JP4613652B2 - 配電系統の保護システム - Google Patents

配電系統の保護システム Download PDF

Info

Publication number
JP4613652B2
JP4613652B2 JP2005075446A JP2005075446A JP4613652B2 JP 4613652 B2 JP4613652 B2 JP 4613652B2 JP 2005075446 A JP2005075446 A JP 2005075446A JP 2005075446 A JP2005075446 A JP 2005075446A JP 4613652 B2 JP4613652 B2 JP 4613652B2
Authority
JP
Japan
Prior art keywords
circuit
accident
circuit breaker
current
protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005075446A
Other languages
English (en)
Other versions
JP2006262597A (ja
Inventor
保雄 鈴置
丈佳 加藤
広晃 金森
俊久 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Original Assignee
Meidensha Corp
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Nagoya University NUC, Tokai National Higher Education and Research System NUC filed Critical Meidensha Corp
Priority to JP2005075446A priority Critical patent/JP4613652B2/ja
Publication of JP2006262597A publication Critical patent/JP2006262597A/ja
Application granted granted Critical
Publication of JP4613652B2 publication Critical patent/JP4613652B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、遮断器で保護対象ゾーンが分割され、各ゾーンのフィーダから分岐されたサイトに分散型電源が導入された配電系統の保護システムに係り、特に短絡・地絡保護に関するものである。
電気事業における規制緩和、小型発電機の性能向上・低価格化などの様々な理由により、太陽光発電、燃料電池およびマイクロガスタービン等の分散型電源の導入拡大が予想される。従来の大規模な電源が需要家から離れた遠隔地に導入されるのに対し、小規模の分散型電源は需要家近傍に設置されるため、将来的には配電変電所よりも下位の配電系統に多数の分散型電源が連系されることになる。これにより、配電系統では適正電圧の維持などの定常時の制御が複雑化するだけでなく、事故時に対する保護システムの構築やその確実な動作が困難になる可能性が指摘されている。
現状の配電系統の保護システムでは、基本的に各リレーはその設置点のみの情報を用いて動作の判断を行っている。このため、保護システムが適切に機能するためには、様々なリレー間で動作の協調を行う必要がある。しかし、分散型電源が非常に多数導入された将来の配電系統では、多数の分散型電源を考慮してリレー間の協調を行う必要がある。このため、現状の保護システムは、必ずしも適切に動作しない可能性があり、分散型電源の大規模導入に柔軟に対応できる新しい保護システムの導入が必要になる。少量の分散型電源の導入に対しては、保護システムの検討が行われつつあり、ガイドラインも示されている(例えば、非特許文献1、非特許文献2、非特許文献3参照)。
井上、嶋野、伊藤、戸津、中山:「イーサネットによる分散型保護リレーシステムの検討」、電気学会論文誌B,Vol.120,No.8/9,pp.1161-1168 資源エネルギー庁:「解説電力系統連系技術要件カイドライン 98」電力新報社、1998 :S.M.Braham,A.A.Girgis:能ochDevelopment of Adaptive Protection Scheme for Distribution Systems with High Penetration of Distributed Generation能och,IEEE Transactions on Power Delivery,Vol.19,No.1,pp.56-63(2004)
現状の配電系統の保護システムでは、以下の問題点がある。
(1)将来に大規模導入される分散型電源からの逆潮流電力を考慮してリレー間の協調を行うことは困難である。
(2)構成が複雑で膨大な数の機器が用いられた配電系統の保護システムにおいて、上位の送電系統ですでに使われている情報技術をそのままの形態で活用することは困難である。
(3)分散型電源の新規導入・廃止および配電系統のループ化などに伴う保護システムの再構成に対して柔軟に対応することが困難である。
本発明の目的は、イーサネット(登録商標)等の情報通信手段を利用することで各リレーが他の複数のリレー設置点の2値化された情報を互いに共有・利用することにより、上記の問題点を克服できる保護システムを提供することにある。
しかしながら、非特許文献1では、現状の技術の通信速度がリレーに適応できるかということは検討されているものの、実際にどのような情報をリレーに用い、その情報がどのような条件となった場合にリレーを動作させるのかという点については検討されていない。
非特許文献3においては、情報ネットワークを用いて遮断器で区切られた配電系統内の各所の情報を配電変電所で集中管理することにより,分散型電源が大量導入された配電系統において事故区間のみを選択的に解列する保護システムを提案している。この保護システムでは,配電系統内の各地点における様々な事故について,各遮断器の設置点における事故電流の大きさや方向を予め計算してデータベース化しておき、事故発生時には,データベースと各遮断器の設置点で計測された実際の事故電流の大きさや方向の情報を用いて事故地点を判定し,該当する区間のみを解列する。したがって,分散型電源の新設・廃棄や日々の運転状況に対応するためには,データベースを随時更新する必要がある。しかしながら,このシステムのように配電系統内各地点に関する大量の情報を集中管理・利用する方式では大量の分散型電源の導入にフレキシブルに対応することは困難であり,各遮断器設置点において自律分散的に利用するシステムが望ましい。
本発明の他の目的は、大量の分散型電源の導入にもフレキシブルに対応した保護ができ、しかも各遮断器設置点において自律分散的に保護できるシステムを提供することにある。
本発明は、前記の課題を解決するため、フィーダが遮断器によって複数の区間(ゾーン)に分割され、各ゾーンのフィーダから分岐されたサイトに分散型電源が導入された配電系統において、各遮断器設置点における電流の方向と大きさから、配電系統内の各地点で事故が発生している可能性があるかないかを示す0/1の判定信号を作成し、それぞれの遮断器設置点における保護リレーから情報通信手段を利用して互いに他の遮断器設置点に発信し、それぞれの遮断器設置点における保護リレーでは自身の0/1判定信号と他の遮断器設置点からの0/1判定信号を基にした論理判定で保護対象ゾーン内の短絡または地絡判定を得る保護システムとするもので、以下の構成を特徴とする。
(1)遮断器で保護対象ゾーンが分割され、各ゾーンのフィーダから分岐されたサイトに分散型電源が導入された配電系統の保護システムであって、
各遮断器設置点で計測される相間電圧と相間電流から、当該遮断器設置点の相間電流方向の情報を示す0/1信号と、前記分散型電源の導入・運用状況に応じて各遮断器設置点で個々に設定する閾値を該電流が超えたことの情報を示す0/1信号をそれぞれ発信するリレー演算手段を設け、
保護対象ゾーンに接続される遮断器設置点の前記リレー演算手段が発信する前記各々の0/1信号と、当該保護対象ゾーンの周辺の遮断器設置点の前記リレー演算手段から情報通信手段を利用して収集した前記各々の0/1信号とを基に、前記相間電流の少なくとも1つが前記閾値を超えかつ該電流の全てが当該保護対象ゾーンに流れ込む向きであるときに当該保護対象ゾーン内での短絡事故と判定する論理判定手段を設けたことを特徴とする。
(2)前記各リレー演算手段は、前記各々の0/1信号の発信は少なくとも前記情報通信手段による通信時間の差以上の時間だけ続ける手段を設け、
前記論理判定手段は、短絡事故判定が所定の時間以上継続したときに保護対象ゾーン内での短絡事故と判定する手段を設けたことを特徴とする。
(3)遮断器で保護対象ゾーンが分割され、各ゾーンのフィーダから分岐されたサイトに分散型電源が導入された配電系統の保護システムであって、
各遮断器設置点で計測される零相電圧、零相電流から、当該遮断器設置点の零相電流方向の情報を示す0/1信号と、前記分散型電源の導入・運用状況に応じて各遮断器設置点で個々に設定する閾値を該電流が超えたことの情報を示す0/1信号をそれぞれ発信するリレー演算手段を設け、
保護対象ゾーンに接続される遮断器設置点の前記リレー演算手段が発信する前記各々の0/1信号と、当該保護対象ゾーンの周辺の遮断器設置点の前記リレー演算手段から情報通信手段を利用して収集した前記各々の0/1信号とを基に、前記零相電流の少なくとも1つが前記閾値を超えかつ該電流の全てが当該保護対象ゾーンに流れ込む向きであるときに当該保護対象ゾーン内での1線地絡事故と判定する論理判定手段を設けたことを特徴とする。
(4)前記各リレー演算手段は、前記各々の0/1信号の発信は少なくとも前記情報通信手段による通信時間の差以上の時間だけ続ける手段を設け、
前記論理判定手段は、地絡事故判定が所定の時間以上継続したときに保護対象ゾーン内での地絡事故と判定する手段を備えたことを特徴とする。
以上のとおり、本発明によれば、各遮断器設置点における電流の方向と大きさから、配電系統内の各地点で事故が発生している可能性があるかないかを示す0/1の判定信号として遮断器設置点から情報通信手段を利用して互いに他の遮断器設置点に発信し、それぞれの遮断器設置点において自身の0/1判定信号と他の遮断器設置点からの0/1判定信号を基にした論理判定で保護対象ゾーン内の短絡判定または地絡判定を得るようにしたため、以下の効果がある。
・大量の分散型電源の新規導入・廃止および配電系統のループ化などに伴う保護システムの再構成に対してもフレキシブルに対応した保護ができる。
・各遮断器設置点において自律分散的に保護できる。
・短絡/地絡判定には情報通信手段を利用した0/1信号の送受信で済み、各保護リレーが他の複数の保護リレー設置点の情報を簡易に収集できる。
本実施形態は、フィーダから分岐されたサイトに分散型電源が導入される配電系統における短絡/地絡保護方式を提案するものであり、以下、詳細に説明する。
(1)事故区間の選択的解列
図1は区間分割された配電系統のモデルを示し、この図を用いて事故区間の選択的解列について説明する。同図において、配電変電所(S/S)には2系統のフィーダが接続されている。各フィーダの配電区間は、それぞれZ1〜Z3およびZ4〜Z6の配電区間から構成されている。また、各配電区間は、Z2の拡大図において示すように、分散型電源DG1,DG2を有する負荷母線は保護システムの運用上、電気的に接続した配電区間の外側にあると想定する。
図1に示すように、隣接する配電区間の間に遮断器BS-1,B1-2等を設置することにより、配電系統内で地絡事故等が発生した場合、事故区間のみを選択的に解列させることができる。その際、例えば配電区間Z2内の事故に対して該区間Z2を系統から解列するための判定条件は以下のようになる。
条件1「Z2と隣接するZ1およびZ3とを接続する遮断器(B1-2およびB2-3)、Z2に連系する分散型電源DG1およびDG2の遮断器(BDG1およびBDG2)における電流が全てZ2に流れ込む方向である。」
条件2「上記の遮断器のうち、いずれかの電流が、所定の値以上の大きさとなる。」
このような判定を行うためには、各遮断器の設置点において、短絡方向リレー(または地絡方向リレー)によって事故発生時に事故電流の方向を判定し、短絡過電流リレー(または地絡過電流リレー)によって電流の大きさが閾値を超えたか否かを判定する。
上記の条件1により、配電区間Z2の外部において短絡(地絡)事故が発生していないことを判定できる。しかし、分散型電源が大量導入された配電系統では、Z2の需要の一部がZ2内で連系する分散型電源や隣接するZ3に連系する分散型電源からの逆潮流によって賄われる場合もあり、条件1のみでは配電区間Z2において短絡(地絡)事故が発生したことが判定できない。そこで、条件2により、いずれかの遮断器の電流が所定の値(閾値)以上となることを検知して、その遮断器の近傍で事故が発生したことを判定する。ただし、図1のように配電系統が放射状に構成される場合、配電区間Z2に接続する遮断器B2-3を流れる事故電流は、Z3に連系する分散型電源のみから供給されるため、あまり大きくならない可能性がある。そこで、遮断器B2-3ではB1-2における過電流判定の情報を利用することで、Z2内において事故が発生したと判定する。このように、条件1と条件2とを同時に満たすとき、Z2において短絡/地絡事故が発生したと判定できる。
(2)地点情報の簡易利用
各遮断器の設置点における情報を簡易的に利用して、事故区間を解列する。すなわち、各遮断器が事故電流の大きさ等を数値情報として提供すれば、情報を利用する側の遮断器では遮断器設置点から事故点までの距離を表す情報などを得ることができる。しかし、多数の分散型電源が導入されるような状況や、配電系統の構成が頻繁に変更されるような状況では、得られた数値情報から事故発生を判定するための条件の設定も随時変更しなければならない。一方、配電区間を分割すれば、遠方の遮断器との協調が不要となるため、各遮断器は設置点の周辺の情報のみを提供すればよいと考えられる。
そこで、本実施形態では、図2に示すように、各遮断器設置点において、一定の大きさ以上の電流が流れたことや、電流の方向の変化など、周辺で事故が発生した可能性があることを表す情報を0/1信号として発信する。また、他の遮断器は、自身が発信する情報に加えて、同一区間に接続する他の遮断器から発信される事故電流の大きさと方向によって決定される0/1信号を収集して自律分散的に動作判定を行う。
例えば、図1のZ2で事故が発生した場合、遮断器B1-2は、Z2に接続する他の遮断器BDG1,BDG2およびB2-3から事故電流の大きさと方向によって決定される0/1信号を収集し、同図に示す論理回路を用いて動作判定を行う。
図2の詳細を説明する。Z2に接続される遮断器B1-2、B2-3およびZ2内の分散型電源に接続される遮断器BDG1、BDG2にそれぞれ短絡/地絡方向リレー演算手段DSR/DGRと過電流リレー演算手段OCR/OCGRを設け、短絡保護の場合は各位置における相間電圧と相間電流から、地絡保護の場合は各位置における零相電圧と零相電流から、電流iの方向がZ2に向いているか否かと、電流iの大きさが予め設定される閾値を超えたか否かからそれぞれ決定される0/1信号を得、これら信号のうち遮断器B1-2での検出信号を除いてはイーサネット等のネットワークを利用して遮断器B1-2の保護リレー部に収集する。論理回路LOG1のORゲートでは、自身および収集した0/1信号から、電流iのいずれかが閾値を超えたことを判定し、ANDゲートでは電流iの方向が全てZ2内に向かうことを判定し、これら両条件の同時成立でANDゲートにZ2内の短絡/地絡判定を得る。同様に、遮断器BS-1での電流の方向と大きさの判定結果(0/1)信号と遮断器B1-2での電流の方向と大きさの判定結果(0/1)信号から、論理回路LOG2にZ1内での短絡/地絡判定を得る。これらいずれかに短絡/地絡判定が得られたとき、論理回路LOG3には遮断器B1-2のトリップ指令(解放指令)を得、当該ゾーンに接続する遮断器を解放する。
このように、本実施形態では、事故電流について、電流瞬時値等の数値情報を利用するのではなく、0/1信号の送受信で簡易的に情報収集を行い、収集電流と自身の電流の少なくとも1つが一定の閾値を超えかつ全ての電流が当該ゾーンに流れ込む向きであると判断したとき、当該ゾーン内での短絡/地絡事故と判定し、この判定で当該ゾーンに接続する遮断器を解放することで保護ができる。なお、GPSの利用により、これらの0/1情報に同期を取っておくのが好ましい。
(3)閾値の設定
本実施形態による保護システムでは、0/1信号の発信において、分散型電源の導入状況に応じて柔軟に対応できる過電流判定の閾値を設定することが重要である。特に、短絡事故時の過電流検出については、分散型電源の導入・運用状況に応じて様々に変化する配電系統内の潮流分布に柔軟に対応できる必要がある。
そこで、本実施形態では、配電系統を複数の区間に分割することにより、区間単位で過電流検出の基準を設定する。例えば、図1のZ2で発生した事故に対して、図2に示すように遮断器B1-2,BDG1,BDG2またはB2-3のいずれかにおいて過電流通電を判定できればよい。このように、個々の遮断器では、周辺の事故のみを検知するように閾値を個別に設定することができる。その際、分散型電源の導入容量が小さい場合に過電流を検知できるように閾値を設定しておけば、分散型電源の導入容量が増加して事故電流が大きくなっても過電流の検知は可能となる。
(4)判定信号の安定化
事故発生後の過渡現象により、論理回路の判定が安定せず、0と1とを繰り返し出力する場合が予想される。特に、分散型電源が大量導入された配電系統が単独系統として運用されている場合には、事故時の動揺が大きく、安定した検出信号を発信することは困難になることが予想される。そこで、本実施形態では、各遮断器の過電流リレーの出力部に積分回路を設け、過電流の検出が累積で一定時間以上行われたときに過電流発生の判定信号を発信する。
また、実運用時には、リレー間で同じ0/1信号を受け取るまでの通信時間に差が生じ、遮断器によっては、論理回路における事故発生の判定が正しく行われない可能性がある。そこで、本実施形態では、一度、過電流発生の判定信号を発信した後は、一部の遮断器が動作して判定条件を満たさなくなっても、しばらくの間は過電流発生の判定出力を発信し続け、本来動作すべき遮断器の判定に影響が生じないようにする。
(5)地絡保護の構成要件
地絡保護には、各遮断器設置点において零相電流を測定し、その方向の情報を示す0/1信号を発信する。また、自身と同じ区間に接続する遮断器設置点から発信される0/1信号を収集し、それらを組み合わせて、すべての零相電流がそのゾーンに流れ込む向きであると判断したとき、ゾーン内での事故と判定する。図2に示すように、地絡保護に対しては、零相電流の方向判定と大きさの判定のために、地絡方向継電器(DGR)と地絡過電流継電器(OCGR)を用いる。
なお、地絡保護の場合、理想的には定常時には零相電流は存在しないため、大きさによる判定は必要としない。ただし、実際の系統においては、三相不平衡によって生じる零相電流の影響を排除するように、零相電流の大きさによる判定を行う必要がある。後述のシミュレーションでは、零相電流の最低検出レベルを2 mArms程度に設定している。
(6)短絡保護の構成要件
短絡保護には、保護システムの基本的な動作は同じでる。図2に示すように、短絡保護に対しては、事故電流の方向判定と大きさの判定のために、各遮断器設置点において短絡方向継電器(DSR)と短絡過電流継電器(OCR)を用いて、それぞれ過電流の方向と大きさの情報を示す0/1信号を発信する。また、自身と同じ区間に接続する遮断器設置点から発信される0/1信号を収集し、それらを組み合わせて、すべての相間電流がそのゾーンに流れ込む向きであると判断したとき、ゾーン内での事故と判定する。
なお、地絡保護の場合とは異なり、短絡電流の検出には、方向だけでなく、大きさの情報が不可欠である。本実施形態では,配電区間接続点の遮断器について,分散型電源が導入されていない(あるいは連系していない)状態において,最大負荷時に遮断器を流れる負荷電流の数倍(例えば5倍)の値を短絡電流検出の判定閾値として設定した。また,分散型電源連系点の遮断器については,分散型電源の最大出力電流の数倍(例えば5倍)の値を短絡電流検出の判定閾値として設定した。
(7)シミュレーションによる検証
ループ運用された配電系統を対象として、モデル系統内において想定した短絡/地絡事故に対する本実施形態による保護システムの動作を系統解析ソフトPSCAD/EMTDCを用いてシミュレーションした。その結果、本実施形態による保護システムにより、高速かつ確実な選択遮断を実現できることを確認した。
(A)モデル系統
図3に示すモデル系統を用いてシミュレーションを行った。本モデル系統は275kVの上位系統と6.6kVの配電系統から構成されている。同図に示すように、配電系統は図1と同様に、Z1〜Z6の6つの配電区間に分割されている。区間ごとに集約した負荷(いずれも力率0.9)を想定し、分散型電源が導入されている母線の負荷LDG1〜LDG6は300kW、その他の母線については負荷L1,L3,L4およびL6は200kW,L2は500kW,L5は1000kWとする。配電系統全体の負荷は3500kWである。
なお、配電系統が放射状の場合、事故区間の解列によって単独系統を形成する場合が考えられる。この時、単独系統内の電力需要と分散型電源の容量とがバランスするように区間分割を行い、さらに単独系統内の分散型電源が周波数維持機能を有すれば、単独系統の運転を継続できる。しかし、多数の分散型電源が導入されるような場合でも、このような状況は現実的ではない。ただし、事故区間の解列と同時に別経路で電力供給を行う(図3の場合、B3-6を閉路する)、もしくは配電系統をループ運用することができれば、単独系統を形成することなく事故区間のみを解列することができる。そこで、本報では、図1の遮断器B3-6が閉路されたループ状の配電系統について、動作検証を行う。なお、ループ運用の場合でも、事故区間の選択的解列のための判定の考え方は、放射状運用の場合と同じである。
図3のモデル系統において、分散型電源DG1,DG3,DG4およびDG6が配電区間Z1,Z3,Z4およびZ6に接続している。全ての分散型電源は同期発電機であり、制御系および下記表1に示す機器定数はすべて同じとした。
Figure 0004613652
分散型電源から母線への逆潮流の有無、分散型電源の集中的な導入など、様々な状況について保護システムの動作検証を行うため、以下の3つのケースを想定した。
case−A:DG1,DG3,DG4,DG6は全て200kW(合計800kW)
case−B:DG1,DG3,DG4,DG6は全て700kW(合計2800kW)
case−C:DG1,DG4およびDG6はそれぞれ300kW,DG3のみ1900kW(合計2800kW)
case−BとCase−Cでは、分散型電源の合計容量は同じであるが、case−Cでは、大規模な分散型電源の導入が局地的に偏っている状況を想定している。各分散型電源は力率0.9で運転されるものとする。
事故点として、図3の各区間におけるI点〜VI点の6地点を想定した。また、PSCAD/EMTDCを用いたシミュレーションにおける計算のサンプリング間隔は1 msである。なお、後述する図4〜図57の事故電流の波形図において、(a)は電流瞬時値、(b)は電流実効値の時間変化を表す。各図では、事故発生時刻を0 msとしている。実効値は過去1サイクル分の瞬時値に基づき計算している。
(B)地絡保護の検証
図3のモデル系統に示すように、各区間内の一線地絡事故を想定した。地絡保護については、本質的に過電流の大きさによる誤判定の可能性がないことから、短絡保護の場合よりも確実かつ迅速な動作が期待できる。ただし、三相不平衡などによって生じる零相電流の影響を排除するように、本シミュレーションでは、零相電流の最低検出レベルを2 mArms程度と非常に小さい値に設定しており、過渡的に地絡事故発生の判定信号を出しやすくなる。そこで、過渡的な零相電流の変化を考慮し、一線地絡事故発生と判定する状態が累積でT(ms)以上継続した時に、各遮断器設置点において動作信号を発信するものとし、この判定時間Tを0ms〜35msと設定し、確実な動作のために必要な判断時間について検討した。
(B1)case−Aの結果
DG1,DG3,DG4,DG6の各容量がすべて200kW、事故判定の判定時間Tが34msの場合について、各点の一線地絡事故において事故区間に接続する遮断器に流れる電流を図4〜図9に示す。各図に示すように、事故発生によって零相電流を検出し、事故区間のみを速やかに遮断できることが確認できた。
次に、事故判定の判定時間Tを0ms〜35msとして、保護システムの安定した動作に必要な判定時間Tについて検討した。結果を下記表2に示す。同表に示すように、事故点を解列した後、過渡的に零相電流が特定のゾーンに流れ込む向きになるため、判断時間Tをある一定値以下に設定したときに、誤って正常な区間までが解列される場合がある。このモデルにおいては判断時間Tを25ms以上とすることにより、事故区間のみを正確に解列可能であることを確認した。
Figure 0004613652
(B2)case−Bの結果
DG1,DG3,DG4,DG6の各容量がすべて700kW、事故判定の判定時間Tが34msの場合について、各点の一線地絡事故において事故区間に接続する遮断器に流れる電流を図10〜図15に示す。分散型電源の容量が増加しても、地絡電流への寄与は小さく、零相電流を検出し、事故区間のみを速やかに遮断できることが確認できた。
(B3)case−Cの結果
DG1,DG4およびDG6の容量が300kW、DG3の容量が1900kW、事故判定の判定時間Tが34msの場合について、各点の一線地絡事故において事故区間に接続する遮断器に流れる電流を図16〜図21に示す。case−Cの場合、定常時においても、DG3から大きな逆潮流がある。このような潮流分布が偏った状況においても、零相電流を検出し、事故区間のみを速やかに遮断できることが確認できた。
(C)短絡保護の検証
図3のモデル系統に示すように、各区間内の二相短絡事故および三相短絡事故を想定した。短絡保護については、過電流の大きさによる判定が必要である。本シミュレーションでは、まず、配電区間接続点の遮断器について、分散型電源が導入されていない(あるいは連系していない)状態において、最大負荷時に遮断器を流れる負荷電流の5倍の値を短絡電流検出の判定閾値とし、分散型電源連系点の遮断器についても、分散型電源の最大出力電流の5倍の値を短絡電流検出の判定閾値とし、下記表3および表4の閾値を各遮断器について設置した。
Figure 0004613652
Figure 0004613652
次に、各判定閾値が定常時(あるいは定格値)の2倍と10倍の場合を想定し、閾値の設定と確実な保護動作との関係について検討した。なお、上述の地絡保護の結果を考慮して、以下の地絡保護の検証においては、事故判定の判定時間Tを34msとした。
(C1)case−Aの結果
DG1,DG3,DG4,DG6の各容量がすべて200kWの場合について、各点の二線短絡事故において事故区間に接続する遮断器に流れる電流を図22〜図27に、三線短絡事故の場合を図28〜図33に示す。例えば、事故点IIにおける三線短絡事故の場合、図29に示すように、事故発生によってI1-2およびI2-3ともに閾値(TH1-2,TH2-3)よりも十分大きくなる。I2-3は、定常時はZ2→Z3の方向へ流れていたのに対し、事故発生時は方向が反転する。この反転までの時間と、上述のように事故検出信号が34ms継続することを判定条件としているので、事故発生から約44ms後にB1-2およびB2-3が動作した。図33に示す事故点VIは配電系統末端の事故点あるが、定常時の遮断器通電電流も小さいので過電流判定の閾値(TH3-6,TH5-6,THDG6)も小さく、事故発生後、約49msでB3-6,B5-6およびBDG6が動作し、事故点を含むZ6を解列できている。
(C2)case−Bの結果
DG1,DG3,DG4,DG5の各容量がすべて700kWの場合について、各点の二線短絡事故において事故区間に接続する遮断器に流れる電流を図34〜図39に、三線短絡事故の場合を図40〜図45に示す。このcase−Bの場合、定常状態でもI2-3はZ3→Z2の方向へ流れている。このため、事故点IIの場合はI2-3の方向が反転しないため、図41に示すように、case−AよりもわずかにB1-2およびB2-3の動作開始が早くなっている。事故点VIの場合、図45に示すように、事故発生時にDG6から供給される電流はあまり増加しない。このため、DG6がZ6に連系する点のみの情報では、遮断器BDG6は動作するこができない。しかし、本保護システムの場合、BDG6はB3-6およびB5-6からの過電流判定信号を用いているので、Z6で事故が発生したことを判定でき、DG6を解列させている。
(C3)case−Cの結果
DG1,DG4およびDG6の容量が300kW、DG3の容量が1900kWの場合について、各点の二線短絡事故において事故区間に接続する遮断器に流れる電流を図46〜図51に、三線短絡事故の場合を図52〜図57に示す。定常時においても、DG3から大きな逆潮流がある。II点での事故の場合、B2-3の遮断後にDG3からの出力はZ6およびZ5に供給される。このとき、Z5の点のL5への電力供給はZ4とZ6の双方向から行われる。このため、Z5に接続する遮断器B4-5やB5-6はZ5内で事故が発生した可能性があると判断する。しかし、B5-6の過電流判定の閾値(TH4-5、TH5-6)が十分大きいため、実際にはB4-5やB5-6は動作しない。その結果、事故点IIを含むZ2のみが選択的に解列される。事故点VIの場合、各遮断器を流れる事故電流は設定した閾値(TH3-6、TH5-6、THDG6)よりも十分大きく、事故点を含むZ6のみが選択的に解列されている。
(C4)過電流判定閾値の影響
最大負荷時に遮断器を流れる負荷電流の2倍および10倍の値を短絡電流検出の判定閾値とし、分散型電源連系点の遮断器についても、分散型電源の最大出力電流の2倍および10倍の値を短絡電流検出の判定閾値とした場合について、同様の検討を行った。各場合における事故区間のみの選択的解列の可否を下記表5に示す。
Figure 0004613652
同表に示すように、過電流判定の閾値を定常時(または定格値)の2倍の場合、事故区間の解列後、誤って他の区間も解列する場合があった。しかし、閾値を大きくすることによって誤判定はなくなった。また、閾値を大きくしすぎると過電流を判定できない可能性があるが、本シミュレーションの範囲では誤動作は確認されなかった。
すなわち、本発明では図3に示すように、1つのフィーダを複数の区間に分割することを前提としているため、各遮断器は近隣の事故点に対してのみ過電流の判定を行えればよい。このため、各遮断器の過電流判定閾値を大きな値に設定することができ、分散型電源の導入規模や地点が変化しても、確実な過電流通電の判定を実現できる。
区間分割された配電系統のモデル。 本発明の実施形態を示す配電系統の短絡/地絡保護システムの構成例。 本発明による短絡/地絡保護のシミュレーション対象のモデル系統図。 モデルcese−Aにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Aにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Aにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Aにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Aにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Aにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Bにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Bにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Bにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Bにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Bにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Bにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Cにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Cにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Cにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Cにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Cにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Cにおける1線地絡事故時の各遮断器の電流波形。 モデルcese−Aにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Aにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Aにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Aにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Aにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Aにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Aにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Aにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Aにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Aにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Aにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Aにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Bにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Bにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Bにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Bにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Bにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Bにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Bにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Bにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Bにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Bにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Bにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Bにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Cにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Cにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Cにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Cにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Cにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Cにおける2線短絡事故時の各遮断器の電流波形。 モデルcese−Cにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Cにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Cにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Cにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Cにおける3線短絡事故時の各遮断器の電流波形。 モデルcese−Cにおける3線短絡事故時の各遮断器の電流波形。
符号の説明
S/S 配電変電所
1〜Z6 配電区間
S-1、B1-2、B2-3、BDG1 遮断器
DG1、DG2 分散型電源

Claims (4)

  1. 遮断器で保護対象ゾーンが分割され、各ゾーンのフィーダから分岐されたサイトに分散型電源が導入された配電系統の保護システムであって、
    各遮断器設置点で計測される相間電圧と相間電流から、当該遮断器設置点の相間電流方向の情報を示す0/1信号と、前記分散型電源の導入・運用状況に応じて各遮断器設置点で個々に設定する閾値を該電流が超えたことの情報を示す0/1信号をそれぞれ発信するリレー演算手段を設け、
    保護対象ゾーンに接続される遮断器設置点の前記リレー演算手段が発信する前記各々の0/1信号と、当該保護対象ゾーンの周辺の遮断器設置点の前記リレー演算手段から情報通信手段を利用して収集した前記各々の0/1信号とを基に、前記相間電流の少なくとも1つが前記閾値を超えかつ該電流の全てが当該保護対象ゾーンに流れ込む向きであるときに当該保護対象ゾーン内での短絡事故と判定する論理判定手段を設けたことを特徴とする配電系統の保護システム。
  2. 前記各リレー演算手段は、前記各々の0/1信号の発信は少なくとも前記情報通信手段による通信時間の差以上の時間だけ続ける手段を設け、
    前記論理判定手段は、短絡事故判定が所定の時間以上継続したときに保護対象ゾーン内での短絡事故と判定する手段を設けたことを特徴とする請求項1に記載の配電系統の保護システム。
  3. 遮断器で保護対象ゾーンが分割され、各ゾーンのフィーダから分岐されたサイトに分散型電源が導入された配電系統の保護システムであって、
    各遮断器設置点で計測される零相電圧、零相電流から、当該遮断器設置点の零相電流方向の情報を示す0/1信号と、前記分散型電源の導入・運用状況に応じて各遮断器設置点で個々に設定する閾値を該電流が超えたことの情報を示す0/1信号をそれぞれ発信するリレー演算手段を設け、
    保護対象ゾーンに接続される遮断器設置点の前記リレー演算手段が発信する前記各々の0/1信号と、当該保護対象ゾーンの周辺の遮断器設置点の前記リレー演算手段から情報通信手段を利用して収集した前記各々の0/1信号とを基に、前記零相電流の少なくとも1つが前記閾値を超えかつ該電流の全てが当該保護対象ゾーンに流れ込む向きであるときに当該保護対象ゾーン内での1線地絡事故と判定する論理判定手段を設けたことを特徴とする配電系統の保護システム。
  4. 前記各リレー演算手段は、前記各々の0/1信号の発信は少なくとも前記情報通信手段による通信時間の差以上の時間だけ続ける手段を設け、
    前記論理判定手段は、地絡事故判定が所定の時間以上継続したときに保護対象ゾーン内での地絡事故と判定する手段を備えたことを特徴とする請求項3に記載の配電系統の保護システム。
JP2005075446A 2005-03-16 2005-03-16 配電系統の保護システム Active JP4613652B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005075446A JP4613652B2 (ja) 2005-03-16 2005-03-16 配電系統の保護システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005075446A JP4613652B2 (ja) 2005-03-16 2005-03-16 配電系統の保護システム

Publications (2)

Publication Number Publication Date
JP2006262597A JP2006262597A (ja) 2006-09-28
JP4613652B2 true JP4613652B2 (ja) 2011-01-19

Family

ID=37101214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075446A Active JP4613652B2 (ja) 2005-03-16 2005-03-16 配電系統の保護システム

Country Status (1)

Country Link
JP (1) JP4613652B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5075608B2 (ja) * 2007-12-14 2012-11-21 株式会社東芝 配電線自動制御システム、並びに配電線自動制御方法およびプログラム
CN103730885A (zh) * 2014-01-24 2014-04-16 兖州东方机电有限公司 一种配电装置、保护系统、矿用电力监控系统及保护方法
JP6139042B1 (ja) * 2017-03-10 2017-05-31 九州電力株式会社 配電系統保護装置
CN111025081B (zh) * 2019-11-07 2022-07-08 广州南方电力集团科技发展有限公司 一种配电台区的居民电压监测方法
CN111856213B (zh) * 2020-08-05 2023-05-26 云南电网有限责任公司红河供电局 一种环网运行的故障定位方法
CN112769107B (zh) * 2020-12-25 2023-04-18 国网河南省电力公司新乡供电公司 一种基于虚拟断路器的配电线路三段式电流保护配置方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243548A (ja) * 1997-02-24 1998-09-11 Toko Electric Co Ltd 高圧配電線の地絡検出装置
JP2000092693A (ja) * 1998-09-10 2000-03-31 Toshiba Corp 短絡方向継電器
JP2001352668A (ja) * 2000-06-06 2001-12-21 Nippon Kouatsu Electric Co 事故区間切離しシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243548A (ja) * 1997-02-24 1998-09-11 Toko Electric Co Ltd 高圧配電線の地絡検出装置
JP2000092693A (ja) * 1998-09-10 2000-03-31 Toshiba Corp 短絡方向継電器
JP2001352668A (ja) * 2000-06-06 2001-12-21 Nippon Kouatsu Electric Co 事故区間切離しシステム

Also Published As

Publication number Publication date
JP2006262597A (ja) 2006-09-28

Similar Documents

Publication Publication Date Title
Zamani et al. A communication-assisted protection strategy for inverter-based medium-voltage microgrids
CN105866615B (zh) 基于三相电压电流的10kV配电线路断线故障判定方法
CN105891680B (zh) 基于三相电压电流的10kV配电线路多相断线故障判定方法
Islam et al. Study of micro grid safety & protection strategies with control system infrastructures
Choudhary et al. A review on microgrid protection
JP4613652B2 (ja) 配電系統の保護システム
Zamani et al. A communication-based strategy for protection of microgrids with looped configuration
CN110783945A (zh) 用于定位微电网中相故障的方法
CN112595930B (zh) 含分布式电源花瓣式城市电网区域后备保护方法
CN103354353A (zh) 一种智能配电网全线速动主保护判别系统及方法
Esfahani et al. An intelligent protection scheme to deal with extreme fault currents in smart power systems
CN104901292A (zh) 配电网电流保护系统及方法
CN105226832A (zh) 一种继电保护方法
CN111948490B (zh) 一种有源配电网的故障定位和处理方法
Mirsaeidi et al. Review and analysis of existing protection strategies for micro-grids
CN105162086B (zh) 针对dg并网变压器接地系统的保护方法
Sarwagya et al. An extensive review on the state-of-art on microgrid protection
CN105098741A (zh) 分布式电源接入配电网的继电保护配置方法
CN105356430A (zh) 一种有源闭环配电网保护系统及方法
CN104269833B (zh) 一种含dg配电网保护方案
Rahman et al. Multi-agent approach for overcurrent protection coordination in low voltage microgrids
Cook et al. Designing a special protection system to mitigate high interconnection loading under extreme conditions–a scalable approach
JP4046674B2 (ja) 配電系統の保護システム
CN205450179U (zh) 一种基于配电网监控系统的故障监控系统
Babu et al. Digital relay based adaptive protection for distributed systems with distributed generation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

R150 Certificate of patent or registration of utility model

Ref document number: 4613652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250