JP4614709B2 - Method for manufacturing external gear - Google Patents

Method for manufacturing external gear Download PDF

Info

Publication number
JP4614709B2
JP4614709B2 JP2004227659A JP2004227659A JP4614709B2 JP 4614709 B2 JP4614709 B2 JP 4614709B2 JP 2004227659 A JP2004227659 A JP 2004227659A JP 2004227659 A JP2004227659 A JP 2004227659A JP 4614709 B2 JP4614709 B2 JP 4614709B2
Authority
JP
Japan
Prior art keywords
center
external gear
external
gear
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004227659A
Other languages
Japanese (ja)
Other versions
JP2006043809A (en
Inventor
浩之 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2004227659A priority Critical patent/JP4614709B2/en
Publication of JP2006043809A publication Critical patent/JP2006043809A/en
Application granted granted Critical
Publication of JP4614709B2 publication Critical patent/JP4614709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、外周にトロコイド歯形の外歯が多数形成された外歯歯車の製造方法に関する。     The present invention relates to a method of manufacturing an external gear in which a large number of trochoidal external teeth are formed on the outer periphery.

従来の外歯歯車の製造方法としては、例えば以下の特許文献1に記載されているようなものが知られている。このものは、円盤状素材の外周にホブ切りにより歯面形状が滑らかに変化するトロコイド歯形の外歯を多数創成して外歯歯車を成形する工程と、周方向に離れて設置された3本のピンをトロコイド外歯の歯面に押し当てることで外歯歯車の中心を求める(加工装置の中心に合致させる)工程と、前記求めた中心を基に外歯歯車の中心孔(クランク軸孔)、内ピン孔の仕上げ加工を行う工程とを備えたものである。
特開2002−120116号公報
As a conventional method of manufacturing an external gear, for example, a method described in Patent Document 1 below is known. This is a process of creating many external teeth of trochoidal tooth shape whose tooth surface shape changes smoothly by hobbing on the outer periphery of the disk-shaped material, and molding external gears, and three that are installed apart in the circumferential direction The center of the external gear is obtained by pressing the pin of the trochoid on the tooth surface of the trochoid external tooth (matching the center of the processing device), and the center hole of the external gear (crankshaft hole based on the obtained center) ) And a step of finishing the inner pin hole.
JP 2002-120116 A

しかしながら、このような従来の外歯歯車の製造方法にあっては、単にピンを押し当てることで外歯歯車の中心を求めるようにしているため、これらピン間で押付け力、停止位置等にばらつきがある場合には、外歯歯車の中心の検出精度が低下し、この結果、この中心を基に成形された中心孔、内ピン孔の位置精度も低下するという課題があった。特に、外歯歯車をピン内歯に噛み合う偏心揺動型遊星歯車装置のピニオンとして用いる場合には、クランク軸が挿入されるクランク軸孔等の中心と外歯歯車の中心との位置関係が重要となるが、この位置関係に設計値より大きな狂いが生じていると、回転精度が低下したり、振動、騒音あるいは異常摩耗が発生してしまうのである。     However, in such a conventional method of manufacturing an external gear, since the center of the external gear is obtained by simply pressing the pins, the pressing force, the stop position, etc. vary between these pins. When there is, there is a problem that the detection accuracy of the center of the external gear is lowered, and as a result, the positional accuracy of the center hole and the inner pin hole formed based on this center is also lowered. In particular, when using an external gear as a pinion of an eccentric oscillating planetary gear device that meshes with an internal tooth of a pin, the positional relationship between the center of the crankshaft hole or the like into which the crankshaft is inserted and the center of the external gear is important. However, if the positional relationship is greatly deviated from the design value, the rotational accuracy is lowered, and vibration, noise, or abnormal wear occurs.

この発明は、トロコイド歯形の外歯を有する外歯歯車の中心を高精度で求め、その後の外歯歯車に対する加工精度を向上させることができる外歯歯車の製造方法を提供することを目的とする。   An object of the present invention is to provide a method of manufacturing an external gear capable of obtaining the center of an external gear having trochoidal teeth with high accuracy and improving the processing accuracy of the external gear thereafter. .

このような目的は、歯車素材の外周に歯面形状が滑らかに変化するトロコイド歯形の外歯を多数創成して外歯歯車を成形するとともに、これら外歯の歯先部に外歯歯車の中心を曲率中心とする単一円上に位置する円弧面を形成する工程と、前記外歯歯車の外歯のうち、少なくとも3個の外歯における円弧面上の点の位置を測定する工程と、これら測定結果を基に外歯歯車の中心を求める工程と、前記求めた中心を基に外歯歯車の規定位置に対し所定の加工を行う工程とを備えることにより、達成することができる。     The purpose of this is to create many external teeth of trochoidal tooth shape whose tooth surface shape changes smoothly on the outer periphery of the gear material and to form the external gear, and at the tip of these external teeth, the center of the external gear Forming a circular arc surface located on a single circle centering on the curvature, and measuring the positions of points on the circular arc surface of at least three external teeth of the external teeth of the external gear; This can be achieved by providing a step of obtaining the center of the external gear based on these measurement results and a step of performing a predetermined process on the specified position of the external gear based on the obtained center.

この発明においては、少なくとも3個の点の位置を測定し、これら測定結果を基に外歯歯車の中心を求めるようにしたので、単に3本のピンを外歯に押し付けて中心を求めるようにした場合に比較し、押付け力、停止位置等のばらつきによる影響が無くなって、求めた外歯歯車の中心の位置精度を高精度とすることができ、これにより、その後の外歯歯車に対する加工精度を向上させることができる。そして、前記位置を測定する点が円弧面上にあるため、測定点の位置を簡単かつ高精度で測定することができる。これにより、外歯歯車をピン内歯に噛み合う偏心揺動型遊星歯車装置のピニオンとして用いる場合、回転精度を向上させることができるとともに、振動、騒音、摩耗を効果的に低減させることができる。   In the present invention, since the positions of at least three points are measured and the center of the external gear is obtained based on the measurement results, the center is simply obtained by pressing the three pins against the external teeth. Compared to the case, the influence of variations in pressing force, stop position, etc. is eliminated, and the obtained position accuracy of the center of the external gear can be made high. Can be improved. And since the point which measures the said position exists on a circular arc surface, the position of a measurement point can be measured easily and with high precision. As a result, when the external gear is used as a pinion of an eccentric oscillating planetary gear device that meshes with the pin internal teeth, the rotation accuracy can be improved and vibration, noise, and wear can be effectively reduced.

また、請求項2に記載のように構成すれば、円弧面を高精度で形成することができる。
さらに、請求項3に記載のように構成すれば、加工装置の中心に外歯歯車の中心を簡単に高精度で合致させることができる。
Moreover, if comprised as described in Claim 2, a circular arc surface can be formed with high precision.
Furthermore, if comprised as described in Claim 3, the center of an external gear can be easily matched with the center of a processing apparatus with high precision.

以下、この発明の実施例1を図面に基づいて説明する。
図1、2において、11はロボット等に使用される偏心揺動型遊星歯車装置であり、この遊星歯車装置11は、例えば図示していないロボットのアーム、ハンド等に取り付けられた略円筒状の内歯歯車12を有し、この内歯歯車12の内周には円柱状ピンからなる内歯13が周方向に等距離離れて配置されている。前記内歯歯車12内には複数(ここでは2個)の外歯歯車(ピニオン)14が軸方向に並べられて収納され、これら外歯歯車14の外周にはトロコイド歯形、ここではペリトロコイド歯形の外歯15が多数形成されている。
Embodiment 1 of the present invention will be described below with reference to the drawings.
1 and 2, reference numeral 11 denotes an eccentric oscillating planetary gear unit used for a robot or the like. The planetary gear unit 11 has a substantially cylindrical shape attached to, for example, a robot arm or hand not shown. An internal gear 12 is provided, and an internal tooth 13 made of a cylindrical pin is disposed at an equal distance in the circumferential direction on the inner periphery of the internal gear 12. A plurality (two in this case) of external gears (pinions) 14 are accommodated in the axial direction in the internal gear 12, and a trochoidal tooth profile, here a peritrochoid tooth profile, is provided on the outer periphery of the external gear 14. Many external teeth 15 are formed.

ここで、これら外歯15は、創成時には歯面形状が全範囲で滑らかに変化している、即ち歯面の曲率が全範囲(特に歯先部)で連続的に変化しているが、後述するように仕上げ加工時に歯先部を外歯歯車14の中心を曲率中心とする単一円に沿って研削(切削)除去し、これにより、各外歯15の歯先部に該単一円上に位置する円弧面15aを形成するようにしている。そして、これら外歯15の歯数は前記内歯13の歯数より若干、ここでは1だけ少ない。また、前記外歯歯車14と内歯歯車12とは内接した状態で外歯15と内歯13とが噛み合っているが、2つの外歯歯車14の最大噛み合い部(噛み合いの最も深い部位)は 180度だけ位相がずれている。   Here, these external teeth 15 have a tooth surface shape that changes smoothly over the entire range at the time of creation, that is, the curvature of the tooth surface changes continuously over the entire range (especially the tip of the tooth). Thus, during the finishing process, the tooth tip portion is ground (cut) along a single circle having the center of curvature of the external gear 14 as a center of curvature, whereby the single circle is added to the tooth tip portion of each external tooth 15. An upper circular arc surface 15a is formed. The number of teeth of the external teeth 15 is slightly smaller than the number of teeth of the internal teeth 13, and here is one less. Further, the external gear 15 and the internal gear 12 are in contact with each other while the external gear 14 and the internal gear 12 are in contact with each other, but the maximum meshing portion of the two external gears 14 (the deepest meshing portion). Is 180 degrees out of phase.

各外歯歯車14には少なくとも1個、ここでは3個の軸方向に貫通したクランク軸孔18が形成され、これらの複数のクランク軸孔18は外歯歯車14の中心から半径方向に等距離離れるとともに、周方向に等距離離れている。そして、これらクランク軸孔18には外歯歯車14に回転駆動力を付与する後述のクランク軸(偏心カム)が挿入されるため、外歯歯車14の中心からの距離を高精度とする必要がある。19は各外歯歯車14に形成された複数(クランク軸孔18と同数である3個)の貫通孔であり、これらの貫通孔19はクランク軸孔18と周方向に交互に配置されるとともに、周方向に等距離離れて配置されている。また、各外歯歯車14の中心部には後述する出力軸が遊嵌される貫通した中心孔20が形成されている。   Each external gear 14 is formed with at least one, in this case, three axially penetrating crankshaft holes 18, and these crankshaft holes 18 are equidistant from the center of the external gear 14 in the radial direction. As they leave, they are equidistant in the circumferential direction. Since a crankshaft (eccentric cam), which will be described later, which applies a rotational driving force to the external gear 14 is inserted into these crankshaft holes 18, it is necessary to make the distance from the center of the external gear 14 highly accurate. is there. Reference numeral 19 denotes a plurality of (three as many as the crankshaft holes 18) through-holes formed in each external gear 14, and these through-holes 19 are arranged alternately with the crankshaft holes 18 in the circumferential direction. , Are arranged equidistantly in the circumferential direction. Further, a central hole 20 is formed in the center of each external gear 14 so that an output shaft, which will be described later, is loosely fitted.

22は内歯歯車12内に遊嵌され図示していない固定ロボット部材に取り付けられた支持体(キャリア)であり、この支持体22は一対の端板部23、24と、これら端板部23、24同士を連結する複数(貫通孔19と同数である3本)の柱部25とから構成され、これら柱部25は前記貫通孔19内にそれぞれ遊嵌されている。26は前記支持体22と内歯歯車12との間に介装された一対の軸受であり、これらの軸受26により内歯歯車12は支持体22に回転可能に支持される。   Reference numeral 22 denotes a support (carrier) loosely fitted in the internal gear 12 and attached to a fixed robot member (not shown). The support 22 includes a pair of end plate portions 23 and 24 and the end plate portions 23. , 24 are connected to each other (three as many as the through-holes 19), and the pillars 25 are loosely fitted in the through-holes 19, respectively. Reference numeral 26 denotes a pair of bearings interposed between the support body 22 and the internal gear 12, and the internal gear 12 is rotatably supported by the support body 22 by these bearings 26.

29は周方向に等角度離れて配置された少なくとも1本(クランク軸孔18と同数である3本)のクランク軸であり、これらのクランク軸29は、その軸方向両端部が円錐ころ軸受30を介して支持体22に回転可能に支持されている。前記クランク軸29はその軸方向中央部にクランク軸29の中心軸から等距離だけ偏心した2個の偏心カム31を有し、これら偏心カム31は互いに 180度だけ位相がずれている。ここで、前記クランク軸29の偏心カム31は外歯歯車14のクランク軸孔18内にそれぞれ遊嵌されるとともに、これらの間には針状ころ軸受32が介装され、この結果、前記外歯歯車14とクランク軸29との相対回転が許容される。   Reference numeral 29 denotes at least one (three as many as the crankshaft holes 18) crankshafts arranged at equal angles in the circumferential direction. These crankshafts 29 have tapered roller bearings 30 at both axial ends. The support 22 is rotatably supported via the support. The crankshaft 29 has two eccentric cams 31 which are eccentric by an equal distance from the central axis of the crankshaft 29 at the center in the axial direction, and these eccentric cams 31 are out of phase with each other by 180 degrees. Here, the eccentric cam 31 of the crankshaft 29 is loosely fitted in the crankshaft hole 18 of the external gear 14, and a needle roller bearing 32 is interposed between them. Relative rotation between the toothed gear 14 and the crankshaft 29 is allowed.

また、各クランク軸29の軸方向一端には外歯車34が固定され、これらの外歯車34には図示していない駆動モータの出力軸35の一端部に設けられた外歯車36が噛み合っている。そして、駆動モータが作動して外歯車34が回転すると、クランク軸29が自身の中心軸回りに回転し、この結果、クランク軸29の偏心カム31が外歯歯車14のクランク軸孔18内において偏心回転し、外歯歯車14が偏心揺動回転をする。このとき、前述のように外歯15の歯数が前記内歯13の歯数より若干少ないため、前記クランク軸29の回転は減速されて内歯歯車12に伝達され、該内歯歯車12を高トルクで低速回転させる。   An external gear 34 is fixed to one axial end of each crankshaft 29, and an external gear 36 provided at one end of an output shaft 35 of a drive motor (not shown) meshes with these external gears 34. . When the drive motor is actuated and the external gear 34 rotates, the crankshaft 29 rotates about its own central axis, and as a result, the eccentric cam 31 of the crankshaft 29 is moved in the crankshaft hole 18 of the external gear 14. Eccentric rotation occurs, and the external gear 14 rotates eccentrically. At this time, as described above, since the number of teeth of the external teeth 15 is slightly smaller than the number of teeth of the internal teeth 13, the rotation of the crankshaft 29 is decelerated and transmitted to the internal gear 12, and the internal gear 12 is Rotate at low speed with high torque.

ここで、前述のように各外歯15の歯先部を研削(切削)除去すると、内歯13と外歯15とが接触しない領域(図2では下側の領域)が発生し、内歯13が外れるおそれがある。このため、この実施例では、図1に示すように、軸受26と外歯歯車14との間に、内歯13の両端部が挿入される挿入穴39が形成された規制手段としての2個のピン押さえリング40を介装するとともに、これら2個のピン押さえリング40を内歯歯車12に回転不要に固定し、前述した内歯13の移動を規制するようにしている。   Here, when the tip portion of each external tooth 15 is ground (cut) and removed as described above, a region where the internal tooth 13 and the external tooth 15 do not contact (the lower region in FIG. 2) is generated. 13 may come off. For this reason, in this embodiment, as shown in FIG. 1, there are two restricting means in which insertion holes 39 into which both ends of the internal teeth 13 are inserted are formed between the bearing 26 and the external gear 14. The two pin presser rings 40 are interposed, and the two pin presser rings 40 are fixed to the internal gear 12 without rotation, thereby restricting the movement of the internal teeth 13 described above.

ここで、前述のような外歯歯車14を製造するには、まず、例えば鍛造によって略円板状に形成された歯車素材を成形するが、このような歯車素材には鍛造時に複数の貫通孔19を形成しておく。次に、各歯車素材の中心部に旋盤等を用いて中心孔20を形成する。その後、前記歯車素材を少なくとも1個、周知の歯切り装置、例えばホブ盤に搬入し、これら歯車素材の中心孔20を用いてセンタリングを行った後、図示していない固定治具を用いて該歯車素材をホブ盤に位置決め固定する。   Here, in order to manufacture the external gear 14 as described above, first, for example, a gear material formed into a substantially disk shape is formed by forging, and such a gear material has a plurality of through holes at the time of forging. 19 is formed. Next, a center hole 20 is formed at the center of each gear material using a lathe or the like. Thereafter, at least one of the gear materials is carried into a known gear cutting device such as a hobbing machine, centered using the center hole 20 of these gear materials, and then fixed using a fixing jig (not shown). Position and fix the gear material on the hobbing machine.

次に、ホブ盤のホブにより該歯車素材の外周に歯面形状が滑らかに変化するトロコイド歯形の外歯15を順次仕上げ代を残しながら多数創成して外歯歯車14とする。この外歯15の創成と同時に歯車素材に仕上げ代を残しながらクランク軸孔18を成形する。なお、この時点での外歯15、クランク軸孔18は、仕上げ加工が行われていないため、精度が低く、また、面粗さも大きい。その後、前述した外歯歯車14をホブ盤から取り外す。   Next, a large number of external teeth 15 having a trochoidal tooth shape whose tooth surface shape smoothly changes on the outer periphery of the gear material are created by a hob of the hobbing machine while sequentially leaving a finishing allowance to obtain an external gear 14. The crankshaft hole 18 is formed while leaving the finishing allowance on the gear material simultaneously with the creation of the external teeth 15. Note that the external teeth 15 and the crankshaft hole 18 at this time have not been finished, so the accuracy is low and the surface roughness is large. Thereafter, the aforementioned external gear 14 is removed from the hobbing machine.

次に、前述した外歯歯車14に熱処理を施し外歯15の歯面を表面硬化する。その後、外歯歯車14を図示していない周知の歯車研削盤に搬入し、該外歯歯車14の中心孔20を用いてセンタリングを行った後、図示していない固定治具を用いて該外歯歯車14を歯車研削盤に位置決め固定する。次に、歯車研削盤の砥石により各外歯15の歯面を順次仕上げ代を除去しながら研削して仕上げ加工する。なお、外歯15を周知のシェーピング盤によって仕上げ加工した後、外歯歯車14に熱処理を施すようにしてもよい。   Next, heat treatment is performed on the external gear 14 described above to harden the tooth surfaces of the external teeth 15. Thereafter, the external gear 14 is carried into a well-known gear grinder (not shown), centered using the center hole 20 of the external gear 14, and then externally fixed using a fixing jig (not shown). The toothed gear 14 is positioned and fixed to the gear grinding machine. Next, the tooth surfaces of the external teeth 15 are ground and finished by sequentially removing the finishing allowance with the wheel of the gear grinding machine. It should be noted that the external gear 14 may be heat-treated after the external teeth 15 are finished by a known shaping machine.

ここで、前述した歯面の仕上げ加工と同時に前記歯車研削盤の砥石によって各外歯15の歯先部を、図6に示すように、研削除去し、該外歯15の歯先部に外歯歯車14の中心を曲率中心とする単一円上に位置する円弧面15aを形成する。このように外歯15の歯面における仕上げ加工の一環として円弧面15aの形成を行うようにすれば、円弧面15aを高精度で形成することができる。なお、この円弧面15aは外歯15の創成と同時に形成するようにしてもよい。その後、仕上げ加工の終了した外歯歯車14を歯車研削盤から取り外す。   Here, simultaneously with the above-described finishing of the tooth surface, the tooth tips of each external tooth 15 are ground and removed by the grinding wheel of the gear grinding machine as shown in FIG. A circular arc surface 15a is formed which is located on a single circle with the center of the tooth gear 14 as the center of curvature. Thus, if the arc surface 15a is formed as part of the finishing process on the tooth surface of the external tooth 15, the arc surface 15a can be formed with high accuracy. The circular arc surface 15a may be formed simultaneously with the creation of the external teeth 15. Thereafter, the external gear 14 that has been finished is removed from the gear grinding machine.

次に、前記外歯歯車14の外歯15のうち、少なくとも3個の外歯15における円弧面15a上の点の位置を測定するが、このような測定は、この実施例では、図3、4、5に示すように、外歯歯車14に対して所定の加工、ここではクランク軸孔18の仕上げ加工を行う加工装置44、例えばホーニング盤に外歯歯車14を位置決め固定した後、該加工装置44に着脱可能に取付けられた測定手段45により行う。   Next, among the external teeth 15 of the external gear 14, the positions of points on the circular arc surface 15a in at least three external teeth 15 are measured. In this embodiment, such measurement is performed as shown in FIG. 4 and 5, after the external gear 14 is positioned and fixed on a processing device 44 for performing predetermined processing on the external gear 14, here, for example, finishing the crankshaft hole 18, for example, a honing machine, the processing is performed. This is done by measuring means 45 detachably attached to the device 44.

ここで、前述した加工装置44は、略コ字形をした固定フレーム48を有し、この固定フレーム48の下部上面には前後方向(Y軸方向)に延びる一対のガイドレール49が敷設されている。50は矩形平板状の水平な下テーブルであり、この下テーブル50は下面に固定されたスライドベアリング51が前記ガイドレール49に摺動可能に係合することで、固定フレーム48に前後方向に移動可能に支持されている。   Here, the processing device 44 described above has a substantially U-shaped fixed frame 48, and a pair of guide rails 49 extending in the front-rear direction (Y-axis direction) are laid on the upper surface of the lower portion of the fixed frame 48. . Reference numeral 50 denotes a rectangular flat plate-like horizontal lower table. The lower table 50 is slidably engaged with the guide rail 49 by a slide bearing 51 fixed to the lower surface, so that the lower table 50 moves to the fixed frame 48 in the front-rear direction. Supported as possible.

前記下テーブル50の上面には左右方向(X軸方向)に延びる一対のガードレール54が敷設され、これらガイドレール54には上テーブル55の下面に固定されたスライドベアリング56が摺動可能に係合しており、これにより、該上テーブル55は下テーブル50に左右方向に移動可能に支持されることになる。ここで、前記上テーブル55は下テーブル50の直上にこれに平行に設置されるとともに、矩形平板状を呈している。   A pair of guard rails 54 extending in the left-right direction (X-axis direction) are laid on the upper surface of the lower table 50, and a slide bearing 56 fixed to the lower surface of the upper table 55 is slidably engaged with the guide rails 54. Thus, the upper table 55 is supported by the lower table 50 so as to be movable in the left-right direction. Here, the upper table 55 is installed directly above the lower table 50 in parallel therewith and has a rectangular flat plate shape.

59は固定フレーム48の下部前端にブラケット60を介して取付けられたパルスモータ等の駆動モータであり、この駆動モータ59の出力軸61にはねじ軸62が連結されている。前記下テーブル50の中央部下面にはねじブロック63が固定され、このねじブロック63には前記ねじ軸62が螺合している。64は固定フレーム48の下部左端にブラケット65を介して取付けられたパルスモータ等の駆動モータであり、この駆動モータ64の出力軸66にはねじ軸67が連結されている。また、前記上テーブル55の中央部下面にはねじブロック68が固定され、このねじブロック68には前記ねじ軸67が螺合している。   Reference numeral 59 denotes a drive motor such as a pulse motor attached to the lower front end of the fixed frame 48 via a bracket 60. A screw shaft 62 is connected to an output shaft 61 of the drive motor 59. A screw block 63 is fixed to the lower surface of the central portion of the lower table 50, and the screw shaft 62 is screwed into the screw block 63. Reference numeral 64 denotes a drive motor such as a pulse motor attached to the lower left end of the fixed frame 48 via a bracket 65. A screw shaft 67 is connected to an output shaft 66 of the drive motor 64. A screw block 68 is fixed to the lower surface of the central portion of the upper table 55, and the screw shaft 67 is screwed into the screw block 68.

この結果、前記駆動モータ59、64が作動すると、下、上テーブル50、55はそれぞれ個別に前後方向(Y軸方向)に、また、左右方向(X軸方向)に移動する。71は前記固定フレーム48の上端部でその前端部に支持されたスライダであり、このスライダ71は図示していない昇降手段により昇降される。このスライダ71の下端部前面には上テーブル55の中央部直上に位置するスピンドルヘッド72が取付けられ、このスピンドルヘッド72には上下方向に延び、図示していないモータから駆動力を受けて回転するスピンドル73が支持されている。そして、このスピンドル73の下端には外歯歯車14のクランク軸孔18内周を研削により仕上げ加工する加工工具74、例えば研削砥石が取付けられている。   As a result, when the drive motors 59 and 64 are operated, the lower and upper tables 50 and 55 individually move in the front-rear direction (Y-axis direction) and in the left-right direction (X-axis direction). Reference numeral 71 denotes a slider supported at the front end portion of the upper end portion of the fixed frame 48. The slider 71 is lifted and lowered by a lifting means (not shown). A spindle head 72 positioned right above the center of the upper table 55 is attached to the front surface of the lower end of the slider 71. The spindle head 72 extends in the vertical direction and rotates by receiving a driving force from a motor (not shown). A spindle 73 is supported. At the lower end of the spindle 73, a processing tool 74 for finishing the inner periphery of the crankshaft hole 18 of the external gear 14 by grinding, for example, a grinding wheel is attached.

77は上テーブル55の上面に取付けられた3個のロック機構であり、これらのロック機構77は上テーブル55の中心から等距離離れるとともに、等角度離れて配置されている。各ロック機構77は上テーブル55の中心に対して半径方向に延びる流体シリンダ78と、該流体シリンダ78のピストンロッド79の先端に固定された上下方向に延びるロックピン80とから構成されている。   Reference numeral 77 denotes three lock mechanisms attached to the upper surface of the upper table 55. These lock mechanisms 77 are arranged at an equal distance from the center of the upper table 55 and at an equal angle. Each lock mechanism 77 includes a fluid cylinder 78 extending in the radial direction with respect to the center of the upper table 55 and a lock pin 80 extending in the vertical direction fixed to the tip of the piston rod 79 of the fluid cylinder 78.

一方、前記測定手段45は逆L字形を呈する支持アーム83を有し、この支持アーム83は基端部がスピンドル73に着脱可能に取付けられた水平部84と、水平部84の先端から下方に向かって延びる垂直部85とから構成されている。前記垂直部85の下端には検出センサ86が固定され、この検出センサ86は検出子87を外歯歯車14の円弧面15a上の任意の点に接触させることで、該点における位置を検出することができる。前述した支持アーム83、検出センサ86は全体として、前記測定手段45を構成する。   On the other hand, the measuring means 45 has a support arm 83 having an inverted L shape, and this support arm 83 has a horizontal portion 84 whose base end portion is detachably attached to the spindle 73, and a lower portion from the tip of the horizontal portion 84. It is comprised from the perpendicular | vertical part 85 extended toward. A detection sensor 86 is fixed to the lower end of the vertical portion 85, and this detection sensor 86 detects the position at the point by bringing the detector 87 into contact with an arbitrary point on the arc surface 15a of the external gear 14. be able to. The support arm 83 and the detection sensor 86 described above constitute the measuring means 45 as a whole.

そして、前述のような測定手段45を用いて外歯歯車14の中心Oを求めるには、まず、前述の仕上げ加工が終了した少なくとも1個、ここでは2個の外歯歯車14を上テーブル55上に積み重ねた状態で載置するが、このとき、加工装置44の中心、即ち、スピンドル73の回転中心に該外歯歯車14の中心Oを目見当で合致させる。その後、前記ロック機構77の流体シリンダ78を作動することでピストンロッド79を同期突出させ、ロックピン80を図5に示すように外歯歯車14の隣接する外歯15間に挿入し、これら両外歯15の歯面に押し当てる。このとき、ロックピン80は外歯歯車14に周方向に等角度離れた3箇所で当接するため、該外歯歯車14は前述の位置で上テーブル55にロックされる。   Then, in order to obtain the center O of the external gear 14 using the measuring means 45 as described above, first, at least one, in this case, two external gears 14 having been subjected to the above-mentioned finishing work are placed on the upper table 55. At this time, the center O of the external gear 14 is aligned with the center of the processing device 44, that is, the center of rotation of the spindle 73. Thereafter, by operating the fluid cylinder 78 of the locking mechanism 77, the piston rod 79 is synchronously projected, and the lock pin 80 is inserted between the adjacent external teeth 15 of the external gear 14 as shown in FIG. Press against the tooth surface of the external tooth 15. At this time, the lock pin 80 comes into contact with the external gear 14 at three positions separated by an equal angle in the circumferential direction, so that the external gear 14 is locked to the upper table 55 at the aforementioned position.

しかしながら、前述のように外歯歯車14を目見当で載置したため、外歯歯車14の中心Oは加工装置44の中心から、通常ある程度、例えば数mm程度ずれている。このため、スピンドル73を回転して検出センサ86を、図5に示すように、外歯歯車14の中心Oを通るX軸に最も近接する外歯15に対向する位置まで移動させる。次に、該外歯15の円弧面15a上の任意の点Fに検出センサ86の検出子87を接触させ(図5、6参照)、このときの検出センサ86の測定値を零にセット(加工装置44の中心から前記点Fまでの半径方向距離を零と仮定)することで、該点Fの位置を求める。   However, as described above, since the external gear 14 is mounted in a register, the center O of the external gear 14 is usually deviated from the center of the processing apparatus 44 to some extent, for example, about several mm. Therefore, the spindle 73 is rotated and the detection sensor 86 is moved to a position facing the external tooth 15 closest to the X axis passing through the center O of the external gear 14 as shown in FIG. Next, the detector 87 of the detection sensor 86 is brought into contact with an arbitrary point F on the circular arc surface 15a of the external tooth 15 (see FIGS. 5 and 6), and the measurement value of the detection sensor 86 at this time is set to zero ( The position of the point F is obtained by assuming that the radial distance from the center of the processing device 44 to the point F is zero).

次に、スピンドル73を回転して検出センサ86をほぼ 180度回転移動させるが、このときの検出センサ86の停止位置は、外歯歯車14の中心Oを通るY軸を対称軸として点Fを含む外歯15と対称の位置にある外歯15に対向する位置である。その後、該検出センサ86の検出子87をY軸を対称軸として点Fと対称位置にある点Gに接触させ、この点Gの位置(点Gにおける測定値)を求める。なお、前記検出子87を接触させる位置は、外歯歯車14の中心Oを中心として点Fと点対称の位置にある点であってもよい。   Next, the spindle 73 is rotated and the detection sensor 86 is rotated approximately 180 degrees. At this time, the stop position of the detection sensor 86 is a point F with the Y axis passing through the center O of the external gear 14 as the symmetry axis. This is a position facing the external teeth 15 that are symmetrical to the external teeth 15 to be included. Thereafter, the detector 87 of the detection sensor 86 is brought into contact with a point G that is symmetrical with the point F with the Y axis as the axis of symmetry, and the position of this point G (measured value at the point G) is obtained. Note that the position where the detector 87 is brought into contact with each other may be a point symmetric with respect to the point F with the center O of the external gear 14 as the center.

そして、点Gにおける測定値が+Ammであった場合には、外歯歯車14の中心Oは加工装置44の中心に対してX軸の+方向に A/2mmだけずれた位置に存在していると検出される。例えば、このときの測定値が+ 1.224mmであると、外歯歯車14の中心Oは加工装置44の中心に対してX軸の+方向に 0.612mmだけずれていることになる。このようにしてX軸方向における外歯歯車14の中心Oの位置が検出されると、駆動モータ64を作動してねじ軸67を回転させ、上テーブル55および外歯歯車14をX軸に沿ってマイナス方向(ここでは左方)に 0.612mmだけ一体的に移動させ、X軸上において外歯歯車14の中心Oを加工装置44の中心に合致させる。   When the measured value at point G is + A mm, the center O of the external gear 14 is located at a position shifted by A / 2 mm in the + direction of the X axis with respect to the center of the processing device 44. Is detected. For example, if the measured value at this time is +1.224 mm, the center O of the external gear 14 is shifted by 0.612 mm in the + direction of the X axis with respect to the center of the processing device 44. When the position of the center O of the external gear 14 in the X-axis direction is thus detected, the drive motor 64 is operated to rotate the screw shaft 67, and the upper table 55 and the external gear 14 are moved along the X-axis. Then, it is moved integrally by 0.612 mm in the minus direction (here, to the left), and the center O of the external gear 14 is made to coincide with the center of the processing device 44 on the X axis.

その後、スピンドル73をほぼ90度反時計回りに回転させ、検出センサ86をX軸に最も近接する外歯15に対向する位置まで移動させる。次に、該外歯15の円弧面15a上の任意の点Hに検出センサ86の検出子87を接触させ、この点Hの位置(点Hにおける測定値)を求める。その後、スピンドル73を回転して検出センサ86をほぼ 180度回転移動させ、X軸を対称軸として点Hと対称位置にある点Jに検出センサ86の検出子87を接触させ、この点Jの位置(点Jにおける測定値)を求める。   Thereafter, the spindle 73 is rotated approximately 90 degrees counterclockwise, and the detection sensor 86 is moved to a position facing the external tooth 15 closest to the X axis. Next, the detector 87 of the detection sensor 86 is brought into contact with an arbitrary point H on the circular arc surface 15a of the external tooth 15, and the position of this point H (measured value at the point H) is obtained. Thereafter, the spindle 73 is rotated and the detection sensor 86 is rotated by approximately 180 degrees, and the detector 87 of the detection sensor 86 is brought into contact with a point J that is symmetrical to the point H with the X axis as the symmetry axis. The position (measured value at point J) is determined.

ここで、点Hにおける測定値が+Bmm、点Jにおける測定値が値Bより絶対値が小さな+Cmmであった場合には、外歯歯車14の中心Oは加工装置44の中心に対してY軸の+方向に (B-C)/2mmだけずれた位置に存在していると検出される。例えば、点Hにおける測定値が+ 1.126mmであり、点Jにおける測定値が+ 0.404mmであると、外歯歯車14の中心Oは加工装置44の中心に対してY軸の+方向に 0.361mmだけずれていることになる。このようにしてY軸方向における外歯歯車14の中心Oが検出されると、駆動モータ59を作動してねじ軸62を回転させ、下、上テーブル50、55および外歯歯車14をY軸に沿ってマイナス方向(ここでは前方)に 0.361mmだけ一体的に移動させ、Y軸上において外歯歯車14の中心Oを加工装置44の中心に合致させる。   Here, when the measured value at point H is + B mm and the measured value at point J is + C mm whose absolute value is smaller than value B, the center O of the external gear 14 is Y-axis relative to the center of the processing device 44. It is detected that it exists at a position shifted by (BC) / 2mm in the + direction. For example, if the measured value at the point H is +1.126 mm and the measured value at the point J is +0.404 mm, the center O of the external gear 14 is 0.361 in the + direction of the Y axis with respect to the center of the processing device 44. It will be shifted by mm. When the center O of the external gear 14 in the Y-axis direction is thus detected, the drive motor 59 is operated to rotate the screw shaft 62, and the lower table 50, 55 and the external gear 14 are moved to the Y-axis. Are moved together by 0.361 mm in the minus direction (in this case, forward), and the center O of the external gear 14 is aligned with the center of the processing device 44 on the Y axis.

このように、この実施例ではY軸を対称軸として線対称の位置にある2つの外歯15における円弧面15a上の点F、Gの位置を測定するとともに、X軸を対称軸として線対称の位置にある2つの外歯15における円弧面15a上の点H、Jの位置を測定し、これらの測定結果を基に外歯歯車14の中心Oの位置および該中心Oと加工装置44の中心とのX、Y軸方向のずれ量を求める。その後、上、下テーブル55、50および外歯歯車14をX、Y軸方向(ずれ方向と逆方向)に前記ずれ量だけ移動させて、外歯歯車14の中心Oと加工装置44の中心とを合致させるようにしている。   As described above, in this embodiment, the positions of the points F and G on the circular arc surface 15a in the two external teeth 15 at the line symmetric position with respect to the Y axis are measured, and the line symmetric with respect to the X axis as the symmetry axis. The positions of the points H and J on the circular arc surface 15a of the two external teeth 15 at the position are measured, and based on these measurement results, the position of the center O of the external gear 14 and the center O and the processing device 44 The amount of deviation in the X and Y axis directions from the center is obtained. Thereafter, the upper and lower tables 55 and 50 and the external gear 14 are moved in the X and Y axis directions (the direction opposite to the shift direction) by the shift amount, and the center O of the external gear 14 and the center of the processing device 44 are moved. To match.

ここで、前述の実施例においては、4個の外歯15における円弧面15a上の点F、G、H、Jの位置を測定するようにしたが、この発明においては、外歯歯車14の外歯15のうち、少なくとも3個の外歯15における円弧面15a上の点の位置を測定し、これら測定結果を基に、即ち、演算によってこれら少なくとも3点を通過する単一円および該単一円の中心を求めることで、外歯歯車14の中心Oを求めるようにしてもよい。   Here, in the above-described embodiment, the positions of the points F, G, H, and J on the circular arc surface 15a of the four external teeth 15 are measured. Among the external teeth 15, the positions of the points on the circular arc surface 15a of at least three external teeth 15 are measured, and based on these measurement results, that is, a single circle passing through these at least three points by calculation and the single circle The center O of the external gear 14 may be obtained by obtaining the center of one circle.

このように、少なくとも3個の点の位置を測定し、これら測定結果を基に外歯歯車14の中心Oを求めるようにすれば、背景技術で説明したように単に3本のピンを外歯に押し付けて中心を求めるようにした場合に比較し、押付け力、停止位置等のばらつきによる影響が無くなって、求めた外歯歯車14の中心Oの位置精度を高精度とすることができ、これにより、後述の外歯歯車14に対する加工(クランク軸孔18に対する仕上げ加工)を高精度とすることができる。   In this way, if the positions of at least three points are measured and the center O of the external gear 14 is obtained based on these measurement results, the three pins are simply connected to the external teeth as described in the background art. Compared to the case where the center is obtained by pressing the motor, the influence of variations in the pressing force, the stop position, etc. is eliminated, and the obtained position accuracy of the center O of the external gear 14 can be increased. As a result, machining of the external gear 14 described later (finishing of the crankshaft hole 18) can be performed with high accuracy.

ここで、図7に示すように外歯15の歯先部を研削除去せず、その歯面形状を滑らかに変化したままとし、この状態で前述の測定手段45により測定する外歯15の最先端を探しながら該最先端の位置を測定するようにすることも考えられるが、このようにすると、最先端の位置を探すために何度も検出子87を外歯15に位置を僅かずつずらしながら接触させなければならず、この結果、測定作業が面倒になるとともに、最先端を探しきれない場合には、測定結果に誤差が生じてしまうという欠点がある。しかしながら、この実施例のように、前記位置を測定する点を円弧面15a上に位置する点F、G、H、Jとすれば、測定点の位置を簡単かつ高精度で測定することができる。   Here, as shown in FIG. 7, the tooth tip portion of the external tooth 15 is not ground and removed, and the tooth surface shape is kept smoothly changed, and in this state, the outermost tooth 15 measured by the measuring means 45 is measured. It may be possible to measure the most advanced position while searching for the tip, but in this case, the detector 87 is shifted slightly to the external tooth 15 several times in order to find the most advanced position. As a result, the measurement work becomes troublesome, and there is a disadvantage that an error occurs in the measurement result when the cutting edge cannot be searched. However, as in this embodiment, if the points to be measured are points F, G, H, and J located on the arc surface 15a, the position of the measurement point can be measured easily and with high accuracy. .

また、前記外歯15の創成工程および外歯15の仕上げ工程時と同様に外歯歯車14の中心孔20に加工装置44のピンを挿入し、このピンの挿入だけで外歯歯車14の中心Oを加工装置44の中心に合致させることも考えられるが、このようにするには、前記中心孔20の中心精度、孔径の精度等を非常に高精度としなければならない。しかしながら、このように中心孔20を単に中心合わせのためだけに高精度としようとすると、作業が面倒になるとともに高価となってしまうという欠点がある。   Further, the pin of the processing device 44 is inserted into the center hole 20 of the external gear 14 in the same manner as in the creation process of the external teeth 15 and the finishing process of the external teeth 15, and the center of the external gear 14 is simply inserted by this pin insertion. Although it is conceivable to match O with the center of the processing device 44, in order to do so, the center accuracy of the center hole 20, the accuracy of the hole diameter, etc. must be made very high accuracy. However, if the center hole 20 is made to have high accuracy just for centering in this way, there are disadvantages that the operation becomes troublesome and expensive.

このようにして外歯歯車14の中心Oが求められるとともに、該中心Oが加工装置44の中心に合致されると、前記測定手段45をスピンドル73から取り外すとともに、このときの上、下テーブル55、50の位置を零点として記憶する。その後、前記結果を基に駆動モータ64、59によって上、下テーブル55、50および外歯歯車14をそれぞれX、Y軸に沿って所定距離だけ移動させ、外歯歯車14の規定位置に設けられているクランク軸孔18を加工工具74の直下まで移動させる。   In this way, the center O of the external gear 14 is obtained, and when the center O matches the center of the processing device 44, the measuring means 45 is removed from the spindle 73, and the upper and lower tables 55 at this time are removed. , 50 positions are stored as zeros. Thereafter, the upper and lower tables 55 and 50 and the external gear 14 are moved by a predetermined distance along the X and Y axes, respectively, by the drive motors 64 and 59 based on the above result, and the external gear 14 is provided at a specified position. The crankshaft hole 18 is moved to just below the machining tool 74.

次に、スライダ71を昇降させながらスピンドル73を回転させ、加工工具74によりクランク軸孔18に対し所定の加工、ここでは仕上げ代を研削除去する仕上げ加工を行うが、このとき、前述のように上、下テーブル55、50、外歯歯車14の移動前に外歯歯車14の中心Oを加工装置44の中心に高精度で合致させたので、前述した仕上げ加工の加工精度を高精度とすることができる。この結果、前記外歯歯車14をピン内歯13に噛み合う偏心揺動型遊星歯車装置11のピニオンとして用いる場合、回転精度を向上させることができるとともに、振動、騒音、摩耗を効果的に低減させることができる。   Next, the spindle 73 is rotated while raising and lowering the slider 71, and the machining tool 74 performs a predetermined process on the crankshaft hole 18, here, a finishing process is performed by grinding and removing the finishing allowance. Before the upper and lower tables 55 and 50 and the external gear 14 are moved, the center O of the external gear 14 is aligned with the center of the processing device 44 with high accuracy, so that the above-mentioned finishing processing accuracy is made high. be able to. As a result, when the external gear 14 is used as a pinion of the eccentric oscillating planetary gear device 11 meshing with the pin internal teeth 13, the rotational accuracy can be improved and vibration, noise, and wear can be effectively reduced. be able to.

また、この実施例では、前述のように外歯歯車14の中心Oを求める工程と、所定の加工を行う工程との間に、求めた中心Oが加工装置44の中心に合致するよう外歯歯車14を移動する工程を設けたが、このような工程を設けると、加工装置44による外歯歯車14に対する所定の加工が容易となる。ここで、前述した外歯歯車14の中心Oを求める工程と外歯歯車14を移動させ中心同士を合致させる工程とを1回だけ行うようにしてもよいが、これら2つの工程を複数回繰り返し行うようにすることが好ましい。その理由は、このようにすれば、加工装置44の中心に外歯歯車14の中心Oを簡単に高精度で合致させることができるからである。   Further, in this embodiment, as described above, the external tooth is set so that the obtained center O coincides with the center of the processing device 44 between the step of obtaining the center O of the external gear 14 and the step of performing predetermined machining. Although the step of moving the gear 14 is provided, when such a step is provided, predetermined processing of the external gear 14 by the processing device 44 is facilitated. Here, the step of obtaining the center O of the external gear 14 and the step of moving the external gear 14 and matching the centers may be performed only once, but these two steps are repeated a plurality of times. It is preferable to do so. The reason is that the center O of the external gear 14 can be easily matched with the center of the processing device 44 with high accuracy.

なお、この発明においては、接触式または非接触式の検出センサにより少なくとも3個の外歯における円弧面上の点の位置をスピンドルを回転させながら測定し、これらの測定値を基にして演算により外歯歯車の中心を求め、その後、この外歯歯車の中心と加工装置の中心とのずれを考慮しながらテーブル、外歯歯車を加工位置まで移動させる工程を全て自動的に行うようにしてもよい。     In the present invention, the position of the point on the circular arc surface of at least three external teeth is measured while rotating the spindle by a contact type or non-contact type detection sensor, and calculation is performed based on these measured values. Obtain the center of the external gear, and then automatically perform all the steps of moving the table and external gear to the machining position while taking into account the deviation between the center of the external gear and the center of the processing device. Good.

また、前述の実施例においては、3個のロック機構77によって外歯歯車14を上テーブル55にロックするようにしたが、この発明においては、この発明においては、前述のロック機構77を1個とするとともに、該ロック機構77から等角度( 120度)離れた位置の上テーブル55に2個のブロックを固定し、前記ロック機構77のロックピン80で外歯15の歯底を押すことで、外歯歯車14の外歯15の円弧面15aをブロックにそれぞれ押付け、これにより、外歯歯車14をある軸線に対して対称の位置にロックするようにしてもよい。   In the above-described embodiment, the external gear 14 is locked to the upper table 55 by the three lock mechanisms 77. However, in the present invention, one lock mechanism 77 is provided in the present invention. In addition, two blocks are fixed to the upper table 55 at a position away from the lock mechanism 77 by an equal angle (120 degrees), and the root of the external tooth 15 is pushed by the lock pin 80 of the lock mechanism 77. Alternatively, the circular arc surface 15a of the external tooth 15 of the external gear 14 may be pressed against the block, thereby locking the external gear 14 in a symmetrical position with respect to a certain axis.

この発明は、外周にトロコイド歯形の外歯が多数形成された外歯歯車の製造に適用できる。   The present invention can be applied to the manufacture of an external gear having many trochoidal external teeth formed on the outer periphery.

この発明の実施例1を示す偏心揺動型遊星歯車装置の正面断面図である。It is front sectional drawing of the eccentric rocking | swiveling planetary gear apparatus which shows Example 1 of this invention. そのI−I矢視断面図である。It is the II arrow directional cross-sectional view. 外歯歯車の加工を行う加工装置の正面図である。It is a front view of the processing apparatus which processes an external gear. 図3のII−II矢視断面図である。It is II-II arrow sectional drawing of FIG. 図3のIII−III矢視断面図である。It is the III-III arrow sectional drawing of FIG. 外歯の円弧面上の点に検出センサを接触させた状態を示す図5と同様の矢視断面図である。It is arrow sectional drawing similar to FIG. 5 which shows the state which made the detection sensor contact the point on the circular arc surface of an external tooth. 歯先部が滑らかに変化する外歯に検出センサを接触させた状態を示す図6と同様の矢視断面図である。It is arrow sectional drawing similar to FIG. 6 which shows the state which made the detection sensor contact the external tooth from which a tooth-tip part changes smoothly.

符号の説明Explanation of symbols

14…外歯歯車 15…外歯
15a…円弧面 44…加工装置
F、G、H、J…点 O…中心
14 ... External gear 15 ... External gear
15a ... Circular surface 44 ... Processing equipment F, G, H, J ... Point O ... Center

Claims (3)

歯車素材の外周に歯面形状が滑らかに変化するトロコイド歯形の外歯を多数創成して外歯歯車を成形するとともに、これら外歯の歯先部に外歯歯車の中心を曲率中心とする単一円上に位置する円弧面を形成する工程と、前記外歯歯車の外歯のうち、少なくとも3個の外歯における円弧面上の点の位置を測定する工程と、これら測定結果を基に外歯歯車の中心を求める工程と、前記求めた中心を基に外歯歯車の規定位置に対し所定の加工を行う工程とを備えたことを特徴とする外歯歯車の製造方法。     Many external teeth of trochoidal tooth shape whose tooth surface shape changes smoothly on the outer periphery of the gear material are formed to form external gears, and the center of the external gear is the center of curvature at the tip of these external teeth. A step of forming an arc surface located on one circle, a step of measuring positions of points on the arc surface of at least three external teeth of the external teeth of the external gear, and based on these measurement results A method for manufacturing an external gear, comprising: a step of obtaining a center of the external gear; and a step of performing predetermined processing on a specified position of the external gear based on the obtained center. 前記円弧面の形成は、外歯の歯面の仕上げ加工を行う際、該仕上げ加工の一環として行うようにした請求項1記載の外歯歯車の製造方法。     The method of manufacturing an external gear according to claim 1, wherein the arc surface is formed as a part of the finishing process when the external tooth surface is finished. 前記外歯歯車の中心を求める工程と、所定の加工を行う工程との間に、求めた中心が所定の加工を行う加工装置の中心に合致するよう外歯歯車を移動する工程をさらに設けるとともに、前記外歯歯車の中心を求める工程および外歯歯車を移動する工程を複数回繰り返し行い、加工装置の中心に外歯歯車の中心を高精度で合致させるようにした請求項1記載の外歯歯車の製造方法。     A step of moving the external gear between the step of obtaining the center of the external gear and the step of performing the predetermined machining so that the obtained center matches the center of the machining apparatus for performing the predetermined machining; 2. The external teeth according to claim 1, wherein the step of obtaining the center of the external gear and the step of moving the external gear are repeated a plurality of times so that the center of the external gear matches the center of the processing apparatus with high accuracy. Gear manufacturing method.
JP2004227659A 2004-08-04 2004-08-04 Method for manufacturing external gear Active JP4614709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004227659A JP4614709B2 (en) 2004-08-04 2004-08-04 Method for manufacturing external gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004227659A JP4614709B2 (en) 2004-08-04 2004-08-04 Method for manufacturing external gear

Publications (2)

Publication Number Publication Date
JP2006043809A JP2006043809A (en) 2006-02-16
JP4614709B2 true JP4614709B2 (en) 2011-01-19

Family

ID=36022952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004227659A Active JP4614709B2 (en) 2004-08-04 2004-08-04 Method for manufacturing external gear

Country Status (1)

Country Link
JP (1) JP4614709B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241200B1 (en) 2007-11-16 2013-03-13 기아자동차주식회사 Oil pump equipped with head gear
CN102091831A (en) * 2011-01-30 2011-06-15 江苏中力齿轮有限公司 Special fixture for machining gear teeth of high-precision multi-gear
JP6752070B2 (en) * 2016-07-12 2020-09-09 ナブテスコ株式会社 Gear device
CN108772606B (en) * 2018-05-22 2019-07-23 杭州三奥智能科技有限公司 A kind of screw conic fluted disc tooth mesh device
CN109262214B (en) * 2018-11-23 2020-10-02 云南腾达机械制造有限公司 Process for quenching planetary gear
CN111230223B (en) * 2020-02-28 2021-01-08 爱汽科技(佛山)有限公司 Grinding device for gear machining based on hydraulic transmission
CN114473517B (en) * 2022-01-20 2023-01-03 汕头大学 Shipborne wind power gear material increase and decrease repairing device, system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331851A (en) * 1991-05-01 1992-11-19 Sumitomo Heavy Ind Ltd Manufacture of trochoid group gear shape internal fitting type planetary gear reduction gear
JPH0628394U (en) * 1992-09-17 1994-04-15 帝人製機株式会社 Pin gear reducer
JPH0914359A (en) * 1995-07-03 1997-01-14 Teijin Seiki Co Ltd Eccentrically oscillating type planetary gear device and its manufacture
JP2002120116A (en) * 2000-10-11 2002-04-23 Sumitomo Heavy Ind Ltd Manufacturing method of outer tooth gear
JP2003088935A (en) * 2001-09-13 2003-03-25 Sumitomo Heavy Ind Ltd Manufacturing method of external gear

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331851A (en) * 1991-05-01 1992-11-19 Sumitomo Heavy Ind Ltd Manufacture of trochoid group gear shape internal fitting type planetary gear reduction gear
JPH0628394U (en) * 1992-09-17 1994-04-15 帝人製機株式会社 Pin gear reducer
JPH0914359A (en) * 1995-07-03 1997-01-14 Teijin Seiki Co Ltd Eccentrically oscillating type planetary gear device and its manufacture
JP2002120116A (en) * 2000-10-11 2002-04-23 Sumitomo Heavy Ind Ltd Manufacturing method of outer tooth gear
JP2003088935A (en) * 2001-09-13 2003-03-25 Sumitomo Heavy Ind Ltd Manufacturing method of external gear

Also Published As

Publication number Publication date
JP2006043809A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
KR100660765B1 (en) Method and machine for the machining of pre-machined toothed workpieces such as gears
US7083496B2 (en) Gear grinding machine
US5390408A (en) Slotting
US20100003096A1 (en) Ring-rolling bearing with axial displacement and shaping tooling equipped with such a bearing
JP2010117196A (en) Method of measuring gear
JP2011073071A (en) Gear grinding tool and method of using this gear grinding tool
JP6280987B2 (en) Method and apparatus for micromachining a toothed workpiece, and program for controlling the apparatus
JP2006062077A (en) Grinding method and device for profile of workpiece
JP4614709B2 (en) Method for manufacturing external gear
JP4664029B2 (en) Creation method and machine for spiral bevel gears
US20140234042A1 (en) Driving Device For Exerting A Translatory And Rotary Motion On A Drive Shaft For Driving A Deburring Tool And Method For The Operation Thereof
JP3917844B2 (en) Cutting gears on both sides
JP3835255B2 (en) Gear tooth surface processing method and apparatus
JPH10235519A (en) Machining device for coriolis motion gear
JP2003145348A (en) Gear tooth surface regular position machining method and device
CN210534073U (en) Burn nondestructive test auxiliary device along gear profile direction grinding
JP4289191B2 (en) Grinding wheel oscillation method in internal grinding and internal grinding machine
KR20160109739A (en) Method for manufacturing gear of cyclo speed reducer
JP2002239815A (en) Tool holder for modified cross-section work
JP4425240B2 (en) Moving device and plane polishing machine using planetary gear mechanism
JP3072693B2 (en) Gear shape measurement method
JPS597534B2 (en) Additional machining equipment for tooth surfaces
JP4539170B2 (en) Gear grinding machine
JP2001162442A (en) Internal tooth grinding machine
RU133040U1 (en) AUTOMATED COMPLEX FOR DIAGNOSTIC OF A TURNING TECHNOLOGICAL SYSTEM BY INDICATORS OF ACCURACY OF PROCESSED PARTS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4614709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250