完全拡散反射体からの放射光に対する比である反射分光放射輝度率R(λ)と蛍光分光放射輝度率F(λ)との和として与えられる。これは以下の式(1)で示される。
B(λ)=R(λ)+F(λ)…(1)
By the way, although fluorescence is self-luminous, it is a light source color. However, in the above-mentioned fluorescent whitened sample, that is, a sample containing a fluorescent material (hereinafter referred to as a fluorescent sample), the fluorescence is superimposed on the reflected light and observed as an object color. . That is, since the radiated light from the fluorescent sample is given as the sum of the reflected light (reflected light component) and the fluorescent light (fluorescent component) from the fluorescent sample, the total spectral radiance factor B (λ) of the fluorescent sample is Similar to the above, the reflection spectroscopy which is the ratio of the reflected light from the fluorescent sample received and received under a certain illumination / light receiving condition and the fluorescence emitted from the completely diffuse reflector illuminated and received under the same condition. It is given as the sum of the radiance factor R (λ) and the fluorescence spectral radiance factor F (λ). This is shown by the following formula (1).
B (λ) = R (λ) + F (λ) (1)

但し、上記完全拡散反射体は蛍光を放射せず、その反射率は照明光の波長に依存しないので、比例定数を別にすれば、これら全分光放射輝度率B(λ)、反射分光放射輝度率R(λ)、及び蛍光分光放射輝度率F(λ)は、それぞれ波長λの放射光、反射光、及び蛍光の、同じ波長の照明光に対する比として表される。なお、当該測色の目的は目視に準じる測定値を得ることにあり、物体色として感じられる蛍光試料の場合、求められるべきは全分光放射輝度率B(λ)であり、このB(λ)から色彩値が導かれる。   However, since the perfect diffuse reflector does not emit fluorescence and its reflectance does not depend on the wavelength of the illumination light, the total spectral radiance factor B (λ), the reflected spectral radiance factor, except for the proportionality constant. R (λ) and fluorescence spectral radiance factor F (λ) are expressed as a ratio of emitted light having a wavelength λ, reflected light, and fluorescence to illumination light having the same wavelength, respectively. The purpose of the color measurement is to obtain a measurement value according to visual observation. In the case of a fluorescent sample that is perceived as an object color, what should be obtained is the total spectral radiance factor B (λ), and this B (λ) From which the color value is derived.

測色用の照明光としては、CIE(国際照明委員会)が分光分布(分光強度)を定義しているD65(昼光)やA(白色光源)、或いはD50、D75、F11、Cなどの標準照明光が用いられる(蛍光試料には通常、標準照明光D65が用いられる)。照明光により照明された蛍光試料(蛍光物質)の励起・蛍光特性は、該蛍光試料面を単位強度で照明する波長μの励起光(入射光)、すなわち単位エネルギーをもつ単波長光により励起される波長λの蛍光の強度を表すマトリクスデータ、二分光蛍光放射輝度率(Bispectral Luminescent Radiance Factor)F(μ,λ)によって記述される。   As illumination light for colorimetry, D65 (daylight) or A (white light source), or D50, D75, F11, C, etc. whose spectral distribution (spectral intensity) is defined by the CIE (International Commission on Illumination) Standard illumination light is used (standard illumination light D65 is usually used for fluorescent samples). The excitation / fluorescence characteristics of a fluorescent sample (fluorescent substance) illuminated by illumination light are excited by excitation light (incident light) of wavelength μ that illuminates the fluorescent sample surface with unit intensity, that is, single wavelength light having unit energy. This is described by matrix data representing the intensity of fluorescence at a wavelength λ, Bispectral Luminescent Radiance Factor F (μ, λ).

上記マトリクスデータは、例えば図7に示す3次元データであり、特定の蛍光波長λに沿った断面(例えばλ=550nmの断面)は、波長λの蛍光を励起する励起光の波長毎の励起効率である分光励起効率を表し、励起波長μに沿った断面(例えばμ=450nmの断面)は、450nmの照明光により励起される、蛍光の分光強度を表す。このことからも、蛍光現象は波長μから波長λへの波長変換を伴う現象であると言える。したがって、分光分布I(μ)を有する照明光Iで照明された、二分光蛍光放射輝度率F(μ,λ)を有する蛍光試料の蛍光分光放射輝度率F(λ)は、比例定数を別にすれば、以下の式(2)により求められる。
F(λ)=∫F(μ,λ)・I(μ)dμ/I(λ)…(2)
つまり、F(λ)は、照明光Iの分光分布I(μ)と二分光蛍光放射輝度率F(μ,λ)との畳み込み積分とI(λ)との比で与えられる。また、I(λ)は、比例定数を別にすれば、前記完全拡散反射体(面)からの反射光と等価である。また、式中、「・」、「/」及び「∫」の記号は、それぞれ乗算、除算及び積分を示すものとする(以降も同様)。
The matrix data is, for example, the three-dimensional data shown in FIG. 7, and a cross section (for example, a cross section of λ = 550 nm) along a specific fluorescence wavelength λ indicates excitation efficiency for each wavelength of excitation light that excites fluorescence of wavelength λ. The cross section along the excitation wavelength μ (for example, a cross section of μ = 450 nm) represents the spectral intensity of fluorescence excited by 450 nm illumination light. From this, it can be said that the fluorescence phenomenon is a phenomenon accompanied by wavelength conversion from the wavelength μ to the wavelength λ. Therefore, the fluorescence spectral radiance factor F (λ) of the fluorescent sample having the bispectral fluorescence radiance factor F (μ, λ) illuminated with the illumination light I having the spectral distribution I (μ) is different from the proportionality constant. Then, it is calculated | required by the following formula | equation (2).
F (λ) = ∫F (μ, λ) · I (μ) dμ / I (λ) (2)
That is, F (λ) is given by the ratio of the convolution integral of the spectral distribution I (μ) of the illumination light I and the two-spectral fluorescence radiance factor F (μ, λ) and I (λ). I (λ) is equivalent to the reflected light from the perfect diffuse reflector (surface) except for the proportionality constant. In the equations, the symbols “•”, “/”, and “∫” indicate multiplication, division, and integration, respectively (and so on).

上記式(2)が示すように、蛍光分光放射輝度率F(λ)は、照明光Iの分光分布I(μ)に依存するため、この蛍光分光放射輝度率F(λ)と、それ自身は照明光Iの分光分布I(μ)に依存しない反射分光放射輝度率R(λ)との和である全分光放射輝度率B(λ)も分光分布I(μ)に依存する。つまり、蛍光試料に対する照明光の違いによって、測定される全分光放射輝度率B(λ)及びこれから導かれる色彩値も異なるものとなる。   As the above equation (2) shows, the fluorescence spectral radiance factor F (λ) depends on the spectral distribution I (μ) of the illumination light I, so that the fluorescence spectral radiance factor F (λ) and itself The total spectral radiance factor B (λ) which is the sum of the reflected spectral radiance factor R (λ) independent of the spectral distribution I (μ) of the illumination light I also depends on the spectral distribution I (μ). That is, the total spectral radiance factor B (λ) measured and the color value derived therefrom differ depending on the difference in illumination light with respect to the fluorescent sample.

したがって、蛍光試料に対する光学特性の評価においては、照明光(以降、F(λ)やB(λ)等の光学特性の評価に用いる照明光のことを評価用照明光という)の分光分布を特定する必要があり、実際の測定では、測定装置の照明光の分光分布をこの特定の評価用照明光と一致させる必要がある。しかしながら、当該特定の評価用照明光に一致させること、すなわち評価用照明光として一般的に用いられる上記標準照明光(D65やC等)と同じ分光分布の照明光を実現することは非常に困難である。   Therefore, in the evaluation of the optical characteristics of the fluorescent sample, the spectral distribution of the illumination light (hereinafter, the illumination light used for evaluating the optical characteristics such as F (λ) and B (λ) is referred to as evaluation illumination light) is specified. In actual measurement, it is necessary to match the spectral distribution of the illumination light of the measuring device with this specific illumination light for evaluation. However, it is very difficult to match the specific evaluation illumination light, that is, to realize illumination light having the same spectral distribution as the standard illumination light (D65, C, etc.) generally used as the evaluation illumination light. It is.

そこで、他の方法として、二分光蛍光放射輝度率F(μ,λ)或いは二分光放射輝度率B(μ,λ)を求め、このF(μ,λ)あるいはB(μ,λ)と、数値的に与えた評価用照明光の分光分布I(λ)とから、上記式(2)を用いて、蛍光分光放射輝度率F(λ)、或いは全分光放射輝度率B(λ)を数値的に求める方法がある。ただし、この二分光放射輝度率B(μ,λ)は、上記二分光蛍光放射輝度率F(μ,λ)と同様、蛍光試料面を単位強度で照明する波長μの照明光による、波長λの蛍光と反射光との和として与えられる波長λの全放射光の強度を表すマトリクスデータであり、全分光放射輝度率B(λ)は、以下の式(2-1)に示すように照明光Iの分光分布I(μ)と二分光放射輝度率B(μ,λ)との畳み込み積分とI(λ)との比で与えられる。
B(λ)=∫B(μ,λ)・I(μ)dμ/I(λ)…(2-1)
Therefore, as another method, a two-spectral fluorescence radiance factor F (μ, λ) or a two-spectral radiance factor B (μ, λ) is obtained, and this F (μ, λ) or B (μ, λ) From the numerical distribution I (λ) of the evaluation illumination light given numerically, the fluorescent spectral radiance factor F (λ) or the total spectral radiance factor B (λ) is numerically calculated using the above equation (2). There is a way to ask. However, this bispectral radiance factor B (μ, λ) is similar to the above-mentioned two-spectral fluorescent radiance factor F (μ, λ). Matrix data representing the intensity of the total radiated light having the wavelength λ given as the sum of the fluorescence and reflected light, and the total spectral radiance factor B (λ) is illuminated as shown in the following equation (2-1) It is given by the ratio between the convolution integral of the spectral distribution I (μ) of the light I and the two spectral radiance factor B (μ, λ) and I (λ).
B (λ) = ∫B (μ, λ) · I (μ) dμ / I (λ) (2-1)

しかしながら、二分光蛍光放射輝度率F(μ,λ)や二分光放射輝度率B(μ,λ)の測定は、照明、受光系の双方二分光手段を備え、大掛かりで測定時間のかかる二分光器法測定器(ダブルモノクロメーター)を必要とすることから実用的ではなく、例えば、代表的な蛍光試料である蛍光増白紙等の品質管理などには、専ら以下の2つの簡易手法が採られる。   However, the measurement of the two-spectral fluorescence radiance factor F (μ, λ) and the two-spectrum radiance factor B (μ, λ) is provided with both the illumination and the light-receiving system, two spectroscopy means, which takes a large amount of measurement time. It is not practical because it requires a measuring instrument (double monochromator). For example, the following two simple methods are mainly used for quality control of fluorescent whitening paper as a representative fluorescent sample. .

<Gaertner−Grisserの測定方法>
例えば図9の光学特性測定装置600に示すように、蛍光試料601が積分球602の試料用開口603に配設される。キセノンランプなど紫外域(UV域)に十分な強度を有する光源604からの光束605は、光源用開口を通って積分球602内に入射される。この光束605中には紫外カットフィルタ606が所定長挿入される。光束605のうちの紫外カットフィルタ606を通過した部分は紫外成分が除去されるので、紫外カットフィルタ606の挿入の程度を調節することで、照明光の可視域に対する紫外域(励起域)強度の相対比(相対紫外強度)が調整される。紫外カットフィルタ606を透過した光束と透過しなかった光束とは、それぞれ積分球602の内部で拡散多重反射され、合成されて蛍光試料601を拡散照明する。そして、当該合成された照明光によって照明されることで得られる蛍光試料601からの試料放射光の所定方向の成分(放射光成分607)が、放射光分光部608に入射し、該放射光成分607の分光分布Sx(λ)が測定される。一方、照明光と略同じ分光分布を有する光束609が、参照用光ファイバ610に入射してさらにこの参照用光ファイバ610を経て照明光分光部611に入射し、該光束609の分光分布Mx(λ)が測定される。そして、これらSx(λ)及びMx(λ)の測定情報に基づいて演算制御部612により全分光放射輝度率Bx(λ)が求められる(例えば、特許文献1の図4参照)。
<Measurement method of Gaertner-Grisser>
For example, as shown in the optical characteristic measuring apparatus 600 of FIG. 9, a fluorescent sample 601 is disposed in the sample opening 603 of the integrating sphere 602. A light beam 605 from a light source 604 having a sufficient intensity in the ultraviolet region (UV region) such as a xenon lamp enters the integrating sphere 602 through the light source opening. An ultraviolet cut filter 606 is inserted into the light beam 605 for a predetermined length. Since the ultraviolet component is removed from the portion of the light beam 605 that has passed through the ultraviolet cut filter 606, the intensity of the ultraviolet region (excitation region) relative to the visible region of the illumination light can be adjusted by adjusting the degree of insertion of the ultraviolet cut filter 606. The relative ratio (relative ultraviolet intensity) is adjusted. The luminous flux that has passed through the ultraviolet cut filter 606 and the luminous flux that has not passed through are each diffused and reflected by reflection inside the integrating sphere 602 and are combined to diffusely illuminate the fluorescent sample 601. Then, a component (radiated light component 607) of the sample radiated light from the fluorescent sample 601 obtained by illumination with the synthesized illumination light is incident on the radiated light spectroscopic unit 608, and the radiated light component A spectral distribution Sx (λ) of 607 is measured. On the other hand, a light beam 609 having substantially the same spectral distribution as that of the illumination light is incident on the reference optical fiber 610, further enters the illumination light spectroscopic unit 611 through the reference optical fiber 610, and the spectral distribution Mx ( λ) is measured. Based on the measurement information of Sx (λ) and Mx (λ), the total spectral radiance factor Bx (λ) is obtained by the arithmetic control unit 612 (see, for example, FIG. 4 of Patent Document 1).

上記相対紫外強度の校正は、蛍光試料601に近似した励起・蛍光特性(二分光蛍光放射輝度率)を有し、評価用照明光で照明したときの色彩値(例えばCIEの白色度WI)が既知である蛍光基準試料を用い、該蛍光基準試料を試料用開口603に配設してこれに対する全分光放射輝度率B(λ)を測定し、この全分光放射輝度率B(λ)から算出した白色度WIが上記既知の白色度WIsと一致するように、紫外カットフィルタ606の挿入度を調節することで行われる。   The calibration of the relative ultraviolet intensity has excitation / fluorescence characteristics (bispectral fluorescence radiance factor) similar to the fluorescence sample 601, and the color value (for example, CIE whiteness WI) when illuminated with illumination light for evaluation is used. Using a known fluorescence reference sample, the fluorescence reference sample is disposed in the sample opening 603, the total spectral radiance factor B (λ) is measured, and calculated from the total spectral radiance factor B (λ). This is done by adjusting the degree of insertion of the ultraviolet cut filter 606 so that the obtained whiteness WI matches the known whiteness WIs.

しかしながら、Gaertner−Grisserの方法は、機械的に複雑であり信頼性に問題があるだけでなく、上記白色度WIが既知の白色度WIsと一致するまで、紫外カットフィルタ606の挿入度の調節と測定とを繰り返し行う煩雑な校正作業が必要となる。また、自由度が「1」であるため、白色度WIや色度Tintなどの2つ以上の色彩値を同時に校正したり、或いは全分光放射輝度率B(λ)そのものを既知の評価用照明光で照明したときの全分光放射輝度率Bs(λ)と一致させるような校正を行うことは原理的に不可能である。   However, the Gaertner-Grisser method is not only mechanically complicated and has a problem in reliability, but also the adjustment of the insertion degree of the ultraviolet cut filter 606 until the whiteness WI matches the known whiteness WIs. Complicated calibration work that repeats measurement is required. Since the degree of freedom is “1”, two or more color values such as whiteness WI and chromaticity Tint are calibrated simultaneously, or the total spectral radiance factor B (λ) itself is known. In principle, it is impossible to perform calibration that matches the total spectral radiance factor Bs (λ) when illuminated with light.

<特許文献1の方法>
上記Gaertner−Grisserの測定方法では、紫外カットフィルタ606の挿入度に応じて照明光を合成し、結果的に全分光放射輝度率B(λ)を合成するが、特許文献1の方法は、原理はGaertner−Grisserの測定方法と同様であり、また自由度も「1」であるものの、まず全分光放射輝度率B(λ)を数値的に合成し、結果的にこれを与える照明光を合成するという点で異なる。具体的に説明すると、例えば図10の光学特性測定装置700に示すように、積分球702に、紫外強度をもつ光束703を出力する第1照明部704、紫外強度をもたない光束705を出力する第2照明部706、試料用開口707に配設された蛍光試料701からの放射光(放射光成分708)の分光分布を測定する放射光分光部709、そのときの照明光の光束710の分光分布を光ファイバ711を介して測定する照明光分光部712、及び演算制御部713を備える。そして、蛍光試料701を第1及び第2照明部704、706で照明して、該試料からの放射光の分光分布Sx1(λ)、Sx2(λ)と、そのときの照明光の分光分布Mx1(λ)、Mx2(λ)とを測定し、これらSx1(λ)、Sx2(λ)とMx1(λ)、Mx2(λ)とから蛍光試料701に対する第1及び第2照明部704、706での全分光放射輝度率Bx1(λ)、Bx2(λ)を求める。そして、この全分光放射輝度率Bx1(λ)及びBx2(λ)を、以下の式(3)に示すように、予め波長毎に設定して記憶しておいた重み係数W(λ)(以降、重み係数のことを「重み」と表現する)を用いて線形結合することで合成分光放射輝度率Bxc(λ)を求め、このBxc(λ)を、評価用照明光で照明された蛍光試料701の全分光放射輝度率とする。
Bxc(λ)=W(λ)・Bx1(λ)+(1−W(λ))・Bx2(λ)…(3)
<Method of Patent Document 1>
In the Gaertner-Grisser measurement method, the illumination light is synthesized in accordance with the degree of insertion of the ultraviolet cut filter 606, and as a result, the total spectral radiance factor B (λ) is synthesized. Is the same as the Gaertner-Grisser measurement method and has a degree of freedom of "1", but first, numerically synthesizes the total spectral radiance factor B (λ), and synthesizes the illumination light that gives it as a result. It differs in that it does. More specifically, for example, as shown in an optical characteristic measuring apparatus 700 in FIG. 10, a first illumination unit 704 that outputs a light beam 703 having ultraviolet intensity and a light beam 705 having no ultraviolet intensity are output to an integrating sphere 702. A second illuminating unit 706, a radiated light spectroscopic unit 709 for measuring the spectral distribution of radiated light (radiated light component 708) from the fluorescent sample 701 disposed in the sample opening 707, and a luminous flux 710 of the illuminating light at that time An illumination light spectroscopic unit 712 that measures a spectral distribution via an optical fiber 711 and a calculation control unit 713 are provided. The fluorescent sample 701 is illuminated by the first and second illumination units 704 and 706, and the spectral distributions Sx1 (λ) and Sx2 (λ) of the emitted light from the sample and the spectral distribution Mx1 of the illumination light at that time (Λ) and Mx2 (λ) are measured, and the first and second illumination units 704 and 706 for the fluorescent sample 701 are measured from these Sx1 (λ) and Sx2 (λ) and Mx1 (λ) and Mx2 (λ). The total spectral radiance factors Bx1 (λ) and Bx2 (λ) are obtained. The total spectral radiance factors Bx1 (λ) and Bx2 (λ) are set in advance for each wavelength and stored as shown in the following equation (3). The combined spectral radiance factor Bxc (λ) is obtained by linear combination using a weighting factor), and this Bxc (λ) is illuminated with the evaluation illumination light. The total spectral radiance factor is 701.
Bxc (λ) = W (λ) · Bx1 (λ) + (1−W (λ)) · Bx2 (λ) (3)

但し、上記重みW(λ)は、蛍光試料701に近似した励起・蛍光特性を有し、評価用照明光で照明された場合の全分光放射輝度率Bs(λ)が既知である蛍光基準試料を用いて設定される。すなわち、重みW(λ)は、蛍光基準試料を第1及び第2照明部704、706により照明して測定した分光放射輝度率B1(λ)、B2(λ)を該重みW(λ)により線形結合させて得られるW(λ)・B1(λ)+(1−W(λ))・B2(λ)の値が、上記既知の全分光放射輝度率Bs(λ)と等しくなるように、波長毎に数値的に求められる(例えば、特許文献1の図1参照)。   However, the weight W (λ) has an excitation / fluorescence characteristic approximate to that of the fluorescent sample 701, and the total spectral radiance factor Bs (λ) when illuminated with the evaluation illumination light is known. Is set using. That is, the weights W (λ) are the spectral radiance rates B1 (λ) and B2 (λ) measured by illuminating the fluorescence reference sample with the first and second illumination units 704 and 706 by the weights W (λ). The values of W (λ) · B1 (λ) + (1−W (λ)) · B2 (λ) obtained by linear combination are made equal to the known total spectral radiance factor Bs (λ). Are numerically obtained for each wavelength (see, for example, FIG. 1 of Patent Document 1).

この方法は、上述のGaertner−Grisserの測定方法による相対紫外強度の校正を、全分光放射輝度率B(λ)をパラメータとして波長毎に数値的に行うことに相当する。したがって、全分光放射輝度率B(λ)について校正されるので、これから算出される全ての色彩値に対しても校正がなされるという特徴がある。また、測定に際しての機械的可動部や、煩雑な紫外カットフィルタ挿入度の調節作業が不要になるなど、Gaertner−Grisserの測定方法の多くの欠点を解決するが、蛍光基準試料を必要とすることには変わりがなく、蛍光基準試料を用いた相対紫外強度の校正後に、蛍光試料に対する測定を行うので、校正時と測定時との照明光に分光分布の差があると測定誤差が生じてしまうといった問題は依然として存在する。
特開平8−313349号公報
This method corresponds to performing the calibration of the relative ultraviolet intensity by the above-described Gaertner-Grisser measurement method numerically for each wavelength using the total spectral radiance factor B (λ) as a parameter. Therefore, since the total spectral radiance factor B (λ) is calibrated, all the color values calculated therefrom are calibrated. In addition, it solves many of the drawbacks of the Gaertner-Grisser measurement method, such as eliminating the need for mechanically moving parts during measurement and complicated adjustment of the degree of ultraviolet cut filter insertion, but it requires a fluorescent reference sample. Since there is no change, measurement is performed on the fluorescent sample after calibration of the relative ultraviolet intensity using the fluorescent reference sample, and therefore a measurement error occurs if there is a difference in spectral distribution between illumination light at the time of calibration and measurement. Such a problem still exists.
JP-A-8-313349

上述したように、上記特許文献1の方法やGaertner−Grisserの測定方法といった簡易法であっても蛍光基準試料は必要とされるが、この蛍光基準試料は、被測定試料に近似の励起・蛍光特性を有する必要性から、紙や繊維などの試料と同じ材質で、同じ蛍光増白剤が用いられるため、経時変化が避けられず、頻繁な更新或いは経時変化に対する管理等が必要となる。また、測定装置における照明光の分光分布の変化(長期又は短期での変化)に起因する誤差を避けることができず、その経時変化の影響を抑えるべく頻繁な校正作業が必要となる。これらのことから、当該測定に際して蛍光基準試料を用いることなく、或いはこれを用いた煩雑な校正作業を不要とすることが求められる。   As described above, a fluorescence reference sample is required even with a simple method such as the method of Patent Document 1 or the measurement method of Gaertner-Grisser, but this fluorescence reference sample is an excitation / fluorescence approximate to the sample to be measured. Since the same fluorescent whitening agent is used with the same material as the sample such as paper and fiber because of the necessity to have characteristics, the change over time is unavoidable, and frequent renewal or management with respect to change over time is required. In addition, errors due to changes in the spectral distribution of illumination light (long-term or short-term changes) in the measurement apparatus cannot be avoided, and frequent calibration work is required to suppress the influence of the change over time. For these reasons, it is required not to use a fluorescence reference sample for the measurement, or to eliminate the need for complicated calibration work using it.

ところで、蛍光増白した紙の光学特性の測定に際しては、蛍光の影響を除去した光学特性の測定が必要となることが多い。この蛍光の影響の除去に関し、従来、紫外カットフィルタを用いて、照明光の紫外域を除去して蛍光の励起を抑制することが行われている。この場合、蛍光の励起を十分に抑制するためにはカットオフ波長を440nm程度とする必要があるが、これにより、評価すべき可視域の短波長帯の全分光放射輝度率が測定不能となり、この全分光放射輝度率に基づいて算出される色彩値の精度が低下してしまうという問題がある。   By the way, when measuring the optical properties of fluorescent whitened paper, it is often necessary to measure the optical properties without the influence of fluorescence. Regarding the removal of the influence of this fluorescence, conventionally, the ultraviolet cut filter is used to remove the ultraviolet region of the illumination light and suppress the excitation of the fluorescence. In this case, in order to sufficiently suppress the excitation of the fluorescence, the cut-off wavelength needs to be about 440 nm, but this makes it impossible to measure the total spectral radiance factor in the short wavelength band to be evaluated, There is a problem that the accuracy of the color value calculated based on the total spectral radiance factor is lowered.

本発明は上記事情に鑑みてなされたもので、蛍光の励起を抑えるフィルターを用いることなく、それによって、全分光放射輝度率が測定不能な波長域を可視域に生じることなく蛍光の影響を除去した全分光放射輝度率を精度よく求めることができる蛍光試料の光学特性測定方法及びこれを用いた光学特性測定装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and eliminates the influence of fluorescence without using a filter that suppresses excitation of fluorescence, thereby generating a wavelength range in which the total spectral radiance factor cannot be measured in the visible range. It is an object of the present invention to provide a method for measuring optical properties of a fluorescent sample and an optical property measuring apparatus using the same, which can accurately obtain the total spectral radiance factor.

本発明の請求項1に係る蛍光試料の光学特性測定方法は、蛍光試料の光学特性測定方法であって、試料に近似する二分光蛍光放射輝度率F(μ,λ)と、分光分布が異なる第1及び第2の実照明光I1、I2の分光分布I1(λ)、I2(λ)と、前記第1及び第2の実照明光I1、I2のそれぞれによって照明された前記試料の実測全分光放射輝度率Bx1(λ)、Bx2(λ)とから、蛍光の影響を除去した前記試料の反射分光放射輝度率Rx(λ)を以下の第1及び第2の工程で算出することを特徴とする蛍光試料の光学特性測定方法。
第1の工程:前記二分光蛍光放射輝度率F(μ,λ)と前記第1及び第2の実照明光I1、I2の分光分布I1(λ)、I2(λ)とから、該第1及び第2の実照明光I1、I2による前記試料の理論的な蛍光分光放射輝度率F1(λ)=∫F(μ,λ)・I1(μ)dμ/I1(λ)及びF2(λ)=∫F(μ,λ)・I2(μ)dμ/I2(λ)を算出する。
第2の工程:前記試料の反射分光放射輝度率をRx(λ)とし、前記実測全分光放射輝度率Bx1(λ)及びBx2(λ)を、該反射分光放射輝度率Rx(λ)と、前記理論的な蛍光分光放射輝度率F1(λ)、F2(λ)とK(λ)との乗算によるF1(λ)・K(λ)及びF2(λ)・K(λ)との和とする以下の連立方程式を解いて反射分光放射輝度率Rx(λ)を算出する。Bx1(λ)=Rx(λ)+F1(λ)・K(λ)、Bx2(λ)=Rx(λ)+F2(λ)・K(λ)。但し、K(λ)は、前記算出による理論的な蛍光分光放射輝度率F1(λ)、F2(λ)と前記試料の実際の蛍光分光放射輝度率との比を示す試料に固有の定数。
The method for measuring optical properties of a fluorescent sample according to claim 1 of the present invention is a method for measuring optical properties of a fluorescent sample, and has a spectral distribution different from the bispectral fluorescence radiance factor F (μ, λ) that approximates the sample. The first and second actual illumination lights I1 and I2 have spectral distributions I1 (λ) and I2 (λ), and the actual measurement totals of the samples illuminated by the first and second actual illumination lights I1 and I2, respectively. From the spectral radiance factors Bx1 (λ) and Bx2 (λ), the reflected spectral radiance factor Rx (λ) of the sample from which the influence of fluorescence has been removed is calculated in the following first and second steps. A method for measuring optical properties of a fluorescent sample.
First step: The first spectral fluorescence radiance factor F (μ, λ) and the spectral distributions I1 (λ), I2 (λ) of the first and second actual illumination lights I1, I2 And the theoretical fluorescence spectral radiance factor F1 (λ) = ∫F (μ, λ) · I1 (μ) dμ / I1 (λ) and F2 (λ) of the sample by the second actual illumination lights I1 and I2 = ∫F (μ, λ) · I2 (μ) dμ / I2 (λ) is calculated.
Second step: Rx (λ) is the reflected spectral radiance factor of the sample, and the measured total spectral radiance factors Bx1 (λ) and Bx2 (λ) are the reflected spectral radiance factor Rx (λ), F1 (λ) · K (λ) and F2 (λ) · K (λ) by multiplication of the theoretical fluorescence spectral radiance factors F1 (λ), F2 (λ) and K (λ) The reflection simultaneous radiance factor Rx (λ) is calculated by solving the following simultaneous equations. Bx1 (λ) = Rx (λ) + F1 (λ) · K (λ), Bx2 (λ) = Rx (λ) + F2 (λ) · K (λ). However, K (λ) is a constant specific to the sample indicating the ratio between the theoretical fluorescence spectral radiance factors F1 (λ) and F2 (λ) calculated as described above and the actual fluorescent spectral radiance factor of the sample.

上記構成によれば、試料に近似する二分光蛍光放射輝度率F(μ,λ)と、分光分布が異なる第1及び第2の実照明光I1、I2の分光分布I1(λ)、I2(λ)と、第1及び第2の実照明光I1、I2のそれぞれによって照明された試料の実測全分光放射輝度率Bx1(λ)、Bx2(λ)とから、蛍光の影響を除去した試料の反射分光放射輝度率Rx(λ)が上記第1及び第2の工程で算出されるので、励起光を抑えるフィルタ等を用いることなく、したがって、全分光放射輝度率が測定不能となる波長域が生じることなく、蛍光の影響を除去した全分光放射輝度率を精度よく求めることができ、全分光放射輝度率から求められる色彩値の精度低下を防止することができる。   According to the above configuration, the spectral distributions I1 (λ) and I2 (2) of the first and second real illumination lights I1 and I2 having different spectral distributions from the bispectral fluorescence radiance factor F (μ, λ) that approximates the sample. λ) and the measured total spectral radiance factors Bx1 (λ) and Bx2 (λ) of the sample illuminated by the first and second actual illumination lights I1 and I2, respectively, Since the reflected spectral radiance factor Rx (λ) is calculated in the first and second steps, a wavelength region in which the total spectral radiance factor cannot be measured is obtained without using a filter or the like that suppresses excitation light. Without occurrence, the total spectral radiance factor from which the influence of fluorescence has been removed can be obtained with high accuracy, and a reduction in the accuracy of the color value obtained from the total spectral radiance factor can be prevented.

本発明の請求項2に係る蛍光試料の光学特性測定装置は、蛍光試料の光学特性測定装置であって、分光分布が異なる第1及び第2の実照明光I1、I2により試料を照明するための第1及び第2の照明手段と、前記試料からの放射光の分光分布を測定する放射光分光手段と、前記第1及び第2の実照明光I1、I2の分光分布を測定する照明光分光手段と、前記試料に近似する二分光蛍光放射輝度率F(μ,λ)の情報を記憶する記憶手段と、 前記第1及び第2の照明手段を個々に点灯し、前記放射光分光手段及び照明光分光手段により測定して得た情報に基づいて、第1及び第2の実照明光I1、I2それぞれに対する前記試料の実測全分光放射輝度率Bx1(λ)、Bx2(λ)と、該第1及び第2の実照明光I1、I2の分光分布I1(λ)、I2(λ)とを算出するとともに、該算出した情報及び前記記憶手段に記憶された二分光蛍光放射輝度率F(μ,λ)の情報に基づいて、蛍光の影響を除去した前記試料の反射分光放射輝度率Rx(λ)を算出する演算制御手段とを備えることを特徴とする。   An optical property measuring apparatus for a fluorescent sample according to claim 2 of the present invention is an optical characteristic measuring apparatus for a fluorescent sample, and illuminates the sample with first and second actual illumination lights I1 and I2 having different spectral distributions. First and second illuminating means, radiated light spectroscopic means for measuring the spectral distribution of the radiated light from the sample, and illuminating light for measuring the spectral distribution of the first and second actual illuminating lights I1 and I2. Spectroscopic means, storage means for storing information of a dual spectral fluorescence radiance factor F (μ, λ) approximating the sample, and the first and second illumination means are individually turned on, and the emitted light spectroscopic means And the measured total spectral radiance factor Bx1 (λ), Bx2 (λ) of the sample for each of the first and second actual illumination lights I1 and I2 based on the information obtained by the measurement by the illumination light spectroscopic means, Spectral distribution I1 of the first and second actual illumination lights I1 and I2 ( λ) and I2 (λ) are calculated, and the influence of fluorescence is removed based on the calculated information and the information of the two-spectral fluorescence radiance factor F (μ, λ) stored in the storage means. And a calculation control means for calculating a reflection spectral radiance factor Rx (λ) of the sample.

上記構成によれば、第1及び第2の照明手段によって分光分布が異なる第1及び第2の実照明光I1、I2により試料が照明され、放射光分光手段によって試料からの放射光の分光分布が測定され、照明光分光手段によって第1及び第2の実照明光I1、I2の分光分布が測定され、記憶手段によって試料に近似する二分光蛍光放射輝度率F(μ,λ)の情報が記憶される。そして、演算制御手段によって、第1及び第2の照明手段が個々に点灯されて、放射光分光手段及び照明光分光手段により測定して得た情報に基づいて、第1及び第2の実照明光I1、I2それぞれに対する試料の実測全分光放射輝度率Bx1(λ)、Bx2(λ)と、該第1及び第2の実照明光I1、I2の分光分布I1(λ)、I2(λ)とが算出されるとともに、該算出された情報及び記憶手段に記憶された二分光蛍光放射輝度率F(μ,λ)の情報に基づいて、蛍光の影響を除去した試料の反射分光放射輝度率Rx(λ)が算出されるので、励起光を抑えるフィルタ等を用いることなく、したがって、全分光放射輝度率が測定不能となる波長域が生じることなく、蛍光の影響を除去した全分光放射輝度率を精度よく求めることができ、全分光放射輝度率から求められる色彩値の精度低下を防止することができる。   According to the above configuration, the sample is illuminated by the first and second real illumination lights I1 and I2 having different spectral distributions by the first and second illumination means, and the spectral distribution of the radiated light from the sample is emitted by the synchrotron radiation means. Is measured, the spectral distribution of the first and second actual illumination lights I1 and I2 is measured by the illumination light spectroscopic means, and the information of the two-spectral fluorescence radiance factor F (μ, λ) that approximates the sample is obtained by the storage means. Remembered. Then, the first and second illuminating means are individually turned on by the arithmetic control means, and the first and second actual illuminations are based on information obtained by measurement by the radiated light spectroscopic means and the illuminating light spectroscopic means. The measured total spectral radiance factors Bx1 (λ) and Bx2 (λ) of the sample for the light I1 and I2, respectively, and the spectral distributions I1 (λ) and I2 (λ) of the first and second actual illumination lights I1 and I2 And the reflected spectral radiance factor of the sample from which the influence of fluorescence has been removed based on the calculated information and the information of the two-spectral fluorescence radiance factor F (μ, λ) stored in the storage means. Since Rx (λ) is calculated, the total spectral radiance without the influence of fluorescence is eliminated without using a filter or the like that suppresses the excitation light, and therefore without generating a wavelength range in which the total spectral radiance factor cannot be measured. Rate can be determined accurately, The reduced accuracy of the color values obtained from the light emitting luminance factor can be prevented.

請求項3に係る蛍光試料の光学特性測定装置は、請求項2において、前記第1及び第2の実照明光I1、I2は、少なくとも短波長域において、前記照明光分光手段の測定範囲を超える波長域に強度を有さないことを特徴とする。この構成によれば、第1及び第2の実照明光I1、I2が、少なくとも短波長域において、照明光分光手段の測定範囲を超える波長域に強度を有さないものとされるので、演算制御手段による演算において、第1及び第2の実照明光の励起及び蛍光に関わる波長域の分光強度を漏れなく把握する(演算処理で扱う)ことができ、それによって各照明光の理論的な蛍光分光放射輝度率を正確に求めることができるので、蛍光の影響を除去した全分光放射輝度率を正確に求めることが可能となる。   The optical property measuring apparatus for a fluorescent sample according to claim 3 is the optical sample measuring apparatus according to claim 2, wherein the first and second actual illumination lights I1 and I2 exceed the measurement range of the illumination light spectroscopic means at least in a short wavelength region. It is characterized by having no intensity in the wavelength range. According to this configuration, the first and second actual illumination lights I1 and I2 are assumed to have no intensity in the wavelength range exceeding the measurement range of the illumination light spectroscopic means at least in the short wavelength range. In the calculation by the control means, the spectral intensity in the wavelength region related to the excitation and fluorescence of the first and second actual illumination light can be grasped without any omission (which is handled by the calculation process), thereby the theoretical of each illumination light. Since the fluorescence spectral radiance factor can be accurately obtained, the total spectral radiance factor from which the influence of fluorescence has been removed can be accurately obtained.

請求項1記載の発明によれば、試料に近似する二分光蛍光放射輝度率F(μ,λ)と、分光分布が異なる第1及び第2の実照明光I1、I2の分光分布I1(λ)、I2(λ)と、第1及び第2の実照明光I1、I2のそれぞれによって照明された試料の実測全分光放射輝度率Bx1(λ)、Bx2(λ)とから、蛍光の影響を除去した試料の反射分光放射輝度率Rx(λ)が上記第1及び第2の工程で算出されるので、励起光を抑えるフィルタ等を用いることなく、したがって、全分光放射輝度率が測定不能となる波長域が生じることなく、蛍光の影響を除去した全分光放射輝度率を精度よく求めることができ、全分光放射輝度率から求められる色彩値の精度低下を防止することができる。   According to the first aspect of the present invention, the spectral distribution I1 (λ) of the first and second actual illumination lights I1 and I2 having different spectral distributions from the bispectral fluorescence radiance factor F (μ, λ) that approximates the sample. ), I2 (λ) and the measured total spectral radiance factors Bx1 (λ) and Bx2 (λ) of the samples illuminated by the first and second actual illumination lights I1 and I2, respectively, to influence the fluorescence. Since the reflected spectral radiance factor Rx (λ) of the removed sample is calculated in the first and second steps, the total spectral radiance factor cannot be measured without using a filter or the like that suppresses excitation light. Therefore, it is possible to accurately obtain the total spectral radiance factor from which the influence of fluorescence is removed without causing a wavelength range, and it is possible to prevent a reduction in accuracy of the color value obtained from the total spectral radiance factor.

請求項2記載の発明によれば、第1及び第2の照明手段によって分光分布が異なる第1及び第2の実照明光I1、I2により試料が照明され、放射光分光手段によって試料からの放射光の分光分布が測定され、照明光分光手段によって第1及び第2の実照明光I1、I2の分光分布が測定され、記憶手段によって試料に近似する二分光蛍光放射輝度率F(μ,λ)の情報が記憶される。そして、演算制御手段によって、第1及び第2の照明手段が個々に点灯されて、放射光分光手段及び照明光分光手段により測定して得た情報に基づいて、第1及び第2の実照明光I1、I2それぞれに対する試料の実測全分光放射輝度率Bx1(λ)、Bx2(λ)と、該第1及び第2の実照明光I1、I2の分光分布I1(λ)、I2(λ)とが算出されるとともに、該算出された情報及び記憶手段に記憶された二分光蛍光放射輝度率F(μ,λ)の情報に基づいて、蛍光の影響を除去した試料の反射分光放射輝度率Rx(λ)が算出されるので、励起光を抑えるフィルタ等を用いることなく、したがって、全分光放射輝度率が測定不能となる波長域が生じることなく、蛍光の影響を除去した全分光放射輝度率を精度よく求めることができ、全分光放射輝度率から求められる色彩値の精度低下を防止することができる。   According to the second aspect of the invention, the sample is illuminated by the first and second actual illumination lights I1 and I2 having different spectral distributions by the first and second illumination means, and the radiation from the sample is emitted by the synchrotron radiation means. The spectral distribution of the light is measured, the spectral distribution of the first and second actual illumination lights I1 and I2 is measured by the illumination light spectroscopic means, and the two-spectral fluorescence radiance factor F (μ, λ) that approximates the sample by the storage means. ) Information is stored. Then, the first and second illuminating means are individually turned on by the arithmetic control means, and the first and second actual illuminations are based on information obtained by measurement by the radiated light spectroscopic means and the illuminating light spectroscopic means. The measured total spectral radiance factors Bx1 (λ) and Bx2 (λ) of the sample for the light I1 and I2, respectively, and the spectral distributions I1 (λ) and I2 (λ) of the first and second actual illumination lights I1 and I2 And the reflected spectral radiance factor of the sample from which the influence of fluorescence has been removed based on the calculated information and the information of the two-spectral fluorescence radiance factor F (μ, λ) stored in the storage means. Since Rx (λ) is calculated, the total spectral radiance without the influence of fluorescence is eliminated without using a filter or the like that suppresses the excitation light, and therefore without generating a wavelength range in which the total spectral radiance factor cannot be measured. Rate can be determined accurately, The reduced accuracy of the color values obtained from the light emitting luminance factor can be prevented.

請求項3記載の発明によれば、第1及び第2の実照明光I1、I2が、少なくとも短波長域において、照明光分光手段の測定範囲を超える波長域に強度を有さないものとされるので、演算制御手段による演算において、第1及び第2の実照明光の励起及び蛍光に関わる波長域の分光強度を漏れなく把握する(演算処理で扱う)ことができ、それによって各照明光の理論的な蛍光分光放射輝度率を正確に求めることができるので、蛍光の影響を除去した全分光放射輝度率を正確に求めることが可能となる。   According to the third aspect of the present invention, the first and second actual illumination lights I1 and I2 have no intensity in a wavelength range exceeding the measurement range of the illumination light spectroscopic means at least in a short wavelength range. Therefore, in the calculation by the calculation control means, the spectral intensity in the wavelength region related to the excitation and fluorescence of the first and second actual illumination lights can be grasped without omission (handled by the calculation process), thereby each illumination light. Therefore, it is possible to accurately obtain the total spectral radiance factor from which the influence of fluorescence is removed.

(本発明に係る光学特性測定方法の基本技術の説明)
先ず、本発明に係る蛍光の影響を除去した蛍光試料の全分光放射輝度率の測定方法の基本となる技術について、具体的な装置の一例を挙げて説明する。
(Description of the basic technique of the optical property measuring method according to the present invention)
First, the basic technology of the method for measuring the total spectral radiance factor of a fluorescent sample from which the influence of fluorescence according to the present invention has been removed will be described with an example of a specific apparatus.

図2は、当該基本技術を用いた蛍光試料の光学特性測定装置の一例を示す概略構成図である。図2に示すように、光学特性測定装置10は、被測定試料1、第1照明部2、第2照明部3、参照面部4、受光部5、2チャンネル分光部6及び制御部7を備えて構成されている。被測定試料1は、蛍光物質を含む繊維や紙製品等からなる測定対象となる試料である。被測定試料1は、所定の測定位置に配置される。第1照明部2は、被測定試料1を照明するものであり、光源としての白熱ランプ21と、該白熱ランプ21を駆動して点灯(例えばパルス点灯)させるための第1駆動回路22とを備える。第2照明部3は、第1照明部2と同様、被測定試料1を照明するものであり、紫外域の光束を出力する光源(紫外光源)としての紫外LED31と、該紫外LED31を駆動して点灯(例えばパルス点灯)させるための第2駆動回路32とを備える。なお、第2照明部3の光源は、紫外LED31に限定されず、紫外域の光束が出力可能であれば、キセノンフラッシュランプなど、いずれの光源でもよい。   FIG. 2 is a schematic configuration diagram showing an example of an optical property measuring apparatus for a fluorescent sample using the basic technique. As shown in FIG. 2, the optical characteristic measurement apparatus 10 includes a sample 1 to be measured, a first illumination unit 2, a second illumination unit 3, a reference surface unit 4, a light receiving unit 5, a two-channel spectroscopic unit 6, and a control unit 7. Configured. The sample 1 to be measured is a sample to be measured which is made of a fiber or paper product containing a fluorescent material. The sample 1 to be measured is arranged at a predetermined measurement position. The first illumination unit 2 illuminates the sample 1 to be measured, and includes an incandescent lamp 21 as a light source, and a first drive circuit 22 for driving the incandescent lamp 21 to light (for example, pulse lighting). Prepare. Similar to the first illumination unit 2, the second illumination unit 3 illuminates the sample 1 to be measured, and drives the ultraviolet LED 31 as a light source (ultraviolet light source) that outputs a light beam in the ultraviolet region and the ultraviolet LED 31. And a second drive circuit 32 for lighting (for example, pulse lighting). Note that the light source of the second illumination unit 3 is not limited to the ultraviolet LED 31, and any light source such as a xenon flash lamp may be used as long as a light beam in the ultraviolet region can be output.

参照面部4は、白色拡散面からなる参照面(反射面)を有するものであり、被測定試料1の測定域の近傍に配設されている。受光部5(受光系)は、光学レンズ(又はレンズ群)からなり、第1及び第2照明部2、3によって照明された被測定試料1の放射光、及び参照面部4からの反射光における法線方向の成分を受光するとともに、該受光した光束を後述の2チャンネル分光部6へ向けて入射させるものである。   The reference surface portion 4 has a reference surface (reflection surface) composed of a white diffusing surface, and is disposed in the vicinity of the measurement area of the sample 1 to be measured. The light receiving unit 5 (light receiving system) is composed of an optical lens (or a lens group), and in the radiated light of the sample 1 to be measured and the reflected light from the reference surface unit 4 illuminated by the first and second illuminating units 2 and 3. While receiving the component in the normal direction, the received light beam is incident on a two-channel spectroscopic unit 6 described later.

2チャンネル分光部6は、受光部5からの入射光に対する分光測定を行うものである。2チャンネル分光部6は、第1入射スリット61及び第2入射スリット62を備える。後述の照明光LA又は照明光LBによって照明された被測定試料1からの放射光は、第1入射スリット61に入射し、一方、この照明光LA又は照明光LBによって照明された参照面部4(参照面)からの反射光は第2入射スリット62に入射する。2チャンネル分光部6は、この第1入射スリット61に入射した試料放射光に対する分光測定を行い、第1チャンネル出力として当該試料放射光の分光分布データを出力するとともに、第2入射スリット62に入射した参照面反射光(参照光)、すなわち後述の照明光LA又は照明光LBに対する分光測定を行い、第2チャンネル出力として当該照明光の分光分布データを出力する。このように、2チャンネル分光部6は、放射光分光手段及び照明光分光手段として機能する。   The two-channel spectroscopic unit 6 performs spectroscopic measurement on the incident light from the light receiving unit 5. The two-channel spectroscopic unit 6 includes a first incident slit 61 and a second incident slit 62. Radiated light from the sample 1 to be measured illuminated by illumination light LA or illumination light LB, which will be described later, is incident on the first incident slit 61, while the reference surface portion 4 (illuminated by this illumination light LA or illumination light LB) ( The reflected light from the reference surface enters the second incident slit 62. The two-channel spectroscopic unit 6 performs spectroscopic measurement on the sample radiation incident on the first incident slit 61, outputs spectral distribution data of the sample radiation as the first channel output, and enters the second incident slit 62. The reference surface reflected light (reference light), that is, the illumination light LA or the illumination light LB described later, is subjected to spectroscopic measurement, and the spectral distribution data of the illumination light is output as the second channel output. Thus, the two-channel spectroscopic unit 6 functions as a synchrotron radiation spectroscopic unit and an illumination light spectroscopic unit.

制御部7は、各制御プログラム等を記憶するROM(Read Only Memory)、演算処理や制御処理用のデータを格納するRAM(Random Access Memory)、及び当該制御プログラム等をROMから読み出して実行するCPU(中央演算処理装置)等からなり、光学特性測定装置10全体の動作制御を司るものである。具体的には、第1及び第2照明部2、3の点灯動作や2チャンネル分光部6の受光・分光動作に関する駆動制御を行ったり、2チャンネル分光部6からの情報(分光情報)に基づいて、被測定試料1に対する全分光放射輝度率の算出や相対分光感度の校正等に関する各種演算処理を実行する。制御部7のこれら各種演算機能等については後に詳述する。   The control unit 7 includes a ROM (Read Only Memory) that stores each control program, a RAM (Random Access Memory) that stores data for arithmetic processing and control processing, and a CPU that reads and executes the control program from the ROM (Central processing unit) and the like, and controls the operation of the entire optical characteristic measuring apparatus 10. Specifically, drive control related to the lighting operation of the first and second illumination units 2 and 3 and the light reception / spectral operation of the two-channel spectroscopic unit 6 is performed, or based on information (spectral information) from the two-channel spectroscopic unit 6. Thus, various calculation processes relating to the calculation of the total spectral radiance factor for the sample 1 to be measured and the calibration of the relative spectral sensitivity are executed. These various calculation functions of the control unit 7 will be described in detail later.

このような各部を備える光学特性測定装置10において、制御部7が第1駆動回路22を介してつまり駆動させて白熱ランプ21を点灯させると、白熱ランプ21は、被測定試料1を、該被測定試料1の法線に対して約45°の方向から(入射角度で)光束23で照明する。同様に、制御部7が第2駆動回路32を駆動させて紫外LED31を点灯すると、紫外LED31は、被測定試料1を、上記45°よりも法線に近い位置での方向(符号αに示す入射角度の方向)から光束33で照明する。   In the optical characteristic measuring apparatus 10 including such units, when the control unit 7 drives, that is, drives the incandescent lamp 21 via the first drive circuit 22, the incandescent lamp 21 causes the sample 1 to be measured to be measured. Illuminate with a light beam 23 (at an incident angle) from a direction of about 45 ° with respect to the normal line of the measurement sample 1. Similarly, when the control unit 7 drives the second drive circuit 32 to light the ultraviolet LED 31, the ultraviolet LED 31 directs the measured sample 1 in a direction closer to the normal line than the 45 ° (indicated by the symbol α). Illuminate with the light flux 33 from the direction of the incident angle.

ここで、本実施形態において、第1照明部2を照明部Aとし、第1照明部2と第2照明部3とを合わせたものを照明部Bと表現するものとする。白熱ランプ21(白熱光源)のみを光源とする照明部Aによる照明光LAは、励起域(紫外域)に殆ど強度を有さず、一方、白熱ランプ21と紫外LED31とを光源とする照明部Bの照明光LB、すなわち白熱ランプ21と紫外LED31とを同時に点灯させた場合の照明光LBは、励起域に十分な強度を有する。照明部A、Bは、いずれも白熱光源を備えて可視域に強度を有し、励起強度を可視域の各波長の強度で相対化することができるため、蛍光分光放射輝度率又は全分光放射輝度率を求めることができる(可視域に分光強度をもたない照明光を用いた測定では、上記相対化の演算が行えず、蛍光分光放射輝度率や全分光放射輝度率を求めることができない)。   Here, in this embodiment, the 1st illumination part 2 shall be the illumination part A, and what combined the 1st illumination part 2 and the 2nd illumination part 3 shall be expressed as the illumination part B. The illumination light LA from the illumination unit A that uses only the incandescent lamp 21 (incandescent light source) as a light source has almost no intensity in the excitation region (ultraviolet region), while the illumination unit uses the incandescent lamp 21 and the ultraviolet LED 31 as light sources. The B illumination light LB, that is, the illumination light LB when the incandescent lamp 21 and the ultraviolet LED 31 are simultaneously turned on has sufficient intensity in the excitation region. The illuminators A and B both have an incandescent light source and have an intensity in the visible range, and the excitation intensity can be relativized by the intensity of each wavelength in the visible range. The luminance factor can be obtained (in the measurement using illumination light having no spectral intensity in the visible range, the above relativity calculation cannot be performed, and the fluorescence spectral radiance factor and the total spectral radiance factor cannot be obtained. ).

上記照明光LA又は照明光LBによって照明された被測定試料1からの放射光のうち、略法線方向の成分が受光部5によって2チャンネル分光部6の第1入射スリット61に入射して分光測定され、第1チャンネル出力としてその分光分布Sx1(λ)又はSx2(λ)が制御部7に出力される。一方、被測定試料1の測定域の近傍に配置された参照面部4が、被測定試料1の試料面と同時に照明光LA又は照明光LBによって照明される。そして、この参照面からの反射光のうち、略法線方向の成分が受光部5によって2チャンネル分光部6の第2入射スリット62に入射して分光測定され、第2チャンネル出力としてその分光分布Mx1(λ)又はMx2(λ)が制御部7に出力される。   Of the radiated light from the sample 1 to be measured illuminated by the illumination light LA or the illumination light LB, a component in a substantially normal direction is incident on the first incident slit 61 of the two-channel spectroscopic unit 6 by the light receiving unit 5 and spectrally separated. The measured spectral distribution Sx1 (λ) or Sx2 (λ) is output to the controller 7 as the first channel output. On the other hand, the reference surface portion 4 arranged in the vicinity of the measurement area of the sample 1 to be measured is illuminated with the illumination light LA or the illumination light LB simultaneously with the sample surface of the sample 1 to be measured. Of the reflected light from the reference surface, a component in a substantially normal direction is incident on the second incident slit 62 of the two-channel spectroscopic unit 6 by the light receiving unit 5 and spectroscopically measured, and the spectral distribution is output as the second channel output. Mx1 (λ) or Mx2 (λ) is output to the control unit 7.

なお、第2照明部3における紫外LED31の中心波長は約375nmであり、図8の白熱光源及び紫外LEDの分光分布図に示すように(符号Aは白熱光源の分光分布、符号Lは紫外LEDの分光分布を示す)、該紫外LED31の中心波長301は一般的な蛍光増白剤の分光励起効率(相対分光励起効率)302のピーク近傍に位置する。分光励起効率とは、波長λの蛍光を励起する励起光の波長毎の励起効率を示し、照明光の分光分布との畳み込み積分によって、その照明光により励起される波長λの蛍光強度(積分励起)が求められるものである。なお、符号303に示すグラフは、上記蛍光増白剤の蛍光分光分布(相対蛍光分光分布)を示している。   The center wavelength of the ultraviolet LED 31 in the second illumination unit 3 is about 375 nm, and as shown in the spectral distribution diagram of the incandescent light source and the ultraviolet LED in FIG. 8 (reference A is the spectral distribution of the incandescent light source, and L is the ultraviolet LED). ), The central wavelength 301 of the ultraviolet LED 31 is located in the vicinity of the peak of the spectral excitation efficiency (relative spectral excitation efficiency) 302 of a general fluorescent whitening agent. Spectral excitation efficiency refers to the excitation efficiency for each wavelength of the excitation light that excites fluorescence of wavelength λ, and the fluorescence intensity of wavelength λ excited by the illumination light (integrated excitation) by convolution with the spectral distribution of illumination light. ) Is required. In addition, the graph shown with the code | symbol 303 has shown the fluorescence spectral distribution (relative fluorescence spectral distribution) of the said fluorescent whitening agent.

また、本発明の技術は、照明光の分光分布を把握する必要性があるので、2チャンネル分光部6は、紫外LED31による放射光の波長域を含む、約360nmから740nmの波長域をカバーする(この波長域の分光が可能である)。白熱ランプ21及び紫外LED31を光源とする照明部Bは、強い短パルス光で蛍光物質を照明したときに発生して問題となる(目視との互換性を崩す要因となる)トリプレット効果を生じない発光時間で発光する。このトリプレット効果とは、概略的に説明すると、発光時間が短く励起エネルギーの高い照明光により、分子の電子状態におけるS(Singlet)準位とT(Triplet)準位との間での遷移が起こるが(通常はこのS準位及びT準位間の遷移の確率は極めて低い)、これに伴って生じる励起(吸収)現象のことを言う。   Further, since the technique of the present invention needs to grasp the spectral distribution of the illumination light, the two-channel spectroscopic unit 6 covers a wavelength range of about 360 nm to 740 nm including the wavelength range of the emitted light from the ultraviolet LED 31. (A spectrum in this wavelength range is possible). The illumination unit B using the incandescent lamp 21 and the ultraviolet LED 31 as a light source does not cause a triplet effect that becomes a problem when it illuminates a fluorescent material with a strong short pulse light (which causes a loss of compatibility with visual observation). Emits light in the flash time. The triplet effect can be roughly explained. Illumination light having a short emission time and high excitation energy causes a transition between the S (Singlet) level and the T (Triplet) level in the electronic state of the molecule. (Usually, the probability of transition between the S level and the T level is very low), and this refers to the excitation (absorption) phenomenon that occurs.

また、光学特性測定装置10での光学系は、上述のように第1照明部2と受光部5との組み合わせ(配置)により、45/0ジオメトリー(反射特性の測定ジオメトリー45°/0°)を構成している。このようなジオメトリーの目的は、被測定試料1からの正反射光の制御にあるが、可視域に分布をもたない第2照明部3による正反射光は測色に影響を与えることがないので、この第2照明部3は、ジオメトリーの制約を受けることなく任意に配置することができる。   The optical system in the optical characteristic measuring apparatus 10 has a 45/0 geometry (reflection characteristic measuring geometry 45 ° / 0 °) by combining (arranging) the first illumination unit 2 and the light receiving unit 5 as described above. Is configured. The purpose of such geometry is to control the specularly reflected light from the sample 1 to be measured, but the specularly reflected light from the second illuminating unit 3 having no distribution in the visible range does not affect the colorimetry. Therefore, the second illumination unit 3 can be arbitrarily arranged without being restricted by geometry.

ここで、制御部7における各機能部の詳細について説明する。制御部7は、図2に示すように、CPU70、分光データメモリ71、評価用照明光データメモリ72、二分光データメモリ73及び係数メモリ74等を備えている。CPU70は、第1及び第2照明部2、3、並びに2チャンネル分光部6の駆動制御に関する演算、或いは被測定試料1に対する全分光放射輝度率の算出や相対分光感度の校正等に関する演算等の各種演算処理を行う上記中央演算処理装置(CPU)である。分光データメモリ71は、2チャンネル分光部6で分光測定され、該2チャンネル分光部6から送信されてきた放射光及び照明光の分光分布データを記憶するものである。評価用照明光データメモリ72は、予め与えられた評価用照明光の分光分布データを記憶するものである。二分光データメモリ73は、予め求められた、被測定試料1(蛍光試料)と近似の二分光蛍光放射輝度率データを記憶するものである。   Here, the detail of each function part in the control part 7 is demonstrated. As shown in FIG. 2, the control unit 7 includes a CPU 70, a spectral data memory 71, an evaluation illumination light data memory 72, a dual spectral data memory 73, a coefficient memory 74, and the like. The CPU 70 performs calculations related to the drive control of the first and second illumination units 2 and 3 and the two-channel spectroscopic unit 6, or calculations related to calculation of the total spectral radiance factor and relative spectral sensitivity calibration for the sample 1 to be measured. It is the said central processing unit (CPU) which performs various arithmetic processing. The spectral data memory 71 stores spectral distribution data of the radiated light and the illumination light that are spectrally measured by the two-channel spectroscopic unit 6 and transmitted from the two-channel spectroscopic unit 6. The evaluation illumination light data memory 72 stores spectral distribution data of evaluation illumination light given in advance. The bispectral data memory 73 stores preliminarily obtained bispectral fluorescence radiance factor data approximate to the sample 1 (fluorescent sample) to be measured.

係数メモリ74は、2チャンネル分光部6の相対分光感度を校正する感度校正係数、参照面部4からの反射光(以降、参照面反射光という)の分光分布を、被測定試料1に対する照明光(以降、試料面照明光という)の分光分布に変換する変換係数、及び被測定試料1からの放射光(以降、試料放射光という)と参照面反射光との分光分布から、被測定試料1の全分光放射輝度率を求める校正係数等の係数データを記憶するものである。   The coefficient memory 74 is a sensitivity calibration coefficient for calibrating the relative spectral sensitivity of the two-channel spectroscopic unit 6, and a spectral distribution of reflected light from the reference surface unit 4 (hereinafter referred to as reference surface reflected light). Hereinafter, the conversion coefficient to be converted into the spectral distribution of the sample surface illumination light) and the spectral distribution of the radiated light from the measured sample 1 (hereinafter referred to as the sample radiated light) and the reference surface reflected light, Coefficient data such as a calibration coefficient for obtaining the total spectral radiance factor is stored.

制御部7は、上記各メモリ部に記憶された、放射光及び照明光の分光分布データ、評価用照明の分光分布データ、二蛍光分光放射輝度率データ、感度校正係数、変換係数及び校正係数のデータに基づいて、以下(A)についての測定制御(演算処理)を行う。   The control unit 7 stores the spectral distribution data of the radiated light and the illumination light, the spectral distribution data of the illumination for evaluation, the two-fluorescence spectral radiance factor data, the sensitivity calibration coefficient, the conversion coefficient, and the calibration coefficient stored in each memory unit. Based on the data, measurement control (arithmetic processing) for the following (A) is performed.

(A)評価用照明光で照明したときの全分光放射輝度率
<演算方法>
一般に、蛍光試料は、或る評価用照明光Isで照明したときの該蛍光試料の分光放射輝度率を得るために、上記二分光器法測定器、或いは評価用照明光Isと同じ分光分布の照明光をもつ測定器を用いなければならないが、本実施形態においても、特定の二分光蛍光放射輝度率に近似した励起・蛍光特性を有する蛍光試料について、特定の評価用照明光と同じ蛍光分光放射輝度率を与える仮想的な照明光を数値的に合成する。すなわち、蛍光試料の二分光蛍光放射輝度率をF(μ,λ)とし、評価用照明光Isと、上記数値的に合成される照明光(以降、合成照明光という)Icとの分光分布をそれぞれIs(λ)、Ic(λ)とすると、上記式(2)から、各照明光による蛍光分光放射輝度率F(λ)(=∫F(μ,λ)・I(μ)dμ/I(λ))が以下の式(5)となる合成照明光Icを、分光分布、特に励起域と蛍光域の相対強度の異なる2つの照明光I1、I2の線形結合による合成によって求める。但し、分光分布I(λ)は、上述で説明したように比例定数を別にすれば、完全拡散反射体(面)からの反射光と等価である。
∫F(μ,λ)・Is(μ)dμ/Is(λ)=∫F(μ,λ)・Ic(μ)dμ/Ic(λ)…(5)
(A) Total spectral radiance factor when illuminated with evaluation illumination light <Calculation method>
Generally, in order to obtain the spectral radiance factor of the fluorescent sample when illuminated with a certain evaluation illumination light Is, the fluorescent sample has the same spectral distribution as that of the two-spectrometer measuring instrument or the evaluation illumination light Is. Although a measuring instrument with illumination light must be used, in this embodiment as well, the same fluorescence spectrum as that of the specific evaluation illumination light is used for a fluorescent sample having excitation / fluorescence characteristics approximating a specific dual spectral fluorescence radiance factor. The virtual illumination light that gives the radiance factor is numerically synthesized. That is, the spectral distribution of the evaluation illumination light Is and the numerically synthesized illumination light (hereinafter referred to as synthesized illumination light) Ic is F (μ, λ), where the bispectral fluorescence radiance factor of the fluorescent sample is F (μ, λ). Assuming that Is (λ) and Ic (λ), respectively, from the above equation (2), the fluorescence spectral radiance factor F (λ) (= ∫F (μ, λ) · I (μ) dμ / I by each illumination light. The combined illumination light Ic in which (λ)) is expressed by the following equation (5) is obtained by combining two illumination lights I1 and I2 having different spectral distributions, particularly the relative intensities of the excitation region and the fluorescence region. However, the spectral distribution I (λ) is equivalent to the reflected light from the perfect diffuse reflector (surface) except for the proportionality constant as described above.
∫F (μ, λ) · Is (μ) dμ / Is (λ) = ∫F (μ, λ) · Ic (μ) dμ / Ic (λ) (5)

この照明光I1、I2の重みつき線形結合による合成においては、波長毎に設定される線形結合の重みをW(λ)及び1−W(λ)とすると、合成照明光Icの分光分布Ic(λ)は、照明光I1、I2の分光分布I1(λ)、I2(λ)を用いて以下の式(6)で表される。
Ic(λ)=W(λ)・I1(λ)+(1−W(λ))・I2(λ)…(6)
In the synthesis by the weighted linear combination of the illumination lights I1 and I2, if the weight of the linear combination set for each wavelength is W (λ) and 1-W (λ), the spectral distribution Ic ( λ) is expressed by the following formula (6) using the spectral distributions I1 (λ) and I2 (λ) of the illumination lights I1 and I2.
Ic (λ) = W (λ) · I1 (λ) + (1−W (λ)) · I2 (λ) (6)

これにより、合成照明光Icによる蛍光分光放射輝度率Fc(λ)は、以下の式(7)で表され、
Fc(λ)=∫F(μ,λ)・Ic(μ)dμ/Ic(λ)=∫F(μ,λ)・[W(λ)・I1(μ)+(1−W(λ))・I2(μ)]dμ/[W(λ)・I1(λ)+(1−W(λ))・I2(λ)]…(7)
Thereby, the fluorescence spectral radiance factor Fc (λ) by the synthetic illumination light Ic is expressed by the following equation (7):
Fc (λ) = ∫F (μ, λ) · Ic (μ) dμ / Ic (λ) = ∫F (μ, λ) · [W (λ) · I1 (μ) + (1−W (λ) ) · I2 (μ)] dμ / [W (λ) · I1 (λ) + (1−W (λ)) · I2 (λ)] (7)

したがって、上記式(5)は以下の式(8)に書き換えられる。
∫F(μ,λ)・Is(μ)dμ/Is(λ)=∫F(μ,λ)・[W(λ)・I1(μ)+(1−W(λ))・I2(μ)]dμ/[W(λ)・I1(λ)+(1−W(λ))・I2(λ)]…(8)
Therefore, the above equation (5) can be rewritten as the following equation (8).
∫F (μ, λ) · Is (μ) dμ / Is (λ) = ∫F (μ, λ) · [W (λ) · I1 (μ) + (1−W (λ)) · I2 (μ ] Dμ / [W (λ) · I1 (λ) + (1−W (λ)) · I2 (λ)] (8)

そして、上記式(8)から重みW(λ)を算出する、すなわち式(8)の二分光蛍光放射輝度率F(μ,λ)と評価用照明光Isの分光分布Is(λ)=Is(μ)とを予め数値データとして与えておき(設定して記憶しておき)、一方、照明光(実照明光)I1、I2の分光分布I1(λ)、I2(λ)は実測により求めておき(具体的には、実測した参照面反射光の分光分布から変換してI1(λ)、I2(λ)を求める)、演算処理のみによって重みW(λ)を算出する。そして、この重みW(λ)を用いて、当該算出に用いた二分光蛍光放射輝度率F(μ,λ)と近似の二分光蛍光放射輝度率をもつ蛍光試料を同じ評価用照明光Isで照明したときの全分光放射輝度率Bxs(λ)を算出する。すなわち、蛍光試料を照明光I1、I2で照明したときの試料面放射光の分光分布Sx1(λ)、Sx2(λ)と当該照明光I1、I2の分光分布I1(λ)、I2(λ)とを、それぞれ重みW(λ)、(1−W(λ))による線形結合によって合成する以下の式(9)、(10)が与えるSxc(λ)及びIc(λ)と、
Sxc(λ)=W(λ)・Sx1(λ)+(1−W(λ))・Sx2(λ)…(9)
Ic(λ)=W(λ)・I1(λ)+(1−W(λ))・I2(λ)…(10)
(但し、Sxc(λ)は合成照明光Icで照明されるときの前記試料の放射光の分光分布を、Ic(λ)は照明光I1、I2の重みつき線形結合によって合成される合成照明光Icの分光分布を示す。)
校正定数C(λ)とによって、以下の式(11)により全分光放射輝度率Bs(λ)が求められる。
Bs(λ)=C(λ)・Sc(λ)/Ic(λ)…(11)
Then, the weight W (λ) is calculated from the above equation (8), that is, the bispectral fluorescence radiance factor F (μ, λ) of the equation (8) and the spectral distribution Is (λ) = Is of the evaluation illumination light Is. (Μ) is given in advance as numerical data (set and stored), while spectral distributions I1 (λ) and I2 (λ) of illumination light (actual illumination light) I1 and I2 are obtained by actual measurement. Specifically, the weight W (λ) is calculated only by calculation processing (specifically, I1 (λ) and I2 (λ) are obtained by conversion from the actually measured spectral distribution of the reference surface reflected light). Then, using this weight W (λ), a fluorescent sample having a bispectral fluorescence radiance factor F (μ, λ) approximate to the bispectral fluorescence radiance factor used in the calculation is applied with the same illumination light Is for evaluation. The total spectral radiance factor Bxs (λ) when illuminated is calculated. That is, the spectral distributions Sx1 (λ) and Sx2 (λ) of the sample surface radiation when the fluorescent sample is illuminated with the illumination lights I1 and I2, and the spectral distributions I1 (λ) and I2 (λ) of the illumination lights I1 and I2 And Sxc (λ) and Ic (λ) given by the following equations (9) and (10) that are combined by linear combination with weights W (λ) and (1-W (λ)), respectively:
Sxc (λ) = W (λ) · Sx1 (λ) + (1−W (λ)) · Sx2 (λ) (9)
Ic (λ) = W (λ) · I1 (λ) + (1−W (λ)) · I2 (λ) (10)
(Where Sxc (λ) is the spectral distribution of the radiated light of the sample when illuminated by the synthesized illumination light Ic, and Ic (λ) is the synthesized illumination light synthesized by weighted linear combination of the illumination lights I1 and I2. The spectral distribution of Ic is shown.)
Based on the calibration constant C (λ), the total spectral radiance factor Bs (λ) is obtained by the following equation (11).
Bs (λ) = C (λ) · Sc (λ) / Ic (λ) (11)

ところで、上述での各演算処理は、本発明のように照明光I1、I2が共に可視域に強度を有するものとすることにより(具体的には、例えば照明光I1を上記照明光LA、照明光I2を照明光LBとする)、簡略化することが可能となる。すなわち、照明光I1、I2を可視域における波長λでの強度で相対化した、照明光I1(μ)/I1(λ)、I2(μ)/I2(λ)を想定し、I1λ(μ)、I2λ(μ)とする(I1λ(μ)=I1(μ)/I1(λ)、I2λ(μ)=I2(μ)/I2(λ)。したがって、I1λ(λ)=I2λ(λ)=1)。このことで、可視域での波長λ毎に異なる光源が想定されことになる。この場合、上記式(8)の右辺の分母は[W(λ)・I1λ(λ)+(1−W(λ))・I2λ(λ)]となり、その値は常に「1」となる。したがって、式(7)は以下の式(12)に示すように書き換えられ、合成照明光Icによる蛍光分光放射輝度率Fc(λ)は、各照明光I1、I2による蛍光分光放射輝度率の線形結合で表されるものとなる。
∫F(μ,λ)・Ic(μ)dμ/Ic(λ)=W(λ)・∫F(μ,λ)・I1λ(μ)dμ+(1−W(λ))・∫F(μ,λ)・I2λ(μ)dμ=W(λ)・∫F(μ,λ)・I1(μ)dμ/I1(λ)+(1−W(λ))・∫F(μ,λ)・I2(μ)dμ/I2(λ) …(12)
By the way, each calculation process described above is performed by assuming that the illumination lights I1 and I2 both have an intensity in the visible range as in the present invention (specifically, for example, the illumination light I1 is converted into the illumination light LA and the illumination light). It is possible to simplify the light I2 as illumination light LB). That is, assuming illumination lights I1 (μ) / I1 (λ) and I2 (μ) / I2 (λ) in which the illumination lights I1 and I2 are relativized by the intensity at the wavelength λ in the visible range, I1 λ (μ ), I2 λ (μ) (I1 λ (μ) = I1 (μ) / I1 (λ), I2 λ (μ) = I2 (μ) / I2 (λ), so that I1 λ (λ) = I2 λ (λ) = 1). As a result, a different light source is assumed for each wavelength λ in the visible range. In this case, the denominator of the right side of the above equation (8) is [W (λ) · I1 λ (λ) + (1−W (λ)) · I2 λ (λ)], and the value is always “1”. Become. Therefore, the equation (7) is rewritten as shown in the following equation (12), and the fluorescence spectral radiance factor Fc (λ) by the combined illumination light Ic is linear of the fluorescence spectrum radiance factor by the illumination lights I1 and I2. It will be represented by a bond.
∫F (μ, λ) · Ic (μ) dμ / Ic (λ) = W (λ) ∫F (μ, λ) · I1 λ (μ) dμ + (1−W (λ)) · ∫F ( μ, λ) · I2 λ (μ) dμ = W (λ) · ∫F (μ, λ) · I1 (μ) dμ / I1 (λ) + (1−W (λ)) · ∫F (μ, λ) · I2 (μ) dμ / I2 (λ) (12)

これにより、上記式(5)は以下の式(13)に書き換えることができる。
∫F(μ,λ)・Is(μ)dμ/Is(λ)=W(λ)・∫F(μ,λ)・I1(μ)dμ/I1(λ)+(1−W(λ))・∫F(μ,λ)・I2(μ)dμ/I2(λ) …(13)
Thereby, the said Formula (5) can be rewritten to the following formula | equation (13).
∫F (μ, λ) · Is (μ) dμ / Is (λ) = W (λ) ∫F (μ, λ) · I1 (μ) dμ / I1 (λ) + (1−W (λ) ) · ∫F (μ, λ) · I2 (μ) dμ / I2 (λ) (13)

なお、式(12)は、蛍光分光放射輝度率Fc(λ)が、波長λでの強度が共に「1」で波長λ毎に異なる2つの仮想的な照明光、I1λ(μ)=I1(μ)/I1(λ)とI2λ(μ)=I2(μ)/I2(λ)を重みW(λ)、1−W(λ)で加算した、以下の式(12’)に示す可視域の波長λ毎に異なる合成照明光Ic(μ)によって得られることを示している。
Ic(μ)=W(λ)・I1(μ)/I1(λ)+(1−W(λ))・I2(μ)/I2(λ)…(12’)
Note that the equation (12) shows that the fluorescence spectral radiance factor Fc (λ) is two virtual illumination lights having different intensities at the wavelength λ and “1” for each wavelength λ, I1 λ (μ) = I1 (Μ) / I1 (λ) and I2 λ (μ) = I2 (μ) / I2 (λ) are added with weights W (λ) and 1-W (λ), and the following expression (12 ′) is obtained. It is shown that it can be obtained by different synthetic illumination light Ic (μ) for each wavelength λ in the visible range.
Ic (μ) = W (λ) · I1 (μ) / I1 (λ) + (1−W (λ)) · I2 (μ) / I2 (λ) (12 ′)

上述における式(8)から重みW(λ)を求めた場合と同様、上記式(13)についても、蛍光試料の二分光蛍光放射輝度率F(μ,λ)と、評価用照明光Isの分光分布Is(λ)と、2つの照明光I1、I2の分光分布I1(λ)、I2(λ)とが与えられれば、重みW(λ)を演算処理だけで求めることができる。   Similarly to the case where the weight W (λ) is obtained from the equation (8) in the above, the equation (13) also includes the bispectral fluorescence radiance factor F (μ, λ) of the fluorescent sample and the evaluation illumination light Is. If the spectral distribution Is (λ) and the spectral distributions I1 (λ) and I2 (λ) of the two illumination lights I1 and I2 are given, the weight W (λ) can be obtained only by arithmetic processing.

なお、従来(特許文献1)の方法では、実照明光I1、I2の分光分布I1(λ)、I2(λ)が未知であるため、式(13)の右辺の積分を、蛍光基準試料の全分光放射輝度率の実測に置き換えていると考えることができる。   In the conventional method (Patent Document 1), since the spectral distributions I1 (λ) and I2 (λ) of the actual illumination lights I1 and I2 are unknown, the integration of the right side of the equation (13) is performed on the fluorescence reference sample. It can be considered that it is replaced with the actual measurement of the total spectral radiance factor.

このようにして式(13)から算出したW(λ)を、当該算出に用いた二分光蛍光放射輝度率F(μ,λ)と近似の二分光蛍光放射輝度率をもつ蛍光試料に対して用い、合成照明光Icによる蛍光試料の蛍光分光放射輝度率Fxc(λ)を、各照明光I1、I2(照明光LA、LB)による試料の蛍光分光放射輝度率Fx1(λ)、Fx2(λ)の線形結合で表すことができる(以下、式(14)参照)。
Fxc(λ)=W(λ)・Fx1(λ)+(1−W(λ))・Fx2(λ)…(14)
In this way, W (λ) calculated from the equation (13) is applied to a fluorescent sample having a bispectral fluorescence radiance factor F (μ, λ) approximate to that used in the calculation. The fluorescence spectral radiance factor Fxc (λ) of the fluorescent sample by the synthetic illumination light Ic is used as the fluorescent spectral radiance factor Fx1 (λ), Fx2 (λ) of the sample by the illumination light I1, I2 (illumination light LA, LB). ) (Refer to equation (14) below).
Fxc (λ) = W (λ) · Fx1 (λ) + (1−W (λ)) · Fx2 (λ) (14)

また、蛍光分光放射輝度率Fxc(λ)と照明光に依存しない反射分光放射輝度率Rxc(λ)との和である全分光放射輝度率Bxc(λ)についても、上記と同じ重みW(λ)を用いて、各照明光I1、I2により蛍光試料を実測して得た全分光放射輝度率Bx1(λ)とBx2(λ)との線形結合により求めることができる(以下、式(15)参照)。
Bxc(λ)=W(λ)・Bx1(λ)+(1−W(λ))・Bx2(λ)…(15)
Further, the same weight W (λ) as above is also applied to the total spectral radiance factor Bxc (λ), which is the sum of the fluorescent spectral radiance factor Fxc (λ) and the reflected spectral radiance factor Rxc (λ) independent of illumination light. ) Can be obtained by linear combination of the total spectral radiance factors Bx1 (λ) and Bx2 (λ) obtained by actually measuring the fluorescent sample with the illumination lights I1 and I2 (hereinafter, expression (15)). reference).
Bxc (λ) = W (λ) · Bx1 (λ) + (1−W (λ)) · Bx2 (λ) (15)

上述では、二分光蛍光放射輝度率F(μ,λ)を与えて式(8)或いは式(13)によって重みW(λ)を求めているが、式(1)からFc(λ)=Fs(λ)であればBc(λ)=Bs(λ)であるので、式(8)或いは式(13)のF(μ,λ)を二分光放射輝度率B(μ,λ)に置き換え、上述と同様に重みW(λ)を求めることができる。   In the above description, the weight W (λ) is obtained by the equation (8) or the equation (13) by giving the two-spectral fluorescence radiance factor F (μ, λ). From the equation (1), Fc (λ) = Fs. If (λ), Bc (λ) = Bs (λ), so F (μ, λ) in equation (8) or equation (13) is replaced with the bispectral radiance factor B (μ, λ), The weight W (λ) can be obtained in the same manner as described above.

ところで、上記蛍光試料の光学特性測定に先立って2種類の校正が必要となる。これら校正について以下に説明する。
<1.分光手段の相対分光感度校正>
上述したように本実施形態の方法では、測定器の実照明光の分光分布を把握することが必要であり、そのために、製造時等において予め放射光分光手段(ここでは2チャンネル分光部6)の相対分光感度の校正が行われる。まず、放射光分光手段を公知の方法によって波長校正し、更にA光源など既知の分光分布A(λ)を有する光源からの光束を入射させて得た出力Sa(λ)から、感度校正係数G(λ)が求められる(以下、式(16)参照)。
G(λ)=A(λ)/Sa(λ)…(16)
By the way, two types of calibration are required prior to the measurement of the optical characteristics of the fluorescent sample. These calibrations are described below.
<1. Calibration of relative spectral sensitivity of spectroscopic means>
As described above, in the method of the present embodiment, it is necessary to grasp the spectral distribution of the actual illumination light of the measuring instrument. For this reason, the synchrotron radiation spectroscopic means (here, the two-channel spectroscopic unit 6) is preliminarily used at the time of manufacture. Calibration of relative spectral sensitivity is performed. First, the wavelength calibration of the synchrotron radiation means is performed by a known method, and a sensitivity calibration coefficient G is obtained from an output Sa (λ) obtained by making a light beam from a light source having a known spectral distribution A (λ) such as an A light source incident. (Λ) is obtained (see equation (16) below).
G (λ) = A (λ) / Sa (λ) (16)

<2.白色校正>
測定に先立って(前段階で)行われる白色校正では、反射分光放射輝度率Rw(λ)が既知であり、蛍光特性をもたない白色校正板を、照明光I1及びI2(照明光LA及び照明光LB)で照明したときの、試料放射光(白色校正板からの放射光)の分光分布Sw1(λ)、Sw2(λ)と、参照面反射光(参照面部4からの反射光)の分光分布Mw1(λ)、Mw2(λ)とから、以下、<1>、<2>に示す2種類の係数が求められる。
<2. White calibration>
In the white calibration performed prior to the measurement (in the previous stage), the white calibration plates having the reflection spectral radiance factor Rw (λ) are known and have no fluorescence characteristics are used as the illumination lights I1 and I2 (the illumination lights LA and The spectral distributions Sw1 (λ) and Sw2 (λ) of the sample radiation (radiated light from the white calibration plate) and the reference surface reflected light (reflected light from the reference surface section 4) when illuminated with the illumination light LB) From the spectral distributions Mw1 (λ) and Mw2 (λ), the following two types of coefficients shown in <1> and <2> are obtained.

<1>参照面反射光の分光分布Mx1(λ)、Mx2(λ)を分光分布I1(λ)、I2(λ)に変換するための変換係数D1(λ)、D2(λ)。   <1> Conversion coefficients D1 (λ) and D2 (λ) for converting the spectral distributions Mx1 (λ) and Mx2 (λ) of the reference surface reflected light into the spectral distributions I1 (λ) and I2 (λ).

この場合、既知の反射分光放射輝度率Rw(λ)を有する白色校正板を照明光I1及びI2で照明したときの、当該試料面反射光の分光分布Sw1(λ)、Sw2(λ)と、参照面反射光の分光分布Mw1(λ)、Mw2(λ)と、上記式(16)に示す感度校正係数G(λ)とから、以下の式(17)、(18)によって、測定時の参照面反射光の分光分布Mx1(λ)、Mx2(λ)を、試料面照明光の分光分布I1(λ)、I2(λ)に変換する変換係数D1(λ)、D2(λ)を求める。
D1(λ)=[G(λ)・Sw1(λ)]/[Mw1(λ)・Rw(λ)]…(17)
D2(λ)=[G(λ)・Sw2(λ)]/[Mw2(λ)・Rw(λ)]…(18)
In this case, when a white calibration plate having a known reflection spectral radiance factor Rw (λ) is illuminated with illumination light I1 and I2, the spectral distributions Sw1 (λ), Sw2 (λ) of the sample surface reflection light, and From the spectral distributions Mw1 (λ) and Mw2 (λ) of the reference surface reflected light and the sensitivity calibration coefficient G (λ) shown in the above equation (16), the following equations (17) and (18) are used. Conversion coefficients D1 (λ) and D2 (λ) for converting the spectral distributions Mx1 (λ) and Mx2 (λ) of the reference surface reflected light into the spectral distributions I1 (λ) and I2 (λ) of the sample surface illumination light are obtained. .
D1 (λ) = [G (λ) · Sw1 (λ)] / [Mw1 (λ) · Rw (λ)] (17)
D2 (λ) = [G (λ) · Sw2 (λ)] / [Mw2 (λ) · Rw (λ)] (18)

これにより、蛍光試料測定時、参照面反射光の分光分布がMx1(λ)、Mx2(λ)であるとすると、試料面照明光の分光分布I1(λ)、I2(λ)が、該変換係数D1(λ)、D2(λ)を用いて以下の式(19)、(20)により求められる。
I1(λ)=D1(λ)・Mx1(λ)…(19)
I2(λ)=D2(λ)・Mx2(λ)…(20)
As a result, when the spectral distribution of the reference surface reflected light is Mx1 (λ) and Mx2 (λ) when measuring the fluorescent sample, the spectral distributions I1 (λ) and I2 (λ) of the sample surface illumination light are Using the coefficients D1 (λ) and D2 (λ), the following equations (19) and (20) are used.
I1 (λ) = D1 (λ) · Mx1 (λ) (19)
I2 (λ) = D2 (λ) · Mx2 (λ) (20)

<2>測定時、照明光I1及びI2で照明した試料放射光の分光分布Sx1(λ)、Sx2(λ)と参照面反射光の分光分布Mx1(λ)、Mx2(λ)とから、蛍光試料の全分光放射輝度率Bx1(λ)、Bx2(λ)を求めるための校正係数C1(λ)、C2(λ)。   <2> At the time of measurement, fluorescence is obtained from the spectral distributions Sx1 (λ) and Sx2 (λ) of the sample radiation illuminated with the illumination lights I1 and I2 and the spectral distributions Mx1 (λ) and Mx2 (λ) of the reference surface reflected light. Calibration coefficients C1 (λ) and C2 (λ) for obtaining the total spectral radiance factors Bx1 (λ) and Bx2 (λ) of the sample.

この場合、上記<1>における、既知の反射分光放射輝度率Rw(λ)と、白色校正板を照明光I1及びI2で照明したときの試料面反射光の分光分布Sw1(λ)、Sw2(λ)と参照面反射光の分光分布Mw1(λ)、Mw2(λ)とから、以下の式(21)、(22)によって校正係数C1(λ)、C2(λ)を求める。
C1(λ)= Rw(λ)/[Sw1(λ)/Mw1(λ)] …(21)
C2(λ)= Rw(λ)/[Sw2(λ)/Mw2(λ)] …(22)
In this case, the known reflection spectral radiance factor Rw (λ) in <1> above and the spectral distributions Sw1 (λ), Sw2 () of the sample surface reflected light when the white calibration plate is illuminated with the illumination light I1 and I2. Calibration coefficients C1 (λ) and C2 (λ) are obtained from the following equations (21) and (22) from λ) and the spectral distributions Mw1 (λ) and Mw2 (λ) of the reference surface reflected light.
C1 (λ) = Rw (λ) / [Sw1 (λ) / Mw1 (λ)] (21)
C2 (λ) = Rw (λ) / [Sw2 (λ) / Mw2 (λ)] (22)

これにより、蛍光試料測定時、照明光I1及びI2で照明された試料面放射光及び参照面反射光の分光分布が、Sx1(λ)、Sx2(λ)、及びMx1(λ)、Mx2(λ)とすれば、試料面の全分光放射輝度率Bx1(λ)、Bx2(λ)は以下の式(23)、(24)により求められる。
Bx1(λ)=C1(λ)・Sx1(λ)/Mx1(λ)…(23)
Bx2(λ)=C2(λ)・Sx2(λ)/Mx2(λ)…(24)
Thereby, at the time of fluorescent sample measurement, the spectral distributions of the sample surface radiated light and the reference surface reflected light illuminated with the illumination light I1 and I2 are Sx1 (λ), Sx2 (λ), Mx1 (λ), Mx2 (λ ), The total spectral radiance factors Bx1 (λ) and Bx2 (λ) on the sample surface can be obtained by the following equations (23) and (24).
Bx1 (λ) = C1 (λ) · Sx1 (λ) / Mx1 (λ) (23)
Bx2 (λ) = C2 (λ) · Sx2 (λ) / Mx2 (λ) (24)

なお、上述の評価用照明光で照明したときの全分光放射輝度率の測定原理は、以下のように要約されるものであると言うこともできる。
a1.任意の照明光で照明された蛍光試料が放射する蛍光の分光特性は、照明光の分光分布と試料の二分光蛍光放射輝度率によって求められる(式(2)参照)。
a2.したがって、照明光の分光分布が既知であれば、既知の二分光蛍光放射輝度率をもつ仮想的な蛍光基準試料の全分光放射輝度率を算出でき、現実の蛍光基準試料に置き換えることができる。
a3.仮想的な蛍光基準試料について、上述の特許文献1の方法を適用する。
a4.評価用照明光の分光分布は予めデータとして与えておき、測定装置の照明光(実照明光)の分光分布は実測で求める。
In addition, it can also be said that the measurement principle of the total spectral radiance factor when illuminated with the above-described evaluation illumination light is summarized as follows.
a1. The spectral characteristic of the fluorescence emitted from the fluorescent sample illuminated with arbitrary illumination light is determined by the spectral distribution of the illumination light and the two-spectrum fluorescent radiance factor of the sample (see equation (2)).
a2. Therefore, if the spectral distribution of the illumination light is known, the total spectral radiance factor of a virtual fluorescence reference sample having a known two-spectrum fluorescence radiance factor can be calculated and replaced with an actual fluorescence reference sample.
a3. The method of Patent Document 1 described above is applied to a virtual fluorescence reference sample.
a4. The spectral distribution of the illumination light for evaluation is given as data in advance, and the spectral distribution of the illumination light (actual illumination light) of the measuring device is obtained by actual measurement.

<蛍光試料の全分光放射輝度率の測定手順>
光学特性測定装置10による蛍光試料の全分光放射輝度率の測定手順としては、予め行われる図3のフローに示す白色校正後、図4に示すフローに沿って当該全分光放射輝度率の測定を行う。図3は、白色校正に関する動作の一例を示すフローチャートである。まず、制御部7は、測定開口に配設した白色校正用の試料、すなわち反射分光放射輝度率Rw(λ)が既知であり蛍光特性のない白色校正板に対して、第1照明部2(白熱ランプ21)を点灯させて照明光LA(照明光I1)によって照明する(ステップS1)。そして、2チャンネル分光部6(放射光分光手段)によって、当該照明光LAによる試料反射光(ここでは、蛍光特性のない白色校正板に対する試料放射光であるので、試料反射光となる)の分光分布Sw1(λ)を測定するとともに、照明光LAの参照面反射光の分光分布Mw1(λ)を測定し、これらSw1(λ)及びMw1(λ)の分光分布情報を分光データメモリ71に保存する(ステップS2)。
<Measurement procedure of total spectral radiance factor of fluorescent sample>
As a measurement procedure of the total spectral radiance factor of the fluorescent sample by the optical property measuring apparatus 10, after the white calibration shown in the flow of FIG. 3 performed in advance, the total spectral radiance factor is measured along the flow shown in FIG. Do. FIG. 3 is a flowchart illustrating an example of an operation relating to white calibration. First, the control unit 7 applies the first illuminating unit 2 (with respect to a white calibration plate disposed in the measurement aperture, that is, a white calibration plate having a known reflection spectral radiance factor Rw (λ) and having no fluorescence characteristics. The incandescent lamp 21) is turned on and illuminated by the illumination light LA (illumination light I1) (step S1). Then, the two-channel spectroscopic unit 6 (radiated light spectroscopic means) splits the sample reflected light by the illumination light LA (in this case, the sample radiated light with respect to the white calibration plate having no fluorescence characteristic, and thus becomes the sample reflected light). The distribution Sw1 (λ) is measured, the spectral distribution Mw1 (λ) of the reference surface reflected light of the illumination light LA is measured, and the spectral distribution information of the Sw1 (λ) and Mw1 (λ) is stored in the spectral data memory 71. (Step S2).

続いて、制御部7は、上記ステップS1での第1照明部2の点灯を維持した状態で、第2照明部3(紫外LED31)を点灯して、その結果、第1及び第2照明部2、3による照明光LB(照明光I2)によって被測定試料1を照明し(ステップS3)、ステップS2と同様に、2チャンネル分光部6によって、当該照明光LBによる試料反射光の分光分布Sw2(λ)を測定するとともに、照明光LBの参照面反射光の分光分布Mw2(λ)を測定し、これらSw2(λ)及びMw2(λ)の分光分布情報を分光データメモリ71に保存する(ステップS4)。そして、第1及び第2照明部2、3を消灯する(ステップS5)。   Subsequently, the control unit 7 lights the second lighting unit 3 (ultraviolet LED 31) while maintaining the lighting of the first lighting unit 2 in step S1. As a result, the first and second lighting units are turned on. The sample 1 to be measured is illuminated with the illumination light LB (illumination light I2) by 2 and 3 (step S3), and the spectral distribution Sw2 of the sample reflected light by the illumination light LB is obtained by the two-channel spectroscopic unit 6 as in step S2. (Λ) is measured, the spectral distribution Mw2 (λ) of the reference surface reflected light of the illumination light LB is measured, and the spectral distribution information of these Sw2 (λ) and Mw2 (λ) is stored in the spectral data memory 71 ( Step S4). And the 1st and 2nd illumination parts 2 and 3 are light-extinguished (step S5).

そして、上記ステップS2及びS4において求めた試料面反射光の分光分布Sw1(λ)、Sw2(λ)と参照面反射光の分光分布Mw1(λ)、Mw2(λ)と、上述の式(16)に示す感度校正係数G(λ)とから、上述の式(17)、(18)によって、測定時の参照面反射光の分光分布Mx1(λ)、Mx2(λ)を、試料面照明光の分光分布I1(λ)、I2(λ)に変換するための変換係数D1(λ)、D2(λ)を算出する(ステップS6)。   Then, the spectral distributions Sw1 (λ) and Sw2 (λ) of the sample-surface reflected light obtained in steps S2 and S4, the spectral distributions Mw1 (λ) and Mw2 (λ) of the reference-surface reflected light, and the above equation (16) ), The spectral distributions Mx1 (λ) and Mx2 (λ) of the reference surface reflected light at the time of measurement are obtained from the sample surface illumination light by the above-described equations (17) and (18). Conversion coefficients D1 (λ) and D2 (λ) for conversion into spectral distributions I1 (λ) and I2 (λ) are calculated (step S6).

さらに、上記ステップS2及びS4において求めた試料面反射光の分光分布Sw1(λ)、Sw2(λ)と参照面反射光の分光分布Mw1(λ)、Mw2(λ)と、上記既知の反射分光輝度率Rw(λ)とから、上述の式(21)、(22)によって校正係数C1(λ)、C2(λ)を算出する(ステップS7)。そして、上記ステップS6において算出した変換係数D1(λ)、D2(λ)及びステップS7において算出した校正係数C1(λ)、C2(λ)のデータを所定の記憶部、例えば係数メモリ74に記憶しておく(ステップS8)。   Further, the spectral distributions Sw1 (λ) and Sw2 (λ) of the sample surface reflected light obtained in steps S2 and S4, the spectral distributions Mw1 (λ) and Mw2 (λ) of the reference surface reflected light, and the known reflection spectroscopy. From the luminance rate Rw (λ), the calibration coefficients C1 (λ) and C2 (λ) are calculated by the above formulas (21) and (22) (step S7). The conversion coefficients D1 (λ) and D2 (λ) calculated in step S6 and the calibration coefficients C1 (λ) and C2 (λ) calculated in step S7 are stored in a predetermined storage unit, for example, the coefficient memory 74. (Step S8).

図4は、光学特性測定装置10による蛍光試料の全分光放射輝度率の測定に関する動作の一例を示すフローチャートである。まず、測定に先立って評価用照明光Isを選択する。すなわち制御部7は、評価用照明光データメモリ72から、選択する評価用照明光Isの分光分布データIs(λ)(すなわち分光分布Is(μ))を読み出す(ステップS11)。続いて、被測定試料1のタイプ(種類)を選択する。すなわち制御部7(CPU70)は、二分光データメモリ73から、被測定試料に近似するタイプの二分光蛍光放射輝度率F(μ,λ)のデータを読み出す(ステップS12)。次に、制御部7は、測定開口に配設された被測定試料1に対し、第1照明部2(白熱ランプ21)を点灯して照明光LA(照明光I1)によって照明する(ステップS13)。そして、2チャンネル分光部6(放射光分光手段)によって、当該照明光LAによる試料放射光の分光分布Sx1(λ)を測定するとともに、照明光LAの参照面反射光の分光分布Mx1(λ)を測定し、これらSx1(λ)及びMx1(λ)の分光分布情報を分光データメモリ71に保存する(ステップS14)。   FIG. 4 is a flowchart showing an example of an operation related to the measurement of the total spectral radiance factor of the fluorescent sample by the optical property measuring apparatus 10. First, the evaluation illumination light Is is selected prior to measurement. That is, the control unit 7 reads out the spectral distribution data Is (λ) (that is, the spectral distribution Is (μ)) of the evaluation illumination light Is to be selected from the evaluation illumination light data memory 72 (step S11). Subsequently, the type (kind) of the sample 1 to be measured is selected. That is, the control unit 7 (CPU 70) reads out data of the two-spectral fluorescence radiance factor F (μ, λ) of the type approximate to the sample to be measured from the two-spectral data memory 73 (step S12). Next, the control unit 7 turns on the first illumination unit 2 (incandescent lamp 21) and illuminates the sample 1 to be measured disposed in the measurement opening with the illumination light LA (illumination light I1) (step S13). ). Then, the spectral distribution Sx1 (λ) of the sample radiated light by the illumination light LA is measured by the two-channel spectroscopic unit 6 (radiated light spectroscopic means), and the spectral distribution Mx1 (λ) of the reference surface reflected light of the illumination light LA. And the spectral distribution information of these Sx1 (λ) and Mx1 (λ) is stored in the spectral data memory 71 (step S14).

続いて、制御部7は、上記ステップS13での第1照明部2の点灯を維持した状態で、第2照明部3(紫外LED31)を点灯して、第1及び第2照明部2、3による照明光LB(照明光I2)によって被測定試料1を照明し(ステップS15)、ステップS14と同様に、2チャンネル分光部6によって、当該照明光LBによる試料放射光の分光分布Sx2(λ)を測定するとともに、照明光LBの参照面反射光の分光分布Mx2(λ)を測定し、これらSx2(λ)及びMx2(λ)の分光分布情報を分光データメモリ71に保存する(ステップS16)。そして、第1及び第2照明部2、3を消灯する(ステップS17)。   Subsequently, the control unit 7 lights the second illumination unit 3 (ultraviolet LED 31) while maintaining the lighting of the first illumination unit 2 in step S13, and the first and second illumination units 2, 3 are turned on. The sample 1 to be measured is illuminated with the illumination light LB (illumination light I2) by (Step S15), and the spectral distribution Sx2 (λ) of the sample radiation light by the illumination light LB is obtained by the two-channel spectroscopic unit 6 as in Step S14. And the spectral distribution Mx2 (λ) of the reference surface reflected light of the illumination light LB is measured, and the spectral distribution information of these Sx2 (λ) and Mx2 (λ) is stored in the spectral data memory 71 (step S16). . And the 1st and 2nd illumination parts 2 and 3 are light-extinguished (step S17).

次に、制御部7は、上記ステップS11、S12においてそれぞれ読み出した分光分布データIs(λ)=Is(μ)と二分光蛍光放射輝度率F(μ,λ)とから、以下の式(25)によって評価用照明光による蛍光分光放射輝度率Fs(λ)を算出する(ステップS18)。
Fs(λ)=∫F(μ,λ)・Is(μ)dμ/Is(λ)…(25)
Next, the control unit 7 calculates the following equation (25) from the spectral distribution data Is (λ) = Is (μ) and the two-spectral fluorescence radiance factor F (μ, λ) read in steps S11 and S12, respectively. ) To calculate the fluorescence spectral radiance factor Fs (λ) by the evaluation illumination light (step S18).
Fs (λ) = ∫F (μ, λ) · Is (μ) dμ / Is (λ) (25)

そして、上述の式(19)、(20)によって、それぞれ照明光LA、LBの参照面反射光の分光分布Mx1(λ)、Mx2(λ)を、試料面照明光(照明光LA、LB)の分光分布I1(λ)、I2(λ)に変換し(ステップS19)、当該変換して求めた分光分布I1(λ)、I2(λ)(すなわち分光分布I1(μ)、I2(μ))と二分光蛍光放射輝度率F(μ,λ)とから、以下の式(26)、(27)によって照明光LA、LB(照明光I1、I2)による蛍光分光放射輝度率F1(λ)、F2(λ)を算出する(ステップS20)。
F1(λ)=∫F(μ,λ)・I1(μ)dμ/I1(λ)…(26)
F2(λ)=∫F(μ,λ)・I2(μ)dμ/I2(λ)…(27)
Then, according to the above equations (19) and (20), the spectral distributions Mx1 (λ) and Mx2 (λ) of the reference surface reflected light of the illumination light LA and LB are converted into the sample surface illumination light (illumination light LA and LB), respectively. To spectral distributions I1 (λ) and I2 (λ) (step S19), and spectral distributions I1 (λ) and I2 (λ) obtained by the conversion (that is, spectral distributions I1 (μ) and I2 (μ)). ) And the two-spectral fluorescence radiance factor F (μ, λ), the fluorescence spectral radiance factor F1 (λ) by the illumination light LA, LB (illumination light I1, I2) by the following equations (26), (27): , F2 (λ) is calculated (step S20).
F1 (λ) = ∫F (μ, λ) · I1 (μ) dμ / I1 (λ) (26)
F2 (λ) = ∫F (μ, λ) · I2 (μ) dμ / I2 (λ) (27)

次に、当該算出した蛍光分光放射輝度率F1(λ)、F2(λ)と、上記ステップS18で求めた蛍光分光放射輝度率Fs(λ)とによる以下の式(28)を波長毎に解くことで、重みW(λ)を求める(ステップS21)。
W(λ)・F1(λ)+(1−W(λ))・F2(λ)=Fs(λ)…(28)
そして、上記ステップS14、16において保存されたMx1(λ)、Mx2(λ)と、Sx1(λ)、Sx2(λ)とから、上述の式(23)、(24)を用いて、照明光LA、LBによる全分光放射輝度率Bx1(λ)、Bx2(λ)を算出し(ステップS22)、当該算出されたBx1(λ)、Bx2(λ)と、上記ステップS21において算出した重みW(λ)とから、以下の式(29)によって評価用照明光による全分光放射輝度率Bxs(λ)を算出する(ステップS23)。
Bxs(λ)= W(λ)・Bx1(λ)+(1−W(λ))・Bx2(λ)…(29)
Next, the following equation (28) based on the calculated fluorescence spectral radiance factors F1 (λ) and F2 (λ) and the fluorescent spectral radiance factor Fs (λ) obtained in step S18 is solved for each wavelength. Thus, the weight W (λ) is obtained (step S21).
W (λ) · F1 (λ) + (1−W (λ)) · F2 (λ) = Fs (λ) (28)
Then, from the Mx1 (λ) and Mx2 (λ) stored in the steps S14 and S16 and the Sx1 (λ) and Sx2 (λ), the illumination light is obtained using the above-described equations (23) and (24). The total spectral radiance factors Bx1 (λ) and Bx2 (λ) by LA and LB are calculated (step S22), the calculated Bx1 (λ) and Bx2 (λ), and the weight W ( From (λ), the total spectral radiance factor Bxs (λ) by the illumination light for evaluation is calculated by the following equation (29) (step S23).
Bxs (λ) = W (λ) · Bx1 (λ) + (1−W (λ)) · Bx2 (λ) (29)

(蛍光の影響を除去した全分光放射輝度率の測定)
上述の測定方法を基本技術とする本発明に係る蛍光試料の光学特性測定方法及び装置について、以下に説明する。図1は、本発明に係る蛍光試料の光学特性測定装置の一例を示す概略構成図である。図1に示すように、光学特性測定装置100は、被測定試料110、第1照明部120、第2照明部130、積分球140、受光部150、2チャンネル分光部160及び制御部170を備えて構成されている。被測定試料110は、蛍光物質を含む繊維や紙製品等からなる測定対象となる試料である。被測定試料110は、積分球140の試料用開口141に配置される。第1照明部120は、被測定試料110を照明するものであり積分球140に、ここでは積分球140の側方部に配設される。第1照明部120は、可視−紫外域の光束を出力する光源としての(紫外域に十分なエネルギーを有する)キセノンフラッシュ121と、該キセノンフラッシュ121を駆動して点灯(例えばパルス点灯)させるための第1駆動回路122とを備える。
(Measurement of total spectral radiance factor without the influence of fluorescence)
A method and apparatus for measuring the optical properties of a fluorescent sample according to the present invention based on the above-described measurement method will be described below. FIG. 1 is a schematic configuration diagram showing an example of an optical property measuring apparatus for a fluorescent sample according to the present invention. As shown in FIG. 1, the optical property measuring apparatus 100 includes a sample to be measured 110, a first illumination unit 120, a second illumination unit 130, an integrating sphere 140, a light receiving unit 150, a two-channel spectroscopic unit 160, and a control unit 170. Configured. The sample to be measured 110 is a sample to be measured, which is made of a fiber or paper product containing a fluorescent material. The sample 110 to be measured is disposed in the sample opening 141 of the integrating sphere 140. The first illumination unit 120 illuminates the sample 110 to be measured, and is disposed on the integrating sphere 140, here on the side of the integrating sphere 140. The first illumination unit 120 drives the xenon flash 121 (having sufficient energy in the ultraviolet region) as a light source that outputs a light beam in the visible-ultraviolet region, and drives the xenon flash 121 to light (for example, pulse lighting). The first drive circuit 122 is provided.

第2照明部130は、第1照明部120と同様、被測定試料110を照明するものであり、積分球140の側方部に第1照明部120と併設されている。第1照明部130も第1照明部120と同様、可視−紫外域の光束を出力する光源としてのキセノンフラッシュ131と、該キセノンフラッシュ131を駆動して点灯(例えばパルス点灯)させるための第2駆動回路132とを備える。第1及び第2照明部120、130は、それぞれキセノンフラッシュ121、131の光束を、第1フィルタ123及び第2フィルタ133を経て積分球140内に送り込む。なお、第1及び第2照明部120、130の光源は、キセノンフラッシュに限定されず、可視域及び紫外域の光束が出力可能であれば、いずれの光源でもよい。   Similar to the first illumination unit 120, the second illumination unit 130 illuminates the sample 110 to be measured, and is provided side by side with the first illumination unit 120 on the side of the integrating sphere 140. Similarly to the first illumination unit 120, the first illumination unit 130 also has a xenon flash 131 as a light source that outputs a light beam in the visible-ultraviolet region, and a second for driving and lighting the xenon flash 131 (for example, pulse lighting). And a drive circuit 132. The first and second illumination units 120 and 130 send the light beams of the xenon flashes 121 and 131 into the integrating sphere 140 through the first filter 123 and the second filter 133, respectively. Note that the light sources of the first and second illumination units 120 and 130 are not limited to the xenon flash, and any light source may be used as long as a light beam in the visible region and the ultraviolet region can be output.

ところで、上述の基本技術の説明においては、照明光I1として、第1照明部2のみを点灯させたときの照明光LAを用い、一方、照明光I2として、第1照明部2及び第2照明部3の両方を点灯させたときの照明光LBを用いる構成としているが、この実施例においては、第1及び第2照明部120、130がそれぞれ単独で照明光I1、I2を形成する。すなわち、第1照明部120(キセノンフラッシュ121)のみを点灯させた場合の照明光を照明光I1とし、第2照明部130(キセノンフラッシュ131)のみを点灯させた場合の照明光を照明光I2とする。なお、上述の説明と区別するため、ここでの照明光I1を照明光HA、照明光I2を照明光HBと適宜称することとする。   By the way, in the description of the basic technology, the illumination light LA when only the first illumination unit 2 is turned on is used as the illumination light I1, while the first illumination unit 2 and the second illumination are used as the illumination light I2. In this embodiment, the first and second illumination units 120 and 130 form the illumination lights I1 and I2, respectively, although the illumination light LB when both the units 3 are turned on is used. That is, the illumination light when only the first illumination unit 120 (xenon flash 121) is turned on is the illumination light I1, and the illumination light when only the second illumination unit 130 (xenon flash 131) is turned on is the illumination light I2. And In order to distinguish from the above description, the illumination light I1 here is appropriately referred to as illumination light HA, and the illumination light I2 is appropriately referred to as illumination light HB.

積分球140は、内壁に高拡散、光反射率の白色塗料が塗布された球状体であり、球内に入射された光を多重拡散反射させるものである。また、積分球140は、図2に示す参照面部4に相当する参照面部142を備えている。この参照面部142は、積分球140の内壁の一部で構成されており、被測定試料110近傍(測定域近傍)に配設されている。受光部150(受光系)は、光学レンズ(又はレンズ群)からなり、第1及び第2照明部120、130によって照明された被測定試料110の放射光、或いは参照面部142からの反射光の略法線方向の成分を受光するとともに、該受光した光束を後述の2チャンネル分光部160へ向けて入射させるものでもある。   The integrating sphere 140 is a spherical body having an inner wall coated with a white paint having high diffusion and light reflectance, and multiple diffusely reflects light incident on the sphere. Further, the integrating sphere 140 includes a reference surface portion 142 corresponding to the reference surface portion 4 shown in FIG. The reference surface portion 142 is configured by a part of the inner wall of the integrating sphere 140 and is disposed near the sample to be measured 110 (near the measurement region). The light receiving unit 150 (light receiving system) includes an optical lens (or a lens group), and emits light emitted from the sample 110 to be measured illuminated by the first and second illumination units 120 and 130 or reflected light from the reference surface unit 142. In addition to receiving a component in a substantially normal direction, the received light beam is also incident on a two-channel spectroscopic unit 160 described later.

2チャンネル分光部160は、受光部150からの入射光に対する分光測定を行うものであり、上記2チャンネル分光部6と同様、放射光分光手段及び照明光分光手段として機能する。2チャンネル分光部160は、第1入射スリット161及び第2入射スリット162を備えており、上記照明光HA又は照明光HBによって照明された被測定試料110からの放射光(以降、試料面放射光という)は、第1入射スリット161に入射し、一方、照明光HA又は照明光HBによって照明された参照面部142からの反射光(以降、参照面反射光という)は第2入射スリット162に入射する。2チャンネル分光部160は、この第1入射スリット161に入射した試料放射光に対する分光測定を行い、第1チャンネル出力として当該試料放射光の分光分布データを出力するとともに、第2入射スリット162に入射した参照面反射光に対する分光測定を行い、第2チャンネル出力として当該参照面反射光の分光分布データを出力する。なお、光学特性測定装置100での光学系は、上述のように積分球140と受光部150との配置により、d/0ジオメトリーを構成している。   The two-channel spectroscopic unit 160 performs spectroscopic measurement on the incident light from the light receiving unit 150, and functions as a radiated light spectroscopic unit and an illumination light spectroscopic unit, like the two-channel spectroscopic unit 6. The two-channel spectroscopic unit 160 includes a first incident slit 161 and a second incident slit 162, and radiated light from the sample 110 to be measured illuminated by the illumination light HA or the illumination light HB (hereinafter, sample surface radiated light). Is incident on the first incident slit 161, while reflected light from the reference surface portion 142 illuminated by the illumination light HA or the illumination light HB (hereinafter referred to as reference surface reflected light) is incident on the second incident slit 162. To do. The two-channel spectroscopic unit 160 performs spectroscopic measurement on the sample radiation incident on the first incident slit 161, outputs spectral distribution data of the sample radiation as the first channel output, and enters the second incident slit 162. Spectral measurement is performed on the reference surface reflected light, and spectral distribution data of the reference surface reflected light is output as the second channel output. The optical system in the optical characteristic measuring apparatus 100 forms a d / 0 geometry by the arrangement of the integrating sphere 140 and the light receiving unit 150 as described above.

制御部170は、上記制御部7と同様、光学特性測定装置100全体の動作制御を司るものであり、例えば第1及び第2照明部120、130の点灯動作や2チャンネル分光部160の受光・分光動作に関する駆動制御を行ったり、2チャンネル分光部160からの情報(分光情報)に基づいて、被測定試料110に対する蛍光の影響を除去した全分光放射輝度率の算出等に関する各種演算処理を実行する。制御部170は、CPU171、分光データメモリ172、評価用照明光データメモリ173、二分光データメモリ174及び係数メモリ175等を備えている。   The control unit 170 is responsible for overall operation control of the optical characteristic measuring apparatus 100, similar to the control unit 7. For example, the lighting operation of the first and second illumination units 120 and 130 and the light reception / reception of the two-channel spectroscopic unit 160. Performs drive control related to the spectroscopic operation, and executes various arithmetic processes related to calculation of the total spectral radiance factor, etc., from which the influence of fluorescence on the sample 110 to be measured is removed based on information (spectral information) from the two-channel spectroscopic unit 160 To do. The control unit 170 includes a CPU 171, a spectral data memory 172, an evaluation illumination light data memory 173, a dual spectral data memory 174, a coefficient memory 175, and the like.

CPU171は、第1及び第2照明部120、130、並びに2チャンネル分光部160の駆動制御に関する処理、或いは被測定試料110に対する蛍光の影響を除去した全分光放射輝度率の算出等に関する演算等の各種演算処理を行う中央演算処理装置(CPU)である。分光データメモリ172は、2チャンネル分光部160で分光され、該2チャンネル分光部160から送信されてきた試料面放射光及び参照面反射光の分光分布データを記憶するものである。評価用照明光データメモリ173は、予め与えられた評価用照明光の分光分布データを記憶するものである。二分光データメモリ174は、予め求められた、被測定試料110(蛍光試料)と近似の二分光蛍光放射輝度率データを記憶するものである。係数メモリ175は、2チャンネル分光部160の相対分光感度を校正する感度校正係数、参照面反射光の分光分布を、被測定試料110に対する照明光(以降、試料面照明光という)の分光分布に変換する変換係数、及び試料放射光と参照面反射光との分光分布から、被測定試料110の当該全分光放射輝度率を求める校正係数等の係数データを記憶するものである。   The CPU 171 performs processing related to the drive control of the first and second illumination units 120 and 130 and the two-channel spectroscopic unit 160, or computation related to calculation of the total spectral radiance factor from which the influence of the fluorescence on the measured sample 110 has been removed. A central processing unit (CPU) that performs various types of arithmetic processing. The spectroscopic data memory 172 stores spectroscopic distribution data of the sample surface radiation light and the reference surface reflection light that is split by the two-channel spectroscopic unit 160 and transmitted from the two-channel spectroscopic unit 160. The evaluation illumination light data memory 173 stores spectral distribution data of evaluation illumination light given in advance. The bispectral data memory 174 stores bispectral fluorescence radiance factor data approximate to the sample 110 (fluorescent sample) obtained in advance. The coefficient memory 175 converts the sensitivity calibration coefficient for calibrating the relative spectral sensitivity of the two-channel spectroscopic unit 160 and the spectral distribution of the reference surface reflected light into the spectral distribution of illumination light for the sample 110 to be measured (hereinafter referred to as sample surface illumination light). Coefficient data such as a calibration coefficient for obtaining the total spectral radiance factor of the sample 110 to be measured is stored from the conversion coefficient to be converted and the spectral distribution of the sample radiation light and the reference surface reflection light.

第1及び第2照明光120、130から送り込まれた光束124、134は積分球140内で拡散多重反射され、それぞれ拡散光125、135となって試料用開口141にある被測定試料110を照明する。第1フィルタ123は「355」nm、第2フィルタ133は「395」nm以下の光束を遮断するので、照明光HA、HB(照明光I1、I2)の相対紫外強度は大きく異なるものとなる。本発明の測定方法では、実照明光HA、HBの分光分布I1(λ)、I2(λ)を把握する必要があるので、2チャンネル分光部160の測定範囲である350nm〜740nmの波長に合わせて、当該照明光HA、HBを355nm以上の波長の強度を有するものとしている。   The light beams 124 and 134 sent from the first and second illumination lights 120 and 130 are diffusely multiplexed and reflected within the integrating sphere 140 to illuminate the sample 110 to be measured in the sample opening 141 as diffused lights 125 and 135, respectively. To do. Since the first filter 123 blocks the light beam of “355” nm and the second filter 133 does not exceed “395” nm, the relative ultraviolet intensities of the illumination lights HA and HB (illumination lights I1 and I2) are greatly different. In the measurement method of the present invention, since it is necessary to grasp the spectral distributions I1 (λ) and I2 (λ) of the actual illumination lights HA and HB, the measurement range of the two-channel spectroscopic unit 160 is adjusted to a wavelength of 350 nm to 740 nm. The illumination lights HA and HB have an intensity of a wavelength of 355 nm or more.

制御部170が第1駆動回路122を介してキセノンフラッシュ121を駆動することで、第1照明部120は355nm以上の光束(照明光HA)で被測定試料110を拡散照明する。同様に、制御部170が第2駆動回路132を介してキセノンフラッシュ131を駆動することで、第2照明部130は395nm以上の光束(照明光HB)で被測定試料110を拡散照明する。第1又は第2照明部120、130によって照明された被測定試料110からの放射光のうち、法線方向の成分1101が積分球140の開口143を通り、受光部150によって2チャンネル分光部160の第1入射スリット161に入射して分光測定され、第1チャンネル出力としてその分光分布Sx1(λ)又はSx2(λ)が制御部170に出力される。   When the control unit 170 drives the xenon flash 121 via the first drive circuit 122, the first illumination unit 120 diffusely illuminates the sample 110 to be measured with a light beam (illumination light HA) of 355 nm or more. Similarly, when the control unit 170 drives the xenon flash 131 via the second drive circuit 132, the second illumination unit 130 diffusely illuminates the sample 110 to be measured with a light beam (illumination light HB) of 395 nm or more. Of the radiated light from the sample 110 to be measured illuminated by the first or second illuminating unit 120, 130, the component 1101 in the normal direction passes through the opening 143 of the integrating sphere 140, and the two-channel spectroscopic unit 160 is received by the light receiving unit 150. Is incident on the first incident slit 161 and subjected to spectroscopic measurement, and the spectral distribution Sx1 (λ) or Sx2 (λ) is output to the control unit 170 as the first channel output.

同時に、被測定試料110の測定域近傍の参照面部142からの反射光における略法線方向の成分1421が受光部150によって2チャンネル分光部160の第2入射スリット162に入射して分光測定され、上記照明光HA、HB(I1、I2)に対する参照面反射光の分光分布Mx1(λ)又はMx2(λ)が第2チャンネル出力として制御部170に出力される。   At the same time, the component 1421 in the substantially normal direction in the reflected light from the reference surface portion 142 in the vicinity of the measurement area of the sample 110 to be measured is incident on the second incident slit 162 of the two-channel spectroscopic unit 160 by the light receiving unit 150 and is spectroscopically measured. The spectral distribution Mx1 (λ) or Mx2 (λ) of the reference surface reflected light with respect to the illumination light HA, HB (I1, I2) is output to the control unit 170 as the second channel output.

制御部170は、上記図2に示す光学特性測定装置10(制御部7)の場合と同様、当該2チャンネル分光部160からの第1及び第2チャンネル出力データと制御部170の各メモリに記憶されたデータとを用いて、蛍光の影響を除去した全分光放射輝度率(反射分光放射輝度率)を算出する。但し、本実施形態においては、これらデータを用いて、評価用照明光で照明された蛍光試料の全分光放射輝度率と当該蛍光の影響を除去した全分光放射輝度率(反射分光放射輝度率)との算出を行う。   The control unit 170 stores the first and second channel output data from the two-channel spectroscopic unit 160 and the respective memories of the control unit 170 as in the case of the optical property measuring apparatus 10 (control unit 7) shown in FIG. The total spectral radiance factor (reflected spectral radiance factor) from which the influence of fluorescence is removed is calculated using the obtained data. However, in this embodiment, using these data, the total spectral radiance factor of the fluorescent sample illuminated with the evaluation illumination light and the total spectral radiance factor (reflection spectral radiance factor) from which the influence of the fluorescence is removed And calculate.

<演算方法>
上記式(1)に示すように、試料xの実測による全分光放射輝度率Bx(λ)は、反射分光放射輝度率Rx(λ)と蛍光分光放射輝度率Fx(λ)との和で与えられる。反射分光放射輝度率Rx(λ)が照明光に依存しない一方、蛍光分光放射輝度率Fx(λ)は照明光の分光分布に依存するが、この蛍光分光放射輝度率Fx(λ)は、試料xに近似する二分光蛍光放射輝度率F(μ,λ)と照明光の分光分布I(μ)とから上記式(2)によって算出される理論的な蛍光分光放射輝度率F(λ)に比例すると考えられ、以下の式(30)で示すことができる。
Bx(λ)=Rx(λ)+F(λ)・K(λ)…(30)
但し、K(λ)は、上記算出による理論的な蛍光分光放射輝度率F(λ)と、このF(λ)の算出に用いた二分光蛍光放射輝度率F(μ,λ)に近似の二分光蛍光放射輝度率を有する測定試料の実際の蛍光分光放射輝度率Fx(λ)との比であって、試料に固有の定数である。このK(λ)は、理論的な蛍光分光放射輝度率を、試料の実際の蛍光分光放射輝度率と結び付ける(関連付ける)ための試料に固有の比例定数であるとも言える。
<Calculation method>
As shown in the above equation (1), the total spectral radiance factor Bx (λ) obtained by actual measurement of the sample x is given by the sum of the reflected spectral radiance factor Rx (λ) and the fluorescent spectral radiance factor Fx (λ). It is done. While the reflected spectral radiance factor Rx (λ) does not depend on the illumination light, the fluorescent spectral radiance factor Fx (λ) depends on the spectral distribution of the illumination light. The theoretical fluorescence spectral radiance factor F (λ) calculated by the above equation (2) from the bispectral fluorescence radiance factor F (μ, λ) approximating x and the spectral distribution I (μ) of the illumination light. It is considered to be proportional and can be expressed by the following equation (30).
Bx (λ) = Rx (λ) + F (λ) · K (λ) (30)
However, K (λ) is approximate to the theoretical fluorescence spectral radiance factor F (λ) calculated above and the two-spectral fluorescence radiance factor F (μ, λ) used to calculate F (λ). The ratio of the measurement sample having the two-spectrum fluorescence radiance factor to the actual fluorescence spectrum radiance factor Fx (λ), which is a constant inherent to the sample. This K (λ) can be said to be a proportional constant inherent to the sample for associating (associating) the theoretical fluorescence spectral radiance factor with the actual fluorescence spectral radiance factor of the sample.

したがって、試料を分光分布の異なる2つの実照明光I1、I2で照明したときの実測の全分光放射輝度率Bx1(λ)、Bx2(λ)は、以下の式(31)、(32)によって算出される理論的な蛍光分光放射輝度率F1(λ)、F2(λ)を用いて、
F1(λ)=∫F(μ,λ)・I1(μ)dμ/I1(λ) …(31)
F2(λ)=∫F(μ,λ)・I2(μ)dμ/I2(λ) …(32)
以下の式(33)、(34)で表される。
Bx1(λ)=Rx(λ)+F1(λ)・K(λ) …(33)
Bx2(λ)=Rx(λ)+F2(λ)・K(λ) …(34)
Therefore, the measured total spectral radiance factors Bx1 (λ) and Bx2 (λ) when the sample is illuminated with two actual illumination lights I1 and I2 having different spectral distributions are expressed by the following equations (31) and (32). Using the calculated theoretical fluorescence spectral radiance factors F1 (λ) and F2 (λ),
F1 (λ) = ∫F (μ, λ) · I1 (μ) dμ / I1 (λ) (31)
F2 (λ) = ∫F (μ, λ) · I2 (μ) dμ / I2 (λ) (32)
It is represented by the following formulas (33) and (34).
Bx1 (λ) = Rx (λ) + F1 (λ) · K (λ) (33)
Bx2 (λ) = Rx (λ) + F2 (λ) · K (λ) (34)

よって、上記式(33)(34)を、Rx(λ)及びK(λ)を未知数とする連立方程式として波長毎に解くことで、蛍光の影響を除去した全分光放射輝度率にあたる反射分光放射輝度率Rx(λ)が求められる。   Therefore, by solving the above equations (33) and (34) for each wavelength as simultaneous equations with Rx (λ) and K (λ) as unknowns, the reflected spectral radiation corresponding to the total spectral radiance factor from which the influence of fluorescence has been removed. A luminance rate Rx (λ) is obtained.

なお、上述の蛍光の影響を除去した全分光放射輝度率の測定方法は、以下のように要約されるものであると言うこともできる。
b1.分光分布の異なる2つの照明光で照明された蛍光試料の実測全分光放射輝度率を、反射分光放射輝度率と蛍光分光放射輝度率との和として(式(1)参照)、反射分光放射輝度率(蛍光の影響を除去した全分光放射輝度率)を求める。
b2.各照明光での蛍光分光放射輝度率は、各照明光の分光分布と試料に近似の二分光蛍光放射輝度率から算出される理論的な蛍光分光放射輝度率に比例するとする。
In addition, it can also be said that the measuring method of the total spectral radiance factor which removed the influence of the above-mentioned fluorescence is summarized as follows.
b1. Reflected spectral radiance as the sum of the reflected spectral radiance factor and the fluorescent spectral radiance factor of the fluorescent sample illuminated with two illumination lights having different spectral distributions (see equation (1)). The ratio (total spectral radiance ratio excluding the influence of fluorescence) is obtained.
b2. The fluorescence spectral radiance factor for each illumination light is proportional to the theoretical fluorescence spectral radiance factor calculated from the spectral distribution of each illumination light and the two spectral fluorescence radiance factor approximated to the sample.

<蛍光の影響を除去した全分光放射輝度率の測定手順>
図5は、蛍光の影響を除去した全分光放射輝度率の測定に関する動作の一例を示すフローチャートである。まず、測定に先立って評価用照明光Isを選択する。すなわち制御部170は、評価用照明光データメモリ173から、選択する評価用照明光Isの分光分布データIs(λ)(すなわち分光分布Is(μ))を読み出す(ステップS31)。続いて、被測定試料110のタイプ(種類)を選択する。すなわち制御部170(CPU171)は、二分光データメモリ174から、選択するタイプの二分光蛍光放射輝度率F(μ,λ)のデータを読み出す(ステップS32)。次に、制御部170は、積分球140の試料用開口141に配設された被測定試料110に対し、第1照明部120(キセノンフラッシュ121)をパルス点灯して照明光HA(照明光I1)によって照明する(ステップS33)。上記ステップS33による発光(照明)時、2チャンネル分光部160(放射光分光手段)によって、当該照明光HAによる試料面放射光の分光分布Sx1(λ)を測定するとともに、照明光HAの参照面反射光の分光分布Mx1(λ)を測定し、これらSx1(λ)及びMx1(λ)の分光分布情報を分光データメモリ172に保存する(ステップS34)。
<Measurement procedure of the total spectral radiance factor without the influence of fluorescence>
FIG. 5 is a flowchart showing an example of an operation related to the measurement of the total spectral radiance factor from which the influence of fluorescence is removed. First, the evaluation illumination light Is is selected prior to measurement. That is, the control unit 170 reads out the spectral distribution data Is (λ) (that is, the spectral distribution Is (μ)) of the evaluation illumination light Is to be selected from the evaluation illumination light data memory 173 (step S31). Subsequently, the type (kind) of the sample 110 to be measured is selected. That is, the control unit 170 (CPU 171) reads data of the selected type of two-spectral fluorescence radiance factor F (μ, λ) from the two-spectral data memory 174 (step S32). Next, the control unit 170 pulse-lights the first illumination unit 120 (xenon flash 121) with respect to the sample 110 to be measured disposed in the sample opening 141 of the integrating sphere 140, and the illumination light HA (illumination light I1). ) (Step S33). At the time of light emission (illumination) in step S33, the spectral distribution Sx1 (λ) of the sample surface radiation light by the illumination light HA is measured by the two-channel spectroscopic unit 160 (radiation light spectroscopy means), and the reference surface of the illumination light HA The spectral distribution Mx1 (λ) of the reflected light is measured, and the spectral distribution information of Sx1 (λ) and Mx1 (λ) is stored in the spectral data memory 172 (step S34).

続いて、制御部170は、第2照明部130(キセノンフラッシュ131)をパルス点灯して、当該第2照明部130による照明光HB(照明光I2)によって被測定試料110を照明し(ステップS35)、第1照明部120の場合と同様、2チャンネル分光部160によって、当該照明光HBによる試料面放射光の分光分布Sx2(λ)を測定するとともに、照明光LBの参照面反射光の分光分布Mx2(λ)を測定し、これらSx2(λ)及びMx2(λ)の分光分布情報を分光データメモリ172に保存する(ステップS36)。   Subsequently, the control unit 170 pulses the second illumination unit 130 (xenon flash 131) and illuminates the sample 110 to be measured with the illumination light HB (illumination light I2) from the second illumination unit 130 (step S35). As in the case of the first illumination unit 120, the two-channel spectroscopic unit 160 measures the spectral distribution Sx2 (λ) of the sample surface radiation by the illumination light HB, and the spectrum of the reference surface reflected light of the illumination light LB. The distribution Mx2 (λ) is measured, and the spectral distribution information of these Sx2 (λ) and Mx2 (λ) is stored in the spectral data memory 172 (step S36).

次に、上記図4に示すフローチャートのステップS18〜S23と同様の処理を行うことによって、照明光HA、HB(照明光I1、I2)の、分光分布I1(λ)、I2(λ)と、各照明光に対する全分光放射輝度率Bx1(λ)、Bx2(λ)とを算出して分光データメモリ172に保存し、これらの情報から評価用照明光による全分光放射輝度率Bxs(λ)を算出するとともに、その過程で分光分布I1(λ)、I2(λ)と、読み出された二分光蛍光放射輝度率F(μ,λ)とから、上述の式(31)、(32)によって、算出した理論的な蛍光分光放射輝度率F1(λ)、F2(λ)を分光データメモリ172に保存する(ステップS37)。上記ステップS36、S37において算出した実測全分光放射輝度率Bx1(λ)、Bx2(λ)と、理論的蛍光分光放射輝度率F1(λ)、F2(λ)とを用いた上述の式(33)、(34)による連立方程式を波長毎に解いて、蛍光の影響を除去した全分光放射輝度率にあたる反射分光放射輝度率Rx(λ)を求める(ステップS38)。   Next, by performing the same processing as steps S18 to S23 of the flowchart shown in FIG. 4, the spectral distributions I1 (λ) and I2 (λ) of the illumination lights HA and HB (illumination lights I1 and I2), The total spectral radiance factors Bx1 (λ) and Bx2 (λ) for each illumination light are calculated and stored in the spectral data memory 172, and the total spectral radiance factor Bxs (λ) by the evaluation illumination light is calculated from these pieces of information. In the process, the spectral distributions I1 (λ) and I2 (λ) and the read two-spectral fluorescence radiance factor F (μ, λ) are calculated according to the above equations (31) and (32). The calculated theoretical fluorescent spectral radiance factors F1 (λ) and F2 (λ) are stored in the spectral data memory 172 (step S37). The above equation (33) using the measured total spectral radiance factors Bx1 (λ) and Bx2 (λ) calculated in the steps S36 and S37 and the theoretical fluorescent spectral radiance factors F1 (λ) and F2 (λ). ) And (34) are solved for each wavelength, and the reflection spectral radiance factor Rx (λ) corresponding to the total spectral radiance factor from which the influence of fluorescence is removed is obtained (step S38).

上述のように、本発明の光学特性測定方法及びこれを用いた光学特性測定装置によって蛍光試料の光学特性が測定される、すなわち評価用照明光で照明したときの全分光放射輝度率と蛍光の影響を除去した全分光放射輝度率とが測定されるが、当該測定方法及び測定装置は、以下に要約される効果をもたらすものであると言うこともできる。   As described above, the optical property of the fluorescent sample is measured by the optical property measuring method of the present invention and the optical property measuring apparatus using the method, that is, the total spectral radiance factor and the fluorescence when illuminated with the evaluation illumination light. Although the total spectral radiance factor from which the influence is removed is measured, it can be said that the measurement method and the measurement apparatus bring about the effects summarized below.

すなわち、本発明では照明光の分光分布を把握することで、従来用いられてきた蛍光標準試料を、試料に近似の二蛍光分光放射輝度率データに置き換えることができ、したがって、c1.蛍光基準試料の経時変化による誤差が、はるかに小さい照明光分光手段の経時変化による誤差に置き換わる。c2.蛍光基準試料間の差に起因する誤差がない。c3.蛍光基準試料の経時変化の影響を抑えるための蛍光標準試料の更新が不要となり、これに伴う管理、手間或いはコストを抑えることができる。c4.従来の相対紫外強度の校正にあたる照明光の合成は測定時に数値的に行われるので、事前の校正作業が不要になる。c5.照明光の合成は、測定時の照明光に基づいて行われるので、照明光の変化に起因する誤差がない。c6.測定可能性のある1つ以上の二分光蛍光放射輝度率又は二分光放射輝度率データや1つ以上の評価用照明光の分光分布を、生産時あるいは測定サイトに出荷する前に予め記憶しておくことで、通常、測定サイトではそれらを選択するだけで、蛍光試料の分光放射輝度率を容易に求めることができる。c7.二分光蛍光放射輝度率又は二分光放射輝度率データはインターネット(Web)を通じて適宜、追加、更新することができる。c8.同じ蛍光試料に対する評価用照明光で照明した蛍光試料の全分光放射輝度率と、蛍光の影響を除去した全分光放射輝度率とを同時に求めることができる。c9.蛍光の影響を除去した全分光放射輝度率の測定において、蛍光抑制フィルタ等が不要となる。c10.全分光放射輝度率が測定不能な波長域が生じず、全分光放射輝度率から求められる色彩値の精度が落ちない。   That is, in the present invention, by grasping the spectral distribution of the illumination light, the conventionally used fluorescence standard sample can be replaced with bifluorescence spectral radiance factor data approximate to the sample, and therefore c1. The error due to the time-dependent change of the fluorescence reference sample is replaced with the error due to the time-dependent change of the illumination light spectroscopic means. c2. There is no error due to differences between fluorescent reference samples. c3. It is not necessary to update the fluorescence standard sample to suppress the influence of the change in the fluorescence reference sample over time, and the management, labor and cost associated with this can be reduced. c4. Conventionally, the synthesis of illumination light for calibration of relative ultraviolet intensity is numerically performed at the time of measurement, so that prior calibration work is not required. c5. Since the illumination light is synthesized based on the illumination light at the time of measurement, there is no error due to a change in the illumination light. c6. Pre-store one or more spectroscopic fluorescence radiance factors or spectroscopic radiance factor data and one or more spectral distributions of evaluation illumination light that can be measured before production or before shipping to the measurement site. In general, the spectral radiance factor of the fluorescent sample can be easily obtained simply by selecting them at the measurement site. c7. Bispectral fluorescence radiance factor or bispectral radiance factor data can be added and updated as appropriate over the Internet (Web). c8. It is possible to simultaneously obtain the total spectral radiance factor of the fluorescent sample illuminated with the evaluation illumination light for the same fluorescent sample and the total spectral radiance factor from which the influence of fluorescence is removed. c9. In the measurement of the total spectral radiance factor from which the influence of fluorescence is removed, a fluorescence suppression filter or the like is not necessary. c10. A wavelength range in which the total spectral radiance factor cannot be measured does not occur, and the accuracy of the color value obtained from the total spectral radiance factor does not decrease.

以上のように本発明の光学特性測定方法によれば、試料に近似する二分光蛍光放射輝度率F(μ,λ)と、分光分布が異なる第1及び第2の実照明光I1、I2の分光分布I1(λ)、I2(λ)と、第1及び第2の実照明光I1、I2(照明光HA、HB)のそれぞれによって照明された試料の実測全分光放射輝度率Bx1(λ)、Bx2(λ)とから、蛍光の影響を除去した試料の反射分光放射輝度率Rx(λ)が以下の第1及び第2の工程によって算出されるので、すなわち、   As described above, according to the optical characteristic measuring method of the present invention, the first and second actual illumination lights I1 and I2 having different spectral distributions from the two-spectral fluorescence radiance factor F (μ, λ) that approximates the sample. Measured total spectral radiance factor Bx1 (λ) of the sample illuminated by each of the spectral distributions I1 (λ) and I2 (λ) and the first and second actual illumination lights I1 and I2 (illumination lights HA and HB) , Bx2 (λ), the reflection spectral radiance factor Rx (λ) of the sample from which the influence of fluorescence is removed is calculated by the following first and second steps, that is,

第1の工程:前記二分光蛍光放射輝度率F(μ,λ)と前記第1及び第2の実照明光I1、I2の分光分布I1(λ)、I2(λ)とから、該第1及び第2の実照明光I1、I2による前記試料の理論的な蛍光分光放射輝度率F1(λ)=∫F(μ,λ)・I1(μ)dμ/I1(λ)及びF2(λ)=∫F(μ,λ)・I2(μ)dμ/I2(λ)を算出する。
第2の工程:前記試料の反射分光放射輝度率をRx(λ)とし、前記実測全分光放射輝度率Bx1(λ)及びBx2(λ)を、該反射分光放射輝度率Rx(λ)と、前記理論的な蛍光分光放射輝度率F1(λ)、F2(λ)とK(λ)との乗算によるF1(λ)・K(λ)及びF2(λ)・K(λ)との和とする以下の連立方程式を波長毎に解いて反射分光放射輝度率Rx(λ)を算出する。Bx1(λ)=Rx(λ)+F1(λ)・K(λ)、Bx2(λ)=Rx(λ)+F2(λ)・K(λ)。但し、K(λ)は、前記算出による理論的な蛍光分光放射輝度率F1(λ)、F2(λ)と前記試料の実測蛍光分光放射輝度率との比を示す試料に固有の定数。
First step: The first spectral fluorescence radiance factor F (μ, λ) and the spectral distributions I1 (λ), I2 (λ) of the first and second actual illumination lights I1, I2 And the theoretical fluorescence spectral radiance factor F1 (λ) = ∫F (μ, λ) · I1 (μ) dμ / I1 (λ) and F2 (λ) of the sample by the second actual illumination lights I1 and I2 = ∫F (μ, λ) · I2 (μ) dμ / I2 (λ) is calculated.
Second step: Rx (λ) is the reflected spectral radiance factor of the sample, and the measured total spectral radiance factors Bx1 (λ) and Bx2 (λ) are the reflected spectral radiance factor Rx (λ), F1 (λ) · K (λ) and F2 (λ) · K (λ) by multiplication of the theoretical fluorescence spectral radiance factors F1 (λ), F2 (λ) and K (λ) The following simultaneous equations are solved for each wavelength to calculate the reflection spectral radiance factor Rx (λ). Bx1 (λ) = Rx (λ) + F1 (λ) · K (λ), Bx2 (λ) = Rx (λ) + F2 (λ) · K (λ). However, K (λ) is a constant specific to the sample indicating the ratio between the theoretical fluorescence spectral radiance factors F1 (λ) and F2 (λ) calculated above and the measured fluorescence spectral radiance factor of the sample.

このように、試料に近似する二分光蛍光放射輝度率F(μ,λ)と、分光分布が異なる第1及び第2の実照明光I1、I2の分光分布I1(λ)、I2(λ)と、第1及び第2の実照明光I1、I2のそれぞれによって照明された試料の実測全分光放射輝度率Bx1(λ)、Bx2(λ)とから、蛍光の影響を除去した試料の反射分光放射輝度率Rx(λ)が上記第1及び第2の工程で算出されるので、励起光を抑えるフィルタ等を用いることなく、したがって、全分光放射輝度率が測定不能となる波長域が生じることなく、蛍光の影響を除去した全分光放射輝度率を精度よく求めることができ、全分光放射輝度率から求められる色彩値の精度低下を防止することができる。   Thus, the spectral distributions I1 (λ) and I2 (λ) of the first and second actual illumination lights I1 and I2 having different spectral distributions from the two-spectral fluorescence radiance factor F (μ, λ) that approximates the sample. And the reflection spectroscopy of the sample from which the influence of fluorescence is removed from the measured total spectral radiance factors Bx1 (λ) and Bx2 (λ) of the sample illuminated by the first and second actual illumination lights I1 and I2, respectively. Since the radiance factor Rx (λ) is calculated in the first and second steps described above, a wavelength range in which the total spectral radiance factor cannot be measured is generated without using a filter or the like that suppresses excitation light. In addition, the total spectral radiance factor from which the influence of fluorescence has been removed can be obtained with high accuracy, and a reduction in the accuracy of the color value obtained from the total spectral radiance factor can be prevented.

また、本発明の光学特性測定装置100によれば、第1及び第2の照明手段(第1照明部120、130)によって分光分布が異なる第1及び第2の実照明光I1、I2により試料が照明され、放射光分光手段(2チャンネル分光部160)によって試料からの放射光の分光分布が測定され、照明光分光手段(2チャンネル分光部160)によって第1及び第2の実照明光I1、I2の分光分布が測定され、記憶手段(二分光データメモリ174)によって試料に近似する二分光蛍光放射輝度率F(μ,λ)の情報が記憶される。そして、演算制御手段(制御部170)によって、第1及び第2の照明手段が個々に点灯されて、放射光分光手段及び照明光分光手段により測定して得た情報に基づいて、第1及び第2の実照明光I1、I2それぞれに対する試料の実測全分光放射輝度率Bx1(λ)、Bx2(λ)と、該第1及び第2の実照明光I1、I2の分光分布I1(λ)、I2(λ)とが算出されるとともに、該算出された情報及び記憶手段に記憶された二分光蛍光放射輝度率F(μ,λ)の情報に基づいて、蛍光の影響を除去した試料の反射分光放射輝度率Rx(λ)が算出されるので、励起光を抑えるフィルタ等を用いることなく、したがって、全分光放射輝度率が測定不能となる波長域が生じることなく、蛍光の影響を除去した全分光放射輝度率を精度よく求めることができ、全分光放射輝度率から求められる色彩値の精度低下を防止することができる。   Further, according to the optical characteristic measuring apparatus 100 of the present invention, the sample is obtained by the first and second actual illumination lights I1 and I2 having different spectral distributions depending on the first and second illumination means (first illumination units 120 and 130). Is illuminated, the spectral distribution of the radiated light from the sample is measured by the radiated light spectroscopic means (two-channel spectroscopic section 160), and the first and second actual illumination lights I1 are measured by the illuminating light spectroscopic means (two-channel spectroscopic section 160). , The spectral distribution of I2 is measured, and information on the two-spectral fluorescence radiance factor F (μ, λ) approximating the sample is stored by the storage means (two-spectral data memory 174). Then, the first and second illuminating means are individually turned on by the arithmetic control means (control unit 170), and the first and second illuminating means are measured based on the information obtained by the measurement by the radiated light spectroscopic means and the illuminating light spectroscopic means. The measured total spectral radiance factors Bx1 (λ) and Bx2 (λ) of the sample for the second actual illumination lights I1 and I2, respectively, and the spectral distribution I1 (λ) of the first and second actual illumination lights I1 and I2 , I2 (λ) is calculated, and based on the calculated information and the information of the two-spectral fluorescence radiance factor F (μ, λ) stored in the storage means, Since the reflected spectral radiance factor Rx (λ) is calculated, the influence of fluorescence is eliminated without using a filter or the like that suppresses excitation light, and therefore without generating a wavelength range in which the total spectral radiance factor cannot be measured. Accurately calculate the total spectral radiance factor It is possible, the accuracy decreases color values obtained from the total spectral radiance factor can be prevented.

さらに、第1及び第2の実照明光I1、I2が少なくとも短波長域において、照明光分光手段の測定範囲を超える波長域に強度を有さないものとされるので、演算制御手段による演算において、第1及び第2の実照明光の励起及び蛍光に関わる波長域の分光強度を漏れなく把握する(演算処理で扱う)ことができ、これにより、各照明光の理論的な蛍光分光放射輝度率を正確に求めることができるので、蛍光の影響を除去した全分光放射輝度率を正確に求めることが可能となる。   Further, since the first and second actual illumination lights I1 and I2 have no intensity in the wavelength range exceeding the measurement range of the illumination light spectroscopic means at least in the short wavelength range, The spectral intensity in the wavelength range related to the excitation and fluorescence of the first and second actual illumination light can be grasped without any omission (calculation processing), so that the theoretical fluorescence spectral radiance of each illumination light can be obtained. Since the rate can be accurately obtained, it is possible to accurately obtain the total spectral radiance rate from which the influence of fluorescence is removed.

なお、本発明は、以下の態様をとることができる。
(1)上記実施形態では、照明光HA、HBの2つの実照明光を用いているが、2つ以上の実照明光を用いてもよい。この場合、照明光を合成するための重みは、照明光毎に与えられる(但し、重みの合計は「1」となる)。
In addition, this invention can take the following aspects.
(1) In the above-described embodiment, two actual illumination lights of the illumination lights HA and HB are used, but two or more actual illumination lights may be used. In this case, a weight for synthesizing the illumination light is given for each illumination light (however, the sum of the weights is “1”).

(2)照明光HA、HBは、1つの光源からの光束に異なる分光透過特性(素通しを含む)を有する2つのフィルターを順次挿入することで得てもよい。   (2) The illumination lights HA and HB may be obtained by sequentially inserting two filters having different spectral transmission characteristics (including through) into the light flux from one light source.

(3)二分光データメモリ73、174に、評価を行う可能性のある蛍光増白製品に近似する二分光蛍光放射輝度率データを予め複数記憶しておき、測定に先立ってこれらデータから所要のデータを選択して用いる構成であってもよい。この場合、制御部7、170は、当該選択された二分光蛍光放射輝度率データに基づいて、蛍光の影響を除去した測定試料の全分光放射輝度率や、これに基づく色彩値を求めて出力する。   (3) A plurality of bispectral fluorescent radiance rate data approximate to fluorescent whitening products that may be evaluated are stored in advance in the bispectral data memories 73 and 174, and necessary data is obtained from these data prior to measurement. It may be configured to select and use data. In this case, the control units 7 and 170 obtain and output the total spectral radiance factor of the measurement sample from which the influence of fluorescence has been removed and the color value based on this based on the selected two-spectrum fluorescent radiance factor data. To do.

(4)例えば特許文献1に示すような、蛍光基準試料を用いて評価用照明光の場合と同じ全分光放射輝度率を与える照明光を合成する従来の測定方法(装置)に対しても、照明光HA、HB(照明光LA、LB)の分光分布さえ把握することができれば、被測定試料に近似の二分光蛍光放射輝度率を与えることで、本発明の方法を適用することができる。この場合について説明する。図6は、本発明の方法を、従来の測定方法に適用した場合の光学特性測定装置の一例を示す概略構成図である。同図の光学特性測定装置200に示すように、通常、蛍光試料の測定を行うための測定装置には、PC(パーソナルコンピュータ)210といった情報処理装置を含んでいる。このPC210では、制御部220を介して照明手段(第1及び第2照明部230、240)や分光手段(分光部250)を制御するとともに、照明光及び試料面放射光の分光分布を受け取り、この情報に基づいて照明光を合成したり、試料の全分光放射輝度率を求めている。従来の測定装置では、実照明光の励起及び蛍光に関与する全波長域の分光分布を得ることができないため、当該照明光の分光分布を測定する分光分布測定手段を別途設ける必要があり、これに対応して分光分布測定部201を設けている。この分光分布測定部201は、測定に先立って試料用開口(後述の開口部271)に配設され、第1及び第2照明部230、240の照明に基づく照明光HA及びHBの分光分布を実測する。当該実測された照明光HA、HBの分光分布情報はPC210へ送られる。そして、PC210において、当該実照明光の分光分布情報と、予め該PC210に数値データとして記憶しておいた二分光蛍光放射輝度率の情報と合わせて、上述の実施形態と同じ手順で理論的な蛍光分光放射輝度率が求められるとともに照明光が合成され、評価用照明光で照明したときの試料の全分光放射輝度率、及び蛍光の影響を除去した試料の全分光放射輝度率(反射分光放射輝度率)等が求められる。   (4) For example, as shown in Patent Document 1, a conventional measurement method (apparatus) for synthesizing illumination light that gives the same total spectral radiance factor as that of evaluation illumination light using a fluorescence reference sample, If the spectral distribution of the illumination lights HA and HB (illumination lights LA and LB) can be grasped, the method of the present invention can be applied by giving an approximate two-spectral fluorescence radiance factor to the sample to be measured. This case will be described. FIG. 6 is a schematic configuration diagram showing an example of an optical characteristic measuring apparatus when the method of the present invention is applied to a conventional measuring method. As shown in the optical characteristic measuring apparatus 200 in FIG. 1, the measuring apparatus for measuring a fluorescent sample usually includes an information processing apparatus such as a PC (personal computer) 210. The PC 210 controls the illumination unit (first and second illumination units 230 and 240) and the spectroscopic unit (spectral unit 250) via the control unit 220, and receives the spectral distribution of the illumination light and the sample surface radiation light, Based on this information, the illumination light is synthesized and the total spectral radiance factor of the sample is obtained. In the conventional measuring apparatus, since it is impossible to obtain the spectral distribution of the entire wavelength region involved in the excitation and fluorescence of the actual illumination light, it is necessary to separately provide a spectral distribution measurement means for measuring the spectral distribution of the illumination light. The spectral distribution measuring unit 201 is provided corresponding to the above. Prior to the measurement, the spectral distribution measuring unit 201 is disposed in the sample opening (opening 271 described later), and the spectral distribution of the illumination lights HA and HB based on the illumination of the first and second illumination units 230 and 240 is obtained. Measure. The spectral distribution information of the actually measured illumination lights HA and HB is sent to the PC 210. Then, in the PC 210, the theoretical distribution procedure of the actual illumination light and the information of the two-spectral fluorescence radiance factor stored in advance as numerical data in the PC 210 are theoretically performed in the same procedure as in the above-described embodiment. Fluorescence spectral radiance factor is obtained and illumination light is synthesized, and the total spectral radiance factor of the sample when illuminated with evaluation illumination light, and the total spectral radiance factor of the sample from which the influence of fluorescence is removed (reflected spectral radiation) Brightness factor) and the like.

なお、図6の光学特性測定装置200に示す制御部220、第1照明部230、第2照明部240、分光部250、受光部260及び積分球270は、それぞれ図1に示す光学特性測定装置100の制御部170、第1照明部120、第2照明部130、2チャンネル分光部160、受光部150及び積分球140に相当する。ただし、第1照明部230及び第2照明部240の光源231、241は、いずれも紫外域に十分なエネルギーをもつキセノンフラッシュ光源であり、第2照明部240にのみ紫外カットフィルタ243が備えられている。なお、分光部250の第1及び第2入射スリット251、252は、それぞれ2チャンネル分光部160の第1入射スリット161、第2入射スリット162に相当する。また、符号232、242は光源231、241を点灯させるための駆動回路である。また、積分球270は、試料用開口としての開口部271を備えるとともに、図1に示す参照面部142に相当する積分球270の内壁の一部である参照面部272を備えている。   Note that the control unit 220, the first illumination unit 230, the second illumination unit 240, the spectroscopic unit 250, the light receiving unit 260, and the integrating sphere 270 shown in the optical property measurement apparatus 200 of FIG. 100 control unit 170, first illumination unit 120, second illumination unit 130, two-channel spectroscopic unit 160, light receiving unit 150, and integrating sphere 140. However, the light sources 231 and 241 of the first illumination unit 230 and the second illumination unit 240 are both xenon flash light sources having sufficient energy in the ultraviolet region, and the ultraviolet cut filter 243 is provided only in the second illumination unit 240. ing. The first and second incident slits 251 and 252 of the spectroscopic unit 250 correspond to the first incident slit 161 and the second incident slit 162 of the two-channel spectroscopic unit 160, respectively. Reference numerals 232 and 242 denote drive circuits for lighting the light sources 231 and 241. The integrating sphere 270 includes an opening 271 serving as a sample opening, and a reference surface portion 272 that is a part of the inner wall of the integrating sphere 270 corresponding to the reference surface portion 142 illustrated in FIG.

ところで、上記照明光の分光分布測定部201は、少なくとも相対分光感度が校正されている必要があり、励起及び蛍光に関与する全波長域(蛍光増白試料の場合であれば例えば約300nm〜600nmの波長域)をカバーしなければならない。この測定方法によって、安定性に欠ける蛍光基準試料を、上記照明光の分光分布測定部201に置き換える(蛍光基準試料の代わりに分光分布測定部201を用いる)ことができ、また、励起光抑制フィルターを用いることなく、したがって全分光放射輝度率が測定不能となる波長域が生じることなく、蛍光の影響を除去した全分光放射輝度率を求めることができるものの、照明光の合成と理論的な蛍光分光放射輝度率の算出とを測定に先立って行う必要があり、これに伴って、照明光の変動による誤差を排除できなくなる。   By the way, the spectral distribution measurement unit 201 of the illumination light needs to have at least a relative spectral sensitivity calibrated, and the entire wavelength region related to excitation and fluorescence (for example, about 300 nm to 600 nm in the case of a fluorescent whitening sample). Wavelength range) must be covered. With this measurement method, the fluorescence reference sample lacking in stability can be replaced with the spectral distribution measurement unit 201 of the illumination light (the spectral distribution measurement unit 201 is used instead of the fluorescence reference sample), and the excitation light suppression filter Therefore, it is possible to obtain the total spectral radiance factor without the influence of fluorescence without generating a wavelength range where the total spectral radiance factor cannot be measured, but the synthesis of illumination light and theoretical fluorescence It is necessary to calculate the spectral radiance factor prior to measurement, and as a result, it becomes impossible to eliminate errors due to variations in illumination light.

(5)上記実施形態では、計算による理論的蛍光分光放射輝度率と試料の実際の蛍光分光放射輝度率との比を示す試料に固有の定数K(λ)を波長毎に求めているが、この比の波長依存性が大きくない場合は、上記定数を波長に依存しないKとして求めてもよい。   (5) In the above embodiment, the constant K (λ) specific to the sample indicating the ratio between the calculated theoretical fluorescent spectral radiance factor and the actual fluorescent spectral radiance factor of the sample is obtained for each wavelength. If the wavelength dependence of this ratio is not large, the above constant may be obtained as K independent of wavelength.

本発明に係る蛍光試料の光学特性測定装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the optical property measuring apparatus of the fluorescence sample which concerns on this invention. 原理的な説明における蛍光試料の光学特性測定装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the optical characteristic measuring apparatus of the fluorescence sample in a principle description. 白色校正に関する動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation | movement regarding white calibration. 光学特性測定装置による蛍光試料の全分光放射輝度率の測定に関する動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation | movement regarding the measurement of the total spectral radiance factor of the fluorescence sample by an optical characteristic measuring apparatus. 蛍光の影響を除去した全分光放射輝度率の測定に関する動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation | movement regarding the measurement of the total spectral radiance factor which removed the influence of fluorescence. 本発明の方法を、従来の測定方法に適用した場合の光学特性測定装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the optical characteristic measuring apparatus at the time of applying the method of this invention to the conventional measuring method. 二分光蛍光放射輝度率の強度マトリクスの一例を示すグラフ図である。It is a graph which shows an example of the intensity | strength matrix of a bispectral fluorescence radiance factor. 白熱光源及び紫外LEDの分光分布を示すグラフ図である。It is a graph which shows the spectral distribution of an incandescent light source and ultraviolet LED. 従来の光学特性測定装置を示す概略構成図である。It is a schematic block diagram which shows the conventional optical characteristic measuring apparatus. 従来の光学特性測定装置を示す概略構成図である。It is a schematic block diagram which shows the conventional optical characteristic measuring apparatus.

符号の説明Explanation of symbols

100 光学特性測定装置
110 被測定試料(蛍光試料、試料)
120 第1照明部(第1の照明手段)
121 キセノンフラッシュ
122 第1駆動回路
130 第2照明部(第2の照明手段)
131 キセノンフラッシュ
132 第2駆動回路
142 参照面部
150 受光部
160 2チャンネル分光部(放射光分光手段、照明光分光手段)
161 第1入射スリット
162 第2入射スリット
170 制御部(演算制御手段)
171 CPU
172 分光データメモリ
173 評価用照明光データメモリ
174 二分光データメモリ(記憶手段)
175 係数メモリ
100 Optical property measuring device 110 Sample to be measured (fluorescent sample, sample)
120 1st illumination part (1st illumination means)
121 Xenon flash 122 First drive circuit 130 Second illumination section (second illumination means)
131 Xenon Flash 132 Second Drive Circuit 142 Reference Surface Part 150 Light Receiving Part 160 Two-Channel Spectroscopic Part (Radiated Light Spectroscopic Means, Illuminating Light Spectroscopic Means)
161 1st entrance slit 162 2nd entrance slit 170 Control part (calculation control means)
171 CPU
172 Spectral data memory 173 Illumination light data memory for evaluation 174 Dual spectral data memory (storage means)
175 coefficient memory

Claims (3)

蛍光試料の光学特性測定方法であって、
試料に近似する二分光蛍光放射輝度率F(μ,λ)と、
分光分布が異なる第1及び第2の実照明光I1、I2の分光分布I1(λ)、I2(λ)と、
前記第1及び第2の実照明光I1、I2のそれぞれによって照明された前記試料の実測全分光放射輝度率Bx1(λ)、Bx2(λ)とから、
蛍光の影響を除去した前記試料の反射分光放射輝度率Rx(λ)を以下の第1及び第2の工程で算出することを特徴とする蛍光試料の光学特性測定方法。
第1の工程:前記二分光蛍光放射輝度率F(μ,λ)と前記第1及び第2の実照明光I1、I2の分光分布I1(λ)、I2(λ)とから、該第1及び第2の実照明光I1、I2による前記試料の理論的な蛍光分光放射輝度率F1(λ)=∫F(μ,λ)・I1(μ)dμ/I1(λ)及びF2(λ)=∫F(μ,λ)・I2(μ)dμ/I2(λ)を算出する。
第2の工程:前記試料の反射分光放射輝度率をRx(λ)とし、前記実測全分光放射輝度率Bx1(λ)及びBx2(λ)を、該反射分光放射輝度率Rx(λ)と、前記理論的な蛍光分光放射輝度率F1(λ)、F2(λ)とK(λ)との乗算によるF1(λ)・K(λ)及びF2(λ)・K(λ)との和とする以下の連立方程式を解いて反射分光放射輝度率Rx(λ)を算出する。
Bx1(λ)=Rx(λ)+F1(λ)・K(λ)、
Bx2(λ)=Rx(λ)+F2(λ)・K(λ)
但し、K(λ)は、前記算出による理論的な蛍光分光放射輝度率F1(λ)、F2(λ)と前記試料の実際の蛍光分光放射輝度率との比を示す試料に固有の定数。
A method for measuring optical properties of a fluorescent sample,
Bispectral fluorescence radiance factor F (μ, λ) approximating the sample,
Spectral distributions I1 (λ) and I2 (λ) of the first and second actual illumination lights I1 and I2 having different spectral distributions;
From the measured total spectral radiance factors Bx1 (λ) and Bx2 (λ) of the sample illuminated by each of the first and second actual illumination lights I1 and I2,
A method for measuring optical properties of a fluorescent sample, characterized in that the reflection spectral radiance factor Rx (λ) of the sample from which the influence of fluorescence has been removed is calculated in the following first and second steps.
First step: The first spectral fluorescence radiance factor F (μ, λ) and the spectral distributions I1 (λ), I2 (λ) of the first and second actual illumination lights I1, I2 And the theoretical fluorescence spectral radiance factor F1 (λ) = ∫F (μ, λ) · I1 (μ) dμ / I1 (λ) and F2 (λ) of the sample by the second actual illumination lights I1 and I2 = ∫F (μ, λ) · I2 (μ) dμ / I2 (λ) is calculated.
Second step: Rx (λ) is the reflected spectral radiance factor of the sample, and the measured total spectral radiance factors Bx1 (λ) and Bx2 (λ) are the reflected spectral radiance factor Rx (λ), F1 (λ) · K (λ) and F2 (λ) · K (λ) by multiplication of the theoretical fluorescence spectral radiance factors F1 (λ), F2 (λ) and K (λ) The reflection simultaneous radiance factor Rx (λ) is calculated by solving the following simultaneous equations.
Bx1 (λ) = Rx (λ) + F1 (λ) · K (λ),
Bx2 (λ) = Rx (λ) + F2 (λ) · K (λ)
However, K (λ) is a constant specific to the sample indicating the ratio between the theoretical fluorescence spectral radiance factors F1 (λ) and F2 (λ) calculated as described above and the actual fluorescent spectral radiance factor of the sample.
蛍光試料の光学特性測定装置であって、
分光分布が異なる第1及び第2の実照明光I1、I2により試料を照明するための第1及び第2の照明手段と、
前記試料からの放射光の分光分布を測定する放射光分光手段と、
前記第1及び第2の実照明光I1、I2の分光分布を測定する照明光分光手段と、
前記試料に近似する二分光蛍光放射輝度率F(μ,λ)の情報を記憶する記憶手段と、
前記第1及び第2の照明手段を個々に点灯し、前記放射光分光手段及び照明光分光手段により測定して得た情報に基づいて、第1及び第2の実照明光I1、I2それぞれに対する前記試料の実測全分光放射輝度率Bx1(λ)、Bx2(λ)と、該第1及び第2の実照明光I1、I2の分光分布I1(λ)、I2(λ)とを算出するとともに、該算出した情報及び前記記憶手段に記憶された二分光蛍光放射輝度率F(μ,λ)の情報に基づいて、蛍光の影響を除去した前記試料の反射分光放射輝度率Rx(λ)を算出する演算制御手段とを備えることを特徴とする蛍光試料の光学特性測定装置。
An apparatus for measuring optical properties of a fluorescent sample,
First and second illumination means for illuminating the sample with first and second actual illumination lights I1 and I2 having different spectral distributions;
Synchrotron radiation means for measuring the spectral distribution of synchrotron radiation from the sample;
Illumination light spectroscopic means for measuring a spectral distribution of the first and second actual illumination lights I1 and I2,
Storage means for storing information of a dual spectral fluorescence radiance factor F (μ, λ) approximating the sample;
The first and second illumination means are individually turned on, and the first and second actual illumination lights I1 and I2 are respectively measured based on the information obtained by measurement using the synchrotron radiation spectroscopic means and the illumination light spectroscopic means. Calculate the measured total spectral radiance factors Bx1 (λ) and Bx2 (λ) of the sample and the spectral distributions I1 (λ) and I2 (λ) of the first and second actual illumination lights I1 and I2. Based on the calculated information and information on the bispectral fluorescence radiance factor F (μ, λ) stored in the storage means, the reflected spectral radiance factor Rx (λ) of the sample from which the influence of fluorescence has been removed is obtained. An optical characteristic measuring apparatus for a fluorescent sample, comprising: an arithmetic control means for calculating.
前記第1及び第2の実照明光I1、I2は、少なくとも短波長域において、前記照明光分光手段の測定範囲を超える波長域に強度を有さないことを特徴とする請求項2記載の蛍光試料の光学特性測定装置。   3. The fluorescence according to claim 2, wherein the first and second actual illumination lights I1 and I2 have no intensity in a wavelength range exceeding a measurement range of the illumination light spectroscopic means at least in a short wavelength range. A device for measuring optical properties of samples.
JP2005112337A 2005-04-08 2005-04-08 Optical property measuring method of fluorescent sample and optical property measuring apparatus using the same Expired - Fee Related JP4617436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005112337A JP4617436B2 (en) 2005-04-08 2005-04-08 Optical property measuring method of fluorescent sample and optical property measuring apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005112337A JP4617436B2 (en) 2005-04-08 2005-04-08 Optical property measuring method of fluorescent sample and optical property measuring apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006292511A JP2006292511A (en) 2006-10-26
JP4617436B2 true JP4617436B2 (en) 2011-01-26

Family

ID=37413239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005112337A Expired - Fee Related JP4617436B2 (en) 2005-04-08 2005-04-08 Optical property measuring method of fluorescent sample and optical property measuring apparatus using the same

Country Status (1)

Country Link
JP (1) JP4617436B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239442B2 (en) * 2008-03-25 2013-07-17 コニカミノルタオプティクス株式会社 Method and apparatus for measuring optical properties of fluorescent sample
JP5161755B2 (en) * 2008-12-25 2013-03-13 浜松ホトニクス株式会社 Spectrometer, spectroscopic method, and spectroscopic program
CN111983831A (en) * 2020-08-07 2020-11-24 深圳市华星光电半导体显示技术有限公司 Liquid crystal panel reflectivity detection device and detection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699510A (en) * 1984-11-07 1987-10-13 Measurex Corporation Color sensor
JPH03130629A (en) * 1989-10-16 1991-06-04 Toshiba Lighting & Technol Corp Measuring method for color of fluorescent substance
JPH03138538A (en) * 1989-10-25 1991-06-12 Toshiba Lighting & Technol Corp Method for measuring spectral distribution of light source and method for measuring spectral responsiveness of photodetector system
JPH11118603A (en) * 1997-10-15 1999-04-30 Minolta Co Ltd Spectral characteristic measuring apparatus of fluorescent specimen and its measuring method

Also Published As

Publication number Publication date
JP2006292511A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4660691B2 (en) Optical property measuring method of fluorescent sample and optical property measuring apparatus using the same
JP5239442B2 (en) Method and apparatus for measuring optical properties of fluorescent sample
JP2008145225A (en) Optical characteristic measurement method and optical characteristic measuring device
JP4061765B2 (en) Apparatus for measuring spectral characteristics of fluorescent sample and measuring method thereof
JP3346095B2 (en) Spectrophotometer
JPH11118603A (en) Spectral characteristic measuring apparatus of fluorescent specimen and its measuring method
US7466417B2 (en) Process for the colour measurement of printed samples including brighteners
US8144322B2 (en) Spectral characteristic measuring apparatus, method for calibrating spectral characteristic measuring apparatus, and spectral characteristic measuring system
KR970011803A (en) Method and apparatus for spectral reflection measurement and transmission measurement
JPS61165641A (en) Method and device for measuring fluorescent characteristic of body
JP5364520B2 (en) Endoscope apparatus and method for operating endoscope apparatus
JP2009520184A (en) Apparatus and method for illuminator independent color measurement
JP4617436B2 (en) Optical property measuring method of fluorescent sample and optical property measuring apparatus using the same
US20030058441A1 (en) Method and apparatus for optical measurements
JP2006300632A (en) Excitation spectrum correction technique in fluorescencespectrophotometer
JP5609377B2 (en) measuring device
EP1035409B1 (en) Method and apparatus for measurement of light from illuminated specimen eliminating influence of background light
JP6984651B2 (en) A method for measuring the spectral radiation characteristics of a fluorescent whitening sample and a device for measuring the spectral radiation characteristics of a fluorescent whitening sample.
JP3611015B2 (en) Method and apparatus for measuring optical properties of phosphor sample
JPH10176953A (en) Method for measuring colorimetric value
US20200240918A1 (en) Microscopy system and method for operating a microscopy system
Imura New method for measuring an optical property of a sample treated by FWA
Jordan et al. The Influence of the Illuminent on the Luminescent Radiance Factor Spectrum of a Reference Fluorescent Paper
KR20230166909A (en) Chrometer and chromaticity measurement method
JPH03138538A (en) Method for measuring spectral distribution of light source and method for measuring spectral responsiveness of photodetector system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4617436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees