JP4483496B2 - Spectral reflectance prediction apparatus and spectral reflectance prediction method - Google Patents

Spectral reflectance prediction apparatus and spectral reflectance prediction method Download PDF

Info

Publication number
JP4483496B2
JP4483496B2 JP2004269715A JP2004269715A JP4483496B2 JP 4483496 B2 JP4483496 B2 JP 4483496B2 JP 2004269715 A JP2004269715 A JP 2004269715A JP 2004269715 A JP2004269715 A JP 2004269715A JP 4483496 B2 JP4483496 B2 JP 4483496B2
Authority
JP
Japan
Prior art keywords
spectral reflectance
light source
spectral
light
influence degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004269715A
Other languages
Japanese (ja)
Other versions
JP2006084333A (en
Inventor
雄大 諸原
浩一 飯野
貴也 田中
誠士 古谷
泰輔 稲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004269715A priority Critical patent/JP4483496B2/en
Publication of JP2006084333A publication Critical patent/JP2006084333A/en
Application granted granted Critical
Publication of JP4483496B2 publication Critical patent/JP4483496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、蛍光増白剤を含む用紙の観察光源での分光反射率を予測する分光反射率予測装置及び分光反射率予測方法に関する。   The present invention relates to a spectral reflectance prediction apparatus and a spectral reflectance prediction method for predicting a spectral reflectance of an observation light source of a paper containing a fluorescent brightening agent.

異なる画像出力装置間のカラーマッチングを行う際には、一般的に色チャートに印刷されているカラーパッチの各色を測色装置で測定し、得られた測色値を用いてICCプロファイルフォーマット(International Color Consortiumで提唱されたフォーマット仕様)等に従い両画像出力装置のデバイスプロファイルを作成する。そしてこのデバイスプロファイルを用いて、すなわち測色装置で測定した測色値を基準として異なる画像出力装置間のカラーマッチングが行われる。なお色チャートは一般的に数百から数千のカラーパッチを含むが、自動測色可能な簡易的な装置を用いることにより非常に少ない負荷で色チャート上の各カラーパッチの測色値を測定することができる。   When performing color matching between different image output devices, generally, each color of a color patch printed on a color chart is measured with a color measuring device, and the obtained colorimetric values are used to determine an ICC profile format (International Create device profiles for both image output devices according to the format specifications proposed by the Color Consortium). Then, using this device profile, that is, color matching between different image output apparatuses is performed based on the colorimetric values measured by the colorimetric apparatus. Note that color charts generally contain hundreds to thousands of color patches, but the colorimetric values of each color patch on the color chart can be measured with a very low load by using a simple device capable of automatic colorimetry. can do.

一般的に反射物の測色に用いる測色装置は、測定対象からの反射光から人の目に対応した分光感度である等色関数に近似させたフィルターを用いてCIEXYZ等の測色値を直接得る刺激値直読方法、測定対象である試料に特定の照明光(以降、測定光)を照射し受光した反射光を、測定光を完全拡散板に照射し受光した反射光で割ることにより試料の分光反射率を求める分光測色方法に分類できる。反射物体の色は観察時の照明光(以降、観察光)の影響を受けることから、厳密には刺激値直読方法で直接得られた測色値を用いてカラーマッチングを行うよりも、分光測色方法で得られた分光反射率から観察光を考慮した測色値を用いてカラーマッチングを行う方が望ましい。   In general, a color measurement device used for color measurement of a reflection object uses a filter that approximates a color matching function that is a spectral sensitivity corresponding to the human eye from reflected light from a measurement target to obtain a color measurement value such as CIEXYZ. Direct reading method of stimulus value directly obtained, sample by dividing the reflected light received by irradiating the sample to be measured with specific illumination light (hereinafter, measurement light) by the reflected light irradiated with the measurement light on the complete diffuser It can be classified into a spectral colorimetric method for obtaining the spectral reflectance. Since the color of the reflecting object is affected by the illumination light during observation (hereinafter referred to as observation light), strictly speaking, spectrophotometric measurement is performed rather than color matching using colorimetric values obtained directly by the stimulus value direct reading method. It is desirable to perform color matching using a colorimetric value in consideration of observation light from the spectral reflectance obtained by the color method.

しかし、印刷用紙やプリンタ用紙の多くには、蛍光増白剤が用いられている。
一般的に蛍光増白剤は、可視光領域の短波長域から紫外波長域の波長領域の光を吸収し、より長波長側の波長領域で光を発光する。この結果用紙の可視領域での放射量が増加し、観察者が知覚する明るさが上昇する。さらに、本来黄色みを持つ用紙の色味に青みが加わるため、より白く知覚されるようになる。この蛍光発色の強度は、蛍光増白剤が光を吸収する吸収波長域における、用紙を照射する光のエネルギー強度に従う。例えば可視光領域の短波長域から紫外波長域にかけてのエネルギー量が高い昼光下では用紙は明るく青く観察され、可視光領域の短波長域から紫外波長域にかけてのエネルギー量が低いタングステン光下では用紙は前述の状況と比較し暗く、黄色く観察される。
However, fluorescent whitening agents are used in many printing papers and printer papers.
In general, a fluorescent brightening agent absorbs light in a wavelength region from a short wavelength region to an ultraviolet wavelength region in the visible light region, and emits light in a longer wavelength region. As a result, the amount of radiation in the visible region of the paper increases, and the brightness perceived by the observer increases. Furthermore, since blue is added to the color of the paper which originally has yellowishness, it becomes perceived as whiter. The intensity of the fluorescent color development depends on the energy intensity of the light that irradiates the paper in the absorption wavelength range where the optical brightener absorbs light. For example, in daylight when the energy amount from the short wavelength region to the ultraviolet wavelength region in the visible light region is high, the paper is observed brightly in blue, and under the tungsten light where the energy amount from the short wavelength region to the ultraviolet wavelength region in the visible light region is low. The paper is darker and yellower than the previous situation.

蛍光増白剤を含む用紙に光が照射したときの分光反射率の測定結果に対する蛍光増白剤の影響度合いは、用紙に含まれる蛍光増白剤の量と特性、及び測定時に使用する光源の分光分布によって異なる。すなわち蛍光増白剤を含む用紙の分光反射率は、照明する光源の分光分布の違いによって変化すると見なすことができる。このため蛍光増白剤を含む用紙上に印刷されたカラーパッチ等、蛍光増白剤を含む試料を測定する際の測色光と実際に観察する際の観察光の分光分布が異なる場合、測色装置から得られた試料の分光反射率を観察光下での測色値を求める計算に使用すると、光源の分光分布に対する分光反射率の変化を考慮していないため好適なマッチング結果を得ることができない。   The degree of influence of the fluorescent whitening agent on the measurement result of the spectral reflectance when the light containing the fluorescent whitening agent is irradiated is determined by the amount and characteristics of the fluorescent whitening agent contained in the paper and the light source used in the measurement. Varies depending on the spectral distribution. That is, it can be considered that the spectral reflectance of the paper containing the fluorescent brightener changes depending on the difference in the spectral distribution of the illuminating light source. For this reason, if the spectral distribution of colorimetric light when measuring a sample containing a fluorescent brightener, such as a color patch printed on a paper containing a fluorescent brightener, is different from the spectral distribution of the observation light when actually observing, colorimetry When the spectral reflectance of the sample obtained from the apparatus is used in the calculation to obtain the colorimetric value under the observation light, a suitable matching result can be obtained because the change of the spectral reflectance with respect to the spectral distribution of the light source is not taken into consideration. Can not.

測色光と観察光の分光分布が等しくなるよう、すなわち観察光下で分光放射輝度計を用いて試料を測定すれば上記問題は解決する。しかしカラーマッチングを行う際に必要とされる数百から数千のカラーパッチを分光放射輝度計で測定する事は非常に大きな労力を必要とする。分光放射輝度計で自動測色する事は不可能でないとしても、装置が非常に巨大になるため現実的ではない。そもそも分光放射輝度計で測定可能な大きさを持つ数百から数千のカラーパッチを作成する事自体が容易ではない。そのため簡易的な方法で蛍光増白剤を含んだ試料の観察光下での分光反射率及び測色値を求める方法が必要とされる。   The above problem can be solved by measuring the sample using the spectral radiance meter under the observation light so that the spectral distributions of the colorimetric light and the observation light are equal. However, measuring hundreds to thousands of color patches required for color matching with a spectral radiance meter is very labor intensive. Even though it is not impossible to perform automatic color measurement with a spectral radiance meter, it is not practical because the device becomes very large. In the first place, it is not easy to create hundreds to thousands of color patches having a size that can be measured by a spectral radiance meter. Therefore, a method for obtaining the spectral reflectance and the colorimetric value of the sample containing the fluorescent brightener under the observation light by a simple method is required.

この課題に対し、複数の手法が提案されている。
例えば特許文献1に記載される方法では、紫外カットフィルタを装着及び非装着で試料を測定し、測定値の差分を蛍光増白剤の励起スペクトルと測定光のスペクトルで求まる測定光の励起エネルギーで割り、観察光の励起エネルギーを乗じることにより観察光下での測色値を求める。また複数のカラーパッチに対し蛍光増白剤の影響を補正する場合、紫外カットフィルタを装着した測色値に対し、基準となる色の測色値に対する補正対象色の測色値の比率で重みを計算し補正を行う。この方法は非常に精度の高い紫外カットフィルタを必要とする。また励起エネルギーを求める際に380nmより短波長側の測定情報を必要とするが、380nmより短波長側では人間の等色関数が0となるため、一般的な測色装置では380nmより短波長側は測定できないものがほとんどである。さらに蛍光増白剤の励起スペクトル情報を必要とするため、その測定に必要な機材も必要となる。これらの特別な機材を必要とする点から、この方法は簡易的な方法とは言えず、実現は困難である。
Several methods have been proposed for this problem.
For example, in the method described in Patent Document 1, a sample is measured with and without an ultraviolet cut filter, and the difference between the measured values is the excitation energy of the measurement light obtained from the excitation spectrum of the fluorescent brightener and the spectrum of the measurement light. The colorimetric value under the observation light is obtained by dividing by the excitation energy of the observation light. Also, when correcting the influence of fluorescent whitening agent on multiple color patches, weighting is based on the ratio of the colorimetric value of the correction target color to the colorimetric value of the reference color for the colorimetric value with the UV cut filter attached. Is calculated and corrected. This method requires a highly accurate ultraviolet cut filter. Further, when obtaining the excitation energy, measurement information on the shorter wavelength side than 380 nm is required, but since the human color matching function is 0 on the shorter wavelength side than 380 nm, a general colorimetric apparatus has a shorter wavelength side than 380 nm. Most things cannot be measured. Furthermore, since the excitation spectrum information of the optical brightener is required, equipment necessary for the measurement is also required. Since this special equipment is required, this method is not a simple method and is difficult to realize.

また特許文献2に記載される方法は特許文献1を修正した方法であり、精度の高い紫外カットフィルタが無くとも測色値の補正を可能としているが、上述したその他の問題は解決されていない。   Further, the method described in Patent Document 2 is a method obtained by correcting Patent Document 1, and enables correction of colorimetric values without a high-accuracy ultraviolet cut filter, but other problems described above have not been solved. .

また特許文献3に記載される方法では、紙白等の基準色のみ紫外カットフィルタの装着有り及び装着無しで測定した測色値の差分を求め、他の試料の補正を行う際は基準色の差分に重み係数を乗じ他の試料の測色値に特許文献1と同様の方法で適用する。この際重み係数は蛍光増白剤の発光波長域付近に相当する試料の短波長側の反射率から求めている。この方法は複数のカラーパッチに対する蛍光増白剤の補正に関わる負荷を軽減するが、特許文献1と同様に特別な機材を必要とする点で実現は困難である。   In the method described in Patent Document 3, a difference between colorimetric values measured with and without an ultraviolet cut filter is obtained for only a reference color such as paper white, and when correcting other samples, the reference color The difference is multiplied by a weighting factor and applied to the colorimetric values of other samples in the same manner as in Patent Document 1. At this time, the weighting coefficient is obtained from the reflectance on the short wavelength side of the sample corresponding to the vicinity of the emission wavelength region of the fluorescent brightener. Although this method reduces the load related to the correction of the fluorescent brightening agent for a plurality of color patches, it is difficult to realize this method because special equipment is required as in Patent Document 1.

また特許文献4に記載される方法は、単位面積あたりのインキ付着量とインキの重なり、及びインキの透過性を考慮した蛍光増白剤の補正を行う。この方法は観察光下での試料の測定を必要とし、さらに正確なインキ付着量を得るために特別な装置を必要とするため実現は困難である。
上記既存手法は、一般的な測色装置以外に特別な機材を必要とする点、または観察光下での試料の測定を必要とする点で実現が困難である。
特開平10−176953号公報 特開2001−174334号公報 特開2002−139381号公報 特開2002−202191号公報
The method described in Patent Document 4 corrects the fluorescent whitening agent in consideration of the ink adhesion amount per unit area, the overlap of the ink, and the ink permeability. This method requires measurement of a sample under observation light, and further requires a special device to obtain an accurate ink deposition amount, and is difficult to realize.
The above existing method is difficult to realize in that it requires special equipment in addition to a general colorimetric device, or requires measurement of a sample under observation light.
JP 10-176953 A JP 2001-174334 A Japanese Patent Laid-Open No. 2002-139381 JP 2002-202191 A

そこでこの発明は、上記問題点を解決するためになされたもので、一般的な測色装置で測定可能な波長領域のみの情報を用いて、観察光下での試料の測定を必要とせずに蛍光増白剤を含んだ試料の観察光下における測色値(分光反射率)を予測することのできる分光反射率予測装置及び分光反射率予測方法を提供することを目的としている。   Accordingly, the present invention has been made to solve the above-described problems, and it is possible to use only information in a wavelength region that can be measured by a general colorimetric device without requiring measurement of a sample under observation light. An object of the present invention is to provide a spectral reflectance predicting apparatus and a spectral reflectance predicting method capable of predicting a colorimetric value (spectral reflectance) of a sample containing a fluorescent brightening agent under observation light.

本発明は、上述の課題を解決すべくなされたもので、 蛍光増白剤を含んだ試料の観察光源下における分光反射率を予測する分光反射率予測装置であって、第1分光分布を示す第1光源下における前記試料の第1分光反射率と、前記第1分光分布とは異なる第2分光分布を示す第2光源下における前記試料の第2分光反射率とを読み込む分光反射率測定結果読み込み手段と、予め測定されている白色板の分光反射率と前記白色板の前記観察光源の下における分光放射輝度を読み込み、当該白色板の分光反射率と前記白色板の観察光源下における分光放射輝度とに基づいて算出された、前記観察光源が示す第3分光分布を読み込む第3分光分布読み込み手段と、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第1光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第1光源の分光分布のエネルギー量の総和の比率に基づいて、前記第1光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第1蛍光影響度を算出する第1蛍光影響度算出手段と、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第2光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第2光源の分光分布のエネルギー量の総和の比率に基づいて、前記第2光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第2蛍光影響度を算出する第2蛍光影響度算出手段と、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記観察光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記観察光源の分光分布のエネルギー量の総和の比率に基づいて、前記観察光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第3蛍光影響度を算出する第3蛍光影響度算出手段と、前記第1分光反射率と、前記第2分光反射率と、前記第1蛍光影響度と、前記第2蛍光影響度と、前記第3蛍光影響度とに基づいて、前記試料の前記観察光源下における分光反射率を算出する分光反射率算出手段と、を備えることを特徴とする分光反射率予測装置である。   The present invention has been made to solve the above-described problems, and is a spectral reflectance predicting apparatus that predicts the spectral reflectance of a sample containing a fluorescent brightening agent under an observation light source, and shows a first spectral distribution. Spectral reflectance measurement result that reads the first spectral reflectance of the sample under the first light source and the second spectral reflectance of the sample under the second light source showing a second spectral distribution different from the first spectral distribution. Reading means, the spectral reflectance of the white plate measured in advance and the spectral radiance of the white plate under the observation light source are read, and the spectral reflectance of the white plate and the spectral radiation of the white plate under the observation light source Third spectral distribution reading means for reading a third spectral distribution indicated by the observation light source, calculated based on the luminance, and a spectral distribution of the first light source in a predetermined light energy absorption wavelength region of the fluorescent brightener Based on the ratio between the total energy amount and the total energy amount of the spectral distribution of the first light source in a predetermined light energy emission wavelength region of the fluorescent brightener, the light from the first light source A first fluorescence influence degree calculating means for calculating a first fluorescence influence degree indicating a degree of influence on the light emission characteristics; and an energy amount of a spectral distribution of the second light source in a predetermined light energy absorption wavelength region of the fluorescent brightener. Based on the ratio of the sum of the total energy amount of the spectral distribution of the second light source in the predetermined light energy emission wavelength region of the fluorescent whitening agent, the light of the second light source has an emission characteristic of the fluorescent whitening agent. A second fluorescence influence degree calculating means for calculating a second fluorescence influence degree indicating an influence degree, a sum of energy amounts of spectral distribution of the observation light source in a predetermined light energy absorption wavelength region of the fluorescent brightener Based on the ratio of the total energy amount of the spectral distribution of the observation light source in the predetermined light energy emission wavelength region of the fluorescent whitening agent, the degree to which the light of the observation light source affects the emission characteristics of the fluorescent whitening agent. A third fluorescence influence degree calculating means for calculating a third fluorescence influence degree, a first spectral reflectance, a second spectral reflectance, the first fluorescence influence degree, and a second fluorescence influence degree, A spectral reflectance prediction device comprising: spectral reflectance calculation means for calculating a spectral reflectance of the sample under the observation light source based on the third fluorescence influence level.

また発明は、蛍光増白剤を含んだ試料であって複数の異なる色が塗布された前記試料の、観察光源下における分光反射率を予測する分光反射率予測装置であって、第1分光分布を示す第1光源下における前記試料の色の塗布されていない部分を含む各色の第1分光反射率と、前記第1分光分布とは異なる第2分光分布を示す第2光源下における前記試料の色の塗布されていない部分を含む複数の異なる色のうち何れか特定の色の第2分光反射率と、を読み込む分光反射率測定結果読み込み手段と、予め測定されている白色板の分光反射率と前記白色板の前記観察光源の下における分光放射輝度を読み込み、当該白色板の分光反射率と前記白色板の観察光源下における分光放射輝度とに基づいて算出された、前記観察光源が示す第3分光分布を読み込む第3分光分布読み込み手段と、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第1光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第1光源の分光分布のエネルギー量の総和の比率に基づいて、前記第1光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第1蛍光影響度を算出する第1蛍光影響度算出手段と、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第2光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第2光源の分光分布のエネルギー量の総和の比率に基づいて、前記第2光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第2蛍光影響度を算出する第2蛍光影響度算出手段と、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記観察光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記観察光源の分光分布のエネルギー量の総和の比率に基づいて、前記観察光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第3蛍光影響度を算出する第3蛍光影響度算出手段と、前記試料に塗布された各色の色情報と当該色情報が前記蛍光増白剤の発光特性に影響する度合いとの関係を示す塗布物影響度の関数を算出する塗布物影響度関数算出手段と、前記第1分光反射率と、前記第2分光反射率と、前記第1蛍光影響度と、前記第2蛍光影響度と、前記第3蛍光影響度と、前記観察光源下で予測する前記試料に塗布された色の色情報を前記塗布物影響度関数に代入して得られた塗布物影響度とに基づいて、前記試料の前記観察光源下における分光反射率を算出する分光反射率算出手段と、を備えることを特徴とする分光反射率予測装置である。   The present invention also provides a spectral reflectance prediction apparatus for predicting spectral reflectance under an observation light source of a sample containing a fluorescent brightening agent and applied with a plurality of different colors, wherein the first spectral distribution The first spectral reflectance of each color including an uncoated portion of the sample color under the first light source indicating the second spectral distribution of the sample under the second light source exhibiting a second spectral distribution different from the first spectral distribution Spectral reflectance measurement result reading means for reading the second spectral reflectance of any specific color among a plurality of different colors including a portion where no color is applied, and the spectral reflectance of the white plate measured in advance And the spectral radiance of the white plate under the observation light source, and calculated based on the spectral reflectance of the white plate and the spectral radiance of the white plate under the observation light source. 3 spectral distribution A third spectral distribution reading means to be inserted; a sum of energy amounts of spectral distributions of the first light source in a predetermined light energy absorption wavelength range of the fluorescent brightener; and a predetermined light energy emission wavelength range of the fluorescent brightener The first fluorescence influence degree indicating the degree of influence of the light of the first light source on the light emission characteristics of the fluorescent brightener is calculated based on the ratio of the total energy amount of the spectral distribution of the first light source in A fluorescence influence degree calculating means; a sum of energy amounts of spectral distributions of the second light source in a predetermined light energy absorption wavelength region of the fluorescent whitening agent; and a first light energy emission wavelength region of the fluorescent whitening agent in the predetermined light energy emission wavelength region. Based on the ratio of the sum of the energy amounts of the spectral distributions of the two light sources, the second fluorescent influence that calculates the second fluorescent influence that indicates the degree to which the light of the second light source affects the emission characteristics of the fluorescent brightener A calculating means; a sum of energy amounts of spectral distributions of the observation light source in a predetermined light energy absorption wavelength region of the fluorescent whitening agent; and spectral distributions of the observation light source in a predetermined light energy emission wavelength region of the fluorescent whitening agent A third fluorescence influence degree calculating means for calculating a third fluorescence influence degree indicating the degree of influence of the light of the observation light source on the light emission characteristics of the fluorescent brightener based on the ratio of the total amount of energy of the sample; and the sample A coating material influence degree function calculating means for calculating a function of a coating material influence degree indicating a relationship between the color information of each color applied to the light and the degree of influence of the color information on the light emission characteristics of the fluorescent whitening agent; 1 spectral reflectance, the second spectral reflectance, the first fluorescence influence degree, the second fluorescence influence degree, the third fluorescence influence degree, and the sample applied under the observation light source. The color information of the color Spectral reflectance calculation means comprising: spectral reflectance calculation means for calculating a spectral reflectance under the observation light source of the sample based on the influence degree of the coating obtained by substituting into the influence function. It is a prediction device.

また発明は、前記分光反射率測定結果読み込み手段において読み込まれる第2分光反射率は、第1分光分布とは異なる第2分光分布を示す第2光源下における前記試料の色の塗布されていない部分の第2分光反射率であることを特徴とする。   In the invention, the second spectral reflectance read by the spectral reflectance measurement result reading means is a portion where the sample color is not applied under a second light source showing a second spectral distribution different from the first spectral distribution. The second spectral reflectance.

また発明は、前記試料において、前記色の塗布されている部分の第1光源下での分光反射率と、前記試料において、前記色の塗布されていない部分の第1光源下での分光反射率との比のN(所定の変数)乗によって表すことを特徴とする。   Further, the invention provides a spectral reflectance under a first light source of a portion where the color is applied in the sample, and a spectral reflectance under a first light source of a portion where the color is not applied in the sample. The ratio is expressed by the N (predetermined variable) power.

また発明は、前記所定の変数Nは、第1光源下での分光反射率から求めた第2光源下での推定の分光反射率と実際に第2光源下で分光反射率との差が最小となる値であることを特徴とする。   Further, according to the present invention, the predetermined variable N has a minimum difference between the estimated spectral reflectance under the second light source obtained from the spectral reflectance under the first light source and the actual spectral reflectance under the second light source. It is the value which becomes.

また発明は、前記塗布物影響度の関数において、蛍光白色剤の特定の光エネルギー発光波長または光エネルギー発光波長域を用いて前記試料に塗布された色の前記観察光源下における分光反射率を算出することを特徴とする。   Further, the invention calculates a spectral reflectance under the observation light source of the color applied to the sample using a specific light energy emission wavelength or light energy emission wavelength range of the fluorescent whitening agent in the function of the influence of the applied object. It is characterized by doing.

また発明は、前記所定の光エネルギー吸収波長域は、前記第1分光反射率や前記第2分光反射率を測定できる波長範囲から特定された波長域であることを特徴とする。   In the invention, it is preferable that the predetermined light energy absorption wavelength region is a wavelength region specified from a wavelength range in which the first spectral reflectance and the second spectral reflectance can be measured.

また発明は、前記第1蛍光影響度算出手段または前記第2蛍光影響度算出手段または前記第3蛍光影響度算出手段はそれぞれ、蛍光増白剤の光エネルギー吸収波長域と光エネルギー発光波長域を同波長域として前記第1、第2、第3の蛍光影響度を算出することを特徴とする。   In the invention, the first fluorescence influence degree calculating means, the second fluorescence influence degree calculating means, or the third fluorescence influence degree calculating means respectively sets a light energy absorption wavelength range and a light energy emission wavelength range of the fluorescent brightener. The first, second, and third fluorescence influence degrees are calculated as the same wavelength region.

また発明は、前記第1蛍光影響度算出手段または前記第2蛍光影響度算出手段または前記第3蛍光影響度算出手段はそれぞれ、蛍光増白剤の光エネルギー吸収波長域を380nm〜400nmとし、光エネルギー発光波長域を430nm〜450nmとして前記第1、第2、第3の蛍光影響度を算出することを特徴とする。   In the invention, the first fluorescence influence degree calculating means, the second fluorescence influence degree calculating means, or the third fluorescence influence degree calculating means is configured such that the light energy absorption wavelength region of the fluorescent brightener is 380 nm to 400 nm, The first, second, and third fluorescence influence degrees are calculated by setting the energy emission wavelength range to 430 nm to 450 nm.

また発明は、前記試料は複数の色が塗布された色チャートであり、前記分光反射率算出手段は、前記色チャートの全ての色の観察光源下における分光反射率を算出することを特徴とする。   Further, the invention is characterized in that the sample is a color chart in which a plurality of colors are applied, and the spectral reflectance calculation means calculates the spectral reflectance under the observation light source of all the colors in the color chart. .

また発明は、蛍光増白剤を含んだ試料の観察光源下における分光反射率を予測する分光反射率予測装置における分光反射率予測方法であって、前記分光反射率予測装置の分光反射率測定結果読み込み手段が、第1分光分布を示す第1光源下における前記試料の第1分光反射率と、前記第1分光分布とは異なる第2分光分布を示す第2光源下における前記試料の第2分光反射率とを読み込み、前記分光反射率予測装置の第3分光分布読み込み手段が、予め測定されている白色板の分光反射率と前記白色板の前記観察光源の下における分光放射輝度を読み込み、当該白色板の分光反射率と前記白色板の観察光源下における分光放射輝度とに基づいて算出された、前記観察光源が示す第3分光分布を読み込み、前記分光反射率予測装置の第1蛍光影響度算出手段が、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第1光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第1光源の分光分布のエネルギー量の総和の比率に基づいて、前記第1光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第1蛍光影響度を算出し、前記分光反射率予測装置の第2蛍光影響度算出手段が、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第2光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第2光源の分光分布のエネルギー量の総和の比率に基づいて、前記第2光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第2蛍光影響度を算出し、前記分光反射率予測装置の第3蛍光影響度算出手段が、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記観察光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記観察光源の分光分布のエネルギー量の総和の比率に基づいて、前記観察光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第3蛍光影響度を算出し、前記分光反射率予測装置の分光反射率算出手段が、前記第1分光反射率と、前記第2分光反射率と、前記第1蛍光影響度と、前記第2蛍光影響度と、前記第3蛍光影響度とに基づいて、前記試料の前記観察光源下における分光反射率を算出することを特徴とする分光反射率予測方法である。   The invention is also a spectral reflectance prediction method in a spectral reflectance prediction apparatus for predicting a spectral reflectance under an observation light source of a sample containing a fluorescent brightening agent, the spectral reflectance measurement result of the spectral reflectance prediction apparatus The reading means has a first spectral reflectance of the sample under the first light source showing the first spectral distribution and a second spectral of the sample under the second light source showing a second spectral distribution different from the first spectral distribution. And the third spectral distribution reading means of the spectral reflectance prediction apparatus reads the spectral reflectance of the white plate measured in advance and the spectral radiance of the white plate under the observation light source, The third spectral distribution indicated by the observation light source calculated based on the spectral reflectance of the white plate and the spectral radiance of the white plate under the observation light source is read, and the first fluorescent shadow of the spectral reflectance prediction apparatus is read. The degree calculation means includes a sum of energy amounts of spectral distributions of the first light source in a predetermined light energy absorption wavelength region of the fluorescent whitening agent and the first light source in a predetermined light energy emission wavelength region of the fluorescent whitening agent. Based on the ratio of the sum of the energy amounts of the spectral distributions, the first fluorescence influence degree indicating the degree to which the light of the first light source affects the light emission characteristics of the fluorescent brightener is calculated, and the spectral reflectance prediction apparatus The second fluorescence influence degree calculation means includes a sum of energy amounts of spectral distributions of the second light source in a predetermined light energy absorption wavelength region of the fluorescent whitening agent and a predetermined light energy emission wavelength region of the fluorescent whitening agent. And calculating a second fluorescence influence degree indicating a degree of influence of the light of the second light source on the light emission characteristics of the fluorescent brightener based on the ratio of the total energy amount of the spectral distribution of the second light source at Spectroscopic The third fluorescence influence degree calculation means of the emissivity prediction apparatus includes a sum of energy amounts of spectral distributions of the observation light source in a predetermined light energy absorption wavelength region of the fluorescent whitening agent and a predetermined light energy of the fluorescent whitening agent. Based on the ratio of the total energy amount of the spectral distribution of the observation light source in the emission wavelength range, a third fluorescence influence degree indicating the degree of influence of the light of the observation light source on the emission characteristics of the fluorescent brightener is calculated, Spectral reflectance calculation means of the spectral reflectance predicting apparatus includes the first spectral reflectance, the second spectral reflectance, the first fluorescence influence degree, the second fluorescence influence degree, and the third fluorescence. The spectral reflectance prediction method according to claim 1, wherein the spectral reflectance of the sample under the observation light source is calculated based on the degree of influence.

また発明は、蛍光増白剤を含んだ試料であって複数の異なる色が塗布された前記試料の、観察光源下における分光反射率を予測する分光反射率予測装置の分光反射率予測方法であって、前記分光反射率予測装置の分光反射率測定結果読み込み手段が、第1分光分布を示す第1光源下における前記試料の色の塗布されていない部分を含む各色の第1分光反射率と、前記第1分光分布とは異なる第2分光分布を示す第2光源下における前記試料の色の塗布されていない部分を含む複数の異なる色のうち何れか特定の色の第2分光反射率とを読み込み、前記分光反射率予測装置の第3分光分布読み込み手段が、予め測定されている白色板の分光反射率と前記白色板の前記観察光源の下における分光放射輝度を読み込み、当該白色板の分光反射率と前記白色板の観察光源下における分光放射輝度とに基づいて算出された、前記観察光源が示す第3分光分布を読み込み、前記分光反射率予測装置の第1蛍光影響度算出手段が、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第1光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第1光源の分光分布のエネルギー量の総和の比率に基づいて、前記第1光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第1蛍光影響度を算出し、前記分光反射率予測装置の第2蛍光影響度算出手段が、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第2光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第2光源の分光分布のエネルギー量の総和の比率に基づいて、前記第2光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第2蛍光影響度を算出し、前記分光反射率予測装置の第3蛍光影響度算出手段が、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記観察光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記観察光源の分光分布のエネルギー量の総和の比率に基づいて、前記観察光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第3蛍光影響度を算出し、前記分光反射率予測装置の塗布物影響度関数算出手段が、前記試料に塗布された各色の色情報と当該色情報が前記蛍光増白剤の発光特性に影響する度合いとの関係を示す塗布物影響度の関数を算出し、前記分光反射率予測装置の分光反射率算出手段が、前記第1分光反射率と、前記第2分光反射率と、前記第1蛍光影響度と、前記第2蛍光影響度と、前記第3蛍光影響度と、前記観察光源下で予測する前記試料に塗布された色の色情報を前記塗布物影響度関数に代入して得られた塗布物影響度とに基づいて、前記試料の前記観察光源下における分光反射率を算出することを特徴とする分光反射率予測方法である。   The invention also relates to a spectral reflectance prediction method of a spectral reflectance prediction apparatus for predicting spectral reflectance under an observation light source of a sample containing a fluorescent brightening agent and applied with a plurality of different colors. The spectral reflectance measurement result reading means of the spectral reflectance prediction apparatus includes a first spectral reflectance of each color including a portion of the sample that is not coated with the color under the first light source exhibiting a first spectral distribution, A second spectral reflectance of a specific color among a plurality of different colors including an uncoated portion of the sample color under a second light source exhibiting a second spectral distribution different from the first spectral distribution; Reading, the third spectral distribution reading means of the spectral reflectance prediction device reads the spectral reflectance of the white plate measured in advance and the spectral radiance of the white plate under the observation light source, and the spectral of the white plate Reflectivity and previous The third spectral distribution indicated by the observation light source calculated based on the spectral radiance of the white plate under the observation light source is read, and the first fluorescence influence degree calculation means of the spectral reflectance predicting device reads the fluorescent whitening The sum of the energy amount of the spectral distribution of the first light source in the predetermined light energy absorption wavelength region of the agent and the sum of the energy amount of the spectral distribution of the first light source in the predetermined light energy emission wavelength region of the fluorescent brightener. Based on the ratio, the first fluorescence influence degree indicating the degree of influence of the light of the first light source on the light emission characteristics of the fluorescent whitening agent is calculated, and the second fluorescence influence degree calculation means of the spectral reflectance prediction apparatus is provided. The sum of the amount of energy of the spectral distribution of the second light source in the predetermined light energy absorption wavelength region of the fluorescent whitening agent and the amount of the second light source in the predetermined light energy emission wavelength region of the fluorescent whitening agent. Based on the ratio of the total energy amount of the distribution, a second fluorescence influence degree indicating the degree of influence of the light of the second light source on the light emission characteristics of the fluorescent brightener is calculated, and the second reflectance of the spectral reflectance prediction apparatus is calculated. (3) a fluorescence influence degree calculating means, wherein the total amount of energy of the spectral distribution of the observation light source in the predetermined light energy absorption wavelength region of the fluorescent brightener and the observation in the predetermined light energy emission wavelength region of the fluorescent brightener Based on the ratio of the total energy amount of the spectral distribution of the light source, a third fluorescence influence degree indicating the degree to which the light of the observation light source affects the light emission characteristics of the fluorescent brightener is calculated, and the spectral reflectance prediction apparatus The applied substance influence degree function calculating means calculates an applied substance influence degree function indicating the relationship between the color information of each color applied to the sample and the degree to which the color information affects the light emission characteristics of the fluorescent brightener. And the spectral reaction Spectral reflectance calculation means of the emissivity predicting device includes the first spectral reflectance, the second spectral reflectance, the first fluorescence influence degree, the second fluorescence influence degree, and the third fluorescence influence degree. And the applied material influence degree obtained by substituting the color information of the color applied to the sample to be predicted under the observation light source into the applied object influence function, under the observation light source of the sample. A spectral reflectance prediction method characterized by calculating a spectral reflectance.

また発明は、前記分光反射率測定結果読み込み手段において読み込まれる第2分光反射率は、第1分光分布とは異なる第2分光分布を示す第2光源下における前記試料の色の塗布されていない部分の第2分光反射率であることを特徴とする。   In the invention, the second spectral reflectance read by the spectral reflectance measurement result reading means is a portion where the sample color is not applied under a second light source showing a second spectral distribution different from the first spectral distribution. The second spectral reflectance.

また発明は、前記試料において、前記色の塗布されている部分の第1光源下での分光反射率と、前記試料において、前記色の塗布されていない部分の第1光源下での分光反射率との比のN(所定の変数)乗によって表すことを特徴とする。   Further, the invention provides a spectral reflectance under a first light source of a portion where the color is applied in the sample, and a spectral reflectance under a first light source of a portion where the color is not applied in the sample. The ratio is expressed by the N (predetermined variable) power.

また発明は、前記所定の変数Nは、第1光源下での分光反射率から求めた第2光源下での推定の分光反射率と実際に第2光源下で分光反射率との差が最小となる値であることを特徴とする。   Further, according to the present invention, the predetermined variable N has a minimum difference between the estimated spectral reflectance under the second light source obtained from the spectral reflectance under the first light source and the actual spectral reflectance under the second light source. It is the value which becomes.

また発明は、前記塗布物影響度の関数において、蛍光白色剤の特定の光エネルギー発光波長または光エネルギー発光波長域を用いて前記試料に塗布された色の前記観察光源下における分光反射率を算出することを特徴とする。   Further, the invention calculates a spectral reflectance under the observation light source of the color applied to the sample using a specific light energy emission wavelength or light energy emission wavelength range of the fluorescent whitening agent in the function of the influence of the applied object. It is characterized by doing.

また発明は、前記所定の光エネルギー吸収波長域は、前記第1分光反射率や前記第2分光反射率を測定できる波長範囲から特定された波長域であることを特徴とする。   In the invention, it is preferable that the predetermined light energy absorption wavelength region is a wavelength region specified from a wavelength range in which the first spectral reflectance and the second spectral reflectance can be measured.

また発明は、前記第1蛍光影響度算出手段または前記第2蛍光影響度算出手段または前記第3蛍光影響度算出手段はそれぞれ、蛍光増白剤の光エネルギー吸収波長域と光エネルギー発光波長域を同波長域として前記第1、第2、第3の蛍光影響度を算出することを特徴とする。   In the invention, the first fluorescence influence degree calculating means, the second fluorescence influence degree calculating means, or the third fluorescence influence degree calculating means respectively sets a light energy absorption wavelength range and a light energy emission wavelength range of the fluorescent brightener. The first, second, and third fluorescence influence degrees are calculated as the same wavelength region.

また発明は、前記第1蛍光影響度算出手段または前記第2蛍光影響度算出手段または前記第3蛍光影響度算出手段はそれぞれ、蛍光増白剤の光エネルギー吸収波長域を380nm〜400nmとし、光エネルギー発光波長域を430nm〜450nmとして前記第1、第2、第3の蛍光影響度を算出することを特徴とする。   In the invention, the first fluorescence influence degree calculating means, the second fluorescence influence degree calculating means, or the third fluorescence influence degree calculating means is configured such that the light energy absorption wavelength region of the fluorescent brightener is 380 nm to 400 nm, The first, second, and third fluorescence influence degrees are calculated by setting the energy emission wavelength range to 430 nm to 450 nm.

また発明は、前記試料は複数の色が塗布された色チャートであり、前記分光反射率算出手段は、前記色チャートの全ての色の観察光源下における分光反射率を算出することを特徴とする。   Further, the invention is characterized in that the sample is a color chart in which a plurality of colors are applied, and the spectral reflectance calculation means calculates the spectral reflectance under the observation light source of all the colors in the color chart. .

以上説明したように、本発明によれば、第1分光反射率と、第2分光反射率と、第1蛍光影響度と、第2蛍光影響度と、第3蛍光影響度とに基づいて、試料の観察光源下における分光反射率を算出することができる。そして第1蛍光影響度、第2蛍光影響度、第3蛍光影響度は、分光反射率測定装置が測定できる波長領域範囲内における吸収波長域と発光波長域の設定により算出されるので、各光源の紫外波長域での分光分布が分からなくても、試料の観察光源下で分光反射率を測定できる。   As described above, according to the present invention, based on the first spectral reflectance, the second spectral reflectance, the first fluorescence influence degree, the second fluorescence influence degree, and the third fluorescence influence degree, The spectral reflectance of the sample under the observation light source can be calculated. Since the first fluorescence influence degree, the second fluorescence influence degree, and the third fluorescence influence degree are calculated by setting the absorption wavelength region and the emission wavelength region within the wavelength region range that can be measured by the spectral reflectance measuring device, Even if the spectral distribution in the ultraviolet wavelength region is not known, the spectral reflectance can be measured under the observation light source of the sample.

また本発明によれば、試料に塗布された色の色情報と当該色情報が蛍光増白剤の発光特性に影響する度合いとの関係を示す塗布物影響度の関数を算出し、第1分光反射率と、第2分光反射率と、第1蛍光影響度と、第2蛍光影響度と、第3蛍光影響度と、試料に塗布された色の色情報を塗布物影響度関数に代入して得られた塗布物影響度とに基づいて、試料に塗布された色の観察光源下における分光反射率を算出する。これにより、蛍光増白剤の発光特性に、試料上に塗布された色影響を考慮した、当該試料の観察光源下での分光反射率を測定できる。また、塗布物影響度関数の導入によって、第2分光反射率を準備する色の数を減らすことができる。   Further, according to the present invention, a function of the applied substance influence degree indicating the relationship between the color information of the color applied to the sample and the degree of influence of the color information on the light emission characteristics of the fluorescent brightener is calculated, and the first spectroscopy is performed. The reflectance, the second spectral reflectance, the first fluorescent influence degree, the second fluorescent influence degree, the third fluorescent influence degree, and the color information of the color applied to the sample are substituted into the applied substance influence degree function. The spectral reflectance under the observation light source of the color applied to the sample is calculated on the basis of the influence of the applied product obtained in the above. Thereby, the spectral reflectance under the observation light source of the said sample which considered the influence of the color apply | coated on the sample to the light emission characteristic of the fluorescent whitening agent can be measured. In addition, the number of colors for which the second spectral reflectance is prepared can be reduced by introducing the applied substance influence degree function.

また、本発明によれば、塗布物影響度関数の導入によって、第2分光反射率については色の塗布されていない部分のみの分光反射率だけでよいとすることができる。   Further, according to the present invention, it is possible to determine that the second spectral reflectance only needs to be the spectral reflectance of only the portion where the color is not applied, by introducing the application object influence function.

以下、本発明の一実施形態による分光反射率予測装置を図面を参照して説明する。   Hereinafter, a spectral reflectance prediction apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図1は実施例1による分光反射率予測装置の構成を示すブロック図である。この図において、符号1は分光反射率予測装置である。そして分光反射率予測装置1において、符号11は照射光分光分布算出部である。また12は観察光分光分布算出部である。また13は蛍光影響度算出部である。また14は分光反射率算出部(分光反射率算出手段)である。また符号2は分光反射率測定装置、3は分光放射輝度計である。   FIG. 1 is a block diagram illustrating the configuration of the spectral reflectance prediction apparatus according to the first embodiment. In this figure, reference numeral 1 denotes a spectral reflectance prediction apparatus. In the spectral reflectance prediction apparatus 1, reference numeral 11 denotes an irradiation light spectral distribution calculation unit. Reference numeral 12 denotes an observation light spectral distribution calculator. Reference numeral 13 denotes a fluorescence influence calculation unit. Reference numeral 14 denotes a spectral reflectance calculator (spectral reflectance calculator). Reference numeral 2 is a spectral reflectance measuring device, and 3 is a spectral radiance meter.

そして、本実施形態においては、まず、分光反射率測定装置2によって、ある2つの測定光源下での試料(蛍光増白剤を用いて製造された紙)の分光反射率の測定が行なわれ、そして分光反射率予測装置1の照射光分光分布算出部(分光反射率測定結果読み込み手段)11が、分光反射率測定装置2によって測定された2つの分光反射率に基づいて、それら光源から発せられる光の各分光分布を算出する。また、分光放射輝度計3によって測定された白色板の分光放射輝度と、当該白色板が光を反射する分光反射率都に基づいて、分光反射率を予測する環境の光源(以下、観察光源と呼ぶ)の分光分布を観察光分光分布算出部(第3分光分布読み込み手段)12が算出する。そして、蛍光影響度算出部(第1蛍光影響度算出手段、第2蛍光影響度算出手段、第3蛍光影響度算出手段)13が、上記2つの測定光源の蛍光影響度と、観察光源の蛍光影響度を算出する。そして、分光反射率算出部14が、それら各蛍光影響度と、分光反射率測定装置2によって測定された2つの光源下における試料の分光反射率とに基づいて、当該試料の観察光源下における予測の分光反射率を算出する。   In the present embodiment, first, the spectral reflectance of the sample (paper manufactured using a fluorescent brightener) under a certain two measurement light sources is measured by the spectral reflectance measuring device 2, And the irradiation light spectral distribution calculation part (spectral reflectance measurement result reading means) 11 of the spectral reflectance prediction apparatus 1 is emitted from these light sources based on the two spectral reflectances measured by the spectral reflectance measurement apparatus 2. Each spectral distribution of light is calculated. In addition, based on the spectral radiance of the white plate measured by the spectral radiance meter 3 and the spectral reflectance capital at which the white plate reflects light, an environment light source (hereinafter referred to as an observation light source) The observation light spectral distribution calculation unit (third spectral distribution reading means) 12 calculates the spectral distribution of the “call”. Then, the fluorescence influence calculation unit (first fluorescence influence calculation means, second fluorescence influence calculation means, and third fluorescence influence calculation means) 13 performs the fluorescence influence degrees of the two measurement light sources and the fluorescence of the observation light source. Calculate the impact. Then, the spectral reflectance calculation unit 14 predicts the sample under the observation light source based on the respective fluorescence influence levels and the spectral reflectance of the sample under the two light sources measured by the spectral reflectance measurement device 2. The spectral reflectance of is calculated.

図2は実施例1による分光反射率予測装置の処理フローを示す図である。
次に、本実施形態による分光反射率予測装置の処理を図2のフローを参照して説明する。なお、本実施例で説明する分光反射率測定装置2の測定可能波長域λは380nm〜730nmとする。
FIG. 2 is a diagram illustrating a processing flow of the spectral reflectance prediction apparatus according to the first embodiment.
Next, processing of the spectral reflectance prediction apparatus according to the present embodiment will be described with reference to the flow of FIG. Note that the measurable wavelength range λ of the spectral reflectance measuring apparatus 2 described in this embodiment is 380 nm to 730 nm.

まず、蛍光増白剤を含んだ紙(試料)の、ある観察光源Vにおける分光反射率を予測したいユーザが、分光反射率測定装置2を用いて、観察光源Vとは分光分布の異なる2つの光源、測定光源A<分光分布=Pa(λ)>(第1光源)、測定光源B<分光分布=Pb(λ)>(第2光源)が試料に照射される際の分光反射率を測定する。なお、この2つの測定光源A、Bは、例えば、1つの光源o<分光分布=Po(λ)>に異なる光の透過率のフィルタA<光の透過率Ta(λ)>またはB<光の透過率Tb(λ)>を装着して得られる2つ光源であってもよい。そして、これら測定した測定光源A、Bの試料における分光反射率をそれぞれRa(λ)、Rb(λ)とする。   First, a user who wants to predict the spectral reflectance of a certain observation light source V of a paper (sample) containing a fluorescent brightening agent uses the spectral reflectance measuring device 2 to have two spectral distributions different from the observation light source V. Measures the spectral reflectance when the sample is irradiated with the light source, measurement light source A <spectral distribution = Pa (λ)> (first light source), measurement light source B <spectral distribution = Pb (λ)> (second light source) To do. The two measurement light sources A and B are, for example, a single light source o <spectral distribution = Po (λ)> and a filter A <light transmittance Ta (λ)> or B <light with different light transmittances. May be two light sources obtained by mounting the transmittance Tb (λ)>. The spectral reflectances of the measured samples of the measurement light sources A and B are defined as Ra (λ) and Rb (λ), respectively.

またユーザは、分光放射輝度計3を用いて、高い反射率と高い光の拡散性を持つ分光反射率Rw(λ)の白色板を予測環境である観察光源V下において、その白色板における分光放射輝度Cw(λ)を測定する。   In addition, the user uses the spectral radiance meter 3 to display a white plate having a high reflectance and a high light diffusivity with a spectral reflectance Rw (λ) under the observation light source V, which is a prediction environment, on the white plate. The radiance Cw (λ) is measured.

そして、ユーザは分光反射率予測装置1に試料の観察光源V下での分光反射率を予測する指示を行なう。すると、例えば分光反射率予測装置1は、分光反射率測定装置2から測定光源A、B下での試料の分光反射率Ra(λ)、Rb(λ)を読み込み、また分光放射輝度計3から白色板の観察光源V下における分光放射輝度Cw(λ)を読み込み、また、ユーザの入力に基づいて、測定光源A、Bの分光分布Pa(λ)、Pb(λ)を読み込む(ステップS1a)。なお、1つの光源oとフィルタA、Bとを用いた環境により得られる2つの光を用いて、ユーザが試料の分光反射率Ra(λ)、Rb(λ)を測定した場合には、光源oの分光分布Po(λ)とフィルタAの光の透過率Ta(λ)とフィルタBの光の透過率Tb(λ)が分光反射率予測装置1にユーザにより入力される。そして、分光反射率予測装置1の照射光分光分布算出部11が分光分布Pa(λ)とPb(λ)を式(1)、(2)により算出する。また、上記白色板の分光反射率Rw(λ)が分光反射率予測装置1に入力される。   Then, the user instructs the spectral reflectance prediction apparatus 1 to predict the spectral reflectance under the observation light source V of the sample. Then, for example, the spectral reflectance prediction apparatus 1 reads the spectral reflectances Ra (λ) and Rb (λ) of the sample under the measurement light sources A and B from the spectral reflectance measurement apparatus 2 and from the spectral radiance meter 3. The spectral radiance Cw (λ) under the observation light source V of the white plate is read, and the spectral distributions Pa (λ) and Pb (λ) of the measurement light sources A and B are read based on the user input (step S1a). . Note that when the user measures the spectral reflectances Ra (λ) and Rb (λ) of the sample using two lights obtained in an environment using one light source o and filters A and B, the light source The spectral distribution Po (λ) of o, the light transmittance Ta (λ) of the filter A, and the light transmittance Tb (λ) of the filter B are input to the spectral reflectance prediction apparatus 1 by the user. Then, the irradiation light spectral distribution calculation unit 11 of the spectral reflectance prediction apparatus 1 calculates the spectral distributions Pa (λ) and Pb (λ) using the equations (1) and (2). Further, the spectral reflectance Rw (λ) of the white plate is input to the spectral reflectance prediction apparatus 1.

Figure 0004483496
Figure 0004483496

Figure 0004483496
Figure 0004483496

次に、観察光分光分布算出部12が、白色板の分光反射率Rw(λ)と分光放射輝度計3によって測定された分光放射輝度Cw(λ)を用いて式(3)により、観察光の分光分布Pv(λ)を算出する(ステップS2a)。   Next, the observation light spectral distribution calculation unit 12 uses the spectral reflectance Rw (λ) of the white plate and the spectral radiance Cw (λ) measured by the spectral radiance meter 3 to calculate the observation light according to the equation (3). Is calculated (step S2a).

Figure 0004483496
Figure 0004483496

次に、分光反射率予測装置1の蛍光影響度算出部13が、測定光源Aの光の蛍光影響度(第1蛍光影響度算出手段)Ea(λ)、および、測定光源Bの光の蛍光影響度(第2蛍光影響度算出手段)Eb(λ)、および、観察光源Vの光の蛍光影響度(第3蛍光影響度算出手段)Ev(λ)を算出する(ステップS3a)。ここで蛍光影響度とは、蛍光増白剤を含む紙に照射される光の、当該試料における吸収波長域のエネルギーの総和を、その吸収した光を発光する発光波長域におけるエネルギーの総和で割った数値であり、この値が高いほど、蛍光増白剤の発光波長域において発光するエネルギーが強いことを意味する。通常、蛍光増白剤を含む紙は、紫外波長域(吸収波長域)のエネルギーを吸収し、そのエネルギーを可視領域(発光波長域)で発光する特性(発光特性)を持っている。従って測定光源Aの光の蛍光影響度Ea(λ)は、上述の測定光源Aの光の試料における分光分布Pa(λ)を用いると、式(4)の様に表される。また、同様に測定光源Bの光の試料における蛍光影響度Eb(λ)は式(5)の様に表される。ここで、吸収波長域は、本実施形態においては分光反射率測定装置2が測定できる光の波長域を考慮し、380nm〜400nmと設定している。また発光波長域を430nm〜450nmと設定している。これにより、分光反射率測定装置2が測定できない紫外波長域の波長を用いて蛍光影響度を計算しないので、光の紫外波長域における試料の分光反射率の測定をしなくても、測定光源や観察光源の光の影響度を算出することができるようになっている。   Next, the fluorescence influence degree calculation unit 13 of the spectral reflectance prediction apparatus 1 performs the fluorescence influence degree of the light from the measurement light source A (first fluorescence influence degree calculation means) Ea (λ) and the fluorescence of the light from the measurement light source B. The influence degree (second fluorescence influence degree calculating means) Eb (λ) and the fluorescence influence degree (third fluorescence influence degree calculating means) Ev (λ) of the light from the observation light source V are calculated (step S3a). Here, the fluorescence influence level is obtained by dividing the sum of the energy in the absorption wavelength region of the light irradiated to the paper containing the fluorescent brightener by the sum of the energy in the emission wavelength region for emitting the absorbed light. The higher the value, the stronger the energy emitted in the emission wavelength region of the fluorescent brightener. Usually, paper containing a fluorescent brightening agent has a characteristic (light emission characteristic) of absorbing energy in the ultraviolet wavelength region (absorption wavelength region) and emitting the energy in the visible region (emission wavelength region). Therefore, the fluorescence influence degree Ea (λ) of the light from the measurement light source A is expressed by the equation (4) when the spectral distribution Pa (λ) in the sample of the light from the measurement light source A is used. Similarly, the fluorescence influence level Eb (λ) in the sample of the light from the measurement light source B is expressed as shown in Equation (5). Here, in the present embodiment, the absorption wavelength range is set to 380 nm to 400 nm in consideration of the wavelength range of light that can be measured by the spectral reflectance measuring apparatus 2. The emission wavelength range is set to 430 nm to 450 nm. Thereby, since the fluorescence influence degree is not calculated using the wavelength in the ultraviolet wavelength region that the spectral reflectance measuring device 2 cannot measure, the measurement light source or the light source can be measured without measuring the spectral reflectance of the sample in the ultraviolet wavelength region of light. The influence degree of the light from the observation light source can be calculated.

Figure 0004483496
Figure 0004483496

Figure 0004483496
Figure 0004483496

また、式3によって算出された観察光の分光分布Pv(λ)により、観察光源Vの光の蛍光影響度Evは式(6)の様に表される。   Further, the fluorescence influence degree Ev of the light from the observation light source V is expressed as in Expression (6) by the spectral distribution Pv (λ) of the observation light calculated by Expression 3.

Figure 0004483496
Figure 0004483496

次に、分光反射率算出部14は、式(7)を用いて、試料の観察光源下における分光反射率を算出する(ステップS4a)。   Next, the spectral reflectance calculation unit 14 calculates the spectral reflectance under the observation light source of the sample using Expression (7) (step S4a).

Figure 0004483496
Figure 0004483496

ここで、式(7)は、測定光源A下における試料の分光反射率Raを算出する関係式(8)と、測定光源B下における試料の分光反射率Rbを算出する関係式(9)と、観察光源V下における試料の分光反射率Rvを算出する関係式(10)とによって得られる式(11)、(12)を式(10)に代入することにより得られる式である。   Here, Expression (7) is a relational expression (8) for calculating the spectral reflectance Ra of the sample under the measurement light source A, and a relational expression (9) for calculating the spectral reflectance Rb of the sample under the measurement light source B. This is an expression obtained by substituting the expressions (11) and (12) obtained by the relational expression (10) for calculating the spectral reflectance Rv of the sample under the observation light source V into the expression (10).

Figure 0004483496
Figure 0004483496

Figure 0004483496
Figure 0004483496

Figure 0004483496
Figure 0004483496

Figure 0004483496
Figure 0004483496

Figure 0004483496
Figure 0004483496

なお、式(8)で示す、測定光源A下における試料の分光反射率Raを算出する式は、蛍光増白剤を含まない紙の測定光源A下における分光反射率Rp(λ)+測定光源A下と測定光源B下で測定した試料(蛍光増白剤を含む紙)の差を測定光源Aの光の蛍光影響度で正規化した分光反射率変動量D(λ)×測定光源Aの光の蛍光影響度であることを意味している。
これにより、分光反射率予測装置1は、式(7)で示されるように、測定光源Aの試料における分光反射率Ra(λ)と、測定光源Bの試料における分光反射率Rb(λ)と、測定光源Aの光の蛍光影響度(Ea)と、測定光源Bの光の蛍光影響度(Eb)と、観察光源Vの光の蛍光影響度(Ev)とを用いて、試料の観察光源下における分光反射率を予測することができる。本実施形態による、蛍光増白剤を含んだ紙(試料)の、ある観察光源Vにおける分光反射率の予測手法は、試料の紙にインクが塗布されている場合でも用いることが出来る。また複数の試料について、ある観察光源Vにおける分光反射率の予測をすることも出来る。ただし、予測対象となる試料の全てを測定光源及び測定光源Bの両方で測定する必要がある。
The equation for calculating the spectral reflectance Ra of the sample under the measurement light source A shown by the equation (8) is the spectral reflectance Rp (λ) + the measurement light source under the measurement light source A of the paper not containing the fluorescent brightener. Spectral reflectance variation D (λ) × measurement light source A obtained by normalizing the difference between the sample (paper containing the fluorescent brightening agent) measured under A and measurement light source B by the fluorescence influence degree of the light from measurement light source A It means that it is the fluorescence influence degree of light.
As a result, the spectral reflectance prediction apparatus 1 has the spectral reflectance Ra (λ) in the sample of the measurement light source A and the spectral reflectance Rb (λ) in the sample of the measurement light source B, as shown in Expression (7). The observation light source of the sample using the fluorescence influence degree (Ea) of the light from the measurement light source A, the fluorescence influence degree (Eb) of the light from the measurement light source B, and the fluorescence influence degree (Ev) of the light from the observation light source V The spectral reflectance below can be predicted. The method for predicting the spectral reflectance of a paper (sample) containing a fluorescent brightener according to the present embodiment at a certain observation light source V can be used even when ink is applied to the sample paper. In addition, it is possible to predict the spectral reflectance of a certain observation light source V for a plurality of samples. However, it is necessary to measure all the samples to be predicted with both the measurement light source and the measurement light source B.

次に、実施例2について説明する。
図3は実施例2による分光反射率予測装置の構成を示すブロック図である。この図において、図1と同一の符号の処理部についてはその説明を省略する。そして、実施例2における分光反射率予測装置1は実施例1における分光反射率予測装置1に塗布物影響度関数算出部(第1塗布物影響度関数算出手段)15の構成を加えたものである。塗布物影響度関数は、蛍光増白剤を含む紙にインクなどの塗布物が塗布されている場合における、色出力値(C、M、Y、Kの値、iC、iM、iY、iK)とその色出力値が蛍光増白剤に与える影響度との関係を示す関数である。そして、分光反射率予測装置1は、カラーパッチ(色のパターン)が、蛍光増白剤を含む紙上に複数印刷された色チャートの、当該各カラーパッチの観察光下での分光反射率を予測する。本実施形態においては、色チャートには、CMYK=(0,0,0,0)、(255,0,0,0)、(128,0,0,0)、(0,255,0,0)、(0,128,0,0)、(0,0,255,0)、(0,0,128,0)、(0,0,0,255)、(0,0,0,128)の9つのカラーパッチ(特定カラーパッチ)の色も含まれるものとする。また色チャートにはこの他のCMYK値の色のカラーパッチが複数含まれる。上記9つのカラーパッチ(特定カラーパッチ)のうち、CMYK=(0,0,0,0)以外の8つのパッチは上記以外のCMYKの値でもよい。
Next, Example 2 will be described.
FIG. 3 is a block diagram illustrating the configuration of the spectral reflectance prediction apparatus according to the second embodiment. In this figure, the description of the processing units having the same reference numerals as those in FIG. 1 is omitted. The spectral reflectance prediction apparatus 1 according to the second embodiment is obtained by adding the configuration of the coating material influence degree function calculating unit (first coating material influence degree function calculating unit) 15 to the spectral reflectance prediction apparatus 1 according to the first embodiment. is there. The applied substance influence function is a color output value (C, M, Y, K values, iC, iM, iY, iK) when a coated object such as ink is applied to paper containing a fluorescent brightening agent. And the degree of influence of the color output value on the fluorescent brightener. Then, the spectral reflectance prediction apparatus 1 predicts the spectral reflectance under the observation light of each color patch of a color chart in which a plurality of color patches (color patterns) are printed on paper containing a fluorescent brightener. To do. In this embodiment, the color chart includes CMYK = (0, 0, 0, 0), (255, 0, 0, 0), (128, 0, 0, 0), (0, 255, 0, 0), (0,128,0,0), (0,0,255,0), (0,0,128,0), (0,0,0,255), (0,0,0, 128) 9 color patches (specific color patches) are also included. In addition, the color chart includes a plurality of color patches of colors having other CMYK values. Of the nine color patches (specific color patches), eight patches other than CMYK = (0, 0, 0, 0) may have other CMYK values.

まず、色チャートに印刷された各カラーパッチの、ある観察光源Vにおける分光反射率を予測したいユーザが、観察光源Vとは異なる、測定光源A<分光分布=Pa(λ)>の光を色チャートへ照射し、当該色チャート上の全てのカラーパッチの分光反射率を分光反射率測定装置2を用いて測定する。またユーザが、観察光源Vとは異なる、測定光源B<分光分布=Pb(λ)>の光を色チャートへ照射し、当該色チャート上の前記9つのカラーパッチ(特定カラーパッチ)の分光反射率を分光反射率測定装置2を用いて測定する。なお、この2つの測定光源A、Bは、実施例1同様に、例えば、1つの光源o<分光分布=Po(λ)>に異なる光の透過率のフィルタA<光の透過率Ta(λ)>またはB<光の透過率Tb(λ)>を装着して得られる2つ光源であってもよい。そして、これら測定した測定光源A、Bの試料における分光反射率をそれぞれRa(λ)、Rb(λ)とする。   First, a user who wants to predict the spectral reflectance of an observation light source V of each color patch printed on the color chart uses light of measurement light source A <spectral distribution = Pa (λ)>, which is different from the observation light source V. The chart is irradiated, and the spectral reflectance of all the color patches on the color chart is measured using the spectral reflectance measuring device 2. Further, the user irradiates the color chart with light of a measurement light source B <spectral distribution = Pb (λ)> different from the observation light source V, and spectral reflection of the nine color patches (specific color patches) on the color chart. The rate is measured using the spectral reflectance measuring device 2. Note that the two measurement light sources A and B are, for example, one light source o <spectral distribution = Po (λ)>, different light transmittance filters A <light transmittance Ta (λ )> Or B <light transmittance Tb (λ)>. The spectral reflectances of the measured samples of the measurement light sources A and B are defined as Ra (λ) and Rb (λ), respectively.

またユーザは、分光放射輝度計3を用いて、高い反射率と高い光の拡散性を持つ分光反射率Rw(λ)の白色板を予測環境下の光源下(観察光源V)において、その白色板における分光放射輝度Cw(λ)を測定する。そして、ユーザは分光反射率予測装置1に試料の観察光源V下での分光反射率を予測する指示を行なう。   In addition, the user uses the spectral radiance meter 3 to display a white plate having a high reflectance and a high light diffusivity with a spectral reflectance Rw (λ) under a light source (observation light source V) in a predicted environment. The spectral radiance Cw (λ) at the plate is measured. Then, the user instructs the spectral reflectance prediction apparatus 1 to predict the spectral reflectance under the observation light source V of the sample.

すると、分光反射率予測装置1は、分光反射率測定装置2から測定光源A、B下で測定したの試料の各色(測定光源A下では全てのカラーパッチの色、測定光源B下では特定カラーパッチの色)の分光反射率Ra(λ)、Rb(λ)を読み込み、また分光放射輝度計3から白色板の観察光源V下における分光放射輝度Cw(λ)を読み込み、また、ユーザの入力に基づいて、測定光源A、Bの分光分布Pa(λ)、Pb(λ)、カラーチャート上に印刷されるカラーパッチの色の色出力値(C、M、Y、Kの値、iC、iM、iY、iK)を読み込む(ステップS1b)。   Then, the spectral reflectance prediction apparatus 1 uses the sample colors measured under the measurement light sources A and B from the spectral reflectance measurement apparatus 2 (all color patch colors under the measurement light source A, and specific colors under the measurement light source B). The spectral reflectances Ra (λ) and Rb (λ) of the patch color) are read, and the spectral radiance Cw (λ) under the observation light source V of the white plate is read from the spectral radiance meter 3, and input by the user Based on the spectral distributions Pa (λ) and Pb (λ) of the measurement light sources A and B, the color output values of the colors of the color patches printed on the color chart (C, M, Y, K values, iC, iM, iY, iK) are read (step S1b).

なお、1つの光源oとフィルタA、Bとを用いた環境により得られる2つの光を用いて、ユーザがカラーチャートの各カラーパッチの分光反射率を測定した場合には、光源oの分光分布Po(λ)とフィルタAの光の透過率Ta(λ)とフィルタBの光の透過率Tb(λ)が分光反射率予測装置1にユーザにより入力される。そして、分光反射率予測装置1の照射光分光分布算出部11が分光分布Pa(λ)とPb(λ)を実施例1の式(1)、(2)により算出する。また、上記白色板の分光反射率Rw(λ)が分光反射率予測装置1に入力される。   When the user measures the spectral reflectance of each color patch of the color chart using two lights obtained by an environment using one light source o and filters A and B, the spectral distribution of the light source o Po (λ), the light transmittance Ta (λ) of the filter A, and the light transmittance Tb (λ) of the filter B are input to the spectral reflectance prediction apparatus 1 by the user. Then, the irradiation light spectral distribution calculation unit 11 of the spectral reflectance prediction apparatus 1 calculates the spectral distributions Pa (λ) and Pb (λ) according to the expressions (1) and (2) of the first embodiment. Further, the spectral reflectance Rw (λ) of the white plate is input to the spectral reflectance prediction apparatus 1.

次に、観察光分光分布算出部12が、白色板の分光反射率と分光放射輝度計3によって測定された分光放射輝度Cw(λ)を用いて実施例1の式(3)により、観察光の分光分布Pv(λ)を算出する(ステップS2b)。   Next, the observation light spectral distribution calculation unit 12 uses the spectral reflectance of the white plate and the spectral radiance Cw (λ) measured by the spectral radiance meter 3 to calculate the observation light according to the equation (3) of Example 1. Is calculated (step S2b).

次に、分光反射率予測装置1の蛍光影響度算出部13が、測定光源Aの光の蛍光影響度Ea(λ)、および、測定光源Bの光の蛍光影響度Eb(λ)、および、観察光源Vの光の蛍光影響度Ev(λ)を式(4)、(5)、(6)を用いて実施例1と同様に算出する(ステップS3b)。   Next, the fluorescence influence degree calculation unit 13 of the spectral reflectance prediction apparatus 1 performs the fluorescence influence degree Ea (λ) of the light from the measurement light source A, the fluorescence influence degree Eb (λ) of the light from the measurement light source B, and The fluorescence influence degree Ev (λ) of the light from the observation light source V is calculated in the same manner as in Example 1 using the equations (4), (5), and (6) (step S3b).

次に、塗布物影響度関数算出部15が、C(シアン)、M(マゼンタ)、Y(イエロ)、K(ブラック)のそれぞれの色出力値毎に、当該色出力値によって塗布されるインクが蛍光増白剤に影響する度合いを示す塗布物影響度の関数を算出する(ステップS4b)。つまり、蛍光増白剤を含む用紙上に塗布されたインク量が多くなると、用紙の単位面積が減り、用紙へ到達する光の絶対量がインクに吸収され、さらに用紙から反射される光がインクに吸収されるため、蛍光増白剤による色の分光反射率の測定値が蛍光増白剤の発光波長域で減少するので、従って、この情報を、予測する分光反射率に加える為に塗布物影響度関数を算出する。   Next, for each color output value of C (cyan), M (magenta), Y (yellow), and K (black), the applied material influence function calculation unit 15 applies ink according to the color output value. A function of the applied material influence degree indicating the degree of influence on the optical brightener is calculated (step S4b). That is, when the amount of ink applied on the paper containing the fluorescent brightening agent increases, the unit area of the paper decreases, the absolute amount of light reaching the paper is absorbed by the ink, and the light reflected from the paper is further absorbed by the ink. As a result, the measured value of the spectral reflectance of the color due to the fluorescent brightener decreases in the emission wavelength region of the fluorescent brightener, and thus the coating is added to add this information to the expected spectral reflectance. Calculate the influence function.

ここで、C(シアン)についての塗布物影響度関数について説明する。
上述の式(11)より、シアンの色出力値がiC=255のカラーパッチ<CMYK=(255,0,0,0)>が測定光源B下で測定された際の分光反射率と、当該シアンの色出力値C=255のカラーパッチが測定光源A下で測定された際の分光反射率との差を、測定光源Bの光の蛍光影響度と測定光源Aの光の蛍光影響度との差で正規化した分光反射率変動量Dc255(λ)を式(13)で表す。また同様に、シアンの色出力値がiC=128のカラーパッチ<CMYK=(128,0,0,0)>が測定光源B下で測定された際の分光反射率と、当該シアンの色出力値iC=128のカラーパッチが測定光源A下で測定された際の分光反射率の差を、測定光源Bの光の蛍光影響度と測定光源Aの光の蛍光影響度の差で正規化した分光反射率変動量Dc128(λ)を式(14)で表す。また同様に、インクなどの色が塗布されていない紙<CMYK=(0,0,0,0)>が測定光源A下で測定された際の分光反射率と、インクなどの色が塗布されていない紙が測定光源B下で測定された際の分光反射率との差を、測定光源Bの光の蛍光影響度と測定光源Aの光の蛍光影響度の差で正規化した分光反射率変動量Dp(λ)を式(15)で表す。
Here, the applied substance influence degree function for C (cyan) will be described.
From the above equation (11), the spectral reflectance when the color patch <CMYK = (255, 0, 0, 0)> with the cyan color output value iC = 255 is measured under the measurement light source B, and The difference between the spectral reflectance when a color patch having a cyan color output value C = 255 is measured under the measurement light source A is expressed as the fluorescence influence degree of the light from the measurement light source B and the fluorescence influence degree of the light from the measurement light source A. The spectral reflectance fluctuation amount Dc 255 (λ) normalized by the difference is expressed by Expression (13). Similarly, the spectral reflectance when the color patch <CMYK = (128, 0, 0, 0)> with the cyan color output value iC = 128 is measured under the measurement light source B, and the cyan color output. The difference in spectral reflectance when the color patch having the value iC = 128 was measured under the measurement light source A was normalized by the difference between the fluorescence influence degree of the light from the measurement light source B and the fluorescence influence degree of the light from the measurement light source A. The spectral reflectance fluctuation amount Dc 128 (λ) is expressed by Expression (14). Similarly, the spectral reflectance when the paper <CMYK = (0, 0, 0, 0)> not coated with ink or the like is measured under the measurement light source A and the color such as ink are applied. Spectral reflectance obtained by normalizing the difference between the spectral reflectance when a non-printed paper is measured under the measurement light source B by the difference between the fluorescence influence degree of the light from the measurement light source B and the fluorescence influence degree of the light from the measurement light source A The fluctuation amount Dp (λ) is expressed by Expression (15).

Figure 0004483496
Figure 0004483496

Figure 0004483496
Figure 0004483496

Figure 0004483496
Figure 0004483496

また、分光反射率変動量Dp(λ)に変数を掛けた値が、分光反射率変動量Dc255(λ)または分光反射率変動量Dc128(λ)となるので、分光反射率変動量Dc255(λ)または分光反射率変動量Dc128(λ)は分光反射率変動量Dp(λ)の線形変換で求めることができる。そして、 Further, since the value obtained by multiplying the spectral reflectance fluctuation amount Dp (λ) by the variable becomes the spectral reflectance fluctuation amount Dc 255 (λ) or the spectral reflectance fluctuation amount Dc 128 (λ), the spectral reflectance fluctuation amount Dc. 255 (λ) or the spectral reflectance fluctuation amount Dc 128 (λ) can be obtained by linear conversion of the spectral reflectance fluctuation amount Dp (λ). And

Figure 0004483496
Figure 0004483496

の値が最小となる式(16)中の塗布物影響度DRc255(シアンの色出力値がC=255の時の塗布物影響度)の変数の値と、 The value of the variable of the applied material influence degree DRc 255 (the applied object influence degree when the cyan color output value is C = 255) in the equation (16) in which the value of

Figure 0004483496
Figure 0004483496

の値が最小となる式(17)中の塗布物影響度DRc128(シアンの色出力値がC=128の時の塗布物影響度)の変数の値と、シアンの色出力値がC=0の時の塗布物影響度=1との3点を、例えばスプライン補間して得た関数がシアンの塗布物影響度関数Fe_c(iC)となる。なお、スプライン補間ではなく、他の補間方法で塗布物影響度関数を得るようにしても良い。また塗布物影響度は、0≦塗布物影響度≦1の範囲で示される値である。 The value of the variable of the applied material influence degree DRc 128 (the applied material influence degree when the cyan color output value is C = 128) and the cyan color output value are C = A function obtained by, for example, spline interpolation of the three points where the applied material influence degree = 1 at 0 is the cyan applied material influence function Fe_c (iC). Note that the application effect function may be obtained by another interpolation method instead of the spline interpolation. Further, the degree of influence of the applied product is a value shown in the range of 0 ≦ the applied effect level ≦ 1.

同様に、塗布物影響度関数算出部15が、M(マゼンタ)、Y(イエロ)、K(ブラック)のそれぞれの色出力値毎の塗布物影響度関数Fe_m(im)、Fe_y(iy)、Fe_k(ik)を算出する。そして、塗布物影響度関数算出部15は、C(シアン)、M(マゼンタ)、Y(イエロ)、K(ブラック)の全ての色出力値毎の塗布物影響度から得られる影響度関数Fe_cmyk(iC,iM,iY,iK)(第1塗布物影響度関数)を式(18)により算出する。   Similarly, the applied product influence function calculating unit 15 applies applied product influence functions Fe_m (im), Fe_y (ii) for each color output value of M (magenta), Y (yellow), and K (black), Fe_k (ik) is calculated. Then, the applied material influence function calculation unit 15 has an influence function Fe_cmyk obtained from the applied material influence values for all the color output values of C (cyan), M (magenta), Y (yellow), and K (black). (IC, iM, iY, iK) (first applied substance influence function) is calculated by the equation (18).

Figure 0004483496
Figure 0004483496

なお、図5は、塗布物影響度関数Fe_c(ic)を示す図である。   FIG. 5 is a diagram illustrating the applied substance influence function Fe_c (ic).

そして次に、分光反射率算出部14が、式(19)を用いて、観察光源V下における色チャートの各カラーパッチの分光反射率を算出する(ステップS5b)。各カラーパッチの観察光源V下での分光反射率を算出する際には、カラーパッチの色出力値を式(19)の影響度関数Fe_cmyk(iC,iM,iY,iK)に入力し、また、測定光源A下におけるパッチの分光反射率Ra(λ)と、測定光源B下におけるインクなどの色が塗布されていない紙の分光反射率Rb(λ)[P]と、測定光源A下におけるインクなどの色が塗布されていない紙の分光反射率Ra(λ)[P]と、測定光源Aの光の蛍光影響度Eaと、測定光源Bの光の蛍光影響度Ebと、観察光源Vの光の蛍光影響度Evとを式(19)に入力することより算出される。   Next, the spectral reflectance calculation unit 14 calculates the spectral reflectance of each color patch of the color chart under the observation light source V using the equation (19) (step S5b). When calculating the spectral reflectance of each color patch under the observation light source V, the color output value of the color patch is input to the influence function Fe_cmyk (iC, iM, iY, iK) of Equation (19), and The spectral reflectance Ra (λ) of the patch under the measurement light source A, the spectral reflectance Rb (λ) [P] of the paper to which no color such as ink is applied under the measurement light source B, and under the measurement light source A Spectral reflectance Ra (λ) [P] of paper to which no color such as ink is applied, fluorescence influence degree Ea of light from the measurement light source A, fluorescence influence degree Eb of light from the measurement light source B, and observation light source V Is calculated by inputting the fluorescence influence degree Ev of the light into the equation (19).

Figure 0004483496
Figure 0004483496

次に、実施例3について説明する。
実施例3の分光反射率予測装置1は、実施例2同様に、カラーパッチ(色のパターン)が蛍光増白剤を含む紙上に複数印刷された色チャートの、当該各カラーパッチの観察光下での分光反射率を予測する。なお、実施例3における分光反射率予測装置1の構成は図3で示した構成と同様であるので、その説明を省略する。
Next, Example 3 will be described.
Similar to the second embodiment, the spectral reflectance prediction apparatus 1 according to the third embodiment uses a color chart in which a plurality of color patches (color patterns) are printed on paper containing a fluorescent brightening agent, under the observation light of each color patch. Predict spectral reflectance at. In addition, since the structure of the spectral reflectance prediction apparatus 1 in Example 3 is the same as that of the structure shown in FIG.

まず、色チャートに印刷された各カラーパッチのある観察光源Vにおける分光反射率を予測したいユーザが、観察光源Vとは異なる、測定光源A<分光分布=Pa(λ)>の光を色チャートへ照射し、当該色チャート上の全てのカラーパッチの分光反射率を分光反射率測定装置2を用いて測定する。またユーザが、観察光源Vとは異なる、測定光源B<分光分布=Pb(λ)>の光を色チャートへ照射し、当該色チャート上のCMYK=(0,0,0,0)値のカラーパッチの分光反射率を分光反射率測定装置2を用いて測定する。なお、この2つの測定光源A、Bは、実施例1同様に、例えば、1つの光源o<分光分布=Po(λ)>に異なる光の透過率のフィルタA<光の透過率Ta(λ)>またはB<光の透過率Tb(λ)>を装着して得られる2つ光源であってもよい。そして、これら測定した測定光源a、bの試料における分光反射率をそれぞれRa(λ)、Rb(λ)[P]とする。   First, the user who wants to predict the spectral reflectance in the observation light source V having each color patch printed on the color chart uses the light of the measurement light source A <spectral distribution = Pa (λ)>, which is different from the observation light source V, to the color chart. The spectral reflectance of all color patches on the color chart is measured using the spectral reflectance measuring device 2. Further, the user irradiates the color chart with light of a measurement light source B <spectral distribution = Pb (λ)> different from the observation light source V, and CMYK = (0,0,0,0) value on the color chart. The spectral reflectance of the color patch is measured using the spectral reflectance measuring device 2. Note that the two measurement light sources A and B are, for example, one light source o <spectral distribution = Po (λ)>, different light transmittance filters A <light transmittance Ta (λ )> Or B <light transmittance Tb (λ)>. The spectral reflectances of the measured samples of the measurement light sources a and b are defined as Ra (λ) and Rb (λ) [P], respectively.

またユーザは、分光放射輝度計3を用いて、高い反射率と高い光の拡散性を持つ分光反射率Rw(λ)の白色板を予測環境下の光源下(観察光源V)において、その白色板における分光放射輝度Cw(λ)を測定する。そして、ユーザは分光反射率予測装置1に試料の観察光源V下での分光反射率を予測する指示を行なう。   In addition, the user uses the spectral radiance meter 3 to display a white plate having a high reflectance and a high light diffusivity with a spectral reflectance Rw (λ) under a light source (observation light source V) in a predicted environment. The spectral radiance Cw (λ) at the plate is measured. Then, the user instructs the spectral reflectance prediction apparatus 1 to predict the spectral reflectance under the observation light source V of the sample.

すると、分光反射率予測装置1は、分光反射率測定装置2から測定光源A、B下で測定したの試料の各色(測定光源A下では全てのカラーパッチの色、測定光源B下ではインクの塗布されていないカラーパッチの色)の分光反射率Ra(λ)、Rb(λ)[P]を読み込み、また分光放射輝度計3から白色板の観察光源V下における分光放射輝度Cw(λ)を読み込み、さらにユーザからの入力に基づいて、測定光源A、Bの分光分布Pa(λ)、Pb(λ)[P]と、カラーチャート上に印刷されるカラーパッチの色の色出力値を読み込む(ステップS1c)。   Then, the spectral reflectance prediction apparatus 1 uses the sample colors measured under the measurement light sources A and B from the spectral reflectance measurement apparatus 2 (colors of all color patches under the measurement light source A, and ink under the measurement light source B). Spectral reflectances Ra (λ) and Rb (λ) [P] of the color patches that are not applied) are read, and the spectral radiance Cw (λ) under the observation light source V of the white plate from the spectral radiance meter 3 Further, based on the input from the user, the spectral distributions Pa (λ) and Pb (λ) [P] of the measurement light sources A and B and the color output value of the color patch printed on the color chart are obtained. Read (step S1c).

なお、1つの光源oとフィルタA、Bとを用いた環境により得られる2つの光を用いて、ユーザがカラーチャートの各カラーパッチの分光反射率を測定した場合には、光源oの分光分布Po(λ)とフィルタAの光の透過率Ta(λ)とフィルタBの光の透過率Tb(λ)が分光反射率予測装置1にユーザにより入力される。そして、分光反射率予測装置1の照射光分光分布算出部11が分光分布Pa(λ)とPb(λ)[P]を実施例1の式(1)、(2)により算出する。また、上記白色板の分光反射率Rw(λ)が分光反射率予測装置1に入力される。   When the user measures the spectral reflectance of each color patch of the color chart using two lights obtained by an environment using one light source o and filters A and B, the spectral distribution of the light source o Po (λ), the light transmittance Ta (λ) of the filter A, and the light transmittance Tb (λ) of the filter B are input to the spectral reflectance prediction apparatus 1 by the user. Then, the irradiation light spectral distribution calculation unit 11 of the spectral reflectance predicting apparatus 1 calculates the spectral distributions Pa (λ) and Pb (λ) [P] according to the expressions (1) and (2) of the first embodiment. Further, the spectral reflectance Rw (λ) of the white plate is input to the spectral reflectance prediction apparatus 1.

次に、観察光分光分布算出部12が、白色板の分光反射率と分光放射輝度計3によって測定された分光放射輝度Cw(λ)を用いて実施例1の式(3)により、観察光の分光分布Pv(λ)を算出する(ステップS2c)。   Next, the observation light spectral distribution calculation unit 12 uses the spectral reflectance of the white plate and the spectral radiance Cw (λ) measured by the spectral radiance meter 3 to calculate the observation light according to the equation (3) of Example 1. The spectral distribution Pv (λ) is calculated (step S2c).

次に、分光反射率予測装置1の蛍光影響度算出部13が、測定光源Aの光の蛍光影響度Ea(λ)、および、測定光源Bの光の蛍光影響度Eb(λ)、および、観察光源Vの光の蛍光影響度Ev(λ)を式(4)、(5)、(6)を用いて実施例1と同様に算出する(ステップS3c)。   Next, the fluorescence influence degree calculation unit 13 of the spectral reflectance prediction apparatus 1 performs the fluorescence influence degree Ea (λ) of the light from the measurement light source A, the fluorescence influence degree Eb (λ) of the light from the measurement light source B, and The fluorescence influence level Ev (λ) of the light from the observation light source V is calculated in the same manner as in Example 1 using the equations (4), (5), and (6) (step S3c).

次に、塗布物影響度関数算出部(第2塗布物影響度関数算出手段、第3塗布物影響度関数算出手段)15が、C(シアン)、M(マゼンタ)、Y(イエロ)、K(ブラック)の色出力値に基づいて蛍光増白剤を含む紙に塗布されたインク(色チャートの各カラーパッチ)の、当該紙の蛍光増白剤に影響する度合いを示す塗布物影響度関数を算出する(ステップS4c)。ここで、色チャート内のカラーパッチにおいて、蛍光増白剤の影響が最も大きいカラーパッチはインク量の最も少ないカラーパッチ、すなわち紙白部分である。そして用紙上に塗布されたインク量が多いカラーパッチほど蛍光増白剤の影響が少なくなる。すなわち紙白部分の分光反射率からの変化が少ないパッチほど蛍光増白剤の影響が大きく、変化が大きいパッチほど蛍光増白剤の影響が少なくなると見なすことができる。このことから各パッチの影響度関数Fe_R(n,λ)を、測定光A下での紙白部分の分光反射率Ra(λ)[p]に対する測定光A下でのパッチの分光反射率Ra(λ)[n]の比率として、式(20)によりに求めることができる。   Next, the applied product influence function calculation unit (second applied product influence function calculation means, third applied product influence function calculation means) 15 performs C (cyan), M (magenta), Y (yellow), K The applied substance influence function indicating the degree of influence of the ink (each color patch in the color chart) applied to the paper containing the fluorescent whitening agent based on the color output value of (black) on the paper. Is calculated (step S4c). Here, in the color patches in the color chart, the color patch having the greatest influence of the fluorescent brightening agent is the color patch having the smallest ink amount, that is, the paper white portion. A color patch having a larger amount of ink applied on the paper is less affected by the fluorescent brightening agent. That is, it can be considered that the patch having a smaller change from the spectral reflectance of the paper white portion has a larger influence of the fluorescent whitening agent, and a patch having a larger change has a smaller influence of the fluorescent whitening agent. From this, the influence function Fe_R (n, λ) of each patch is expressed by the spectral reflectance Ra of the patch under the measuring light A with respect to the spectral reflectance Ra (λ) [p] of the white paper portion under the measuring light A. The ratio of (λ) [n] can be obtained by equation (20).

Figure 0004483496
Figure 0004483496

そして次に、分光反射率算出部14が、式(21)を用いて、観察光源V下における色チャートの各カラーパッチの分光反射率を算出する(ステップS5c)。   Then, the spectral reflectance calculation unit 14 calculates the spectral reflectance of each color patch of the color chart under the observation light source V using the equation (21) (step S5c).

Figure 0004483496
Figure 0004483496

なお、各カラーパッチの観察光源V下での分光反射率を算出する際には、塗布物影響度関数算出部15が式(20)により算出した影響度関数Fe_R(n,λ)の値と、また、測定光源A下におけるパッチの分光反射率Ra(λ)と、測定光源B下におけるインクなどの色が塗布されていない紙の分光反射率Rb(λ)[P]と、測定光源A下におけるインクなどの色が塗布されていない紙の分光反射率Ra(λ)[P]と、測定光源Aの光の蛍光影響度Eaと、測定光源Bの光の蛍光影響度Ebと、観察光源Vの光の蛍光影響度Evとを式(21)に入力することより算出される。   Note that when calculating the spectral reflectance of each color patch under the observation light source V, the applied substance influence function calculation unit 15 calculates the value of the influence function Fe_R (n, λ) calculated by the equation (20). In addition, the spectral reflectance Ra (λ) of the patch under the measurement light source A, the spectral reflectance Rb (λ) [P] of the paper not coated with ink or the like under the measurement light source B, and the measurement light source A Spectral reflectance Ra (λ) [P] of paper not coated with a color such as ink below, fluorescence influence Ea of light from measurement light source A, fluorescence influence Eb of light from measurement light source B, observation It is calculated by inputting the fluorescence influence degree Ev of the light of the light source V into Expression (21).

以上、本発明の実施例について述べたが、分光反射率測定装置2の測定可能範囲は実施例1に述べた380nm〜400nmの範囲ではなく、もっと広範囲に渡って分光反射率が測定できるようにしても良い。これにより、例えば、蛍光影響度の算出における吸収波長域をより紫外波長域に近づけるように適宜設定したり、また吸収波長域で吸収したエネルギーの発光波長域を適宜設定するようにしてもよい。   Although the embodiment of the present invention has been described above, the measurable range of the spectral reflectance measuring device 2 is not the range of 380 nm to 400 nm described in the first embodiment, but the spectral reflectance can be measured over a wider range. May be. Thereby, for example, the absorption wavelength region in the calculation of the fluorescence influence degree may be appropriately set so as to be closer to the ultraviolet wavelength region, or the emission wavelength region of energy absorbed in the absorption wavelength region may be appropriately set.

また、観察光源の分光分布は上記計算式でなく他の手段で得ても良い。例えば観察光減を蛍光灯等を作 成したメーカーから得た分光分布情報を用いたり、CIEの定める標準の光や標準光源等の分光情報を用いても良い。   The spectral distribution of the observation light source may be obtained by other means instead of the above calculation formula. For example, the spectral distribution information obtained from the manufacturer that made the fluorescent lamp or the like may be used to reduce the observation light, or spectral information such as standard light or standard light source defined by the CIE may be used.

また、実施例2、実施例3では色出力値がC(シアン)、M(マゼンタ)、Y(イエロ)、K(ブラック)であるとしたが、その他RGB等の他の色を特定する情報を用いるようにしても良い。これにより、CMYKの色出力値によって色チャートを出力するプリンタだけでなく、RGBの色信号値によって出力するプリンタにも応用することができる。   In the second and third embodiments, the color output values are C (cyan), M (magenta), Y (yellow), and K (black), but other information for specifying other colors such as RGB. May be used. Accordingly, the present invention can be applied not only to a printer that outputs a color chart with CMYK color output values but also to a printer that outputs with RGB color signal values.

また上記色チャートとは、例えばIT8.7/3チャートであっても良いし、その他の色チャートであっても良い。   The color chart may be, for example, an IT8.7 / 3 chart or other color chart.

また実施例2ではC(シアン)、M(マゼンタ)、Y(イエロ)、K(ブラック)それぞれの色出力値iC、iM、iY、iKに対する塗布物影響度関数Fe_cmyk(iC、iM、iY、iK)を、個々の色出力値に対する影響度関数の積からなる関数として求めたが、色出力値iC、iM、iY、iKから直接値を得る影響度関数とする等、色出力値と蛍光増白剤の測定値に対する影響度の関係を表す関数であれば、どのような関数でも良い。   In the second embodiment, the applied substance influence function Fe_cmyk (iC, iM, iY, C) for the color output values iC, iM, iY, iK of C (cyan), M (magenta), Y (yellow), and K (black), respectively. iK) is obtained as a function composed of the product of the influence functions for the individual color output values, but the color output value and the fluorescence, such as an influence function for obtaining values directly from the color output values iC, iM, iY, iK, etc. Any function may be used as long as it represents the relationship of the degree of influence on the measured value of the brightener.

また実施例3に対応する他の例として、例えば、式(20)に示したFe_R(n,λ)を、   Moreover, as another example corresponding to Example 3, for example, Fe_R (n, λ) shown in Expression (20)

Figure 0004483496
Figure 0004483496

として求める方法も考えられる(第2塗布物影響度関数)。この式(22)におけるNは使用する用紙やインクによって変動する値であり、CMYK=(0,0,0,0)を測定光B下で、また特定カラーパッチを含む色チャートの複数のカラーパッチを測定光A下で実測した分光反射率を用いて、実施例3の方法で塗布物影響度関数を求め、特定カラーパッチの測定光源A下での分光反射率から測定光源B下での特定カラーパッチの分光反射率を推定し、実際に測定光源B下で測定した特定カラーパッチの実測値(分光反射率)と比較し、推定値と実測値の差が最小となる値をNと設定する。なおNを求める方法としては、分光反射率の差を最小とする方法以外に、色差(CIELAB、CIE94等どのような色差式でもよい)を最小とする方法などが考えられる。このNの計算法に関しては、何を最適化するかの目的によって異なるため、目的に応じてどのような方法を用いてもよい。または測定光B下での複数の特定パッチを用いず、代表的な用紙やインクによるN値を用いたり、複数の用紙やインクのN値の平均値を用いるなどして、Nを定数として設定しても良い。   Can be considered (second applied substance influence function). N in this equation (22) is a value that varies depending on the paper and ink used, and CMYK = (0, 0, 0, 0) is measured under the measurement light B, and a plurality of colors in the color chart including the specific color patch. Using the spectral reflectance obtained by actually measuring the patch under the measurement light A, the application effect function is obtained by the method of Example 3, and the spectral reflectance under the measurement light source A of the specific color patch is measured under the measurement light source B. The spectral reflectance of the specific color patch is estimated and compared with the actual measurement value (spectral reflectance) of the specific color patch actually measured under the measurement light source B, and the value that minimizes the difference between the estimated value and the actual measurement value is N. Set. As a method for obtaining N, in addition to a method of minimizing the difference in spectral reflectance, a method of minimizing a color difference (any color difference formula such as CIELAB, CIE94, etc.) may be considered. Since the calculation method of N differs depending on the purpose of what is to be optimized, any method may be used depending on the purpose. Alternatively, N is set as a constant by using an N value of typical paper or ink or using an average value of N values of a plurality of paper or ink without using a plurality of specific patches under the measurement light B. You may do it.

また実施例3に対応する他の例として、例えば、式(23)に示したFe_R(n,λ)を、Nは波長毎に異なる関数であると見なし、   As another example corresponding to the third embodiment, for example, Fe_R (n, λ) shown in the equation (23) is considered that N is a function different for each wavelength,

Figure 0004483496
Figure 0004483496

として求める方法も考えられる(第3塗布物影響度関数)。N(λ)は数22のNと同様の考え方で求める事が可能である。 Can also be considered (third applied substance influence function). N (λ) can be obtained in the same way as N in Equation 22.

そして上述の分光反射率予測装置は内部に、コンピュータシステムを有している。そして、上述した処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。   And the above-mentioned spectral reflectance prediction apparatus has a computer system inside. The process described above is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing this program. Here, the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。   The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.

実施例1による分光反射率予測装置の構成を示すブロック図である。It is a block diagram which shows the structure of the spectral reflectance prediction apparatus by Example 1. FIG. 実施例1による分光反射率予測装置の処理フローを示す図である。It is a figure which shows the processing flow of the spectral reflectance prediction apparatus by Example 1. FIG. 実施例2による分光反射率予測装置の構成を示すブロック図である。It is a block diagram which shows the structure of the spectral reflectance prediction apparatus by Example 2. FIG. 実施例2による分光反射率予測装置の処理フローを示す図である。It is a figure which shows the processing flow of the spectral reflectance prediction apparatus by Example 2. FIG. 塗布物影響度関数Fe_c(ic)を示す図である。It is a figure which shows the applied material influence degree function Fe_c (ic). 実施例3による分光反射率予測装置の処理フローを示す図である。It is a figure which shows the processing flow of the spectral reflectance prediction apparatus by Example 3. FIG.

符号の説明Explanation of symbols

1・・・分光反射率予測装置
11・・照射光分光分布算出部
12・・観察光分光分布算出部
13・・蛍光影響度算出部
14・・分光反射率算出部
15・・塗布物影響度算出部
2・・・分光反射率測定装置
3・・・分光放射輝度計
DESCRIPTION OF SYMBOLS 1 ... Spectral reflectance prediction apparatus 11 .... Irradiation light spectral distribution calculation part 12 .... Observation light spectral distribution calculation part 13 .... Fluorescence influence degree calculation part 14 .... Spectral reflectance calculation part 15 .. Calculation part 2 ... Spectral reflectance measuring device 3 ... Spectral radiance meter

Claims (20)

蛍光増白剤を含んだ試料の観察光源下における分光反射率を予測する分光反射率予測装置であって、
第1分光分布を示す第1光源下における前記試料の第1分光反射率と、前記第1分光分布とは異なる第2分光分布を示す第2光源下における前記試料の第2分光反射率とを読み込む分光反射率測定結果読み込み手段と、
予め測定されている白色板の分光反射率と前記白色板の前記観察光源の下における分光放射輝度を読み込み、当該白色板の分光反射率と前記白色板の観察光源下における分光放射輝度とに基づいて算出された、前記観察光源が示す第3分光分布を読み込む第3分光分布読み込み手段と、
前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第1光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第1光源の分光分布のエネルギー量の総和の比率に基づいて、前記第1光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第1蛍光影響度を算出する第1蛍光影響度算出手段と、
前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第2光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第2光源の分光分布のエネルギー量の総和の比率に基づいて、前記第2光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第2蛍光影響度を算出する第2蛍光影響度算出手段と、
前記蛍光増白剤の所定の光エネルギー吸収波長域における前記観察光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記観察光源の分光分布のエネルギー量の総和の比率に基づいて、前記観察光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第3蛍光影響度を算出する第3蛍光影響度算出手段と、
前記第1分光反射率と、前記第2分光反射率と、前記第1蛍光影響度と、前記第2蛍光影響度と、前記第3蛍光影響度とに基づいて、前記試料の前記観察光源下における分光反射率を算出する分光反射率算出手段と、
を備えることを特徴とする分光反射率予測装置。
A spectral reflectance prediction apparatus for predicting spectral reflectance under an observation light source of a sample containing a fluorescent brightening agent,
A first spectral reflectance of the sample under a first light source exhibiting a first spectral distribution and a second spectral reflectance of the sample under a second light source exhibiting a second spectral distribution different from the first spectral distribution. Spectral reflectance measurement result reading means to read,
Read the spectral reflectance of the white plate measured in advance and the spectral radiance of the white plate under the observation light source, and based on the spectral reflectance of the white plate and the spectral radiance of the white plate under the observation light source A third spectral distribution reading means for reading the third spectral distribution indicated by the observation light source, calculated by
The total energy amount of the spectral distribution of the first light source in the predetermined light energy absorption wavelength region of the fluorescent whitening agent and the energy of the spectral distribution of the first light source in the predetermined light energy emission wavelength region of the fluorescent whitening agent First fluorescence influence degree calculating means for calculating a first fluorescence influence degree indicating a degree of influence of the light of the first light source on the light emission characteristics of the fluorescent brightener based on a ratio of the sum of the amounts;
The total energy amount of the spectral distribution of the second light source in the predetermined light energy absorption wavelength region of the fluorescent brightener and the energy of the spectral distribution of the second light source in the predetermined light energy emission wavelength region of the fluorescent brightener Second fluorescence influence degree calculating means for calculating a second fluorescence influence degree indicating the degree of influence of the light of the second light source on the light emission characteristics of the fluorescent brightener based on the ratio of the sum of the amounts;
The total energy amount of the spectral distribution of the observation light source in the predetermined light energy absorption wavelength region of the fluorescent brightener and the energy amount of the spectral distribution of the observation light source in the predetermined light energy emission wavelength region of the fluorescent brightener A third fluorescence influence degree calculating means for calculating a third fluorescence influence degree indicating the degree of influence of the light of the observation light source on the light emission characteristics of the fluorescent whitening agent based on the ratio of the sum;
Based on the first spectral reflectance, the second spectral reflectance, the first fluorescence influence degree, the second fluorescence influence degree, and the third fluorescence influence degree, under the observation light source of the sample Spectral reflectance calculating means for calculating the spectral reflectance in
A spectral reflectance prediction apparatus comprising:
蛍光増白剤を含んだ試料であって複数の異なる色が塗布された前記試料の、観察光源下における分光反射率を予測する分光反射率予測装置であって、
第1分光分布を示す第1光源下における前記試料の色の塗布されていない部分を含む各色の第1分光反射率と、前記第1分光分布とは異なる第2分光分布を示す第2光源下における前記試料の色の塗布されていない部分を含む複数の異なる色のうち何れか特定の色の第2分光反射率と、を読み込む分光反射率測定結果読み込み手段と、
予め測定されている白色板の分光反射率と前記白色板の前記観察光源の下における分光放射輝度を読み込み、当該白色板の分光反射率と前記白色板の観察光源下における分光放射輝度とに基づいて算出された、前記観察光源が示す第3分光分布を読み込む第3分光分布読み込み手段と、
前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第1光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第1光源の分光分布のエネルギー量の総和の比率に基づいて、前記第1光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第1蛍光影響度を算出する第1蛍光影響度算出手段と、
前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第2光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第2光源の分光分布のエネルギー量の総和の比率に基づいて、前記第2光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第2蛍光影響度を算出する第2蛍光影響度算出手段と、
前記蛍光増白剤の所定の光エネルギー吸収波長域における前記観察光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記観察光源の分光分布のエネルギー量の総和の比率に基づいて、前記観察光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第3蛍光影響度を算出する第3蛍光影響度算出手段と、
前記試料に塗布された各色の色情報と当該色情報が前記蛍光増白剤の発光特性に影響する度合いとの関係を示す塗布物影響度の関数を算出する塗布物影響度関数算出手段と、
前記第1分光反射率と、前記第2分光反射率と、前記第1蛍光影響度と、前記第2蛍光影響度と、前記第3蛍光影響度と、前記観察光源下で予測する前記試料に塗布された色の色情報を前記塗布物影響度関数に代入して得られた塗布物影響度とに基づいて、前記試料の前記観察光源下における分光反射率を算出する分光反射率算出手段と、
を備えることを特徴とする分光反射率予測装置。
A spectral reflectance prediction apparatus for predicting spectral reflectance under an observation light source of a sample containing a fluorescent brightener and coated with a plurality of different colors,
Under a first light source showing a first spectral distribution, under a second light source showing a first spectral reflectance of each color including an uncoated portion of the sample color and a second spectral distribution different from the first spectral distribution Spectral reflectance measurement result reading means for reading the second spectral reflectance of any specific color among a plurality of different colors including a portion of the sample in which the color of the sample is not applied,
Read the spectral reflectance of the white plate measured in advance and the spectral radiance of the white plate under the observation light source, and based on the spectral reflectance of the white plate and the spectral radiance of the white plate under the observation light source A third spectral distribution reading means for reading the third spectral distribution indicated by the observation light source, calculated by
The total energy amount of the spectral distribution of the first light source in the predetermined light energy absorption wavelength region of the fluorescent whitening agent and the energy of the spectral distribution of the first light source in the predetermined light energy emission wavelength region of the fluorescent whitening agent First fluorescence influence degree calculating means for calculating a first fluorescence influence degree indicating a degree of influence of the light of the first light source on the light emission characteristics of the fluorescent brightener based on a ratio of the sum of the amounts;
The total energy amount of the spectral distribution of the second light source in the predetermined light energy absorption wavelength region of the fluorescent brightener and the energy of the spectral distribution of the second light source in the predetermined light energy emission wavelength region of the fluorescent brightener Second fluorescence influence degree calculating means for calculating a second fluorescence influence degree indicating the degree of influence of the light of the second light source on the light emission characteristics of the fluorescent brightener based on the ratio of the sum of the amounts;
The total energy amount of the spectral distribution of the observation light source in the predetermined light energy absorption wavelength region of the fluorescent brightener and the energy amount of the spectral distribution of the observation light source in the predetermined light energy emission wavelength region of the fluorescent brightener A third fluorescence influence degree calculating means for calculating a third fluorescence influence degree indicating the degree of influence of the light of the observation light source on the light emission characteristics of the fluorescent whitening agent based on the ratio of the sum;
A coating material influence degree function calculating means for calculating a function of a coating material influence degree indicating a relationship between the color information of each color applied to the sample and the degree that the color information affects the light emission characteristics of the fluorescent whitening agent;
The first spectral reflectance, the second spectral reflectance, the first fluorescence influence degree, the second fluorescence influence degree, the third fluorescence influence degree, and the sample to be predicted under the observation light source Spectral reflectance calculating means for calculating the spectral reflectance of the sample under the observation light source based on the applied material influence degree obtained by substituting the color information of the applied color into the applied object influence function; ,
A spectral reflectance prediction apparatus comprising:
前記分光反射率測定結果読み込み手段において読み込まれる第2分光反射率は、第1分光分布とは異なる第2分光分布を示す第2光源下における前記試料の色の塗布されていない部分の第2分光反射率であることを特徴とする請求項2に記載の分光反射率予測装置。   The second spectral reflectance read by the spectral reflectance measurement result reading means is the second spectral portion of the uncolored portion of the sample under the second light source showing a second spectral distribution different from the first spectral distribution. The spectral reflectance prediction apparatus according to claim 2, wherein the spectral reflectance prediction apparatus is a reflectance. 前記試料において、前記色の塗布されている部分の第1光源下での分光反射率と、前記試料において、前記色の塗布されていない部分の第1光源下での分光反射率との比のN(所定の変数)乗によって表すことを特徴とする請求項3に記載の分光反射率予測装置。   In the sample, the ratio between the spectral reflectance under the first light source of the portion where the color is applied and the spectral reflectance under the first light source of the portion where the color is not applied in the sample. The spectral reflectance prediction apparatus according to claim 3, wherein the spectral reflectance prediction apparatus is represented by N (predetermined variable) power. 前記所定の変数Nは、第1光源下での分光反射率から求めた第2光源下での推定の分光反射率と実際に第2光源下で分光反射率との差が最小となる値であることを特徴とする請求項4に記載の分光反射率予測装置。   The predetermined variable N is a value that minimizes the difference between the estimated spectral reflectance under the second light source obtained from the spectral reflectance under the first light source and the actual spectral reflectance under the second light source. The spectral reflectance prediction apparatus according to claim 4, wherein the apparatus is a spectral reflectance prediction apparatus. 前記塗布物影響度の関数において、蛍光白色剤の特定の光エネルギー発光波長または光エネルギー発光波長域を用いて前記試料に塗布された色の前記観察光源下における分光反射率を算出する
ことを特徴とする請求項2から請求項5の何れかに記載の分光反射率予測装置。
Spectral reflectance under the observation light source of the color applied to the sample is calculated using a specific light energy emission wavelength or a light energy emission wavelength range of the fluorescent whitening agent as a function of the influence of the applied material. The spectral reflectance prediction apparatus according to any one of claims 2 to 5.
前記所定の光エネルギー吸収波長域は、前記第1分光反射率や前記第2分光反射率を測定できる波長範囲から特定された波長域であることを特徴とする請求項1から請求項6の何れかに記載の分光反射率予測装置。 Said predetermined optical energy absorption wavelength region, one of claims 1 to 6, characterized in that the wavelength region that is identified from the wavelength range capable of measuring the first spectral reflectance and the second spectral reflectance spectral reflectance predicting apparatus according to any. 前記第1蛍光影響度算出手段または前記第2蛍光影響度算出手段または前記第3蛍光影響度算出手段はそれぞれ、
蛍光増白剤の光エネルギー吸収波長域と光エネルギー発光波長域の特定の波長として前記第1、第2、第3の蛍光影響度を算出することを特徴とする請求項1から請求項7の何れかに記載の分光反射率予測装置。
The first fluorescence influence degree calculating means, the second fluorescence influence degree calculating means, or the third fluorescence influence degree calculating means, respectively,
The first as a specific wavelength of light energy absorption wavelength region and the light energy emission wavelength range of the fluorescent whitening agent, the second, claims 1 to 7, characterized in that calculating a third fluorescent influence The spectral reflectance prediction apparatus in any one .
前記第1蛍光影響度算出手段または前記第2蛍光影響度算出手段または前記第3蛍光影響度算出手段はそれぞれ、
蛍光増白剤の光エネルギー吸収波長域を380nm〜400nmとし、光エネルギー発光波長域を430nm〜450nmとして前記第1、第2、第3の蛍光影響度を算出することを特徴とする請求項1から請求項8の何れかに記載の分光反射率予測装置。
The first fluorescence influence degree calculating means, the second fluorescence influence degree calculating means, or the third fluorescence influence degree calculating means, respectively,
The light intensity absorption wavelength region of the fluorescent brightening agent is set to 380 nm to 400 nm and the light energy emission wavelength region is set to 430 nm to 450 nm, and the first, second, and third fluorescence influence degrees are calculated. spectral reflectance predicting apparatus according to claim 8.
前記試料は複数の色が塗布された色チャートであり、
前記分光反射率算出手段は、前記色チャートの全ての色の観察光源下における分光反射率を算出する
ことを特徴とする請求項2から請求項9の何れかに記載の分光反射率予測装置。
The sample is a color chart coated with a plurality of colors,
The spectral reflectance prediction apparatus according to any one of claims 2 to 9 , wherein the spectral reflectance calculation means calculates the spectral reflectance under an observation light source of all colors of the color chart.
蛍光増白剤を含んだ試料の観察光源下における分光反射率を予測する分光反射率予測装置における分光反射率予測方法であって、
前記分光反射率予測装置の分光反射率測定結果読み込み手段が、第1分光分布を示す第1光源下における前記試料の第1分光反射率と、前記第1分光分布とは異なる第2分光分布を示す第2光源下における前記試料の第2分光反射率とを読み込み、
前記分光反射率予測装置の第3分光分布読み込み手段が、予め測定されている白色板の分光反射率と前記白色板の前記観察光源の下における分光放射輝度を読み込み、当該白色板の分光反射率と前記白色板の観察光源下における分光放射輝度とに基づいて算出された、前記観察光源が示す第3分光分布を読み込み、
前記分光反射率予測装置の第1蛍光影響度算出手段が、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第1光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第1光源の分光分布のエネルギー量の総和の比率に基づいて、前記第1光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第1蛍光影響度を算出し、
前記分光反射率予測装置の第2蛍光影響度算出手段が、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第2光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第2光源の分光分布のエネルギー量の総和の比率に基づいて、前記第2光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第2蛍光影響度を算出し、
前記分光反射率予測装置の第3蛍光影響度算出手段が、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記観察光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記観察光源の分光分布のエネルギー量の総和の比率に基づいて、前記観察光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第3蛍光影響度を算出し、
前記分光反射率予測装置の分光反射率算出手段が、前記第1分光反射率と、前記第2分光反射率と、前記第1蛍光影響度と、前記第2蛍光影響度と、前記第3蛍光影響度とに基づいて、前記試料の前記観察光源下における分光反射率を算出する
ことを特徴とする分光反射率予測方法。
A spectral reflectance prediction method in a spectral reflectance prediction apparatus for predicting spectral reflectance under an observation light source of a sample containing a fluorescent brightening agent,
The spectral reflectance measurement result reading means of the spectral reflectance prediction apparatus obtains a first spectral reflectance of the sample under a first light source showing a first spectral distribution and a second spectral distribution different from the first spectral distribution. Reading the second spectral reflectance of the sample under the second light source shown,
The third spectral distribution reading means of the spectral reflectance prediction device reads the spectral reflectance of the white plate measured in advance and the spectral radiance of the white plate under the observation light source, and the spectral reflectance of the white plate And the third spectral distribution represented by the observation light source, calculated based on the spectral radiance of the white plate under the observation light source,
The first fluorescence influence degree calculating means of the spectral reflectance predicting apparatus is configured such that a total energy amount of the spectral distribution of the first light source in a predetermined light energy absorption wavelength region of the fluorescent brightener and a predetermined value of the fluorescent brightener. The first fluorescence effect indicating the degree to which the light from the first light source affects the light emission characteristics of the fluorescent brightener based on the ratio of the total energy amount of the spectral distribution of the first light source in the light energy emission wavelength region Calculate the degree,
The second fluorescence influence degree calculating means of the spectral reflectance predicting device is configured to add a sum of energy amounts of spectral distributions of the second light source in a predetermined light energy absorption wavelength range of the fluorescent whitening agent and a predetermined value of the fluorescent whitening agent. The second fluorescent influence indicating the degree to which the light of the second light source affects the light emission characteristics of the fluorescent brightener based on the ratio of the total energy amount of the spectral distribution of the second light source in the light energy emission wavelength region Calculate the degree,
The third fluorescence influence degree calculating means of the spectral reflectance predicting device includes a sum of energy amounts of spectral distributions of the observation light source in a predetermined light energy absorption wavelength region of the fluorescent whitening agent and a predetermined amount of the fluorescent whitening agent. Based on the ratio of the total energy amount of the spectral distribution of the observation light source in the light energy emission wavelength region, a third fluorescence influence degree indicating the degree of influence of the light of the observation light source on the light emission characteristics of the fluorescent brightener is calculated. And
Spectral reflectance calculation means of the spectral reflectance predicting apparatus includes the first spectral reflectance, the second spectral reflectance, the first fluorescence influence degree, the second fluorescence influence degree, and the third fluorescence. The spectral reflectance prediction method of calculating the spectral reflectance of the sample under the observation light source based on the degree of influence.
蛍光増白剤を含んだ試料であって複数の異なる色が塗布された前記試料の、観察光源下における分光反射率を予測する分光反射率予測装置の分光反射率予測方法であって、
前記分光反射率予測装置の分光反射率測定結果読み込み手段が、第1分光分布を示す第1光源下における前記試料の色の塗布されていない部分を含む各色の第1分光反射率と、前記第1分光分布とは異なる第2分光分布を示す第2光源下における前記試料の色の塗布されていない部分を含む複数の異なる色のうち何れか特定の色の第2分光反射率とを読み込み、
前記分光反射率予測装置の第3分光分布読み込み手段が、予め測定されている白色板の分光反射率と前記白色板の前記観察光源の下における分光放射輝度を読み込み、当該白色板の分光反射率と前記白色板の観察光源下における分光放射輝度とに基づいて算出された、前記観察光源が示す第3分光分布を読み込み、
前記分光反射率予測装置の第1蛍光影響度算出手段が、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第1光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第1光源の分光分布のエネルギー量の総和の比率に基づいて、前記第1光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第1蛍光影響度を算出し、
前記分光反射率予測装置の第2蛍光影響度算出手段が、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記第2光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記第2光源の分光分布のエネルギー量の総和の比率に基づいて、前記第2光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第2蛍光影響度を算出し、
前記分光反射率予測装置の第3蛍光影響度算出手段が、前記蛍光増白剤の所定の光エネルギー吸収波長域における前記観察光源の分光分布のエネルギー量の総和と前記蛍光増白剤の所定の光エネルギー発光波長域における前記観察光源の分光分布のエネルギー量の総和の比率に基づいて、前記観察光源の光が前記蛍光増白剤の発光特性に影響する度合いを示す第3蛍光影響度を算出し、
前記分光反射率予測装置の塗布物影響度関数算出手段が、前記試料に塗布された各色の色情報と当該色情報が前記蛍光増白剤の発光特性に影響する度合いとの関係を示す塗布物影響度の関数を算出し、
前記分光反射率予測装置の分光反射率算出手段が、前記第1分光反射率と、前記第2分光反射率と、前記第1蛍光影響度と、前記第2蛍光影響度と、前記第3蛍光影響度と、前記観察光源下で予測する前記試料に塗布された色の色情報を前記塗布物影響度関数に代入して得られた塗布物影響度とに基づいて、前記試料の前記観察光源下における分光反射率を算出する
ことを特徴とする分光反射率予測方法。
A spectral reflectance prediction method of a spectral reflectance prediction apparatus for predicting spectral reflectance under an observation light source of a sample containing a fluorescent whitening agent and applied with a plurality of different colors,
The spectral reflectance measurement result reading means of the spectral reflectance prediction apparatus includes a first spectral reflectance of each color including a portion of the sample that is not coated with a color under a first light source exhibiting a first spectral distribution, and the first A second spectral reflectance of a specific color is read out from a plurality of different colors including a portion of the sample that is not coated with a color under a second light source exhibiting a second spectral distribution different from the one spectral distribution;
The third spectral distribution reading means of the spectral reflectance prediction device reads the spectral reflectance of the white plate measured in advance and the spectral radiance of the white plate under the observation light source, and the spectral reflectance of the white plate And the third spectral distribution represented by the observation light source, calculated based on the spectral radiance of the white plate under the observation light source,
The first fluorescence influence degree calculating means of the spectral reflectance predicting apparatus is configured such that a total energy amount of the spectral distribution of the first light source in a predetermined light energy absorption wavelength region of the fluorescent brightener and a predetermined value of the fluorescent brightener. The first fluorescence effect indicating the degree to which the light from the first light source affects the light emission characteristics of the fluorescent brightener based on the ratio of the total energy amount of the spectral distribution of the first light source in the light energy emission wavelength region Calculate the degree,
The second fluorescence influence degree calculating means of the spectral reflectance predicting device is configured to add a sum of energy amounts of spectral distributions of the second light source in a predetermined light energy absorption wavelength range of the fluorescent whitening agent and a predetermined value of the fluorescent whitening agent. The second fluorescent influence indicating the degree to which the light of the second light source affects the light emission characteristics of the fluorescent brightener based on the ratio of the total energy amount of the spectral distribution of the second light source in the light energy emission wavelength region Calculate the degree,
The third fluorescence influence degree calculating means of the spectral reflectance predicting device includes a sum of energy amounts of spectral distributions of the observation light source in a predetermined light energy absorption wavelength region of the fluorescent whitening agent and a predetermined amount of the fluorescent whitening agent. Based on the ratio of the total energy amount of the spectral distribution of the observation light source in the light energy emission wavelength region, a third fluorescence influence degree indicating the degree of influence of the light of the observation light source on the light emission characteristics of the fluorescent brightener is calculated. And
The applied material influence function calculating means of the spectral reflectance predicting apparatus shows the relationship between the color information of each color applied to the sample and the degree to which the color information affects the light emission characteristics of the fluorescent brightener. Calculate the impact function,
Spectral reflectance calculation means of the spectral reflectance predicting apparatus includes the first spectral reflectance, the second spectral reflectance, the first fluorescence influence degree, the second fluorescence influence degree, and the third fluorescence. The observation light source of the sample based on the influence degree and the applied substance influence degree obtained by substituting the color information of the color applied to the sample predicted under the observation light source into the applied substance influence function Spectral reflectance prediction method characterized by calculating spectral reflectance below.
前記分光反射率測定結果読み込み手段において読み込まれる第2分光反射率は、第1分光分布とは異なる第2分光分布を示す第2光源下における前記試料の色の塗布されていない部分の第2分光反射率であることを特徴とする請求項12に記載の分光反射率予測方法。   The second spectral reflectance read by the spectral reflectance measurement result reading means is the second spectral portion of the uncolored portion of the sample under the second light source showing a second spectral distribution different from the first spectral distribution. The spectral reflectance prediction method according to claim 12, wherein the spectral reflectance is a reflectance. 前記試料において、前記色の塗布されている部分の第1光源下での分光反射率と、前記試料において、前記色の塗布されていない部分の第1光源下での分光反射率との比のN(所定の変数)乗によって表すことを特徴とする請求項13に記載の分光反射率予測方法。   In the sample, the ratio between the spectral reflectance under the first light source of the portion where the color is applied and the spectral reflectance under the first light source of the portion where the color is not applied in the sample. The spectral reflectance prediction method according to claim 13, wherein the spectral reflectance prediction method is expressed by N (predetermined variable) power. 前記所定の変数Nは、第1光源下での分光反射率から求めた第2光源下での推定の分光反射率と実際に第2光源下で分光反射率との差が最小となる値であることを特徴とする請求項14に記載の分光反射率予測装置。   The predetermined variable N is a value that minimizes the difference between the estimated spectral reflectance under the second light source obtained from the spectral reflectance under the first light source and the actual spectral reflectance under the second light source. The spectral reflectance prediction apparatus according to claim 14, wherein the apparatus is a spectral reflectance prediction apparatus. 前記塗布物影響度の関数において、蛍光白色剤の特定の光エネルギー発光波長または光エネルギー発光波長域を用いて前記試料に塗布された色の前記観察光源下における分光反射率を算出する
ことを特徴とする請求項12から請求項15の何れかに記載の分光反射率予測方法。
Spectral reflectance under the observation light source of the color applied to the sample is calculated using a specific light energy emission wavelength or a light energy emission wavelength range of the fluorescent whitening agent as a function of the influence of the applied material. The spectral reflectance prediction method according to any one of claims 12 to 15.
前記所定の光エネルギー吸収波長域は、前記第1分光反射率や前記第2分光反射率を測定できる波長範囲から特定された波長域であることを特徴とする請求項11から請求項16の何れかに記載の分光反射率予測方法。 Said predetermined optical energy absorption wavelength region, any claim 11, characterized in that the wavelength region that is identified from the wavelength range capable of measuring the first spectral reflectance and the second spectral reflectance of claim 16 spectral reflectance prediction method according to any. 前記第1蛍光影響度算出手段または前記第2蛍光影響度算出手段または前記第3蛍光影響度算出手段はそれぞれ、
蛍光増白剤の光エネルギー吸収波長域と光エネルギー発光波長域の特定の波長として前記第1、第2、第3の蛍光影響度を算出することを特徴とする請求項11から請求項17の何れかに記載の分光反射率予測方法。
The first fluorescence influence degree calculating means, the second fluorescence influence degree calculating means, or the third fluorescence influence degree calculating means, respectively,
The first as a specific wavelength of light energy absorption wavelength region and the light energy emission wavelength range of the fluorescent whitening agent, the second, claim 17 claim 11, characterized in that calculating a third fluorescent influence The spectral reflectance prediction method according to any one of the above.
前記第1蛍光影響度算出手段または前記第2蛍光影響度算出手段または前記第3蛍光影響度算出手段はそれぞれ、
蛍光増白剤の光エネルギー吸収波長域を380nm〜400nmとし、光エネルギー発光波長域を430nm〜450nmとして前記第1、第2、第3の蛍光影響度を算出することを特徴とする請求項11から請求項18の何れかに記載の分光反射率予測方法。
The first fluorescence influence degree calculating means, the second fluorescence influence degree calculating means, or the third fluorescence influence degree calculating means, respectively,
12. The first, second, and third fluorescent influences are calculated by setting a light energy absorption wavelength region of the fluorescent brightener to 380 nm to 400 nm and a light energy emission wavelength region of 430 nm to 450 nm. spectral reflectance prediction method according to claim 18.
前記試料は複数の色が塗布された色チャートであり、
前記分光反射率算出手段は、前記色チャートの全ての色の観察光源下における分光反射率を算出する
ことを特徴とする請求項12から請求項19の何れかに記載の分光反射率予測方法。
The sample is a color chart coated with a plurality of colors,
The spectral reflectance prediction method according to any one of claims 12 to 19 , wherein the spectral reflectance calculation unit calculates the spectral reflectance under an observation light source of all colors of the color chart.
JP2004269715A 2004-09-16 2004-09-16 Spectral reflectance prediction apparatus and spectral reflectance prediction method Expired - Fee Related JP4483496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004269715A JP4483496B2 (en) 2004-09-16 2004-09-16 Spectral reflectance prediction apparatus and spectral reflectance prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004269715A JP4483496B2 (en) 2004-09-16 2004-09-16 Spectral reflectance prediction apparatus and spectral reflectance prediction method

Publications (2)

Publication Number Publication Date
JP2006084333A JP2006084333A (en) 2006-03-30
JP4483496B2 true JP4483496B2 (en) 2010-06-16

Family

ID=36162957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269715A Expired - Fee Related JP4483496B2 (en) 2004-09-16 2004-09-16 Spectral reflectance prediction apparatus and spectral reflectance prediction method

Country Status (1)

Country Link
JP (1) JP4483496B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2003431B1 (en) 2007-06-13 2012-01-25 X-Rite Europe GmbH Method for measuring the colour of printed samples with brighteners
JP5065204B2 (en) * 2008-08-28 2012-10-31 キヤノン株式会社 Color measuring method, color measuring device and recording medium
JP5456053B2 (en) 2009-10-27 2014-03-26 キヤノン株式会社 Color processing apparatus and color processing method
JP2012032340A (en) * 2010-08-02 2012-02-16 Canon Inc Color processing apparatus and method thereof
JP5643571B2 (en) 2010-08-18 2014-12-17 キヤノン株式会社 Fluorescence estimation apparatus, fluorescence estimation method, and fluorescence measurement apparatus
US9165223B2 (en) 2012-06-11 2015-10-20 Ricoh Production Print Solutions LLC Compensation for optical brighteners of print media to facilitate calibration of a printing system
TWI818915B (en) 2017-07-14 2023-10-21 荷蘭商Asml荷蘭公司 Metrology apparatus and substrate stage-handler system
CN112903105A (en) * 2021-01-15 2021-06-04 金发科技股份有限公司 Method for measuring color fluorescence intensity and fluorescence color of material
CN113358224B (en) * 2021-06-15 2023-09-26 杭州海康威视数字技术股份有限公司 Spectral reflectivity detection method and system

Also Published As

Publication number Publication date
JP2006084333A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
US7466417B2 (en) Process for the colour measurement of printed samples including brighteners
JP4660691B2 (en) Optical property measuring method of fluorescent sample and optical property measuring apparatus using the same
US7675620B2 (en) Optical property measuring method and optical property measuring apparatus
KR102073046B1 (en) How to check the texture parameters of the paint
JP5239442B2 (en) Method and apparatus for measuring optical properties of fluorescent sample
JP4483496B2 (en) Spectral reflectance prediction apparatus and spectral reflectance prediction method
US10999477B2 (en) Image processing apparatus, method and storage medium
US7847264B2 (en) Method of measuring the colour of printed samples containing brighteners
US6671050B2 (en) Color measuring method and device for printed matter
JP2011234359A (en) Overprint prediction method
US10839271B2 (en) Image processing apparatus, method and storage medium
US8289575B2 (en) Method and printing technology machine for conversion of color measured values measured without a filter into color measured values measured with a filter and vice versa
US11405997B2 (en) Lighting control device, lighting control method, and program
US20210109016A1 (en) Spectrophotometric measurement estimation
CN110611742B (en) Image forming apparatus, image processing system, image processing apparatus, image processing method, and storage medium
JP3862997B2 (en) Color measuring method and color measuring device for printed matter
WO2018173680A1 (en) Method for measuring spectral radiation characteristics of fluorescence whitened sample, and device for measuring spectral radiation characteristics of fluorescence whitened sample
Wyble et al. Spectral implications for camera calibration target
Imura et al. Multi‐wavelength excitation method for measuring FWA‐treated paper
Sarkar et al. Modern displays: Why we see different colors, and what it means?
WO2011052044A1 (en) Color processing device and color processing method
Chaikovsky et al. Effects of Optical Brightening Agents on Color Reproduction in Digital Printing
Green Fundamentals and Applications of Colour Engineering
JP2000310564A (en) Method for estimating printer characteristic and color- measuring apparatus and method for holding printer characteristic
JP2000121437A (en) Method and apparatus for predicting color

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Ref document number: 4483496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees