JPH03130629A - Measuring method for color of fluorescent substance - Google Patents

Measuring method for color of fluorescent substance

Info

Publication number
JPH03130629A
JPH03130629A JP26879289A JP26879289A JPH03130629A JP H03130629 A JPH03130629 A JP H03130629A JP 26879289 A JP26879289 A JP 26879289A JP 26879289 A JP26879289 A JP 26879289A JP H03130629 A JPH03130629 A JP H03130629A
Authority
JP
Japan
Prior art keywords
color
spectral
light
measured
tristimulus values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26879289A
Other languages
Japanese (ja)
Inventor
Takashi Ichijo
一條 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP26879289A priority Critical patent/JPH03130629A/en
Publication of JPH03130629A publication Critical patent/JPH03130629A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform the same measurement as measurement using a Luther filter in computation even if the Luther filter is not used by obtaining the tristimulus values of a substance to be measured by computation based on the spectroscopic tristimulus values which are measured through individual filters. CONSTITUTION:A plurality of (n) kinds of filters having spectral transmittances gammax, i<lambda>, gammay, i<lambda>, gammaz and i<lambda> are provided between a substance to be measured 4 and a photodetector system 7. The spectral response of the light from the photodetector without a color filter 6 is made to be Sr<lambda>. Coefficients ax, i, ay, i, az and i are selected so that Sx<lambda>, Sy<lambda>, and Sz<lambda> obtained based on the expression I satisfy the Luther conditions. Thus the virtual photodetector system 7 is formed. Then, the spectroscopic tristimulus values Ximu, Yimu and Zimu which are obtained by the measurements through the individual filters 6 are synthesized based on the expression II. The synthesized tristimulus values Xmu, Ymu and Zmu obtained in the virtual photodetector system are used, and the tristimulus values of the substance to be measured 4 under the projected light having arbitrary relative spectral distribution Smu are obtained based on the expression III.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は蛍光物体色の測定方法に関し、さらに詳しくは
蛍光染料または蛍光顔料を含む被測定体が任意の照明光
の下でどのような色に見えるか、つまり蛍光物体色を測
定して三刺激値で表現する方法である。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for measuring the color of a fluorescent object, and more particularly, the present invention relates to a method for measuring the color of a fluorescent object, and more particularly, the present invention relates to a method for measuring the color of a fluorescent object, and more specifically, the present invention relates to a method for measuring the color of a fluorescent object, and more particularly, the present invention relates to a method for measuring the color of a fluorescent object, and more particularly, the present invention relates to a method for measuring the color of a fluorescent object. This method measures the colors of fluorescent objects and expresses them using tristimulus values.

(従来の技術) 蛍光染料又は、蛍光顔料を含む被測定体(試料)(以下
、蛍光性試料と称す)の物体色(以下。
(Prior Art) Object color (hereinafter referred to as "fluorescent sample") of an object (sample) to be measured (hereinafter referred to as fluorescent sample) containing a fluorescent dye or fluorescent pigment.

蛍光物体色と称す)が、非蛍光性染料の物体色と大きく
異なる点は、その分光放射輝度率(常用標準白色面に対
する試料の見掛の分光反射率)が照明光や受光器系の種
類によって異なるため、一般に、単一の照明光または受
光器系を用いて測定した分光放射輝度率のみから任意の
照明光の下での物体色を計算することが出来ない点にあ
る。
The spectral radiance factor (apparent spectral reflectance of the sample relative to a commonly used standard white surface) differs greatly from the object color of non-fluorescent dyes, as the spectral radiance factor (apparent spectral reflectance of the sample relative to a commonly used standard white surface) depends on the illumination light and the type of receiver system. Therefore, it is generally not possible to calculate the object color under arbitrary illumination light only from the spectral radiance factor measured using a single illumination light or a light receiver system.

このため従来、蛍光物体色に関して様々な測定方法が提
案されており、代表的な蛍光物体色の測定方法としては
、日本工業規格JIS Z 8717 (蛍光物体色の
測定方法)に規定される6種類の方法がある。また、通
常の非蛍光性の物体色の測定方法としては1日本工業規
格JIS Z 8722 (物体色の測定方法)に規定
される方法がある。これらの方法の測定原理に準拠して
各種の蛍光物体色測定装置及び物体色測定装置が造られ
、用いられているが、蛍光物体色測定装置と物体色測定
装置の各々の光学系は共通する部分が多いため、従来の
蛍光物体測定装置は、物体色測定装置を転用した又は、
改造した構造となっている。
For this reason, various methods for measuring fluorescent object colors have been proposed in the past, and the six typical methods for measuring fluorescent object colors are the six types specified in the Japanese Industrial Standard JIS Z 8717 (methods for measuring fluorescent object colors). There is a method. Further, as a general method for measuring the color of a non-fluorescent object, there is a method defined in 1 Japanese Industrial Standards JIS Z 8722 (Method for Measuring Object Color). Various types of fluorescent object color measuring devices and object color measuring devices have been manufactured and used based on the measurement principles of these methods, but the optical systems of each of the fluorescent object color measuring devices and object color measuring devices are common. Due to the large number of parts, the conventional fluorescent object measuring device is a repurposed object color measuring device or
It has a modified structure.

任意の照明光の下での蛍光物体色を求めるためには、日
本工業規格JIS Z 8717に規定する6種類の測
定方法のうち、1光源蛍光分離方法または2光源蛍光分
離方法が適している。これらの測定方法は、試料面に光
源からの光を直接に又は、波長選択性が少ない光学系を
介して又は、積分球を介して照射する照明条件(以下、
白色光照明と称す)と、試料面からの光をモノクロメー
タ−を介して受光器に導き、モノクロメータ−の設定波
長毎に受光器の出力を測定する測定条件(以下、分光観
測と称す)との白色光照明・分光w4測における測定を
主としている。さらに副測定では、試料面に光源からの
光をモノクロメータ−を介して照射する照明条件(以下
、単色光照明と称す)と、試料面からの光を直接に又は
、波長選択性が少ない光学系を介して又は、積分球を介
して受光器に導く観測条件(以下、非分光観測と称す)
との単色光照明・非分光観測方式の物体色測定方法を必
要とする。
In order to determine the fluorescent object color under arbitrary illumination light, one light source fluorescence separation method or two light source fluorescence separation method is suitable among the six types of measurement methods specified in Japanese Industrial Standard JIS Z 8717. These measurement methods are based on illumination conditions (hereinafter referred to as
(referred to as white light illumination), and measurement conditions in which light from the sample surface is guided to a receiver via a monochromator and the output of the receiver is measured for each set wavelength of the monochromator (hereinafter referred to as spectroscopic observation). Mainly uses white light illumination and spectroscopic W4 measurements. Furthermore, in sub-measurements, there are two illumination conditions: one in which the sample surface is irradiated with light from a light source via a monochromator (hereinafter referred to as monochromatic illumination); Observation conditions that lead to the receiver through the system or the integrating sphere (hereinafter referred to as non-spectral observation)
Object color measurement methods using monochromatic illumination and non-spectral observation methods are required.

(発明が解決しようとする課題) これらの方法は、白色光照明・分光M測と単色光照明・
非分光M測との2つの条件下で、つまり2種類の物体色
測定装置を用いてそれぞれ分光放射輝度率を測定しなけ
ればならないため、測定が煩雑であるという欠点がある
。特に1光源蛍光分離方法は、測定方法を簡略化するた
めに、様々な仮定が含まれている簡易測定方法であるた
め。
(Problem to be solved by the invention) These methods are based on white light illumination/spectral M measurement and monochromatic light illumination/
Since the spectral radiance ratio must be measured under two conditions (non-spectral M measurement), that is, using two types of object color measuring devices, there is a drawback that the measurement is complicated. In particular, the one-light source fluorescence separation method is a simple measurement method that includes various assumptions in order to simplify the measurement method.

白色光照明・分光i!!測時に用いた照明光と分光分布
が非常に異なる照明光に対しては、蛍光物体色の推定誤
差が大きくなるという欠点がある。この問題は日本工業
規格JIS Z 8717に規定する残りの4種類の測
定方法にも共通して言える。
White light illumination/spectroscopy i! ! For illumination light whose spectral distribution is very different from the illumination light used for time measurement, there is a drawback that the error in estimating the fluorescent object color becomes large. This problem also applies to the remaining four types of measurement methods specified in the Japanese Industrial Standard JIS Z 8717.

この他、代表的な測定方法として、2分光器法[参考文
献: l(、Minato、 M、Nanjo and
 Y、Nayatani。
In addition, as a typical measurement method, there is a two-spectrometer method [References: Minato, M., Nanjo and
Y, Nayatani.

Colorimetry and  its  Acc
uracy  Ln  theMeasurement
  of  Fluorsscent  Materi
als  dy  Tw。
Colorimetry and its Acc
uracy Ln the Measurement
of Fluorsscent Materi
als dy Tw.

Monochro+mator Method Co1
or Res、Appl、、Vol。
Monochro+mator Method Co1
or Res, Appl,, Vol.

10、 Nα2. pp、84−91(1985)]が
ある。 2分光器法は、単色光照明用と分光観測用に2
つのモノクロメータ−(分光器)を使用する方法であり
、その測定原理上、正確に任意の照明光の下での蛍光物
体色を推定できるという長所がある。しかしこの方法は
、単色光照明と分光観測のそれぞれについてモノクロメ
ータ−の波長を変えて測定しなければならないため、従
来の物体色測定装置または蛍光物体色測定装置を転用で
きないという問題がある。従来装置を転用するためには
単色光照明・非分光&f方式の装置の観測側にルータフ
ィルタを用いなければならない、しかしながら、現実に
ルータフィルタを造ることはかなりの困難を伴なうため
得策ではない。
10, Nα2. pp. 84-91 (1985)]. The two spectrometer method uses two spectrometers, one for monochromatic illumination and one for spectroscopic observation.
This method uses two monochromators (spectroscopes), and its measurement principle has the advantage of accurately estimating the color of a fluorescent object under any illumination light. However, this method has the problem that the conventional object color measuring device or fluorescent object color measuring device cannot be used as a substitute because the wavelength of the monochromator must be changed for each of monochromatic illumination and spectroscopic observation. In order to repurpose the conventional equipment, it is necessary to use a router filter on the observation side of the monochromatic illumination/non-spectroscopic &f type equipment.However, it is not a good idea to actually make a router filter as it is quite difficult. do not have.

そこで、本発明の課題はルータフィルタを用いることな
く、かつ測定点数も少ない蛍光物体色の測定方法を提供
することである。
Therefore, an object of the present invention is to provide a method for measuring fluorescent object color without using a router filter and requiring a small number of measurement points.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は被測定体を単色光で照明して被測定体からの反
射光を受光器系で観測して被測定体の物体色を測定する
方法において、被測定体と受光器系との間に複数種のフ
ィルタを介在させ、個々のフィルタのもとての受光器系
の分光応答度を求め、これらの分光応答度がルータ条件
を満すように係数を選択して仮想の受光器系を構成し、
個々のフィルタのもとで測定して求めた分光玉刺激値を
もとにして計算上合成した仮想の受光器系のもとで求め
た合成分光三刺激値から計算によって任π)照明光の下
での被測定体の三刺激値を求める方法である。
(Means for Solving the Problems) The present invention provides a method for measuring the object color of an object to be measured by illuminating the object to be measured with monochromatic light and observing the reflected light from the object using a receiver system. Multiple types of filters are interposed between the measurement object and the receiver system, the spectral responsivity of the receiver system for each filter is determined, and the coefficients are set so that these spectral responsivity satisfies the router conditions. Select to configure a virtual receiver system,
Based on the spectral tristimulus values measured and determined under each filter, the combined spectral tristimulus values calculated under a virtual receiver system are used to calculate the illumination light. This method calculates the tristimulus values of the object under test.

(作用) ルータフィルタを用いないでも計算上ルータフィルタを
用いたと同じ条件になるよう係数を定めて仮想の受光器
系を構成し、個々のフィルタのもとで測定した分光三刺
激値から、計算によって被測定体の三刺激値を求めれば
、ルータフィルタを実際に用いないでも計算上ルータフ
ィルタを用いたと同じ測定ができる。
(Function) Even without using a router filter, a virtual receiver system is constructed by determining coefficients so that the calculation conditions are the same as when using a router filter, and calculations are made from the spectral tristimulus values measured under each filter. If the tristimulus values of the object to be measured are determined by , it is possible to perform the same calculation as using a router filter without actually using the router filter.

(実施例) 以下図面を参照して、この発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は、本発明に係る蛍光物体色測定装置の一実施例
を示す光学系の概略図である。第1図において図面番号
1はハロゲン電球または重水素ランプなどの光源、2は
モノクロメータ−3は被測定体取付枠、4は被測定体(
蛍光性試料または常用標準白色面)、5は色フイルタ取
付枠、6は色フィルタ、7は受光器をそれぞれ表してお
り、以上の部品1〜7はカバー8に取付けられ、蛍光物
体色測定装置を構成している。色フイルタ取付枠5及び
色フイルタ6以外は、単色光照明・非分光11測方式の
通常の物体色測定装置と同様な光学的構造となっている
FIG. 1 is a schematic diagram of an optical system showing an embodiment of the fluorescent object color measuring device according to the present invention. In Figure 1, drawing number 1 is a light source such as a halogen bulb or deuterium lamp, 2 is a monochromator, 3 is a mounting frame for the object to be measured, and 4 is the object to be measured (
5 represents a color filter mounting frame, 6 represents a color filter, and 7 represents a light receiver. The above parts 1 to 7 are attached to a cover 8, and the fluorescent object color measuring device is assembled. It consists of Other than the color filter mounting frame 5 and the color filter 6, the optical structure is the same as that of a normal object color measuring device using monochromatic illumination and non-spectral 11 measurement method.

先ず、この測定装置に係る測定原理を記す。First, the measurement principle related to this measuring device will be described.

従来の1光源蛍光分離方法及び2光源蛍光分離方法の照
明・観測条件と等しい白色光照明・分光観測で測定され
る任意の照明光の下での蛍光性試料の相対色刺激関数S
(λ)βt、8(λ)は次式で表される。
Relative color stimulation function S of a fluorescent sample under arbitrary illumination light measured with white light illumination and spectroscopic observation that are equivalent to the illumination and observation conditions of the conventional one-light source fluorescence separation method and two-light source fluorescence separation method
(λ) βt, 8(λ) is expressed by the following formula.

S(λ)βtts(λ)=S(λ)β。(λ)+ΣS(
μ)βf(μ、λ)Δμ ■μ ここで、S(λ)は試料面照明光の相対分光分布、βt
、scλ)は照明光Sの種類に依存する全分光放射輝度
率、β。(λ)は試料の反射成分に対する反射分光放射
輝度率、βf(μ、λ)は波長μの励起光に対する波長
λの蛍光の比率を表す蛍光成分の放射輝度率、λ及びμ
は波長、Δμは積算(Σ)の波長間隔を表す。
S(λ)βtts(λ)=S(λ)β. (λ)+ΣS(
μ)βf(μ,λ)Δμ ■μ Here, S(λ) is the relative spectral distribution of the sample surface illumination light, βt
, scλ) is the total spectral radiance factor, β, which depends on the type of illumination light S. (λ) is the reflected spectral radiance factor of the reflected component of the sample, βf (μ, λ) is the radiance factor of the fluorescent component, which represents the ratio of fluorescence with wavelength λ to excitation light with wavelength μ, λ and μ
represents the wavelength, and Δμ represents the wavelength interval of integration (Σ).

2分光器法では、励起波長μと蛍光波長λを各々変えて
測定することにより、βf(μ、λ)とβ。(λ)を求
めている。また1光源蛍光分離方法及び2光源蛍光分離
方法では、βf(μ、λ)を蛍光成分の相対分光分布F
(λ)と相対外部蛍光放射効率Qa(μ)とに分けて求
めるために、測定に用いた試料面照明光と分光分布が非
常に異なる照明光に対して、蛍光物体色の推定誤差が大
きくなる。
In the two-spectrometer method, βf(μ, λ) and β are measured by changing the excitation wavelength μ and fluorescence wavelength λ, respectively. (λ). In addition, in the one-light source fluorescence separation method and the two-light source fluorescence separation method, βf (μ, λ) is the relative spectral distribution F of the fluorescence component.
(λ) and the relative external fluorescence radiation efficiency Qa (μ), the error in estimating the fluorescent object color is large for illumination light whose spectral distribution is very different from the sample surface illumination light used for measurement. Become.

反射分光放射輝度率β。(λ)は1次式のように表すこ
ともできる。
Reflection spectral radiance factor β. (λ) can also be expressed as a linear equation.

β。(μ、λ)=β。(λ)  μ=λのとき=0  
  μ≠λのとき    ■ これを式■に代入して、 S(λ)βt+9(λ)=ΣS(μ)[β。(μ、λ)
+βf(μ、λ)Δμμ =ΣS(μ)βt(μ、λ)Δμ     (3)μ ただし。
β. (μ, λ) = β. (λ) When μ=λ = 0
When μ≠λ ■ Substitute this into equation ■, S(λ)βt+9(λ)=ΣS(μ)[β. (μ, λ)
+βf(μ,λ)Δμμ =ΣS(μ)βt(μ,λ)Δμ (3)μ However.

βt(μ、λ)=β。(μ、λ)+βf(μ、λ)  
   (イ)とする。
βt(μ, λ) = β. (μ, λ) + βf(μ, λ)
(b).

よって2度視野に基づ<xyz表色系の三刺激値x、y
、zは、弐〇と日本工業規格JIS Z 8701(X
YZ表色系及びX工。Y□。Z□。表色系による色の表
示方法)に規定する等色間数マ(λ)、y(λ)。
Therefore, based on the 2-degree visual field < tristimulus values x, y of the xyz color system
, z is 2〇 and Japanese Industrial Standard JIS Z 8701 (X
YZ color system and X engineering. Y□. Z□. The isochromatic distance matrix (λ) and y (λ) specified in the color display method (color display method using color system).

7(λ)を用いて X=ΣS(λ)βt、8(λ)マ(λ)Δλプ Y=ΣS(λ)βt、3(λ)y(λ)Δλλ Z=ΣS(λ)βtps(λ)丁(λ)Δλλ で計算できる。Using 7(λ) X=ΣS(λ)βt, 8(λ)ma(λ)Δλp Y=ΣS(λ)βt, 3(λ)y(λ)Δλλ Z=ΣS(λ)βtps(λ)Ding(λ)Δλλ It can be calculated by

今、単位照射エネルギー単色光[s(μ)=1コに対す
る三刺激値を1分光三刺激値X(μ)、Y(μ)。
Now, the tristimulus value for unit irradiation energy monochromatic light [s (μ) = 1 unit] is 1 minute tristimulus value X (μ), Y (μ).

、Yi(μ)と呼ぶことにすると、式■からX(μ)=
Σβt(μ、λ)マ(μ)Δλλ Y(μ)=Σβt(μ、λ)y(μ)Δλλ 、Yi(μ)=Σβt(μ、λ)τ(μ)Δλλ ■ となり、弐〇は X;ΣS(μ)X(μ)Δμ μ Y=ΣS(μ)Y(μ)Δμ μ Z=ΣS(μ)、Yi(μ)Δμ          
 ■μ で表される。
, Yi(μ), then from equation ■X(μ)=
Σβt (μ, λ) Ma (μ) Δλλ Y (μ) = Σβt (μ, λ) y (μ) Δλλ , Yi (μ) = Σβt (μ, λ) τ (μ) Δλλ ■, and 2 is X; ΣS(μ)X(μ)Δμ μ Y=ΣS(μ)Y(μ)Δμ μ Z=ΣS(μ), Yi(μ)Δμ
■Represented by μ.

よって弐〇で表される分光三刺激値を直接測定できれば
、任意の照明光の下での蛍光物体色は式■から求められ
ることがわかる。なお、10度視野に基づくX工。Yl
、zi。を求める場合には、弐〇における等色関数i(
λ)、y(λ)、7(λ)の代わりに、X工。Yl、Z
工。表色系における等色関数の値xta(λ)、yll
l(λ)#Z10(λ)を用いて計算する。
Therefore, if it is possible to directly measure the spectral tristimulus values represented by 2〇, it can be seen that the color of a fluorescent object under any illumination light can be determined from equation ①. In addition, X construction is based on a 10 degree field of view. Yl
, zi. When calculating, use the color matching function i(
X engineering instead of λ), y(λ), and 7(λ). Yl, Z
Engineering. Values of color matching functions in the color system xta (λ), yll
Calculate using l(λ) #Z10(λ).

これを実現するためには、蛍光性試料4に単色光を照射
する照明系(光源1及びモノクロメータ−2)と1等色
関数に相対分光応答度が近似した受光器系(色フィルタ
6及び受光器7)が必要である。この時の色フィルタは
、ルータ条件を満たすフィルタということでルータ・フ
ィルタと呼ばれており、刺激値直読形の光電色彩計など
に使われている。しかし、現実にルータ・フィルタを造
ることは、かなりの困難を伴うため、本発明ではこの問
題を以下のように解決した。
To achieve this, an illumination system (light source 1 and monochromator 2) that irradiates monochromatic light onto the fluorescent sample 4 and a light receiving system (color filter 6 and A light receiver 7) is required. The color filter at this time is called a router filter because it satisfies the router conditions, and is used in photoelectric colorimeters that directly read stimulus values. However, it is quite difficult to actually create a router filter, so the present invention solves this problem as follows.

試料面4aと受光器7との間(45°照明及びO。Between the sample surface 4a and the light receiver 7 (45° illumination and O.

受光、0°照明及び45°受光の場合)、又は試料面4
aからの反射光を拡散するための積分球(図示略)と受
光器7との間に、n種類の色フィルタ6を一種類ずつ挿
入する。このとき1式■で表される合成分光応答度sx
(λ)、 sy(λL sz(λ)(このときの仮想の
受光器を、以下、合成受光器系と称す)が等色間数マ(
λ)、7(λ)、τ(λ)またはマ、。(λ);y□。
light reception, 0° illumination and 45° light reception), or sample surface 4
One of n types of color filters 6 is inserted between the light receiver 7 and an integrating sphere (not shown) for diffusing the reflected light from a. In this case, the composite spectral responsivity sx expressed by equation 1
(λ), sy(λL sz(λ) (the virtual receiver at this time is hereinafter referred to as a composite receiver system) is a number of isochromatic matrix (
λ), 7(λ), τ(λ) or Ma. (λ);y□.

(λL z□。(λ)の各々の値になるべく近くなるよ
うに、色フィルタ6の種類を選び、各色フィルタごとの
係数a Xei、a ytiy a Zti :(i=
o〜n)を定める。なお係数a X*i* a yti
ea2,1は負の値でも構わないため1色フィルタ選択
時における自由度が刺激値直読形の色彩計の場合よりも
向上し、ルータ条件に優れた合成受光器系が仮想的に実
現される。
The type of color filter 6 is selected so as to be as close as possible to each value of (λL z□.(λ), and the coefficients a Xei, a ytiy a Zti : (i=
o to n). Note that the coefficient a X*i* a yti
Since ea2,1 can be a negative value, the degree of freedom when selecting a single-color filter is improved compared to the case of a colorimeter that directly reads stimulus values, and a synthetic light receiver system that meets router conditions can be virtually realized. .

Sx(λ)=Σ a X+iτX+i(λ)Sr(λ)
ma sy(λ)” *a y+i c y+i(λ)sr(
λ)Sz(λ)=エ antiτz*i(λ)sr(λ
)(8)ここで、τ8,1(λ)、τ2,1(λ)、τ
2,1(λ):色フィルタ6の分光透過率1=O−no
ただし、i=0は色フィルタなしの状 態を表す。
Sx(λ)=Σ a X+iτX+i(λ)Sr(λ)
ma sy(λ)” *a y+i c y+i(λ)sr(
λ)Sz(λ)=E antiτz*i(λ)sr(λ
) (8) Here, τ8,1(λ), τ2,1(λ), τ
2,1(λ): Spectral transmittance of color filter 6 1=O-no
However, i=0 represents a state without a color filter.

[τ×、。(λ)=で9.。(λ)=τ2.。(λ)=
1.O]このとき、式0から分光三刺激値X(μ)。
[τ×,. (λ) = 9. . (λ)=τ2. . (λ)=
1. O] At this time, from equation 0, the spectral tristimulus value X (μ).

Y(μ)、2(μ)は次式で近似的に表される。Y(μ) and 2(μ) are approximately expressed by the following equations.

X(μ)=Σβt(μ、λ)sx(λ)Δλλ Y(μ)=Σβt(μ、λ)S、(λ)Δλλ 、Yi(μ)=Σβt(μ、λ)$2(λ)Δλ   
   0λ 式(8)を式0に代入すると、式(10)が得られる。
X (μ) = Σβt (μ, λ) sx (λ) Δλλ Y (μ) = Σβt (μ, λ) S, (λ) Δλλ , Yi (μ) = Σβt (μ, λ) $2 (λ) Δλ
0λ Substituting equation (8) into equation 0 yields equation (10).

ん =Σ a)(,1X4(μ) i−a Y(μ)=Σ ay、1Yi(μ) −e 、Yi(μ)=Σ a2.支Zi(μ)Q (10) ただし、 XL(λ)=Σβt(μ、λbxvi(λ)8.(λ)
Δλλ Yi(λ)=Σβt(μ、λ)τ2,1(λ)sr(λ
)Δλλ ZL(λ)=Σβt(μ、λ)?zd(λ)8r(λ)
Δλ   (11)λ よって本発明に係る蛍光物体色測定装置を用いて、等色
間数マ(λ)、y(λ)、τ(λ)用の各々の1番目の
色フィルタ6を色フイルタ取付枠5に設置したときの、
式(11)で表される分光三刺激値Xt(λ)、Yi(
L)、Zip)を測定すレバ、式(10)から合成した
分光王刺激値X(λ)、Y(λ)、、Yi(λ)が求め
られ、任意の照明光の下での蛍光物体色は弐〇から求め
られる。
= Σ a) (,1 λ)=Σβt(μ, λbxvi(λ)8.(λ)
Δλλ Yi(λ)=Σβt(μ,λ)τ2,1(λ)sr(λ
)Δλλ ZL(λ)=Σβt(μ, λ)? zd(λ)8r(λ)
Δλ (11)λ Therefore, using the fluorescent object color measuring device according to the present invention, each of the first color filters 6 for isochromatic matrix (λ), y (λ), and τ (λ) is When installed in the mounting frame 5,
The spectral tristimulus values Xt(λ) and Yi(
L), Zip), the synthesized spectral king stimulus values X(λ), Y(λ), Yi(λ) are obtained from equation (10), and the fluorescent object under arbitrary illumination light is The color is found from 2〇.

以上が測定原理である。The above is the measurement principle.

次に、光源1及びモノクロメータ−2で生じる試料面4
aの位置における単色光の相対分光放射束と、受光器7
の相対分光応答度の測定方法について記す。
Next, the sample surface 4 generated by the light source 1 and the monochromator 2
Relative spectral radiant flux of monochromatic light at position a and receiver 7
The method for measuring the relative spectral responsivity of is described below.

ステップA1 試料面4aの位置に、相対分光応答度が既知の受光器を
設置し、モノクロメータ−2の設定波長λを変化させな
がら、該受光器の出力○(λ)を微小電流計を用いて測
定する。
Step A1: Install a photoreceiver with a known relative spectral response at the position of the sample surface 4a, and while changing the set wavelength λ of the monochromator 2, measure the output ○(λ) of the photoreceiver using a microcurrent meter. Measure.

ステップA2 光源1及びモノクロメータ−2で生じる試料面4aの位
置における単色光の相対分光放射束P(λ)を、次式か
ら計算する。
Step A2 The relative spectral radiant flux P(λ) of monochromatic light at the position of the sample surface 4a generated by the light source 1 and the monochromator 2 is calculated from the following equation.

ここで、S′(λ)はステップA1で用いた受光器の相
対分光応答度。
Here, S'(λ) is the relative spectral responsivity of the photodetector used in step A1.

ステップA3 硫酸バリウムまたは酸化マグネシウムなどの常用標準白
色面4を、被測定試料取付枠3に設置し、モノクロメー
タ−2の設定波長μを走査しながらら、受光器7の出力
rw(λ)を読み取る。なお、このときの受光器出力r
w(λ)は次式で表される。
Step A3 A commonly used standard white surface 4 such as barium sulfate or magnesium oxide is installed on the measurement sample mounting frame 3, and while scanning the set wavelength μ of the monochromator 2, the output rw (λ) of the optical receiver 7 is measured. read. Note that the receiver output r at this time
w(λ) is expressed by the following formula.

rv(λ)=P(λ)βV(λ)sr(λ)     
   (13)ここで、P(λ)は主に光源1及びモノ
クロメータ−2で構成される単色光照明系の相対分光放
射束、βV(λ)は測定に用いる照明及び受光の幾何学
的条件に等しい条件で目盛定めした常用標準白色面の分
光放射輝度率、sr(λ)は受光器7の相対分光応答度
rv(λ)=P(λ)βV(λ)sr(λ)
(13) Here, P(λ) is the relative spectral radiant flux of the monochromatic illumination system mainly composed of light source 1 and monochromator 2, and βV(λ) is the geometric condition of illumination and light reception used for measurement. sr(λ) is the relative spectral responsivity of the photoreceiver 7.

ステップA4 受光器7の相対分光応答度sr(λ)を、次式から計算
する。
Step A4: The relative spectral responsivity sr(λ) of the photoreceiver 7 is calculated from the following equation.

次に1色フィルタ6の種類の選び方及び係数a Xei
e a Fe1t a Zr2の求め方について記す・
ステップB1 先ず、候補となる色フィルタの分光透過率τJ(λ)(
j=1〜m、mは用いた色フィルタの枚数)を測定する
。なお枚数mは、出来るだけ多い方が蛍光物体色の測定
精度を向上させる上では望ましいが、分光透過率の測定
と以下の計算処理の手間がかかるようになる。
Next, how to select the type of one-color filter 6 and the coefficient a Xei
Describe how to find e a Fe1t a Zr2.
Step B1 First, the spectral transmittance τJ(λ)(
j=1 to m, m is the number of color filters used) is measured. Note that it is desirable that the number m of sheets be as large as possible in order to improve the measurement accuracy of the fluorescent object color, but the measurement of the spectral transmittance and the calculation process described below become more labor-intensive.

色フイルタ取付枠5にm種類の色フィルタ6を順次挿入
し、このときの受光器出力 rF+j(λ):(j=1
〜m、j=oは色フィルタ無しの状態を表すことにする
)をステップA3と同様に測定する。
m types of color filters 6 are sequentially inserted into the color filter mounting frame 5, and the receiver output at this time is rF+j(λ): (j=1
~m, j=o represents the state without a color filter) is measured in the same manner as in step A3.

このとき、5番目の色フィルタの分光透過率τj(λ)
は1次式から求められる。
At this time, the spectral transmittance τj(λ) of the fifth color filter
is obtained from a linear equation.

また、題意からrv、。(λ)のため、τ。(λ)=1
である。
Also, from the meaning of the title, rv. Because (λ), τ. (λ)=1
It is.

ステップB2 次式で表されるσつ、σ9.σ7の値が最小になるよう
に、係数a XeLp a y+i+ a Zyiを求
める。
Step B Quadratic σ, σ9. The coefficient a XeLp a y+i+ a Zyi is determined so that the value of σ7 is minimized.

AX=BTx A、=BT。AX=BTx A,=BT.

(19) A2=BT2 こで、行列AX? Ayg Azは ここで、波長範囲λ□〜λ1は通常300〜780n墓
とする。
(19) A2=BT2 Now, matrix AX? Ayg Az is here, and the wavelength range λ□ to λ1 is usually 300 to 780 nm.

具体的には、ステップB1で用意したm種類の色フィル
タのうちから、n種類(0< n5m)の色フィルタを
取り出し、式(17)及び式(19)から係数a X+
i* a y*i* a Zyiを計算する。
Specifically, from among the m types of color filters prepared in step B1, n types (0<n5m) of color filters are extracted, and the coefficient a X+ is calculated from equations (17) and (19).
Calculate i* a y*i* a Zyi.

B=(+ir”8r)−’5rt(17)ここで、行列
Srは srtは行列Srの転置行列+ (!i rt8 r)
″lは行列(s rts r)の逆行列である。
B=(+ir"8r)-'5rt(17) Here, the matrix Sr is the transposed matrix of the matrix Sr + (!i rt8 r)
″l is the inverse matrix of the matrix (s rts r).

AX= [a XtO”’  a Xynコ tAy”
 [a y?。・・・aytnltAZ=Ca Zto
 ”’ a Zynl t(20) 行列Tx、Ty、T2は ’rx=  cx(λ、)  −XCλ、)コ tT、
=[y(λ、)・・・y(λ、)] 1T2=[丁(λ
1)・・・τ(λss)] t(21)ステップB3 日本工業規格JIS Z 8717の附属帯に規定する
蛍光試験色の反射分光放射輝度率β。1j(λ):(j
=1〜9)、相対外部蛍光放射効率Q a t j(λ
′)、蛍光成分の相対分光分布Fj(λ)の値を用いて
1式(22)及び式(23)から三刺激値の差ΔX、Δ
Y、ΔZを計算する。
AX= [a XtO"' a Xynko tAy"
[ay? .・・・aytnltAZ=Ca Zto
”' a Zynl t(20) Matrices Tx, Ty, T2 are 'rx= cx(λ,) -XCλ,) tT,
= [y(λ,)...y(λ,)] 1T2=[Ding(λ
1)...τ(λss)] t(21) Step B3 Reflection spectral radiance factor β of the fluorescence test color specified in the appendix of Japanese Industrial Standard JIS Z 8717. 1j (λ): (j
= 1 to 9), relative external fluorescence radiation efficiency Q a t j (λ
'), and the difference in tristimulus values ΔX, Δ from Equation 1 (22) and Equation (23) using the value of the relative spectral distribution Fj (λ) of the fluorescence component.
Calculate Y and ΔZ.

go(λ)βtyDyバλ)=go(λ)β。、バλ)
50 十Fバλ)Σ so(λ’ ) Qas j(λ′)Δ
λ’   (22)λ’=300 [Σa Xpiτl(λ)Sr(λ)−Y(λ)月j=
1 [Σay*iτl(λ)Sr(λ)−y(λ)月i=1 [Σazyifi(λ)、r(λ)−T(λ)月 (2
3)i=1 ここで、11は絶対値*8o(λ)及びgo(λ′)は
潤色用の光の相対分光分布2例えば日本工業規格JIS
 Z 7820 (測色用の標準の光及び標準光源)に
規定する標準の光DI5の相対分光分布とする。
go(λ)βtyDy(λ)=go(λ)β. , Baλ)
50 10F λ)Σ so(λ') Qas j(λ')Δ
λ' (22) λ' = 300 [Σa Xpiτl (λ) Sr (λ) - Y (λ) month j =
1 [Σay*iτl (λ) Sr (λ) − y (λ) month i = 1 [Σazyifi (λ), r (λ) − T (λ) month (2
3) i=1 Here, 11 is the absolute value * 8 o (λ) and go (λ') are the relative spectral distribution of light for color embellishment 2 For example, Japanese Industrial Standard JIS
Relative spectral distribution of standard light DI5 specified in Z 7820 (Standard light and standard light source for colorimetry).

ステップB4 全ての色フィルタの組合せについて、ステップB2及び
ステップB3を繰り返し、三刺激値の差ΔX、ΔY、Δ
Zが最も小さくなる色フィルタの組合せを、それぞれ等
色間数マ(λ)、y(λ)、T(λ)用の色フィルタと
して選択する。また、このときの色フィルタの分光透過
率τl(λ)の種類を、それぞれτつ,i(λ)、τ9
,1(λ)、τzti(λ)とし、その係数a L+i
* a yyi* a Zyiを採用する。
Step B4 Repeat step B2 and step B3 for all color filter combinations, and calculate the tristimulus value differences ΔX, ΔY, Δ
The combination of color filters for which Z is the smallest is selected as the color filter for the isochromatic number ma(λ), y(λ), and T(λ), respectively. In addition, the types of spectral transmittance τl(λ) of the color filter at this time are τ, i(λ), and τ9, respectively.
, 1(λ), τzti(λ), and the coefficient a L+i
*a yyi* a Adopt Zyi.

次に、分光三刺激値X(μ)、Y(μ)、、Yi(μ)
の求め方について記す。
Next, the spectral tristimulus values X (μ), Y (μ), Yi (μ)
I will explain how to find it.

今、相対分光放射束P(μ)[ステップA2で求めたP
(λ)]の単色光を、蛍光性試料4に照射し、その反射
光を合成受光器系で取り込むと、得られる結果X’(μ
)、Y’(μ)、 Z’(μ)はX’(μ)=QXP(
μ)X(μ) Y’(μ>=ayp<μ)Y(μ) Z’(u)=czP(μ)、Yi(μ)       
    (24)ここで、CXI Oye CZは定数
Now, the relative spectral radiant flux P (μ) [P obtained in step A2
(λ)] is irradiated onto the fluorescent sample 4, and the reflected light is captured by the composite receiver system, the result obtained is X'(μ
), Y'(μ), Z'(μ) are X'(μ)=QXP(
μ)
(24) Here, CXI Oye CZ is a constant.

となる。becomes.

よって次の手順によって分光三刺激値に係る補正係数を
求める。
Therefore, the correction coefficients related to the spectral tristimulus values are determined by the following procedure.

ステップC1 硫酸バリウムまたは酸化マグネシウムなどの常用標準白
色面4を被測定試料取付枠3に設置し、色フイルタ取付
枠5に色フィルタ6を順次設置しながら、各々の受光器
出力x’l、、(μ)。
Step C1: Install a commonly used standard white surface 4 such as barium sulfate or magnesium oxide on the measurement sample mounting frame 3, and while sequentially installing color filters 6 on the color filter mounting frame 5, adjust the output x'l of each light receiver, (μ).

Y’i+v(μL Z’i+w(μ)を測定する。Measure Y'i+v(μL Z'i+w(μ)).

ステップC2 次式で表される三刺激値補正係数に、、に、、に2を計
算する。
Step C Calculate 2 for the tristimulus value correction coefficient expressed by the quadratic equation.

二二で、波長範囲μm〜μ、は通常300〜780n腫
とする。
22, the wavelength range μm to μ is usually 300 to 780 nm.

ステップC3 次に、蛍光性試料4を被測定試料取付枠3に設置し1色
フィルタ取付枠5に色フィルタ6を順次設置しながら、
各々の受光器出力X′1(μ)。
Step C3 Next, while installing the fluorescent sample 4 in the sample-to-be-measured mounting frame 3 and sequentially installing the color filters 6 in the one-color filter mounting frame 5,
Each receiver output X'1 (μ).

Y’i(μLZ’i(μ)を測定する。なお、このとき
の受光器出力X’i(μ)+Y’i(μL Z’i(μ
)は次式で表される。
Measure Y'i (μL Z'i (μ). At this time, the receiver output X'i (μ) + Y'i (μL Z'i (μ
) is expressed by the following formula.

X’(μ);ΣP(μ)βt(μ、λ)fxpi(λ)
Sr(λ)Δλλ Y’ (μ)=ΣP(/A)βt(μ、λ)τ2,1(
λ)sr(λ)Δλλ z’(μ)=ΣP(μ)βt(μ、λ)τ2.i(λ)
Sr(λ)Δλ (26)λ ステップC4 被測定試料4の分光三刺激値X(μ)、Y(μ)。
X'(μ); ΣP (μ) βt (μ, λ) fxpi (λ)
Sr(λ)Δλλ Y' (μ)=ΣP(/A)βt(μ,λ)τ2,1(
λ)sr(λ)Δλλ z'(μ)=ΣP(μ)βt(μ,λ)τ2. i(λ)
Sr(λ)Δλ (26)λ Step C4 Spectral tristimulus values X(μ), Y(μ) of sample 4 to be measured.

、Yi(μ)を次式から求める。, Yi(μ) are determined from the following equation.

ΣayyiY’t(μ) Y(μ)=ky  ’“0 P(μ) ステップC5 弐〇から、任意の照明光の下での蛍光物体色を計算する
ΣayyiY't(μ) Y(μ)=ky'“0 P(μ) Step C5 From 2〇, calculate the fluorescent object color under arbitrary illumination light.

次に1本実施例に基づく実測例を記す。Next, an actual measurement example based on this embodiment will be described.

蛍光物体色測定装置の光学系の幾何学的条件は、0°照
明及び45°受光である。
The geometric conditions of the optical system of the fluorescent object color measuring device are 0° illumination and 45° light reception.

光源1には、ハロゲン電球を採用した。また使用した受
光器7の相対分光応答度sr(λ)の値を第2図に実線
で示す。
A halogen light bulb was used as light source 1. Further, the value of the relative spectral responsivity sr(λ) of the photodetector 7 used is shown by a solid line in FIG.

蛍光性試料4には、以下の4種類の試料を用いた。The following four types of samples were used as fluorescent sample 4.

■蛍光赤塗装紙(R) ■蛍光黄赤塗装紙(0) ■蛍光黄塗装紙(Y) に)蛍光緑塗装紙(G) また、常用標準白色面4には硫酸バリウム粉末の圧着面
を用いた。
■Fluorescent red coated paper (R) ■Fluorescent yellow red coated paper (0) ■Fluorescent yellow coated paper (Y) A) Fluorescent green coated paper (G) In addition, the regular standard white surface 4 is crimped with barium sulfate powder. Using.

2分光器性測定データを用いて計算した標準の光D□の
下での蛍光物体色の三刺激値を表1に示す。
Table 1 shows the tristimulus values of fluorescent object colors under standard light D□, which were calculated using 2 spectroscopic measurement data.

表1 標準の光り、Sの下での三刺激値第1図に示す本
実施例の測定光学系において色フィルタを使用しない場
合は、通常の単色光照明・非分光w481!lの下での
見掛の分光放射輝度率β。(λ)が測定される。上記4
種類の蛍光性試料に対する見掛の分光放射輝度率β。(
λ)の測定値を第3図に示す、単色光照明・非分光観測
方式の測定装置しか無く、本発明に係る測定方法を用い
ない場合蛍光物体色は、この見掛の分光放射輝度率β。
Table 1 Tristimulus values under standard illuminance and S If no color filter is used in the measurement optical system of this example shown in Figure 1, normal monochromatic illumination/non-spectroscopy w481! The apparent spectral radiance factor β under l. (λ) is measured. Above 4
Apparent spectral radiance factor β for different types of fluorescent samples. (
λ) is shown in Figure 3. When there is only a measuring device with monochromatic illumination and non-spectral observation method, and the measuring method according to the present invention is not used, the fluorescent object color is determined by this apparent spectral radiance factor β. .

(λ)を全分光放射輝度率βt、8(λ)と見なして、
式■からその値を計算するしか無い。
(λ) is considered as the total spectral radiance rate βt,8(λ),
The only way to do this is to calculate the value using formula ■.

この見掛の分光放射輝度率を用いて計算した標準の光D
1の下での蛍光物体色の三刺激値と、2分光器性測定デ
ータを用いて計算した表1に示す三刺激値との差ΔX、
ΔY、Δ2と、日本工業規格JIS S 8729 (
L”a東bx表色系及びL’u京V京表色系による物体
色の表示方法)及びJIS Z 8730(色差表示方
法)による色差ΔE ’ab (CIELAB単位)を
表2に示す。
Standard light D calculated using this apparent spectral radiance factor
The difference ΔX between the tristimulus value of the fluorescent object color under 1 and the tristimulus value shown in Table 1 calculated using 2 spectroscopic measurement data,
ΔY, Δ2 and Japanese Industrial Standard JIS S 8729 (
Table 2 shows the color difference ΔE 'ab (in CIELAB units) according to JIS Z 8730 (color difference display method) and JIS Z 8730 (color difference display method).

表2 本実施例を用いない場合の測定誤差性)三刺激値
誤差の平均値は、各蛍光性試料に対する三刺激値誤差の
絶対値の平均の値を表す。
Table 2 Measurement errors when not using this example) The average value of the tristimulus value error represents the average value of the absolute value of the tristimulus value error for each fluorescent sample.

本発明による測定方法では、色フィルタ6の種類が多い
ほど、81g定精度は向上する。ここでは、等色間数マ
(λ)、y(λ)、T(λ)用に各々4種類の色ガラス
フィルタを用いた。各フィルタの分光透過率τ8.i(
λ)、τつyi(λ)、τ2,1(λ):(i=1〜4
)の値を第4図(a)〜(c)に示す。
In the measuring method according to the present invention, the more types of color filters 6 there are, the more the 81g determination accuracy improves. Here, four types of colored glass filters were used for each of the isochromatic numbers Ma(λ), y(λ), and T(λ). Spectral transmittance τ8 of each filter. i(
λ), τyi(λ), τ2,1(λ): (i=1~4
) are shown in FIGS. 4(a) to (c).

このとき等色間数マ(λ)、y(λ)、2(λ)の値と
、弐〇で表される合成受光器系の相対分光応答度sx(
λ)、 sy(λ)t sz(λ)の計算結果を、第5
図にそれぞれ実線及び破線で示す。
At this time, the values of isochromatic numbers Ma(λ), y(λ), and 2(λ), and the relative spectral responsivity sx(
λ), sy(λ)t sz(λ) are calculated as the fifth
They are shown in the figure by solid lines and broken lines, respectively.

また本発明に基づく測定方法によって求めた。Further, it was determined by a measuring method based on the present invention.

各蛍光性試料に対する分光三刺激値X(μ)。Spectral tristimulus value X (μ) for each fluorescent sample.

Y(μ)、、Yi(μ)の測定結果を、第6図(a)〜
(d)にそれぞれ実線、破線9点線で示す。
The measurement results of Y (μ), Yi (μ) are shown in Figure 6 (a) ~
(d) is shown by a solid line and a broken nine-dot line, respectively.

この分光三刺激値を用いて計算した標準の光Doの下で
の蛍光物体色の三刺激値と、2分光器性測定データを用
いて計算した表1に示す三刺激値との差ΔX、ΔY、Δ
Z及び色差ΔE東ab (CIELAB単位)を以下に
示す。
The difference ΔX between the tristimulus value of the fluorescent object color under standard light Do calculated using this spectral tristimulus value and the tristimulus value shown in Table 1 calculated using 2 spectroscopic measurement data, ΔY, Δ
Z and color difference ΔE east ab (in CIELAB units) are shown below.

表3 本実施例を用いた場合の測定誤差衣2と表3の値
を比べると、本発明に基づく本実施例によって、測色値
の精度が大幅に向上していることが分かる。よって1本
発明に基づく測定方法は、蛍光物体色の計算に必要な分
光三刺激値を実用的に十分供給できることが確認された
Table 3 Measurement error when using the present example Comparing the values of Cloth 2 and Table 3, it can be seen that the accuracy of colorimetric values is significantly improved by this example based on the present invention. Therefore, it was confirmed that the measuring method according to the present invention can practically provide sufficient spectral tristimulus values necessary for calculating the fluorescent object color.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかにように1本発明の蛍光物体色測
定方法はルータフィルタを用いないでも、計算上ルータ
フィルタを用いたと同じ条件になるよう係数を定めて仮
想の受光器系を構成し、個々のフィルタのもとで測定し
た分光三刺激値から計算によって被測定体の三刺激値を
求めるので、ルータフィルタを用いないでも計算上ルー
タフィルタを用いたと同じ測定ができる。
As is clear from the above explanation, (1) the fluorescent object color measuring method of the present invention is such that even without using a router filter, a virtual receiver system is constructed by determining coefficients so that the calculation conditions are the same as when using a router filter; Since the tristimulus values of the object to be measured are calculated from the spectral tristimulus values measured under each filter, it is possible to perform the same measurement as using a router filter without using a router filter.

そして、この測定方法によれば、単色光照明。And according to this measurement method, monochromatic light illumination.

非分光観測の1条件下のみで測定が行なえるため、日本
規格JIS Z 8717に規定する1光源蛍光分離方
法や2光源蛍光分離方法のように2種類の物体色測定装
置を用意する必要がない。また、積分球効率と受光器の
性質を区別しないという測定原理から、試料面からの光
を積分球で拡散して受光器で観測するタイプの蛍光物体
測定装置にも、同様に適用することができる。しかも本
測定装置の光学系は、従来の蛍光物体色測定装置に色フ
イルタ取付枠を設け、装置に附属する測定データ処理用
の計算機プログラムに本発明を示す測定手順に基づくプ
ログラムを付加するだけで、簡単に改造ができるため、
はとんどの従来装置に適用できるという利点がある。
Since measurement can be performed under only one non-spectral observation condition, there is no need to prepare two types of object color measurement equipment as in the one-light source fluorescence separation method and the two-light source fluorescence separation method stipulated in the Japanese standard JIS Z 8717. . Furthermore, since the measurement principle does not distinguish between the integrating sphere efficiency and the properties of the light receiver, it can also be applied to fluorescent object measuring equipment of the type that diffuses light from the sample surface with an integrating sphere and observes it with a light receiver. can. Furthermore, the optical system of this measuring device can be constructed by simply adding a color filter mounting frame to a conventional fluorescent object color measuring device and adding a program based on the measurement procedure of the present invention to the computer program for processing measurement data attached to the device. , because it can be easily modified,
has the advantage that it can be applied to most conventional devices.

測定精度に関しては、従来の蛍光物体色の測定法の中で
も正確な値が得られる2分光器法に匹敵する正確な蛍光
物体色の値、つまり任意の照明光の下での蛍光物体色の
値が得られる。また本測定装置で得られる測定結果は分
光三刺激値X(μ)。
In terms of measurement accuracy, it is comparable to the two spectrometer method, which provides accurate values among conventional fluorescent object color measurement methods, that is, the value of fluorescent object color under any illumination light. is obtained. In addition, the measurement results obtained with this measuring device are the spectral tristimulus values X (μ).

Y(μ)、、Yi(μ)[データ点数 3 6゜J’ 
t 〜μ mは波長範囲(通常、300〜7g0nm)
 、Δμは波長間隔(通常、5n+1)]で表され、取
り扱う測定データ点数が2分光器法の測定結果である分
−とに」−一、λ、〜λ。は波長範囲(通常、380〜
Δλ 780nm) *Δλは波長間隔(通常、5 nm) 
]より非常に少なくて済むため、測定時間及び任意の照
明光に対する蛍光物体色の計算時間が短く、測定データ
をコンピュータの記録媒体に保存する場合、ファイル容
量が少なくて済むという利点がある。
Y (μ), Yi (μ) [Number of data points 3 6°J'
t~μm is the wavelength range (usually 300~7g0nm)
, Δμ is a wavelength interval (usually 5n+1)], and the number of measurement data points to be handled is 2-1, λ, ~λ. is the wavelength range (usually 380~
Δλ 780nm) *Δλ is the wavelength interval (usually 5 nm)
], the measurement time and calculation time of the fluorescent object color for arbitrary illumination light are short, and when the measurement data is stored in a computer recording medium, there is an advantage that the file capacity is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の蛍光物体色の測定方法を実施する光
学系の説明図、第2図は上記測定方法の実施例に用いた
受光器系の相対分光応答度のグラフ、第3図は本実施例
に用いた蛍光性被測定体の見掛けの分光放射輝度率のグ
ラフ、第4図(a)〜(Q)は本実施例に用いた色フィ
ルタの分光透過率のグラフで(a)はx、(b)はY、
そして((1)はZの刺激値用を示し、第5図は容色関
数と本実施例における合成受光器系の相対分光応答度の
グラフ、第6図(a)〜(d)は本実施例を用いて測定
した単色光励起に対する蛍光性試料の分光三刺激値のグ
ラフで(a)は試料界、(b)は試料オレンジ。 (c)は試料黄色、(d)は試料縁の値を示す。
Fig. 1 is an explanatory diagram of an optical system for carrying out the fluorescent object color measurement method of the present invention, Fig. 2 is a graph of the relative spectral response of the photodetector system used in the embodiment of the above measurement method, and Fig. 3 is Graphs of the apparent spectral radiance of the fluorescent measuring object used in this example, and Figures 4 (a) to (Q) are graphs of the spectral transmittance of the color filters used in this example. (a) is x, (b) is Y,
((1) shows the Z stimulus value, Figure 5 is a graph of the colorimetric function and the relative spectral responsivity of the composite photoreceptor system in this example, and Figures 6 (a) to (d) are graphs for this example). A graph of the spectral tristimulus values of a fluorescent sample for monochromatic light excitation measured using the following example: (a) is the sample field, (b) is the sample orange, (c) is the sample yellow, and (d) is the sample edge value. show.

Claims (1)

【特許請求の範囲】 被測定体を単色光で照明して上記被測定体からの反射光
を受光器系で観測して被測定体の物体色を測定する方法
において、被測定体と受光器系との間に分光透過率τ_
x_,_i(λ)、τ_y_,_i(λ)、τ_z_,
_i(λ)を有するn種類の複数のフィルタを介在させ
、フィルタなしのもとでの受光器系の分光応答度をs_
r(λ)とし、式 s_x(λ)=▲数式、化学式、表等があります▼ s_y(λ)=▲数式、化学式、表等があります▼ s_z(λ)=▲数式、化学式、表等があります▼ に基づいて得られるs_x(λ)、s_y(λ)、s_
z(λ)がルータ条件を満たすように係数a_x_,_
i、a_y_,_ia_z_,_iを選択して仮想の受
光器系を構成し、個々のフィルタのもとで測定して求め
た分光三刺激値X_i(μ)、Y_i(μ)、Z_i(
μ)を式X(μ)=▲数式、化学式、表等があります▼ Y(μ)=▲数式、化学式、表等があります▼ Z(μ)=▲数式、化学式、表等があります▼ に基づいて合成した仮想の受光器系のもとでの合成分三
刺激値X(μ)、Y(μ)、Z(μ)から式X=▲数式
、化学式、表等があります▼ Y=▲数式、化学式、表等があります▼ Z=▲数式、化学式、表等があります▼ に基づいて任意の相対分光分布s(μ)の照明光の下で
の被測定体の三刺激値を求めることを特徴とする蛍光物
体色の測定方法。
[Scope of Claims] In a method of measuring the color of an object to be measured by illuminating the object to be measured with monochromatic light and observing the reflected light from the object to be measured with a light receiver system, the object to be measured and the light receiver are Spectral transmittance τ_ between the system and
x_,_i(λ), τ_y_,_i(λ), τ_z_,
A plurality of n types of filters having _i(λ) are interposed, and the spectral response of the photoreceptor system without filters is expressed as s_
r(λ), the formula s_x(λ)=▲There are mathematical formulas, chemical formulas, tables, etc.▼ s_y(λ)=▲There are mathematical formulas, chemical formulas, tables, etc.▼ s_z(λ)=▲There are mathematical formulas, chemical formulas, tables, etc. There are ▼ s_x(λ), s_y(λ), s_ obtained based on
The coefficients a_x_,_ are set so that z(λ) satisfies the router condition.
i, a_y_, _ia_z_, _i are selected to configure a virtual receiver system, and the spectral tristimulus values X_i(μ), Y_i(μ), Z_i(
μ) to the formula Based on the composite tristimulus values X (μ), Y (μ), Z (μ) under a virtual receiver system synthesized based on the formula X = ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Y = ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Z = ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Calculate the tristimulus values of the object under illumination with an arbitrary relative spectral distribution s (μ) based on A method for measuring fluorescent object color characterized by:
JP26879289A 1989-10-16 1989-10-16 Measuring method for color of fluorescent substance Pending JPH03130629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26879289A JPH03130629A (en) 1989-10-16 1989-10-16 Measuring method for color of fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26879289A JPH03130629A (en) 1989-10-16 1989-10-16 Measuring method for color of fluorescent substance

Publications (1)

Publication Number Publication Date
JPH03130629A true JPH03130629A (en) 1991-06-04

Family

ID=17463337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26879289A Pending JPH03130629A (en) 1989-10-16 1989-10-16 Measuring method for color of fluorescent substance

Country Status (1)

Country Link
JP (1) JPH03130629A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292510A (en) * 2005-04-08 2006-10-26 Konica Minolta Sensing Inc Method for measuring optical characteristics of fluorescent sample and apparatus for measuring optical characteristics using the same
JP2006292511A (en) * 2005-04-08 2006-10-26 Konica Minolta Sensing Inc Method for measuring optical characteristics of fluorescent sample and apparatus for measuring optical characteristics using the same
JP2012032340A (en) * 2010-08-02 2012-02-16 Canon Inc Color processing apparatus and method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292510A (en) * 2005-04-08 2006-10-26 Konica Minolta Sensing Inc Method for measuring optical characteristics of fluorescent sample and apparatus for measuring optical characteristics using the same
JP2006292511A (en) * 2005-04-08 2006-10-26 Konica Minolta Sensing Inc Method for measuring optical characteristics of fluorescent sample and apparatus for measuring optical characteristics using the same
JP2012032340A (en) * 2010-08-02 2012-02-16 Canon Inc Color processing apparatus and method thereof

Similar Documents

Publication Publication Date Title
JP6676398B2 (en) Colorimetric system for display inspection
Ganz Whiteness: photometric specification and colorimetric evaluation
Gibson Spectrophotometry (200 to 1,000 Millimicrons).
JPH10508940A (en) Apparatus and method for measuring and analyzing spectral radiation mainly for measuring and analyzing color characteristics
JPH04218734A (en) Apparatus and method for providing scale of spectrophotometer
Zwinkels et al. Spectral fluorescence measurements
JPH03130629A (en) Measuring method for color of fluorescent substance
Zwinkels Colour-measuring instruments and their calibration
Eppeldauer Spectral response based calibration method of tristimulus colorimeters
JP7195540B2 (en) Spectrometry device and spectrometry program
Chong Colorimetry for textile applications
Gundlach et al. Problems in measurement of fluorescent materials
US20150009501A1 (en) Absolute measurement method and apparatus thereof for non-linear error
JPH0546885B2 (en)
Billmeyer Jr et al. Calculation of the spectral radiance factors of luminescent samples
Anders Control of Whites: The Cibanoid White Scale
JPH03138538A (en) Method for measuring spectral distribution of light source and method for measuring spectral responsiveness of photodetector system
Zwinkels et al. Characterization of a versatile reference instrument for traceable fluorescence measurements using different illumination and viewing geometries specified in practical colorimetry—part 2: sphere geometry (8: d)
JPH08110297A (en) Device for detecting coloring of liquid
Sándor et al. Spectral interpolation errors
McKinnon Methods of measuring the colour of opaque fluorescent materials
Billmeyer Current American practice in color measurement
Rich Instruments and Methods for the Colour Measurements Required in Colour Engineering
Zwinkels Metrology of photoluminescent materials
CN217358748U (en) Device for improving accuracy of spectral imager and spectral imaging system