JPH03138538A - Method for measuring spectral distribution of light source and method for measuring spectral responsiveness of photodetector system - Google Patents

Method for measuring spectral distribution of light source and method for measuring spectral responsiveness of photodetector system

Info

Publication number
JPH03138538A
JPH03138538A JP27824389A JP27824389A JPH03138538A JP H03138538 A JPH03138538 A JP H03138538A JP 27824389 A JP27824389 A JP 27824389A JP 27824389 A JP27824389 A JP 27824389A JP H03138538 A JPH03138538 A JP H03138538A
Authority
JP
Japan
Prior art keywords
fluorescent
sample
light
spectral
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27824389A
Other languages
Japanese (ja)
Inventor
Takashi Ichijo
一條 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP27824389A priority Critical patent/JPH03138538A/en
Publication of JPH03138538A publication Critical patent/JPH03138538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To make easy measurement by adopting the constitution to measure the photodetector output of every set wavelength via a monochrometer for the light from a sample surface and comparing the respective values of the reflection spectral radiation luminance rate, relative external fluorescent radiation efficiency and relative spectral distribution of the fluorescent component thereof and known data values. CONSTITUTION:The total spectral radiation luminance rate betaw(lambda) of the i-th fluorescent sample is determined from Yw(lambda), Yt,x,i(lambda) when the photodetector output obtd. by installing a normal standard white surface on the sample surface is designated as Yw(lambda), and the photodetector output obtd. by installing the i-th (i=1 to n) fluorescent sample as Yf,x,i(lambda) (i=1 to n), the spectral radiation luminance rate betaw(lambda) of the above-mentioned normal standard white surface and equation I. The effective excitation efficiency ND,I under the light source SD(mu) for photometry of the i-th fluorescent sample is determined from the relative external fluorescent radiation efficiency Qx,i(mu) of the i-th fluorescent sample when the spectral distribution of the light source D for photometry of the known value is designated as SD(lambda) and equation II. Further, the spectral distribution SX(lambda) of the light source X is determined from the reflected spectral radiation luminance rate betao,i(lambda) of the i-th fluorescent sample, the relative spectral distribution Fi, (lambda) of the fluorescent component, the total spectral radiation luminance rate betat,x,i(lambda), and the effective excitation efficiency ND,I and equation III.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、蛍光物体色測定装置に関し、更に詳しくは、
蛍光染料又は、蛍光顔料を含む試料が任意の照明光の下
でどのような色に見えるか。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a fluorescent object color measuring device, and more specifically,
What color does a sample containing a fluorescent dye or pigment appear under a given illumination light?

つまり蛍光物体色を計算する際に必要な数値を供給する
測定装置における光源の分光分布、受光器系の分光応答
度の測定方法に関する。
In other words, the present invention relates to a method for measuring the spectral distribution of a light source and the spectral responsivity of a light receiver system in a measuring device that supplies numerical values necessary for calculating a fluorescent object color.

(従来の技術) 蛍光染料又は、蛍光顔料を含む試料(以下。(Conventional technology) Samples containing fluorescent dyes or fluorescent pigments (hereinafter referred to as:

蛍光性試料と称す)の物体色(以下、蛍光物体色と称す
)が、非蛍光性試料の物体色と大きく異なる点は、その
分光放射輝度率(常用標準白色面に対する試料の見掛け
の分光反射率)が照明光や受光器系の種類によって異な
るため。
The object color of a fluorescent sample (hereinafter referred to as fluorescent object color) differs greatly from that of a non-fluorescent sample due to its spectral radiance coefficient (apparent spectral reflection of the sample with respect to a standard white surface). rate) differs depending on the type of illumination light and receiver system.

般に、単一の照明光または受光器系を用いて測定した分
光放射輝度率のみから任意の照明光の下での物体色を計
算することが出来ない点にある。
In general, it is not possible to calculate the color of an object under arbitrary illumination light only from the spectral radiance factor measured using a single illumination light or a light receiver system.

このため従来、蛍光物体色に関して様々な測定方法が提
案されており1代表的な蛍光物体色の測定方法としては
1ロ木工業規格JIS Z 8717(蛍光物体色の測
定方法)に規定される6種類の方法がある。また1通常
の非蛍光性の物体色の測定方法としては1ロ木工業規格
JIS Z 8722(物体色の測定方法)に規定され
る方法がある。
For this reason, various methods for measuring fluorescent object colors have been proposed in the past.1 A typical method for measuring fluorescent object colors is specified in the Wood Industry Standard JIS Z 8717 (method for measuring fluorescent object colors)6. There are different methods. Further, as a general method for measuring the color of a non-fluorescent object, there is a method specified in the Wood Industry Standard JIS Z 8722 (Method for Measuring Object Color).

これらの方法の測定原理に準拠して各種の蛍光物体色測
定装置及び物体色測定装置が造られ。
Various fluorescent object color measuring devices and object color measuring devices have been manufactured based on the measurement principles of these methods.

用いられている。It is used.

任意の照明光の下での蛍光物体色を求めるためには、 
JIS Z 8717に規定する6種類の測定方法のう
ち、1光源蛍光分離方法または2光源蛍光分離方法が適
している。これらの測定方法は。
To find the fluorescent object color under arbitrary illumination light,
Among the six types of measurement methods specified in JIS Z 8717, the one-light source fluorescence separation method or the two-light source fluorescence separation method is suitable. How are these measured?

試料面に光源からの光を直接に又は、波長選択性が少な
い光学系を介して又は1積分球を介して照射する照明条
件(以下、白色光照明と称す)と、試料面からの光をモ
ノクロメータ−を介して受光器に導き、モノクロメータ
−の設定波長毎に受光器の出力を測定する観測条件(以
下。
The illumination condition is that the sample surface is irradiated with light from a light source directly or through an optical system with low wavelength selectivity or through one integrating sphere (hereinafter referred to as white light illumination), and the light from the sample surface is irradiated with light from a light source. Observation conditions (hereinafter referred to as "observation conditions") in which the light is guided through a monochromator to a light receiver and the output of the light receiver is measured for each set wavelength of the monochromator.

分光観測と称す)との白色光照明・分光観測における測
定を主としている。さらに副測定では。
It mainly performs measurements in white light illumination and spectroscopic observation (referred to as spectral observation). Furthermore, in sub-measurements.

試料面に光源からの光をモノクロメータ−を介して照射
する照明条件(以下、中色光照明と称す)と、試料面か
らの光を直接に又は、波長選択性が少ない光学系を介し
て又は、積分球を介して受光器に導く観測条件(以下、
非分光観測と称す)との中色光照明・非分光観測方式の
物体色測定装置を必要とする。
The illumination condition is that the sample surface is irradiated with light from a light source via a monochromator (hereinafter referred to as neutral color illumination), and the light from the sample surface is irradiated directly or via an optical system with less wavelength selectivity. , observation conditions leading to the receiver via the integrating sphere (hereinafter,
(referred to as non-spectroscopic observation), an object color measuring device with neutral color illumination and non-spectral observation method is required.

蛍光物体色の測定方法と非蛍光物体色の測定方法との測
定時における違いの一つとして、白色光照明・分光観測
の下での蛍光物体色の測定では、試料面上の照明光(以
下、試料面照明光と称す)の相対分光分布が既知でなけ
ればならず、また中色光照明・非分光観測の下での蛍光
物体色の測定では、受光器系の相対分光応答度が既知で
なければならないことが挙げられる。
One of the differences between the method of measuring fluorescent object color and the method of measuring non-fluorescent object color is that when measuring fluorescent object color under white light illumination and spectroscopic observation, illumination light (hereinafter referred to as The relative spectral distribution of the sample surface illumination light (referred to as sample surface illumination light) must be known, and when measuring fluorescent object color under neutral color illumination and non-spectral observation, the relative spectral responsivity of the receiver system must be known. There are things that must be done.

反χ・1に、非蛍光性物体色の測定では、試料面照明光
の相対分光分布や受光器系の相対分光応答度は不明でも
、測定に支障はない。一方、蛍光物体色測定装置と物体
色測定装置の各々の光学系は共通する部分が多いため、
従来の蛍光物体色測定装置は、物体色測定装置を転用し
た又は。
In contrast, when measuring the color of a non-fluorescent object, even if the relative spectral distribution of the illumination light on the sample surface and the relative spectral response of the photodetector system are unknown, there is no problem in the measurement. On the other hand, since the optical systems of the fluorescent object color measuring device and the object color measuring device have many parts in common,
The conventional fluorescent object color measuring device is a repurposed object color measuring device.

改造した構造となっており、必然的に従来の蛍光物体色
測定装置では試料面照明光の柑1=j分光分布や受光器
の相対分光応答度を使用者が測定することは考慮されて
いない。このため、前述のJIS Z 8717の附属
書では、試料面照明光の相対分光分布の求め方について
も想定している。
Due to its modified structure, conventional fluorescent object color measurement devices do not take into account the user's ability to measure the spectral distribution of sample surface illumination light or the relative spectral response of the receiver. . For this reason, the above-mentioned JIS Z 8717 annex also assumes how to obtain the relative spectral distribution of the sample surface illumination light.

(発明が解決しようとする課題) 該附属書では、いくつかの求め方を示しているが、基本
的には日本上業規ff1JIs Z 8724 (光源
色の測定方法)に準拠した分光潤色方法を採用している
。つまり、試料面照明光の相対分光分布を求めるために
は1分光放射51などの潤色機器や分光分布の比較原器
となる標準電球なとが必要である。これらの潤色機器や
標準電球を持たない蛍光物体色測定装置の使用者にとっ
ては、 JIS Z 8717の附属書に規定する方法
は困難な方法であ。特に、光源からの光を積分球を介し
て試料を拡散照明する蛍光物体色測定装置においては、
積分球内壁及び試料面との光の相斤反射によって試料面
照明光の測定はさらに複雑になる。また、経時変化に伴
う積分球内壁材の劣化やごみの付着などによる積分球の
相対分光効率の変化は測定誤差の大きな要因となるため
(Problem to be Solved by the Invention) The appendix shows several methods of determination, but basically the spectral coloring method based on Japanese Industrial Standards FF1JIs Z 8724 (method for measuring light source color) is used. We are hiring. In other words, in order to obtain the relative spectral distribution of the sample surface illumination light, a coloring device such as the 1-minute ray 51 and a standard light bulb as a standard for comparison of the spectral distribution are required. For users of fluorescent object color measuring devices who do not have these color embellishing devices or standard light bulbs, the method specified in the annex to JIS Z 8717 is a difficult method. In particular, in a fluorescent object color measurement device that diffusely illuminates a sample with light from a light source via an integrating sphere,
The measurement of the sample surface illumination light is further complicated by the mutual reflection of the light between the inner wall of the integrating sphere and the sample surface. In addition, changes in the relative spectral efficiency of the integrating sphere due to deterioration of the inner wall material of the integrating sphere over time and the adhesion of dust can be a major cause of measurement errors.

従来の蛍光物体色測定装置では定期的にこの複雑な測定
を行オ〕なければならないという問題があった。
Conventional fluorescent object color measuring devices have had the problem of having to periodically carry out this complex measurement.

一方、受光器系の相対分光応答度の求め方については、
該附属書では説明がなく、蛍光物体色測定装置の使用者
は受光器のカタログ値を参考とするか又は、予め値付け
された別の受光器(以下、標準受光器と称す)と微小電
流計とを用いて受光器系の相対分光応答度を独自に測定
するしか無く、測定精度や測定の簡便さに問題があった
。さらに、試料面からの光を積分球を介して拡散受光す
る蛍光物体色測定装置においては、積分球内壁及び試料
面との光の相r7反射によって、受光器及び積分球で構
成される受光器系の相対分光応答度の測定はさらに複雑
になる。また、経時変化に伴う積分球内壁材の劣化やご
みの(=j着などによる積分球の相対分光効率の変化は
測定誤差の要因となるため、従来の蛍光物体色測定装置
では定期的にこの複雑な測定を行わなければならないと
いう問題かあった。
On the other hand, regarding how to determine the relative spectral responsivity of the photoreceiver system,
There is no explanation in the annex, and users of fluorescent object color measurement devices should refer to the catalog values of the receiver, or use another receiver with a pre-specified value (hereinafter referred to as the standard receiver) and a microcurrent receiver. The only way to measure the relative spectral responsivity of the photoreceiver system was to use a meter to measure the relative spectral responsivity of the photodetector system, which had problems with measurement accuracy and simplicity. Furthermore, in a fluorescent object color measuring device that diffusely receives light from the sample surface via an integrating sphere, the light receiver composed of the light receiver and the integrating sphere is Measuring the relative spectral responsivity of a system becomes even more complex. In addition, changes in the relative spectral efficiency of the integrating sphere due to deterioration of the inner wall material of the integrating sphere over time and dust (=j) deposition can cause measurement errors, so conventional fluorescent object color measurement devices regularly There was also the problem of having to perform complex measurements.

本発明の目的は、かかる従来の問題を解消し。The object of the present invention is to solve such conventional problems.

白色光照明・分光観測方式の物体色測定装置における試
料面照明光の相対分光分布の測定と。
Measurement of relative spectral distribution of sample surface illumination light in an object color measuring device using white light illumination and spectroscopic observation method.

単色光照明・非分光観測方式の物体色測定装置における
受光器又は受光器及び積分球で構成される受光器系の相
対分光応答度の測定を容易に行える方法の提供を「1的
とする。
One objective is to provide a method that facilitates the measurement of the relative spectral responsivity of a light receiver or a light receiver system composed of a light receiver and an integrating sphere in a monochromatic illumination/non-spectral observation type object color measuring device.

[発明の構成] (課題を解決するための1段) 」二記目的を達成するために第1の発明では試料面に光
源Xからの光を照射する照明手段と。
[Structure of the Invention] (First Step for Solving the Problem) In order to achieve the second object, the first invention includes an illumination means for irradiating the sample surface with light from the light source X.

上記試料面からの光をモノクロメータ−を介して受光器
に導き、モノクロメータ−の設定波長ごとに受光器の出
力を測定する観測手段とを構成し、波長λまたはμごと
の反射分光放射輝度率βo(λ)相対外部蛍光放射効率
Qn(μ)および蛍光成分の相対分光分布F(λ)の各
々の値が既知のn種類の蛍光性試料と1分光放射輝度率
βw  (x)が既知の常用標準白色面とを上記試料面
に順次設置して波長ごとの受光器出力r(λ)を測定し
The light from the sample surface is guided to a light receiver via a monochromator, and an observation means is configured to measure the output of the light receiver for each set wavelength of the monochromator, and the reflected spectral radiance for each wavelength λ or μ. n types of fluorescent samples with known values of relative external fluorescence radiation efficiency Qn (μ) and relative spectral distribution F (λ) of fluorescent components, and one spectral radiance rate βw (x) with known values. A commonly used standard white surface and a commonly used standard white surface were sequentially placed on the sample surface, and the receiver output r(λ) for each wavelength was measured.

■ 試料面に常用標準白色面を設置して得られる受光器
出力をγW (λ)、i番目(i−1〜n)の蛍光性試
料を設置して得られる受光器出力をγl、X、+  (
λ)(i=1〜n)としたとき、γW (λ)、γ8.
。、、(λ)、上記常用標準白色面の分光放射輝度率β
w  (X)及び βt、X、i (λ) とからi番目の蛍光性試料の全分光放射輝度率Q 、、
 、、 、  (λ)を求め。
■ The receiver output obtained by installing a standard white surface on the sample surface is γW (λ), and the receiver output obtained by installing the i-th (i-1 to n) fluorescent sample is γl, + (
λ) (i=1 to n), γW (λ), γ8.
. ,, (λ), the spectral radiance factor β of the above commonly used standard white surface
w (X) and βt, X, i (λ) and the total spectral radiance factor Q of the i-th fluorescent sample, ,
, , Find (λ).

■ 次に値が既知の潤色用の光源りの分光分布をSD 
(μ)としたときに、i番目の蛍光性試料の相対外部蛍
光放射効率Qn、、(μ)と。
■ Next, SD the spectral distribution of the coloring light source whose value is known.
(μ), the relative external fluorescence emission efficiency of the i-th fluorescent sample Qn, , (μ).

ND、1=ΣSo  (μ)Qn、、(μ)ΔItμ からi番目の蛍光性試料の潤色用光源SD(μ)のもと
ての実効励起効率ND、lを求め。
From ND,1=ΣSo (μ)Qn,, (μ)ΔItμ, the original effective excitation efficiency ND,l of the coloring light source SD(μ) for the i-th fluorescent sample is determined.

■ さらに、i番目の蛍光性試料の反射分光放射輝度率
βo、1 (λ)、蛍光成分の相対分光分布F+(λ)
、全分光放射輝度率β1.。
■ Furthermore, the reflected spectral radiance rate βo, 1 (λ) of the i-th fluorescent sample, and the relative spectral distribution of the fluorescent component F+ (λ)
, total spectral radiance factor β1. .

(λ)、実効励起効率ND、、と。(λ), effective excitation efficiency ND, and so on.

Sx  (λ) から光源Xの分光分布Sx  (λ)を求めることを特
徴とする。
It is characterized by determining the spectral distribution Sx (λ) of the light source X from Sx (λ).

また第2の発明では試料面に光源からの光をモノクロメ
ータ−を介して照射する照明手段と上記試料面からの光
を受光器に導きモノクロメ1 −ターの設定波長ごとに受光器の出力を測定する観測手
段とを構成し、波長λまたはμごとの反射分光放射輝度
率βo(λ)相対外部蛍光放射効率Qn(λ)および蛍
光成分の相対分光分布F(μ)の各々の値が既知のn種
類の蛍光性試料と2分光放射輝度率βw  (x)が既
知の常用標準白色面とを上記試料面に順次設置して波長
ごとの受光器出力r(λ)を測定し。
Further, the second invention includes an illumination means for irradiating the sample surface with light from a light source via a monochromator, and the light from the sample surface is guided to a photoreceiver, and the output of the photoreceiver is determined for each set wavelength of the monochromator. It constitutes an observation means for measuring, and each value of the reflected spectral radiance factor βo (λ), the relative external fluorescence radiation efficiency Qn (λ), and the relative spectral distribution of the fluorescent component F (μ) for each wavelength λ or μ is known. n types of fluorescent samples and a commonly used standard white surface with a known two-spectral radiance factor βw (x) were sequentially placed on the sample surface, and the receiver output r(λ) for each wavelength was measured.

■ 試料面に常用標準白色面を設置して得られる受光器
出力をγW (λ)+1番目(i−1〜n)の蛍光性試
料を設置して得られる受光器出力をγ。、a、+  (
λ)(i=1〜n)としたとき、γW (λ)、γ。、
m’,i(λ)、上記常用標準白色面の分光放射輝度率
βW (λ)及び とからi番目の蛍光性試料の見かけの分光放射輝度率β
、、、、、  (λ)を求め。
■ The receiver output obtained by installing a common standard white surface on the sample surface is γW (λ) + the receiver output obtained by installing the 1st (i-1 to n) fluorescent sample is γ. , a, + (
λ) (i=1 to n), γW (λ), γ. ,
m', i (λ), the spectral radiance coefficient βW (λ) of the above-mentioned standard white surface, and the apparent spectral radiance coefficient β of the i-th fluorescent sample
,,,,, Find (λ).

■ 次にi番目の蛍光性試料の反射分光放射輝 2 度率βo、、(λ)、相対外部蛍光放射効率Qn、、(
λ)1分光放射輝度率βo16.1と。
■ Next, the reflected spectral radiance of the i-th fluorescent sample 2 degree factor βo, , (λ), the relative external fluorescence radiation efficiency Qn, , (
λ) 1 spectral radiance factor βo16.1.

S、(λ) とから受光器系の分光応答度S、(λ)を求めることを
特徴とする。
The method is characterized in that the spectral responsivity S, (λ) of the photodetector system is determined from S, (λ).

(作用) 第1の発明の光源の分光分布の測定方法によると試料面
照明光8の相対分光分布が分光放射計や標準電球を用い
ずに測定出来るため、従来の測定方法を代表しているJ
IS Z 8717の附属書に規定する試料面照明光の
測定方法よりも簡便に求めることが出来る。また、積分
球効率と光源の性質を区別しないという測定原理から、
光源からの光を積分球で拡散して試料に照射するタイプ
にも、同様に適用することができる。このことから、光
源及び積分球の経時変化をチェツクする必要が生じた場
合は、何時でも容品に試料面照明光の相対分光分布を求
め直すことが出来る。
(Function) According to the method for measuring the spectral distribution of a light source according to the first invention, the relative spectral distribution of the sample surface illumination light 8 can be measured without using a spectroradiometer or a standard light bulb, so it is representative of the conventional measurement method. J
It can be determined more easily than the method for measuring sample surface illumination light specified in the annex to IS Z 8717. In addition, due to the measurement principle of not distinguishing between the integrating sphere efficiency and the properties of the light source,
It can be similarly applied to a type in which light from a light source is diffused by an integrating sphere and irradiated onto the sample. From this, if it becomes necessary to check changes in the light source and integrating sphere over time, the relative spectral distribution of the sample surface illumination light on the container can be recalculated at any time.

また、第2の発明の受光器系の分光応答度の測定方法に
よると、受光器13または受光器系の相対分光応答度を
標準受光器や微小電流旧を用いずに測定出来るため、従
来の測定方法よりも比較的簡便に求めることが出来る。
Furthermore, according to the method for measuring the spectral responsivity of the photoreceiver system of the second invention, the relative spectral responsivity of the photoreceiver 13 or the photoreceiver system can be measured without using a standard photoreceptor or a microcurrent detector. It can be determined relatively easily than the measurement method.

また、積分球効率と受光器の性質を区別しないという測
定原理から、試料面からの光を積分球で拡散して受光器
で観測するタイプにも、同様に適用することができる。
Furthermore, since the measurement principle does not distinguish between the integrating sphere efficiency and the properties of the light receiver, it can be similarly applied to a type in which light from the sample surface is diffused by an integrating sphere and observed with a light receiver.

このことから、受光器及び積分球の経時変化をチエツク
する必要か生じた場合は、何時でも容易に受光器系の相
対分光応答度を求め直すことが出来る。
From this, if it becomes necessary to check changes in the light receiver and integrating sphere over time, the relative spectral responsivity of the light receiver system can be easily recalculated at any time.

しかも第1及び第2の発明に示すn1定方法の光学系は
、従来の蛍光物体色測定装置に、値が既知の複数種類の
蛍光性試料を供給し、装置に附属する測定データ処理用
の計算機プログラムに本発明に示す測定手順に基づくプ
ログラムを付加するたけて簡IItに改造ができるため
、殆んどの従来装置に適用できる。
Moreover, the optical system of the n1 determination method shown in the first and second inventions supplies a plurality of types of fluorescent samples with known values to a conventional fluorescent object color measuring device, and the optical system for the measurement data processing attached to the device. Since it can be easily modified by adding a program based on the measurement procedure shown in the present invention to a computer program, it can be applied to most conventional devices.

(実施例) 第1図は、第1の発明に係る試料面照明光の相対分光分
布の推定手段を具備した蛍光物体色測定装置の一実施例
を示す光学系の概略図である。第1図において図面番号
1はノ\ロゲン電球またはキセノンランプなどの光源、
2は被測定試料取付枠、3は試料(蛍光性試料または常
用標準白色面)、4はモノクロメータ−15は受光器を
それぞれ表しており1以上の部品1〜5はカバー6に取
り付けられ、蛍光物体色測定装置7を構成している。
(Embodiment) FIG. 1 is a schematic diagram of an optical system showing an embodiment of a fluorescent object color measuring device equipped with means for estimating the relative spectral distribution of sample surface illumination light according to the first invention. In Figure 1, drawing number 1 is a light source such as a halogen bulb or a xenon lamp;
Reference numeral 2 represents a frame for mounting a sample to be measured, 3 represents a sample (fluorescent sample or commonly used standard white surface), 4 represents a monochromator, 15 represents a light receiver, and one or more parts 1 to 5 are attached to a cover 6, This constitutes a fluorescent object color measuring device 7.

先ず、この測定装置ヱに係る試料面照明光の相対分光分
布の測定原理を記す。
First, the principle of measuring the relative spectral distribution of sample surface illumination light using this measuring device will be described.

光源1及び光[1から試料面3aに至る光学系(図省略
)によって生じる試料面照明光8の下におけるn種類の
蛍光性試料3の全分光放射輝度率は1次式によって近似
的に表される。
The total spectral radiance factor of the n types of fluorescent samples 3 under the sample surface illumination light 8 generated by the light source 1 and the optical system (not shown) extending from the light [1 to the sample surface 3a is approximately expressed by a linear equation. be done.

 5 β ア、l (λ)−βo21 (λ) ここで、β+ 、* 、+  (λ)は試料面照明光S
8の種類に依存する1番目(i=1−〜n)の蛍光性試
料3の全分光放射輝度率、β01.(λ)は1番目の蛍
光性試料3の反射成分に対する反射分光放射輝度率、F
、(λ)は蛍光成分の相対分光分布、Qn、、(μ)は
蛍光成分に対する相対外部蛍光放射効率、SX(λ)及
びSx  (μ)は試料面照明光8の相対分光分布、λ
及びμは波長、Δμは積算(Σ)の波長間隔を表す。
5 β a, l (λ) − βo21 (λ) Here, β+, *, + (λ) is the sample surface illumination light S
The total spectral radiance rate of the first (i=1− to n) fluorescent sample 3 depending on the type of 8, β01. (λ) is the reflection spectral radiance factor for the reflection component of the first fluorescent sample 3, F
, (λ) is the relative spectral distribution of the fluorescent component, Qn, , (μ) is the relative external fluorescence radiation efficiency for the fluorescent component, SX (λ) and Sx (μ) are the relative spectral distribution of the sample surface illumination light 8, λ
and μ represents the wavelength, and Δμ represents the wavelength interval of integration (Σ).

式(1)を変形すると2式(2)が得られる。By transforming equation (1), equation 2 (2) is obtained.

(2) N x  I =ΣSx  (μ)Qn、、(μ) A
μ“                     (3
)ここで、Nt、+は試料面照明光8(Sx)の丁での
1番目の蛍光性試料3に対する実効的な励起放射束の相
対値を表す。
(2) N x I = ΣSx (μ)Qn,, (μ) A
μ“ (3
) Here, Nt,+ represents the relative value of the effective excitation radiation flux for the first fluorescent sample 3 at the sample surface illumination light 8 (Sx).

 6 Ntlは波長λ及びμに独立な値であり。6 Ntl is a value independent of wavelengths λ and μ.

Sx  (λ)に関する比例定数となる。筒中のために
 N 、、 + −1と置ける。
It becomes a proportionality constant regarding Sx (λ). For the inside of the cylinder, we can set it as N,, + -1.

よって、第1図に示す蛍光物体色測定装置ヱで、蛍光性
試料3の全分光放射輝度率β11、(λ)を測定すれば
、蛍光性試料3の値βo(λ)及びFl  (λ)を用
いて、試料面照明光8の相対分光分布SX  (λ)を
式(2)から推定することができる。
Therefore, if the total spectral radiance factor β11, (λ) of the fluorescent sample 3 is measured with the fluorescent object color measuring device shown in FIG. 1, the values βo(λ) and Fl (λ) of the fluorescent sample 3 are The relative spectral distribution SX (λ) of the sample surface illumination light 8 can be estimated from equation (2) using .

このときの推定値Sx  (λ)は、(illlの)蛍
光性試料3の性質に依存する。n種類の蛍光性試料3に
関して平均的な性質をもつ試料面照明光8を推定するた
めには1式(4)に示す潤色用の光[So  (λ)]
の下での実効励起効率Nolて重みイ」けした式(5)
から求める。
The estimated value Sx (λ) at this time depends on the properties of the fluorescent sample 3 (ill). In order to estimate the sample surface illumination light 8 having average properties for n types of fluorescent samples 3, the coloring light [So (λ)] shown in Equation 1 (4) is used.
Equation (5) with the effective excitation efficiency Nol and the weight
Find from.

NO,l −ΣSo  (μ)Qn、、(μ)Δμt′
(4) ここで、SO(λ)は測色用の光1例えば標準の光D6
5の相対分光分布とする。できれば。
NO,l −ΣSo (μ)Qn,, (μ)Δμt'
(4) Here, SO(λ) is the colorimetric light 1, for example, the standard light D6
5 relative spectral distribution. if you can.

相対分光分布が推定対象の試料面照明光8と近似した照
明光が望ましい。
It is desirable that the illumination light has a relative spectral distribution similar to the sample surface illumination light 8 to be estimated.

Sx  (λ) 式(5)でn−1とした場合1式(5)からの推定値S
x  (λ)は式(2)からの推定値と一致する。
Sx (λ) When n-1 is used in equation (5), estimated value S from equation (5) 1
x (λ) agrees with the estimate from equation (2).

蛍光成分の相対分光分布FI (λ)が0となる波長域
においては1式(1)からβ+、x、l  (λ)−β
o、、(λ)も0となり9式(5)の計算ができない、
この波長域でのSx  (λ)の推定方法を以下に示す
In the wavelength range where the relative spectral distribution FI (λ) of the fluorescent component is 0, from equation (1), β+, x, l (λ) − β
o, , (λ) also becomes 0, and Equation 9 (5) cannot be calculated.
A method for estimating Sx (λ) in this wavelength range is shown below.

式(5)で求めた推定値をSX・(λ)で表すと。The estimated value obtained by equation (5) is expressed as SX・(λ).

式(1)は次式で表すことができる。Equation (1) can be expressed by the following equation.

ここで、λ、1〜λ、2はFl  (λ)¥0の波長範
囲、μ旧はQn、、(μ)キ0となる短波長端の値とす
る。
Here, λ,1 to λ,2 are the wavelength ranges of Fl (λ)\0, and μ old is the value at the short wavelength end where Qn, , (μ) is 0.

式(6)の左辺を関数N [1,il  :  (i=
1〜n)、右辺のSx  (λ)を関数S[1,μ] 
=(μ−μQ1〜λF、−Δμ)、右辺のQ−,i(/
7)Aμを関数Q[μ+  1]で表すと1式(6)の
関係は行列式(7)で示される。式(2)のようにi番
目の蛍光性試料3を一つだけを用いる場合はn−1とな
る。ここでは1行列Nは式(8)のように波長範囲λF
1〜λr2の平均値とする。
The left side of equation (6) is expressed as a function N [1,il : (i=
1 to n), the right side Sx (λ) is the function S[1, μ]
= (μ-μQ1~λF, -Δμ), right side Q-,i(/
7) When Aμ is expressed as a function Q[μ+1], the relationship in Equation 1 (6) is expressed by determinant (7). When only one i-th fluorescent sample 3 is used as in equation (2), it becomes n-1. Here, one matrix N is the wavelength range λF as shown in equation (8).
The average value is 1 to λr2.

N −S Q                  (
7)Fl  (λ) μ ” μ 01 (6) 関数S[1,μ]は式(9)から求めることもできるが
、波長に対する傾斜が急激に変化し。
N-S Q (
7) Fl (λ) μ ” μ 01 (6) The function S[1, μ] can also be obtained from equation (9), but the slope with respect to the wavelength changes rapidly.

 9 実際の分光分布とはかなり異なった値となる。9 The value is quite different from the actual spectral distribution.

ただし、蛍光物体色測定には適用できる値ではある。However, this value is applicable to fluorescent object color measurement.

S−(’ QQ)刊 ’QN        (9)こ
こで、 “Qは行列Qの転値行列[’Q(i。
Published by S-('QQ)'QN (9) Here, "Q is the transposition matrix of matrix Q ['Q(i.

μ)−Q(μ+  1)コ、  (’QQ)−’は行列
(’QQ)の逆行列である。
μ)-Q(μ+1), ('QQ)-' is the inverse matrix of the matrix ('QQ).

高浜らのvariation法[参考文献:高浜幸太部
、納谷嘉信:演色性とメタメリズムに関する研究(その
7)−条件等色物体色の新合成方法。
Variation method of Takahama et al. [References: Kotabu Takahama, Yoshinobu Naya: Research on color rendering properties and metamerism (part 7) - A new method for synthesizing conditionally isochromatic object colors.

照学誌 vol、5B、 No、6+ pp、29〜8
B(1972)。
Reference magazine vol, 5B, No, 6+ pp, 29-8
B. (1972).

K、 Takahama and Y、 Nayata
nl: New Methodf’or Genera
ting Metameric Stimuli of
’ 0bjectColors、 J、 Opt、So
c、 Am、、 Vol、62. No、12゜pI)
、1516〜1520 (1972)]を応用し、S8
 (λ)を求めると、実際の分光分布に比較的近似した
値が推定できる。詳しい求め方は1手順6で後述する。
K, Takahama and Y, Nayata
nl: New Method or Genera
ting Metameric Stimuli of
' 0bjectColors, J, Opt, So
c, Am,, Vol, 62. No, 12°pI)
, 1516-1520 (1972)], S8
By determining (λ), a value that is relatively close to the actual spectral distribution can be estimated. The detailed method of determination will be described later in Step 6 of 1.

本推定方法では、測定は通常の分光光度計と値が既知の
蛍光性試料3だけを用いて行われる。
In this estimation method, measurements are performed using only an ordinary spectrophotometer and a fluorescent sample 3 whose value is known.

 0 また、上述した推定方法を見れば分かるように、この測
定原理では、光源1の相対分光分布と積分球(図省略)
の相対分光効率とを特に分けて取り扱っていない。換言
すれば、光源1からの光を積分球(図省略)を介して試
料3に照射するタイプの蛍光物体色測定装置(分光光度
計)に対しても、上述した推定計算が同様に適用できる
ことが期待できる。
0 Also, as can be seen from the estimation method described above, in this measurement principle, the relative spectral distribution of light source 1 and the integrating sphere (figure omitted)
It is not treated separately from the relative spectral efficiency of . In other words, the estimation calculation described above can be similarly applied to a type of fluorescent object color measuring device (spectrophotometer) that irradiates the sample 3 with light from the light source 1 via an integrating sphere (not shown). can be expected.

以上が測定原理である。The above is the measurement principle.

次に、この測定装置7に係る試料面照明光8の相対分光
分布の測定・計算手順について具体的に記す。n種類全
ての蛍光性試料3を用いた場合の手順を示すが、1種類
だけでも推定は可能である。
Next, the procedure for measuring and calculating the relative spectral distribution of the sample surface illumination light 8 using this measuring device 7 will be specifically described. Although the procedure is shown using all n types of fluorescent samples 3, estimation is possible even with only one type.

手順1.推定波長範囲の設定 n種類全ての蛍光性試料3で、蛍光成分の相対分光分布
F(λ)が (λF1〜λP2)と。
Step 1. Setting of Estimated Wavelength Range For all n types of fluorescent samples 3, the relative spectral distribution F(λ) of the fluorescent component is (λF1 to λP2).

相対外部蛍光放射効率Qn(μ)が n [Σ Qn、、(μ)ヤ0]となる波長域−1 1Lo:(μ。、−μ。2)を求める。The relative external fluorescence radiation efficiency Qn (μ) is n Wavelength range -1 where [Σ Qn,, (μ) ya 0] 1Lo: Find (μ., −μ.2).

波長域1to+〜λr2における試料面照明光8の相対
分光分布S、(λ)か、以下の手順から推定できる。目
的とする波長域を満足しない場合は、別の蛍光性試料を
用いる。
The relative spectral distribution S, (λ) of the sample surface illumination light 8 in the wavelength range 1to+ to λr2 can be estimated from the following procedure. If the target wavelength range is not satisfied, use another fluorescent sample.

手順2.常用標準白色面に対する受光器出力の測定 常用標準白色面3を被測定試料数(NI枠2に設置し、
モノクロメータ−4の設定波長λを走査しながら、受光
器5の出力γW (λ)を読み取る。このとき、受光器
出力γ1.(λ)がOとなる波長λは、この波長で試料
面照明光8の相対分光分布S、(λ)は0となることが
分かるため、以下の推定計算から外す。
Step 2. Measurement of the receiver output with respect to the commonly used standard white surface.
While scanning the set wavelength λ of the monochromator 4, the output γW (λ) of the light receiver 5 is read. At this time, the receiver output γ1. It can be seen that the wavelength λ at which (λ) becomes O is the relative spectral distribution S of the sample surface illumination light 8 and the relative spectral distribution S (λ) becomes 0 at this wavelength, so it is excluded from the estimation calculations below.

手順3.蛍光性試料に対する受光器出力の測定 被測定試料取付枠2に値[βo、1 (λ)。Step 3. Measuring receiver output for fluorescent samples The value [βo, 1 (λ)] is placed on the measurement sample mounting frame 2.

Fl  (λ)及びQn、、(μ)Δμ]が既知のn種
類の蛍光性試料3を順次設置したときの受光請出カフ+
、y、l(λ):(i−1〜n)を1llll定する。
Light receiving cuff + when n types of fluorescent samples 3 with known Fl (λ) and Qn, , (μ) Δμ] are sequentially installed
, y, l(λ): (i-1 to n) are determined.

手順4.全分光放射輝度率のJii l番1」の蛍光性試料3の全分光放射輝度率は。Step 4. Jii of total spectral radiance factor The total spectral radiance rate of fluorescent sample 3 of "No. 1" is:

次式から計算される。It is calculated from the following formula.

(10) ここで、βW (λ)は測定に用いる照明及び受光の幾
何学的条件に等しい条件で1−1盛定めした常用標準白
色面3の分光放射輝度率。
(10) Here, βW (λ) is the spectral radiance factor of the commonly used standard white surface 3 determined on a 1-1 scale under conditions equivalent to the geometric conditions of illumination and light reception used for measurement.

手順5.波長域λPにおけるSx  (λ)の推定1算 手順1で求めた波長域λ、について1手順4の測定値β
1.y、+  (λ)、及び既知データ[βo、I (
λ)、Fl(λ)]を用いて9式(5)からSx  (
λ)を推定する。
Step 5. Estimation of Sx (λ) in the wavelength range λP Calculate the measured value β in step 4 for the wavelength range λ obtained in step 1.
1. y, + (λ), and known data [βo, I (
λ), Fl(λ)] from Equation 9 (5) using
λ).

ただし、Fl(λ)−0となる波長λでは。However, at the wavelength λ which becomes Fl(λ)-0.

 3 F、(λ)キ0となるj番目の蛍光性試料3に対する値
を用いる。
3 F, (λ) Use the value for the j-th fluorescent sample 3 that is 0.

β1.x、+   (λ) −βo、1  (λ)” 
 fNn、I Fl  (λ゛)[β1.y、l  (
λ °)βo、+  (λ ’)]Fl(λ))F、 
 (λ °)[β1. x、 +  (λ °)−βa
,i(λ ”)][β1.。、+  (λ)−βo、+
  (λ)](11) ここでλ゛は、Fl (λ゛)キ0かつF。
β1. x, + (λ) −βo, 1 (λ)”
fNn, I Fl (λ゛) [β1. y, l (
λ °)βo, + (λ')]Fl(λ))F,
(λ °) [β1. x, + (λ °) − βa
, i(λ ”)] [β1.., + (λ) − βo, +
(λ)] (11) Here, λ゛ is Fl (λ゛)K0 and F.

(λ°)キ0となる波長とする。(λ°) is the wavelength at which Ki is 0.

手順6.波長域μ。におけるSx  (λ)の推定計算 手順1で求めた波長域μ。以内かつ波長λ、1未満につ
いて1手順4の測定値β1.x、l  (λ)。
Step 6. Wavelength range μ. Wavelength range μ obtained in Step 1 of estimation calculation of Sx (λ) in Sx (λ). Within the wavelength λ, less than 1, the measured value of step 4 β1. x, l (λ).

手順5の推定値Sx  (λ)、及び既知データ[βo
、+ (λ)、Fl(λ)、Qn、、(μ)]を用いて
、Sx(λ)を推定する。
The estimated value Sx (λ) in step 5 and the known data [βo
, + (λ), Fl(λ), Qn, , (μ)] to estimate Sx(λ).

 4 手順6.1  初期値の設定 関数S X、 1nxx+  [1+  μ]:(ルー
μ。1〜λP1−Δμ)に適当な初期値を代入する。例
えば1手順2からSX  (λ)−0となる短波長端μ
。がおおよそ分かっているときには1次式の値を初期値
とする。
4 Procedure 6.1 Initial value setting function S For example, from step 1 and step 2, the short wavelength end μ becomes SX (λ)−0.
. When approximately known, the value of the linear expression is used as the initial value.

S x、In1lls+  [1+  μコQ [μ、
i]  :  [−Qn、、(、μ)Δμ]から。
S x, In1lls+ [1+ μkoQ [μ,
i]: from [-Qn,,(,μ)Δμ].

次式の行列B[i、j] = (i−1〜n1 j−1
〜n)を求める。
Matrix B[i, j] = (i-1~n1 j-1
-n).

B−(’QQ)−’         (I8)手順6
.3  実効励起効率の51算 式(8)から実効励起効率N[1,ilを計算する。
B-('QQ)-' (I8) Step 6
.. 3 Calculate the effective excitation efficiency N[1,il from the effective excitation efficiency formula (8).

手順64 誤差の計算 手順6.1の初期値SX、 lnlllmlを用いて1
次式のΔN[1,ilを求める。
Step 64 Error Calculation Initial value SX of Step 6.1, 1 using lnllllml
Find ΔN[1,il in the following equation.

AN  [1,i ] =N  [1 j] S x、11111111  Q (14) 手順6.5  初期値の修正 推定値Sx (λ)は次式から求められる。AN [1, i] = N [1 j] S x, 11111111 Q (14) Step 6.5 Modify initial values The estimated value Sx (λ) is obtained from the following equation.

Sx  (λ) −8x、lnlllml  [1+  λ] + ΔN
B’Q(15) 手順6.6  初期値の再設定 Sx  (λ)の値が異常[Sx  (λ)くO1急激
な傾斜変化など)と思われるときは、5波長点の移動平
均を行い、その値を初期値として手(16) また1手順2て明らかとなった波長でのSx(λ)は、
0とする。
Sx (λ) −8x, lnllllml [1+ λ] + ΔN
B'Q (15) Step 6.6 Resetting the initial value If the value of Sx (λ) seems abnormal [such as a sudden change in the slope of Sx (λ) and O1), perform a moving average of 5 wavelength points. , with that value as the initial value (16) Also, Sx (λ) at the wavelength revealed by step 1 and step 2 is
Set to 0.

以上の推定値SX (λ)を用いて、JISZ8717
に規定する蛍光物体色の測定などが行える。
Using the above estimated value SX (λ), JISZ8717
It is possible to measure the fluorescent object color specified in .

次に1本実施例に基づく実測例を記す。Next, an actual measurement example based on this embodiment will be described.

蛍光物体色測定装置7の光学系の幾何学的条件は、O0
照明及び45°受光である。
The geometrical conditions of the optical system of the fluorescent object color measuring device 7 are O0
Illumination and 45° light reception.

光源1には1日本工業規格JIS Z 8902 (キ
セノン標準白色光源)に規定するキセノン標準白色光源
に近似した光源を採用した。この光源によって発生する
試料面照明光の相対分光分布SX  (λ)として、 
JIS Z 871.7の附属書に従って求めた値を第
3図に実線で示す。ここでは。
As the light source 1, a light source similar to a xenon standard white light source defined in Japanese Industrial Standards JIS Z 8902 (xenon standard white light source) was used. As the relative spectral distribution SX (λ) of the sample surface illumination light generated by this light source,
The values determined according to the annex of JIS Z 871.7 are shown in solid lines in Figure 3. here.

この実線で表される値を真値と見なし、後で求めた推定
値(点線)と比較・評価する。
The value represented by this solid line is regarded as the true value, and compared and evaluated with the estimated value (dotted line) obtained later.

蛍光性試料3には、1光源蛍光分離方法(JIS Z 
8717を参照。)で予め値イーjけしだ、以下の7種
類の試料を用いた。また、常用標準白色面3には硫酸バ
リウム粉末の圧着面を用いた。
For fluorescent sample 3, one light source fluorescence separation method (JIS Z
See 8717. ), and the following seven types of samples were used. Further, as the commonly used standard white surface 3, a pressure-bonded surface of barium sulfate powder was used.

(1)蛍光増白剤塗装紙 (2)蛍光赤塗装紙 (3)蛍光黄塗装紙 (4)蛍光緑塗装紙 (5)蛍光黄赤を含む塩化ビニール色票 7 (6)蛍光黄緑半透明プラスチック (7)蛍光ピンク半透明プラスチック 各蛍光性試料3の反射分光放射輝度率βo(λ)、相対
外部蛍光放射効率Qn、、(μ)及び蛍光成分の相対分
光分布F’+  (λ)の値を第4図ないし第6図に示
す。
(1) Fluorescent brightener-coated paper (2) Fluorescent red-coated paper (3) Fluorescent yellow-coated paper (4) Fluorescent green-coated paper (5) PVC color chart containing fluorescent yellow-red 7 (6) Fluorescent yellow-green and semi-white Transparent plastic (7) Fluorescent pink translucent plastic Reflection spectral radiance factor βo (λ), relative external fluorescence radiance efficiency Qn, , (μ), and relative spectral distribution of fluorescent components F'+ (λ) of each fluorescent sample 3 The values of are shown in FIGS. 4 to 6.

上述した手順1〜6に従って、試料面照明光8の相対分
光分布Sx  (λ)を波長範囲300〜780nm、
 1onIl1間隔の値で推定した。このときの推定値
を第3図に点線で示す。第3図に実線及び点線で示され
る各値は、光源色の三刺激値のYが100になるように
基準化して示しである。
According to steps 1 to 6 described above, the relative spectral distribution Sx (λ) of the sample surface illumination light 8 is set in the wavelength range of 300 to 780 nm,
It was estimated using the value of 1onIl1 interval. The estimated value at this time is shown by a dotted line in FIG. Each value shown by a solid line and a dotted line in FIG. 3 is normalized so that Y of the tristimulus value of the light source color is 100.

次式で表す真値と推定値との相関値e2は。The correlation value e2 between the true value and the estimated value is expressed by the following equation.

約0.3となり、また第3図の実線と点線との比較でも
分かるように9本発明に基づく測定装置7を用いると、
真値と近似した試料面照明光8の相対分光分布を推定出
来ることが分かる。
As can be seen from the comparison between the solid line and the dotted line in FIG. 3, when the measuring device 7 based on the present invention is used,
It can be seen that the relative spectral distribution of the sample surface illumination light 8 that approximates the true value can be estimated.

(17)  8 ここで+  Xl及びylは試料面照明光8の相対分光
分布Sx  (λ)の真値及び推定値、σア及びσ、は
波長300〜780nmにおける真値及び推定値のそれ
ぞれの標準変差1mは相関値e2を求める波長点の数、
添字jは各波長点を表している。
(17) 8 Here, + The standard deviation 1m is the number of wavelength points for calculating the correlation value e2,
The subscript j represents each wavelength point.

次に、蛍光物体色測定の実施例として、 JISZ 8
717に規定する全分光放射輝度率合成方法を用いて蛍
光物体色測定を行った場合、これら真値と推定値がそれ
ぞれの結果に及ぼす影響について記す。
Next, as an example of fluorescent object color measurement, JISZ 8
In the case where fluorescent object color measurement is performed using the total spectral radiance factor synthesis method specified in 717, the effects of these true values and estimated values on the respective results will be described.

上述したものと同じ装置7を使用した全分光放射輝度率
合成方法を用いて標準の光D65の下での潤色値を測定
するためには、この装置における試料面照明光8では、
第7図に分光透過率を示す2種類の色フィルターが適し
ている。
In order to measure the embellishment value under the standard light D65 using the total spectral radiance factor synthesis method using the same apparatus 7 as described above, the sample surface illumination light 8 in this apparatus is as follows:
Two types of color filters whose spectral transmittances are shown in FIG. 7 are suitable.

標準の光D65は実在する照明光では無いため。This is because the standard light D65 is not an actual illumination light.

実際に標準の光D65の下での潤色値を測定することは
困難である。よって、ここでは以下の4種類の蛍光性試
料に対する2分光器法測定デ−夕[参考文献 It、旧
nato、 M、 Nanjo and YNayat
ani、  Colorimetry  and  i
ts  Accuracy  1nthe  Meas
urement  of  Fluorescent 
 Materialsby  tbe  Two  M
onochroIIlator  Methorl、C
o1or  Res。
It is difficult to actually measure the embellishment value under standard light D65. Therefore, the following two spectrometer measurement data for the following four types of fluorescent samples [References: It, former NATO, M, Nanjo and YNayat]
ani, Colorimetry and i
ts Accuracy 1nthe Meas
urement of fluorescent
Materialsby tbe Two M
onochroIIlator Methorl, C
o1or Res.

Appl、、 Vol、IO,No、2. pp、84
−91. (1,985)]を用いて、 JIS Z 
871.7の附属書に規定する蛍光潤色誤差指数と同様
な計算方法で算出した値(以ド蛍光潤色誤差指数と称す
)で、試料面照明光8の真値と推定値とがそれぞれの測
色値に与える影響を評価する。
Appl,, Vol, IO, No, 2. pp, 84
-91. (1,985)] using JIS Z
This is a value calculated using the same calculation method as the fluorescence coloring error index specified in the annex to 871.7 (hereinafter referred to as the fluorescence coloring error index), and the true value and estimated value of the sample surface illumination light 8 are calculated for each measurement. Evaluate the impact on color values.

(1)蛍光赤塗装紙(R) (2)蛍光オレンジ塗装紙(0) (3)蛍光黄塗装紙(Y) (4)蛍光線塗装紙(G) 括弧内の記号R−Gは1それぞれの蛍光性試料3の略号
とする。
(1) Fluorescent red coated paper (R) (2) Fluorescent orange coated paper (0) (3) Fluorescent yellow coated paper (Y) (4) Fluorescent coated paper (G) Symbols RG in parentheses are 1 each This is the abbreviation for Fluorescent Sample 3.

試料面照明光8の相対分光分布の真値を用いた場合、蛍
光測色誤差指数は以下の値となった。
When the true value of the relative spectral distribution of the sample surface illumination light 8 was used, the fluorescence colorimetry error index had the following value.

(CIEl、、AI3単位) 一方1本発明に基づいて推定した試料面照明光8の相対
分光分布の値を用いた場合、蛍光潤色誤差指数は以下の
値となった。
(CIEl, AI3 units) On the other hand, when the value of the relative spectral distribution of the sample surface illumination light 8 estimated based on the present invention was used, the fluorescence coloring error index had the following value.

(C1lシL A I3 、++を位)よって1本発明
に基づく推定方法は、蛍光物1 体色の測定に必要な試料面照明光8の相対分光分布を実
用的に十分供給することができるこことが確認された。
(C1l, L A I3 , ++ in place) Therefore, the estimation method based on the present invention can practically provide a sufficient relative spectral distribution of the sample surface illumination light 8 necessary for measuring the body color of the fluorescent substance 1. This was confirmed.

第2図は、第2の発明に係る蛍光物体色測定装置の実施
例を示す光学系の概略図である。第2図において図面番
号9はハロゲン電球またはキセノンランプなどの光源、
10はモノクロメタ−111は被測定試料取付枠、12
は試料(蛍光性試料または常用標準白色面)、13は受
光器をそれぞれ表しており1以上の部品9〜13はカバ
ー14に取り付けられ、蛍光物体色測定装置15を構成
している。
FIG. 2 is a schematic diagram of an optical system showing an embodiment of the fluorescent object color measuring device according to the second invention. In Figure 2, drawing number 9 is a light source such as a halogen bulb or a xenon lamp;
10 is a monochromator, 111 is a frame for mounting a sample to be measured, 12
13 represents a sample (a fluorescent sample or a commonly used standard white surface), and 13 represents a light receiver, and one or more parts 9 to 13 are attached to a cover 14 and constitute a fluorescent object color measuring device 15.

先ず、この測定装置15に係る受光器系の相対分光応答
度の測定原理を記す。
First, the principle of measuring the relative spectral responsivity of the photodetector system according to this measuring device 15 will be described.

受光器13および試料面12aから受光器13に至る光
学系(図省略)で構成される受光器系の下で観測される
n種類の蛍光性試料12の見掛けの分光放射輝度率は1
次式によって近似的に表される。
The apparent spectral radiance factor of the n types of fluorescent samples 12 observed under the photoreceiver system consisting of the photoreceiver 13 and the optical system (not shown) extending from the sample surface 12a to the photoreceiver 13 is 1.
It is approximately expressed by the following equation.

′132 βo1.1 (λ) =βo21 (λ)(18) ここで、βo、m,i(λ)は受光器系S、の種類に依
存するi番目(i=1〜n)の蛍光性試料12の見掛け
の分光放射輝度率、βo、1 (λ)はi番目の蛍光性
試料12の反射成分に対する反射分光放射輝度率、Qn
、、(λ)は蛍光成分に対する相対外部蛍光放射効率、
Fl(μ)は蛍光成分の相対分光分布、S、(λ)およ
びS、(μ)は受光器系の相対分光応答度、λおよびμ
は波長、Δμは加算(Σ)の波長間隔を表す。
'132 βo1.1 (λ) = βo21 (λ) (18) Here, βo, m, i (λ) is the i-th (i = 1 to n) fluorescence that depends on the type of photoreceiver system S. The apparent spectral radiance factor of sample 12, βo, 1 (λ) is the reflected spectral radiance factor for the reflected component of the i-th fluorescent sample 12, Qn
, , (λ) is the relative external fluorescence radiation efficiency for the fluorescent component,
Fl (μ) is the relative spectral distribution of the fluorescent component, S, (λ) and S, (μ) are the relative spectral responsivity of the receiver system, λ and μ
represents the wavelength, and Δμ represents the wavelength interval of addition (Σ).

式(18)を変形すると1式(19)が得られる。When formula (18) is transformed, formula 1 (19) is obtained.

(19) R1,l=ΣF+  (μ)S7 (μ) Aμ  (
20)μ R11,は波長λおよびμに独立な値であり。
(19) R1,l=ΣF+ (μ)S7 (μ) Aμ (
20) μ R11 is a value independent of wavelength λ and μ.

S、(λ)に関する比例定数となる。簡単のために、R
,、、xlと置ける。
S, is a proportionality constant regarding (λ). For simplicity, R
,,,xl can be written.

よって、第2図に示す測定光学系で、蛍光性試料]2の
見掛けの分光放射輝度率β6.6(λ)を測定すれば、
蛍光性試料12の値βo、+ (λ)およびQn、、(
λ)を用いて、受光器系の相対分光応答度S、(λ)を
式(19)から推定することができる。
Therefore, if the apparent spectral radiance factor β6.6 (λ) of the fluorescent sample [2] is measured using the measurement optical system shown in FIG.
The values βo, + (λ) and Qn, , (
Using λ), the relative spectral responsivity S,(λ) of the photoreceiver system can be estimated from equation (19).

このときの推定値S、(λ)は、(i番目の)蛍光性試
料12の性質に依存する。n種類の蛍光性試料に関して
平均的な性質をもつ相対分光応答度を測定するためには
1式(21)から求める。
The estimated values S and (λ) at this time depend on the properties of the (i-th) fluorescent sample 12. In order to measure the relative spectral responsivity with average properties for n types of fluorescent samples, it is determined from Equation 1 (21).

(21) 蛍光成分の相対外部蛍光放射効率Q−,+(λ)が0と
なる波長域においては1式(18)からβC,s、+ 
 (λ)−βo、l (λ)もOとなり9式(19)お
よび式(21)の計算ができない。この波長域でのS、
(λ)の推定方法を以下に示す。
(21) In the wavelength range where the relative external fluorescence radiation efficiency Q−,+(λ) of the fluorescent component is 0, βC,s,+
(λ)−βo,l (λ) also becomes O, making it impossible to calculate Equation 9 (19) and Equation (21). S in this wavelength range,
The method for estimating (λ) is shown below.

式(19)で求めた推定値をS、°(λ)で表すと。The estimated value obtained by equation (19) is expressed as S, °(λ).

式(18)は次式で表すことができる。Equation (18) can be expressed as the following equation.

Qn  (λ) ここで、λ。1〜λ。2はQn、、(λ)キ0の波長範
囲、μP2はF、(μ)¥0となる長波長端の値とする
Qn (λ) where λ. 1~λ. 2 is the wavelength range of Qn, .

式(22)の左辺を関数R[1,i]  :  (i=
1〜n)、右辺のS、(λ)を関数S[]、μ] :(
ルーズ。2+Δμ〜μ、2)、右辺のF、(μ)Aμを
関数F[μ+  1]で表すと1式(22)の関係は行
列式(23)で示される。式(19)のようにi番目の
蛍光性試料12を一つだけを用いる場合 5 はn−1となる。ここでは1行列Rは式(24)のよう
に波長範囲λ。1〜λQ2の平均値とする。
The left side of equation (22) is defined as a function R[1,i] : (i=
1 to n), the right side S, (λ) is the function S[], μ] :(
loose. 2+Δμ~μ, 2), and when F and (μ) Aμ on the right side are expressed as a function F[μ+ 1], the relationship in Equation 1 (22) is expressed by determinant (23). When only one i-th fluorescent sample 12 is used as in equation (19), 5 becomes n-1. Here, one matrix R has a wavelength range λ as shown in equation (24). 1 to λQ2.

R日S F              (2B)− 関数S[1,μ]は式(25)から求めることもできる
が、波長に対する傾斜が急激に変化し。
The function S[1,μ] can also be obtained from equation (25), but the slope with respect to the wavelength changes rapidly.

実際の分光応答度とはかなり異なった値となる。The value is quite different from the actual spectral responsivity.

ただし、蛍光物体色測定には適用できる値ではある。However, this value is applicable to fluorescent object color measurement.

S−(’FF)−” FR(25) ここで  lpは行列Fの転値行列[’r(i。S-('FF)-” FR(25) Here, lp is the transposition matrix of matrix F ['r(i.

μ)−F(μ、i)]、(’FF)−1は行列(’FF
)の逆行列である。
μ)-F(μ,i)], ('FF)-1 is the matrix ('FF
) is the inverse matrix of

高浜らのvariation法を応用し、S、(λ) 
6 を求めると、実際の分光応答度に比較的近似した値が推
定できる。詳しい求め方は1手順6で後述する。
Applying the variation method of Takahama et al., S, (λ)
6, a value relatively close to the actual spectral responsivity can be estimated. The detailed method of determination will be described later in Step 6 of 1.

本推定方法では、測定は通常の分光光度計と値が既知の
蛍光性試料1またけを用いて行われる。
In this estimation method, measurements are performed using an ordinary spectrophotometer and one fluorescent sample with known values.

また、上述した推定方法を見れば分かるように、この測
定原理では、受光器系の相対分光応答度と積分球(図省
略)の相対分光効率とを特に分けて取り扱っていない。
Further, as can be seen from the estimation method described above, in this measurement principle, the relative spectral responsivity of the light receiver system and the relative spectral efficiency of the integrating sphere (not shown) are not particularly treated separately.

換言すれば、試料面12aからの反射光を積分球(図省
略)を介して受光器13に導くタイプの蛍光物体色測定
装置(分光光度計)15に対しても、上述した推定計算
が同様に適用できることが期待できる。
In other words, the above-mentioned estimation calculation is similar to the fluorescent object color measuring device (spectrophotometer) 15 of the type that guides the reflected light from the sample surface 12a to the light receiver 13 via an integrating sphere (not shown). It is expected that it can be applied to

以上が測定原理である。The above is the measurement principle.

次に、この測定装置15に係る受光器系の相対分光応答
度の測定・計算手順について具体的に記す。n種類全て
の蛍光性試料12を用いた場合の手順を示すが、1種類
だけでも推定は可能である。
Next, the procedure for measuring and calculating the relative spectral responsivity of the light receiving system according to this measuring device 15 will be specifically described. Although the procedure is shown using all n types of fluorescent samples 12, estimation is possible even with only one type.

手順1.推定波長範囲の設定 n種類全ての蛍光性試料12で、相対外部蛍光放射効率
Qn、、(λ)か (λQ1〜λQ2)と、相対外部蛍光放射効率Q8(μ
)が (μr1〜μF2)を求める。
Step 1. Setting the estimated wavelength range For all n types of fluorescent samples 12, the relative external fluorescence radiation efficiency Qn, , (λ) or (λQ1 to λQ2) and the relative external fluorescence radiation efficiency Q8 (μ
) calculates (μr1 to μF2).

波長域λ。1〜llF2における受光器系の相対分光応
答度S7 (λ)が、以下の手順から推定できる。[」
的とする波長域を満足しない場合は。
Wavelength range λ. The relative spectral responsivity S7 (λ) of the photoreceptor system at 1 to 11F2 can be estimated from the following procedure. [”
If the target wavelength range is not satisfied.

別の蛍光性試料を用いる。Use another fluorescent sample.

手順2.常用標準白色面に対する受光器出力の測定 常用標準白色面12を被測定試料取付枠11に設置し、
モノクロメータ−10の設定波長λを走査しながら、受
光器13の出力γW (λ)を読み取る。
Step 2. Measuring the receiver output with respect to a commonly used standard white surface. Place the commonly used standard white surface 12 on the measurement sample mounting frame 11,
While scanning the set wavelength λ of the monochromator 10, the output γW (λ) of the light receiver 13 is read.

手順3.蛍光性試料に対する受光器出力の測定 被測定試料数トj枠11に値[βo、+  <λ)。Step 3. Measuring receiver output for fluorescent samples The number of samples to be measured j is the value [βo, + <λ) in frame 11.

Qn、、(λ)ΔλおよびFi(lz)]が既知のn種
類の蛍光性試料12を順次設置したときの受光器出力γ
(、s、1(λ):  (i=1〜n)を測定する。
Receiver output γ when n types of fluorescent samples 12 with known Qn, , (λ)Δλ and Fi(lz)] are sequentially installed
(, s, 1(λ): (i=1 to n) is measured.

手順4.全分光放射輝度率の計算 1番「1の蛍光性試料12の全分光放射輝度率は1次式
から計算される。
Step 4. Calculation of total spectral radiance factor No. 1: The total spectral radiance factor of the fluorescent sample 12 is calculated from the linear equation.

(26) ここで、βW (λ)は測定に用いる照明および受光の
幾何学的条件に等しい条件でL1盛定めした常用標準白
色面12の分光放射輝度率。
(26) Here, βW (λ) is the spectral radiance factor of the commonly used standard white surface 12 determined by L1 under conditions equal to the geometric conditions of illumination and light reception used for measurement.

手順5.波長域λ。におけるS、(λ)の推定引算 手順1で求めた波長域λ。について1手順4の測定値β
o、+、+  (λ)、および既知データ 9 [βo、+ (λ)、Qn、、(λ)]を用いて2式(
19)または式(21)からS、(λ)を推定する。
Step 5. Wavelength range λ. The wavelength range λ obtained by estimation subtraction procedure 1 of S, (λ) in . Measured value β of step 1 for
o, +, + (λ), and known data 9 [βo, + (λ), Qn, , (λ)].
19) or estimate S and (λ) from equation (21).

手順6.波長域μ、におけるS、(λ)の推定旧算 手順1で求めた波長域μm以内かつ波長λ。2以上につ
いて1手順4の測定値βo、1.1(λ)。
Step 6. Estimation of S, (λ) in the wavelength range μ, within the wavelength range μm obtained in the old calculation procedure 1 and the wavelength λ. Measured value βo of 1 procedure 4 for 2 or more, 1.1 (λ).

手順5の推定値S、(λ)、および既知データ[βo、
1 (λ)、Qn、、(λ)、F+(μ)]を用いて、
S、(λ)を推定する。
The estimated value S, (λ) in step 5 and the known data [βo,
1 (λ), Qn, , (λ), F+(μ)],
Estimate S, (λ).

手順6I 初期値の設定 関数S v、 1filllsl  [1+  X’コ
 : (ルーズ。2十Aμ〜7Zp2)に適当な初期値
を代入する。例えば2手順2からS、(λ)ζ0となる
長波長端μ。がおおよそ分かっているときには1次式の
値を初期値とする。
Step 6I Initial value setting function Sv, 1fillsl[1+X'co: (loose.20Aμ~7Zp2) is substituted with an appropriate initial value. For example, from step 2, S, (λ) ζ0 becomes the long wavelength end μ. When approximately known, the value of the linear expression is used as the initial value.

S t、 In1ll*l  [1−+ II ]0 次式の行列B [t、j]  :  <1−1〜n+J
−1〜n)を求める。
S t, In1ll*l [1-+ II ]0th-order matrix B [t, j]: <1-1 to n+J
−1 to n).

B−(’FF)−’          (28)手順
6.3  R[1,ilの1算 式(24)から行列R[]、i]を81算する。
B-('FF)-' (28) Step 6.3 Calculate the matrix R[],i] by 81 from the formula (24) of R[1,il.

手順6.4  誤差の計算 手順6.1の初期値S T、1IllllI+を用いて
1次式のAR[1,ilを求める。
Step 6.4 Error Calculation Use the initial values ST, 1IllllI+ from Step 6.1 to find the linear equation AR[1,il.

AR[1,il =R[1,il   Sv 1nll
lsl F(29) 手順6.5  初期値の修正 推定値S、(λ)は次式から求められる。
AR[1,il =R[1,il Sv 1nll
lsl F (29) Step 6.5 The corrected estimated value S, (λ) of the initial value is obtained from the following equation.

S、(λ) = S v、 lff1111m+  [1λ]+ΔR
B’F(30) 手順6.6  初期値の再設定 S、(λ)の値が異常[S、(λ)<O,急激な傾斜変
化など)と思われるときは、5波長点の移動平均を行い
、その値を初期値として手F [μ、i]  :  [
=F1 (μ)Aμ]から。
S, (λ) = S v, lff1111m+ [1λ] + ΔR
B'F (30) Step 6.6 Resetting the initial value If the value of S, (λ) seems to be abnormal [S, (λ) < O, sudden change in slope, etc.], move the 5 wavelength points. Perform the average and use that value as the initial value for hand F [μ, i]: [
=F1 (μ)Aμ].

(31) 次に、この実施例に基づく実測例を記す。(31) Next, an actual measurement example based on this example will be described.

蛍光物体色測定装置15の光学系の幾何学的条件は O
O照明及び45°受光である。
The geometrical conditions of the optical system of the fluorescent object color measuring device 15 are O
O illumination and 45° light reception.

光源9には、ハロゲン電球を採用した。また使用した受
光器13の相対分光応答度S、(λ)の値を第8図に実
線で示す。ここでは、この実線で表される値を真値と見
なし、後で求めた推定値(点線)と比較・評価する。
A halogen light bulb was used as the light source 9. Further, the values of the relative spectral responsivity S, (λ) of the photodetector 13 used are shown by solid lines in FIG. Here, the value represented by this solid line is regarded as the true value, and compared and evaluated with the estimated value (dotted line) obtained later.

蛍光性試料12には、1光源蛍光分離方法(JIS Z
 8717を参照。)で予め値付けした。以下の7種類
の試料を用いた。また1常用標準白色面12には硫酸バ
リウム粉末の圧着面を用いた。
For fluorescent sample 12, one light source fluorescence separation method (JIS Z
See 8717. ) was priced in advance. The following seven types of samples were used. Further, as the commonly used standard white surface 12, a pressure-bonded surface of barium sulfate powder was used.

(1)蛍光増白剤塗装紙 (2)蛍光赤塗装紙 (3)蛍光黄塗装紙 (4)蛍光緑塗装紙 (5)蛍光黄赤を含む塩化ビニール色票(6)蛍光黄緑
半透明プラスチック (7)蛍光ピンク半透明プラスチック 各賞光性試料]2の反射分光放射輝度率βo、1 (λ
)、相対外部蛍光放射効率Q8(λ)、及び蛍光成分の
相対分光分布F+  (μ)の値を第4図ないし第6図
に示す。
(1) Fluorescent brightener-coated paper (2) Fluorescent red-coated paper (3) Fluorescent yellow-coated paper (4) Fluorescent green-coated paper (5) PVC color chart containing fluorescent yellow-red (6) Fluorescent yellow-green translucent Plastic (7) Fluorescent pink translucent plastic Each prize photogenic sample] Reflection spectral radiance rate βo, 1 (λ
), the relative external fluorescence radiation efficiency Q8 (λ), and the relative spectral distribution F+ (μ) of the fluorescent components are shown in FIGS. 4 to 6.

上述した手順1〜6に従って、受光器系の相対分光応答
度S、(λ)を波長範囲300〜780nm、 l0n
i+間隔の値で推定した。このときの推定値を第8図に
点線で示す。第8図に実線及び点線で示される各値は、
波長600nmの値が1になるように規準化して示しで
ある。
According to steps 1 to 6 described above, the relative spectral responsivity S, (λ) of the photoreceiver system is set in the wavelength range 300 to 780 nm, l0n
Estimated using the value of i+interval. The estimated value at this time is shown by a dotted line in FIG. Each value shown by a solid line and a dotted line in FIG.
The values are normalized and shown so that the value at a wavelength of 600 nm is 1.

式(■8)で表す真値と推定値との相関値e2は約1.
3となり、相関がやや悪いように見えるが、これは第8
図の実線と点線との比較でも分かるように、最終的な蛍
光物体色の測定値には余り影響しない波長600nm以
上ての推定精度が劣っているためである。移動平均を行
って推定 3 値を滑らかにすれば、測定結果には殆ど問題が無い。よ
って本発明に基づく測定装置を用いると、真値と近似し
た受光器系の相対分光応答度を推定出来ることが分かる
The correlation value e2 between the true value and the estimated value expressed by equation (■8) is approximately 1.
3, which seems to be a rather poor correlation, but this is
As can be seen from the comparison between the solid line and the dotted line in the figure, this is because the estimation accuracy is poor at wavelengths of 600 nm or more, which do not have much influence on the final measured value of the fluorescent object color. If a moving average is performed to smooth the estimated 3 values, there will be almost no problem with the measurement results. Therefore, it can be seen that by using the measuring device according to the present invention, it is possible to estimate the relative spectral responsivity of the photoreceptor system that approximates the true value.

(7)(発明の効果) 以上の説明から明らかなように、第1の発明の光源の分
光分布の測定方法によると、試料面照明光8の相対分光
分布が分光放射計や標準電球を用いずに測定出来るため
、従来の測定方法を代表しているJIS Z 8717
の附属書に規定する試料面照明光の測定方法よりも簡便
に求めることが出来る。また、積分球効率と光源の性質
を区別しないという測定原理から、光源からの光を積分
球で拡散して試料に照射するタイプにも。
(7) (Effect of the invention) As is clear from the above explanation, according to the method for measuring the spectral distribution of a light source of the first invention, the relative spectral distribution of the sample surface illumination light 8 can be measured using a spectroradiometer or a standard light bulb. JIS Z 8717, which represents the conventional measurement method because it can be measured without
It can be determined more easily than the method for measuring sample surface illumination light specified in the annex. In addition, due to the measurement principle of not distinguishing between integrating sphere efficiency and light source properties, there is also a type in which the light from the light source is diffused by an integrating sphere and irradiated onto the sample.

同様に適用することができる。このことから。The same can be applied. From this.

光源及び積分球の経時変化をチエツクする必要が生じた
場合は、何時でも容易に試料面照明光の相対分光分布を
求め直すことが出来る。
If it becomes necessary to check changes in the light source and integrating sphere over time, the relative spectral distribution of the sample surface illumination light can be easily recalculated at any time.

また、第2の発明の受光器系の分光応答度の測定方法に
よると、受光器13または受光器系 4 の相対分光応答度を標準受光器や微小電流計を用いずに
測定出来るため、従来の測定方法よりも比較的簡便に求
めることが出来る。また、積分球効率と受光器の性質を
区別しないという測定原理から、試料面からの光を積分
球で拡散して受光器で観測するタイプにも、同様に適用
することができる。このことから、受光器及び積分球の
経時変化をチエツクする必要が生じた場合は、何時でも
容易に受光器系の相対分光応答度を求め直すことが出来
る。
Furthermore, according to the method for measuring the spectral responsivity of the photoreceptor system of the second invention, the relative spectral responsivity of the photoreceiver 13 or the photoreceptor system 4 can be measured without using a standard photoreceptor or a microcurrent meter. It can be determined relatively easily than the measurement method of . Furthermore, since the measurement principle does not distinguish between the integrating sphere efficiency and the properties of the light receiver, it can be similarly applied to a type in which light from the sample surface is diffused by an integrating sphere and observed with a light receiver. From this, if it becomes necessary to check the changes over time in the light receiver and integrating sphere, the relative spectral responsivity of the light receiver system can be easily recalculated at any time.

しかも第1及び第2の発明に示す測定方法の光学系は、
従来の蛍光物体色測定装置に、値が既知の複数種類の蛍
光性試料を供給し、装置に附属する測定データ処理用の
旧算機プログラムに本発明に示す測定手順に基づくプロ
グラムを付加するだけで、簡単に改造ができるため、は
とんどの従来装置に適用できるという利点がある。
Moreover, the optical system of the measurement method shown in the first and second inventions is
Simply supply multiple types of fluorescent samples with known values to a conventional fluorescent object color measurement device, and add a program based on the measurement procedure shown in the present invention to the old computer program for processing measurement data attached to the device. Since it can be easily modified, it has the advantage that it can be applied to most conventional equipment.

i刊六壱−←奔i issue Rokuichi-←奔

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明に係る測定方法の実施例の光学系の
概略図、第2図は第2の発明に係る測定方法の実施の光
学系の概略図、第3図は第1の発明の実施例を用いて測
定した試料面照明光の相対分光分布の推定値と真値のグ
ラフ、第4図ないし第6図は第1及び第2の発明の各々
の実施例に用いた蛍光性試料の反射分光放射輝度率、相
対外部蛍光放射効率及び蛍光成分の相対分光分布のグラ
フ、第7図は第1の発明の実施例を全分光放射輝度率合
成方法に適用した場合の色フィルターの分光透過率のグ
ラフ、第8図は第2の発明の実施例を用いて測定した受
光器系の相対分光応答度の推定値と真値のグラフ。 1・・・光源、3・・・試料(蛍光性試料または常用標
準白色面)、3a・・・試料面。 4・・・モノクロメータ−15・・・受光器。 7・・・蛍光物体色測定装置、8・・試料面照明光9・
・・光源、10・・モノクロメータ−12・・・試料(
蛍光性試料または常用標準白色面)、12a・・・試料
面、13・・受光器。 15・・・蛍光物体色測定装置  7 8 波 長 (nm) 第 図 波 長 (nm) 第 図 波 長 (nm) 第 図 波 長 (nm) 第 図
FIG. 1 is a schematic diagram of an optical system for implementing the measuring method according to the first invention, FIG. 2 is a schematic diagram of an optical system for implementing the measuring method according to the second invention, and FIG. Graphs of estimated values and true values of the relative spectral distribution of sample surface illumination light measured using the embodiments of the invention, and Figures 4 to 6 show the fluorescence used in each embodiment of the first and second inventions. A graph of the reflected spectral radiance factor, relative external fluorescence radiance efficiency, and relative spectral distribution of fluorescent components of a sample, and FIG. 7 shows a color filter when the embodiment of the first invention is applied to the total spectral radiance factor synthesis method. FIG. 8 is a graph of the estimated value and true value of the relative spectral responsivity of the photodetector system measured using the embodiment of the second invention. 1... Light source, 3... Sample (fluorescent sample or commonly used standard white surface), 3a... Sample surface. 4... Monochromator-15... Light receiver. 7... Fluorescent object color measuring device, 8... Sample surface illumination light 9...
...Light source, 10...Monochromator-12...Sample (
Fluorescent sample or commonly used standard white surface), 12a...sample surface, 13...light receiver. 15... Fluorescent object color measuring device 7 8 Wavelength (nm) Figure wavelength (nm) Figure wavelength (nm) Figure wavelength (nm) Figure

Claims (2)

【特許請求の範囲】[Claims] (1)試料面に光源Xからの光を照射する照明手段と、
上記試料面からの光をモノクロメーターを介して受光器
に導き、モノクロメーターの設定波長ごとに受光器の出
力を測定する観測手段とを構成し、波長λまたはμごと
の反射分光放射輝度率β_o(λ)相対外部蛍光放射効
率Q_n(μ)および蛍光成分の相対分光分布F(λ)
の各々の値が既知のn種類の蛍光性試料と、分光放射輝
度率β_W(x)が既知の常用標準白色面とを上記試料
面に順次設置して波長ごとの受光器出力γ(λ)を測定
し、 [1]試料面に常用標準白色面を設置して得られる受光
器出力をγ_W(λ)、i番目(i=1〜n)の蛍光性
試料を設置して得られる受光器出力をγ_t_,x_,
_i(λ)(i=1〜n)としたとき、γ_W(λ)、
γ_t_,x_,_i(λ)、上記常用標準白色面の分
光放射輝度率β_W(λ)及び β_t_,_x_,_i(λ)=β_W(λ)・γ_t
_,_x_,_i(λ)/γ_W(λ)とからi番目の
蛍光性試料の全分光放射輝度率β_t_,_x_,_i
(λ)を求め、 [2]次に値が既知の測色用の光源Dの分光分布をSD
(λ)としたときに、i番目の蛍光性試料の相対外部蛍
光放射効率Q_n_,_i(μ)と、 ▲数式、化学式、表等があります▼ からi番目の蛍光性試料の測色用光源S_D(μ)のも
とでの実効励起効率N_D_,_iを求め、 [3]さらに、i番目の蛍光性試料の反射分光放射輝度
率β_o_,_i(λ)、蛍光成分の相対分光分布F_
i(λ)、全分光放射輝度率 β_t_,_x_,_i(λ)、実効励起効率N_D_
,_iと、▲数式、化学式、表等があります▼ から光源Xの分光分布S_X(λ)を求めることを特徴
とする光源の分光分布の測定方 法。
(1) Illumination means that irradiates the sample surface with light from the light source X;
The light from the sample surface is guided to a light receiver via a monochromator, and the observation means measures the output of the light receiver for each set wavelength of the monochromator, and the reflection spectral radiance factor β_o for each wavelength λ or μ is configured. (λ) Relative external fluorescence radiation efficiency Q_n (μ) and relative spectral distribution of fluorescent components F (λ)
n types of fluorescent samples, each of which has a known value, and a commonly used standard white surface, whose spectral radiance factor β_W(x) is known, are sequentially placed on the sample surface to determine the receiver output γ(λ) for each wavelength. [1] The receiver output obtained by installing a common standard white surface on the sample surface is γ_W (λ), and the receiver output obtained by installing the i-th (i = 1 to n) fluorescent sample is The output is γ_t_, x_,
When _i(λ) (i=1 to n), γ_W(λ),
γ_t_, x_, _i(λ), spectral radiance factor β_W(λ) of the above-mentioned standard white surface and β_t_, _x_, _i(λ) = β_W(λ)・γ_t
Total spectral radiance factor β_t_,_x_,_i of the i-th fluorescent sample from _,_x_,_i(λ)/γ_W(λ)
(λ), [2] Next, the spectral distribution of the colorimetric light source D whose value is known is SD
(λ), the relative external fluorescence radiation efficiency Q_n_,_i(μ) of the i-th fluorescent sample, and ▲There are mathematical formulas, chemical formulas, tables, etc.▼ From Find the effective excitation efficiency N_D_,_i under S_D(μ), [3] Furthermore, calculate the reflection spectral radiance rate β_o_,_i(λ) of the i-th fluorescent sample, and the relative spectral distribution of the fluorescent component F_
i(λ), total spectral radiance factor β_t_,_x_,_i(λ), effective excitation efficiency N_D_
A method for measuring the spectral distribution of a light source, characterized by determining the spectral distribution S_X(λ) of the light source
(2)試料面に光源からの光をモノクロメータを介して
照射する照明手段と上記試料面からの光を受光器に導き
モノクロメータの設定波長ごとに受光器の出力を測定す
る観測手段とを構成し、波長λまたはμごとの反射分光
放射輝度率β_o(λ)、相対外部蛍光放射効率Q_a
(λ)および蛍光成分の相対分光分布F(μ)の各々の
値が、既知のn種類の蛍光性試料と、分光放射輝度率β
_W(x)が既知の常用標準白色面とを上記試料面に順
次設置して、波長ごとの受光器出力γ(λ)を測定し、 [1]試料面に常用標準白色面を設置して得られる受光
器出力をγ_W(λ)、i番目(i=1〜n)の蛍光性
試料を設置して得られる受光器出力をγ_c_,_a_
,_i(λ)(i=1〜n)としたとき、γ_W(λ)
、γ_c_,_a_,_i(λ)、上記常用標準白色面
の分光放射輝度率β_W(λ)及び β_c_,_a_,_i(λ)=βw(λ)・γ_c_
,_a_,_i(λ)/γ_W(λ)とからi番目の蛍
光性試料の見かけの分光放射輝度率β_c_,_a_,
_i(λ)を求め[2]次にi番目の蛍光性試料の反射
分光放射輝度率β_o_,_i(λ)、相対外部蛍光放
射効率Q_■_,_i(λ)、見かけの分光放射輝度率
β_c_,_a_,_iと、 ▲数式、化学式、表等があります▼ とから受光器系の分光応答度S_r(λ)を求めること
を特徴とする受光器系の分光応 答度の測定方法。
(2) An illumination means that irradiates the sample surface with light from a light source via a monochromator, and an observation means that guides the light from the sample surface to a light receiver and measures the output of the light receiver at each set wavelength of the monochromator. reflected spectral radiance factor β_o(λ) for each wavelength λ or μ, relative external fluorescence radiation efficiency Q_a
(λ) and the relative spectral distribution F (μ) of the fluorescent component, respectively, with respect to n types of known fluorescent samples and the spectral radiance rate β
A commonly used standard white surface with a known W(x) is sequentially installed on the above sample surface, and the receiver output γ (λ) for each wavelength is measured. The obtained photoreceiver output is γ_W(λ), and the photoreceiver output obtained by installing the i-th (i=1 to n) fluorescent sample is γ_c_,_a_
,_i(λ) (i=1~n), γ_W(λ)
, γ_c_, _a_, _i(λ), the spectral radiance factor β_W(λ) of the above-mentioned standard white surface and β_c_, _a_, _i(λ) = βw(λ)・γ_c_
,_a_,_i(λ)/γ_W(λ) and the apparent spectral radiance rate β_c_,_a_, of the i-th fluorescent sample from
Calculate _i(λ) [2] Next, calculate the reflected spectral radiance factor β_o_, _i(λ) of the i-th fluorescent sample, the relative external fluorescence radiance efficiency Q_■_, _i(λ), and the apparent spectral radiance factor A method for measuring the spectral responsivity of a photoreceptor system, characterized by determining the spectral responsivity S_r(λ) of the photoreceptor system from β_c_, _a_, _i, and ▲There are mathematical formulas, chemical formulas, tables, etc.▼.
JP27824389A 1989-10-25 1989-10-25 Method for measuring spectral distribution of light source and method for measuring spectral responsiveness of photodetector system Pending JPH03138538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27824389A JPH03138538A (en) 1989-10-25 1989-10-25 Method for measuring spectral distribution of light source and method for measuring spectral responsiveness of photodetector system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27824389A JPH03138538A (en) 1989-10-25 1989-10-25 Method for measuring spectral distribution of light source and method for measuring spectral responsiveness of photodetector system

Publications (1)

Publication Number Publication Date
JPH03138538A true JPH03138538A (en) 1991-06-12

Family

ID=17594619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27824389A Pending JPH03138538A (en) 1989-10-25 1989-10-25 Method for measuring spectral distribution of light source and method for measuring spectral responsiveness of photodetector system

Country Status (1)

Country Link
JP (1) JPH03138538A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292511A (en) * 2005-04-08 2006-10-26 Konica Minolta Sensing Inc Method for measuring optical characteristics of fluorescent sample and apparatus for measuring optical characteristics using the same
JP2006292510A (en) * 2005-04-08 2006-10-26 Konica Minolta Sensing Inc Method for measuring optical characteristics of fluorescent sample and apparatus for measuring optical characteristics using the same
JP2009128719A (en) * 2007-11-26 2009-06-11 Olympus Corp Laser microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292511A (en) * 2005-04-08 2006-10-26 Konica Minolta Sensing Inc Method for measuring optical characteristics of fluorescent sample and apparatus for measuring optical characteristics using the same
JP2006292510A (en) * 2005-04-08 2006-10-26 Konica Minolta Sensing Inc Method for measuring optical characteristics of fluorescent sample and apparatus for measuring optical characteristics using the same
JP2009128719A (en) * 2007-11-26 2009-06-11 Olympus Corp Laser microscope

Similar Documents

Publication Publication Date Title
US7466417B2 (en) Process for the colour measurement of printed samples including brighteners
JP4660691B2 (en) Optical property measuring method of fluorescent sample and optical property measuring apparatus using the same
CN101375142B (en) Apparatus and method for illuminator-independent color measurements
JPH08313349A (en) Spectrophotometer
JPH11118603A (en) Spectral characteristic measuring apparatus of fluorescent specimen and its measuring method
CN210346910U (en) Hyperspectral color measuring system
Höpe Diffuse reflectance and transmittance
Carney et al. A novel regression model from RGB image data to spectroradiometric correlates optimized for tooth colored shades
JPH1010045A (en) Method of determining optical property of metallic paint film
US6278521B1 (en) Method of and apparatus for bispectral fluorescence colorimetry
JPH03138538A (en) Method for measuring spectral distribution of light source and method for measuring spectral responsiveness of photodetector system
Zwinkels Colour-measuring instruments and their calibration
RU2292037C2 (en) Method of recording goniometric characteristics of paint-and-varnish film
Eppeldauer Spectral response based calibration method of tristimulus colorimeters
Early et al. Uncertainty analysis for reflectance colorimetry
Anders Control of Whites: The Cibanoid White Scale
Billmeyer Jr et al. Calculation of the spectral radiance factors of luminescent samples
Chong Instrumental measurement and control of colour
JPH03130629A (en) Measuring method for color of fluorescent substance
Pospíšil et al. Basic methods for measuring the reflectance color of iron oxides
Zwinkels et al. Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry—part 1: bidirectional geometry (45: 0)
Billmeyer Current American practice in color measurement
Ng et al. Non-contact imaging colorimeter for human tooth color assessment using a digital camera
Nadal et al. Color and appearance
Nadal et al. 0: 45 Surface Color