JP4611961B2 - Application method - Google Patents

Application method Download PDF

Info

Publication number
JP4611961B2
JP4611961B2 JP2006309038A JP2006309038A JP4611961B2 JP 4611961 B2 JP4611961 B2 JP 4611961B2 JP 2006309038 A JP2006309038 A JP 2006309038A JP 2006309038 A JP2006309038 A JP 2006309038A JP 4611961 B2 JP4611961 B2 JP 4611961B2
Authority
JP
Japan
Prior art keywords
substrate
rotation speed
resist
rotation
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006309038A
Other languages
Japanese (ja)
Other versions
JP2008124369A (en
Inventor
浩一 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Microdevices Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2006309038A priority Critical patent/JP4611961B2/en
Publication of JP2008124369A publication Critical patent/JP2008124369A/en
Application granted granted Critical
Publication of JP4611961B2 publication Critical patent/JP4611961B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Materials For Photolithography (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、半導体装置の製造工程において、シリコン基板などの被処理基板上にレジスト等の塗布材料を塗布する塗布方法に関する。   The present invention relates to a coating method for coating a coating material such as a resist on a substrate to be processed such as a silicon substrate in a manufacturing process of a semiconductor device.

これまでの一般的な塗布方法を、図7を参照して説明する。図7において、縦軸がウエハ10の単位時間あたりの回転数(回転速度)、横軸が塗布工程の経過時刻である。
図7に示す時刻t0〜t1間において、1000rpm〜3000rpmにてウエハ10を安定回転させた後、一定量のレジストの滴下を行う。次に、一旦レジストの滴下を止めた後、ウエハ10を所望の膜厚が得られる回転数にまで加速し、時刻t1〜t2間において、その回転数で数秒間回転させる。その後、時刻t2〜t3にてウエハ10の裏面の洗浄を行い、時刻t4以降にて乾燥を行った後、終了する。
A general application method so far will be described with reference to FIG. In FIG. 7, the vertical axis represents the number of rotations (rotation speed) per unit time of the wafer 10, and the horizontal axis represents the elapsed time of the coating process.
Between time t0 and time t1 shown in FIG. 7, after the wafer 10 is stably rotated at 1000 rpm to 3000 rpm, a predetermined amount of resist is dropped. Next, once the dropping of the resist is stopped, the wafer 10 is accelerated to a rotational speed at which a desired film thickness is obtained, and is rotated at the rotational speed for several seconds between times t1 and t2. Thereafter, the back surface of the wafer 10 is cleaned at time t2 to t3, dried after time t4, and the process ends.

このような塗布方法では、ウエハ10の回転数が比較的低いので比較的ゆっくりレジストが拡がる。そのため、レジストに含まれる有機溶剤は、レジストが拡がる前に乾燥してしまい、塗布ムラになることがあった。この防止策としてレジストを過剰に供給することがなされている。これによりレジストに含まれる有機溶剤の揮発による乾燥を防止しているが、滴下液の96%以上がウエハ10の外へと放出されていた。これによって液が無駄に消費されていた。   In such a coating method, since the rotation speed of the wafer 10 is relatively low, the resist spreads relatively slowly. Therefore, the organic solvent contained in the resist may be dried before the resist spreads, resulting in uneven coating. As a preventive measure, an excessive amount of resist is supplied. As a result, drying due to volatilization of the organic solvent contained in the resist is prevented, but 96% or more of the dropping liquid is discharged to the outside of the wafer 10. As a result, the liquid was wasted.

一般的な塗布方法に対して、液を極力無駄に消費しない省液による塗布方法としていくつかの方法が提案されている(例えば、特許文献1、2参照)。
特許文献1では、図8に示すように、時刻t0〜t1間において、回転していないウエハ11上に一定量のレジストを滴下し、一旦レジスト滴下を止めた後、4000rpm以上の高速の回転数にて、滴下されたレジストを一気に塗り拡げている。このためレジストに含まれる揮発性の有機溶剤の揮発が少なく、過剰に液を供給しなくても揮発性の有機溶剤の揮発が少なく前述の方法に比べて、少量のレジストでも塗布ムラの発生がない。また、このような静止状態においてレジストを滴下しその後に加速し回転し始めるスタティック塗布においてだけでなく、加速後、回転が安定したところでレジストを滴下する方式であるダイナミック塗布においても効果を確認できることが開示されている。
In contrast to general coating methods, several methods have been proposed as liquid-saving coating methods that consume as little waste as possible (see, for example, Patent Documents 1 and 2).
In Patent Document 1, as shown in FIG. 8, between time t0 and time t1, a predetermined amount of resist is dropped onto the non-rotating wafer 11, and once the resist dropping is stopped, the rotation speed is 4000 rpm or higher. Then, the dropped resist is spread all at once. For this reason, there is little volatilization of the volatile organic solvent contained in the resist, and there is little volatilization of the volatile organic solvent even without supplying an excessive amount of liquid. Absent. The effect can be confirmed not only in the static coating in which the resist is dropped in such a stationary state and then accelerated and started to rotate, but also in the dynamic coating which is a method of dropping the resist when the rotation is stabilized after the acceleration. It is disclosed.

なお、図8の時刻t1〜t2間においては、高速回転数を所定回転数まで減速させ、この回転数で数秒間回転させた後、時刻t2〜t3にてウエハ11の裏面の洗浄を行い、時刻t4以降にて乾燥を行った後、終了する。
特許文献2においては、レジスト滴下の前に有機溶剤のみを滴下することによりウエハを一旦濡らし、臨界表面張力を下げることで省液を達成している。
特開平10−022210号公報 特開2003−136010号公報
In addition, between the times t1 and t2 in FIG. 8, the high-speed rotation speed is reduced to a predetermined rotation speed, and after rotating at this rotation speed for several seconds, the back surface of the wafer 11 is cleaned at the time t2 to t3. After drying at time t4 and thereafter, the process ends.
In Patent Document 2, liquid saving is achieved by once wetting the wafer by dropping only the organic solvent before dropping the resist and lowering the critical surface tension.
Japanese Patent Laid-Open No. 10-022210 JP 2003-136010 A

しかし、上記の従来例においては、次のような問題がある。
特許文献1では、スタティック塗布の場合では、静止したウエハに一定量のレジストを滴下した後、加速までにある期間静止状態が続く事と、臨界表面張力が高いシリコン基板上にレジストを滴下し回転により塗り拡げる為に、拡がりに時間がかかり有機溶剤の揮発が進む。この為、ある程度のレジストのまとまった量が必要となる。また、ダイナミック塗布の場合でも、一定速度で回転しているウエハに一定量のレジストを滴下した後、加速までに一定速度の期間の状態が続く為、僅かではあるがレジストがシリコン基板外に放出されてしまう事と、臨界表面張力の高い被処理基板上にレジストを滴下し回転により塗り拡げる為に、拡がりに時間がかかり有機溶剤の揮発が進み、その分だけ余分にレジストが必要となる。よって、特許文献1の方法では、滴下するレジストの量が多くなり省液に限界がある。
However, the above conventional example has the following problems.
In Patent Document 1, in the case of static coating, after a certain amount of resist is dropped on a stationary wafer, the stationary state continues for a certain period until acceleration, and the resist is dropped on a silicon substrate having a high critical surface tension and rotated. Therefore, it takes time to spread and the organic solvent evaporates. For this reason, a certain amount of resist is required. Even in the case of dynamic coating, since a certain amount of resist is dropped on a wafer rotating at a constant speed and then the state of a constant speed continues until acceleration, the resist is released to the outside of the silicon substrate to a small extent. In addition, since the resist is dropped onto the substrate to be processed having a high critical surface tension and spread by rotation, it takes time to spread, and the evaporation of the organic solvent proceeds, so that an extra resist is required. Therefore, in the method of Patent Document 1, the amount of resist to be dropped increases and there is a limit to liquid saving.

より省液を実現させるためには、レジスト自体の温度やレジスト周辺の環境温度等を変更する必要があり、この場合、スループットの低下を招くことになる。
更に、特許文献1では、4000rpm以上の高速回転にてウエハを回転させた場合に、ウエハは結晶方向を明確にするための直線部分(オリフラ)が存在し、ウエハの重量中心とスピンチャックの中心が約0.4mmズレており、このズレにより回転軸にぶれが生じ面内の膜厚均一性に悪影響を及ぼすことがある。この問題に対し、特許文献1では総合中心を合わせる手段として、カウンターウエイト及び赤外線センサー若しくは反射方センサーなどの改造を施し解決しているが、装置の改造や別の専用の装置が必要となってしまう。
In order to realize further liquid saving, it is necessary to change the temperature of the resist itself, the environmental temperature around the resist, and the like, which leads to a decrease in throughput.
Further, in Patent Document 1, when the wafer is rotated at a high speed rotation of 4000 rpm or more, the wafer has a linear portion (orientation flat) for clarifying the crystal direction, and the center of weight of the wafer and the center of the spin chuck. Is about 0.4 mm, and this deviation may cause the rotational axis to be shaken and adversely affect the in-plane film thickness uniformity. In order to solve this problem, Patent Document 1 solves this problem by modifying the counterweight and the infrared sensor or the reflection sensor as means for adjusting the total center. However, the modification of the apparatus or another dedicated apparatus is required. End up.

一方、特許文献2では、レジスト滴下の前に有機溶剤にてウエハを一旦濡らし臨界表面張力を下げることで省液を達成しているが、プリウエット法での手法では、有機溶剤とレジストを吐出するノズルを個別に持つ必要があり、また精度良くノズル駆動を制御しなければならないため、専用の装置が必要となりその分コスト高となっていた。また、有機溶剤のみを最初に滴下するため、廃液量の増加や原材料のコストが掛かっていた。
本発明は、このような課題に鑑みてなされたものであり、専用の設備を用いずに省液をより向上させながら、膜厚の均一性を向上させることができると共に、設備及び原材料のコスト低減を図ることができる塗布方法を提供することを目的としている。
On the other hand, in Patent Document 2, the wafer is once wetted with an organic solvent before dropping the resist to reduce the critical surface tension, thereby achieving liquid saving. In the prewetting method, the organic solvent and the resist are discharged. In addition, it is necessary to individually have nozzles to be operated, and it is necessary to control nozzle driving with high accuracy, so that a dedicated device is required, which increases the cost. In addition, since only the organic solvent is dropped first, the amount of waste liquid is increased and the cost of raw materials is increased.
The present invention has been made in view of such problems, and can improve the uniformity of the film thickness while further improving the liquid saving without using dedicated equipment, and the cost of equipment and raw materials. It aims at providing the coating method which can aim at reduction.

上記目的を達成するために、本発明の請求項1による塗布方法は、基板の上方から塗布液を前記基板の回転を停止させた状態で滴下した後に前記基板を回転させ、前記基板の回転に伴う遠心力により前記塗布液を前記基板の上面に塗布する塗布方法において、前記塗布液が前記基板の上面に接液すると同時に前記基板の回転を開始し、前記基板の回転速度が4000rpm以上8000rpm以下の第1の回転速度になるまで前記基板の回転速度を20000rpm/sec以上40000rpm/sec以下の加速度で加速させる加速塗布工程を含むことを特徴とする。 In order to achieve the above object, in the coating method according to claim 1 of the present invention, the substrate is rotated after the coating liquid is dropped from above the substrate while the rotation of the substrate is stopped. In the coating method in which the coating liquid is applied to the upper surface of the substrate by the accompanying centrifugal force, the rotation of the substrate starts at the same time as the coating liquid comes into contact with the upper surface of the substrate, and the rotation speed of the substrate is 4000 rpm or more and 8000 rpm or less. characterized in that it comprises a first acceleration application step until the rotation speed to accelerate the rotational speed of the substrate at 20000 rpm / sec or more 40000 rpm / sec following acceleration.

また、本発明の請求項2による塗布方法は、請求項1において、前記加速塗布工程で前記基板の回転速度を加速させた後、前記基板を前記第1の回転速度で定速回転させる定速回転工程を更に含むことを特徴とする。
また、本発明の請求項3による塗布方法は、請求項2において、前記加速塗布工程から継続して、前記定速回転工程においても前記基板上に塗布液を供給し続けることを特徴とする。
The coating method according to claim 2 of the present invention is the coating method according to claim 1 , wherein the substrate is rotated at a constant speed at the first rotation speed after the rotation speed of the substrate is accelerated in the acceleration coating process. The method further includes a rotating step.
According to a third aspect of the present invention, the coating method according to the second aspect is characterized in that, in the second aspect, the coating liquid is continuously supplied onto the substrate even in the constant speed rotation step.

また、本発明の請求項4による塗布方法は、請求項2または3において、前記定速回転工程で前記基板を前記第1の回転速度で定速回転させた後、前記基板の回転速度が前記第1の回転速度よりも遅い第2の回転速度になるまで前記基板の回転速度を急速に減速させ、次いで前記基板を前記第2の回転速度で定速回転させる安定化処理工程を更に含むことを特徴とする。
これら構成によれば、基板上への滴下(接液)と同時に当該基板の回転動作の加速を始め、これによって加速しながら滴下し続けるので、塗布液(レジスト)の広がりに合わせて遠心力が増幅される。このため、基板外へ放出される塗布液が少なくて済む。また、加速塗布工程、定速回転工程のあと、減速させた後の定速による安定化処理工程があるので、総合重心とのズレによる悪影響を緩和することができる。よって、設備の改造や新たな設備の設置が必要なくなる。
The coating method according to claim 4 of the present invention is the coating method according to claim 2 or 3, wherein the substrate is rotated at a constant speed at the first rotation speed in the constant speed rotation step , and then the rotation speed of the substrate is The method further includes a stabilization processing step of rapidly decelerating the rotation speed of the substrate until a second rotation speed lower than the first rotation speed, and then rotating the substrate at a constant speed at the second rotation speed. It is characterized by.
According to these configurations, since the rotation of the substrate starts to accelerate simultaneously with the dropping (wetted liquid) on the substrate, and the dripping is continued while accelerating, the centrifugal force is adjusted according to the spread of the coating liquid (resist). Amplified. For this reason, the amount of coating liquid released to the outside of the substrate is small. In addition, since there is a stabilization processing step at a constant speed after decelerating after the acceleration coating step and the constant speed rotation step, it is possible to mitigate adverse effects due to deviation from the total center of gravity. Therefore, it is not necessary to modify the equipment or install new equipment.

以上説明したように本発明によれば、専用の設備を用いずに省液をより向上させながら、膜厚の均一性を向上させることができると共に、設備及び原材料のコスト低減を図ることができるという効果がある。
As described above, according to the present invention, it is possible to improve the film thickness uniformity while improving the liquid saving without using dedicated equipment, and to reduce the cost of equipment and raw materials. There is an effect.

以下、本発明の実施の形態を、図面を参照して説明する。
図1は、本発明の実施の形態に係る半導体装置の製造工程における塗布方法の処理工程を示す図である。尚、下記において、回転速度とは単位時間あたりの回転数のことを示し、単に「回転数」とのみ記述する場合がある。また、加速度とは単位時間当たりの増加される回転数のことを示し、単に「加速度」と記述する場合がある。
図1に示す時刻t0〜t1間は、ウエハ20を図示せぬ回転塗布装置のスピンチャック上に固定した後、ウエハ20の回転を完全に停止させ静止している状態を示す(静止工程P1)。
次に、図1に示す時刻t1〜t2間において、レジストがウエハ20に接液すると同時に30000rpm/sec以上の加速度にてウエハ20の回転を開始させる(加速塗布工程P2)。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing processing steps of a coating method in a manufacturing process of a semiconductor device according to an embodiment of the present invention. In the following description, the rotation speed indicates the number of rotations per unit time, and may be simply described as “the number of rotations”. Further, the acceleration indicates an increased number of rotations per unit time, and may be simply referred to as “acceleration”.
1, the wafer 20 is fixed on a spin chuck of a spin coater (not shown), and then the rotation of the wafer 20 is completely stopped and stopped (stationary process P1). .
Next, between the times t1 and t2 shown in FIG. 1, the wafer 20 starts rotating at an acceleration of 30000 rpm / sec or more at the same time as the resist comes into contact with the wafer 20 (acceleration coating process P2).

このように、まず、ウエハ20を完全に静止させた状態を設け、次にレジストがウエハ20に接液すると同時に高い加速度にてウエハ20の回転を開始する塗布方法をセミダイナミック塗布法と称す。このセミダイナミック塗布法において、例えば到達回転数が6000rpmであった場合、0.2secにて目標回転数に達する。レジストはウエハ20の全面に行き渡り、ウエハ20の表面はレジストにより覆われる。図2、図3にその一例を示す。   In this way, first, a state in which the wafer 20 is completely stationary is provided, and then, a coating method in which the resist comes into contact with the wafer 20 and at the same time the wafer 20 starts rotating at a high acceleration is called a semi-dynamic coating method. In this semi-dynamic coating method, for example, when the reached rotational speed is 6000 rpm, the target rotational speed is reached in 0.2 sec. The resist spreads over the entire surface of the wafer 20, and the surface of the wafer 20 is covered with the resist. An example is shown in FIGS.

は、セミダイナミック塗布法による加速度と滴下量の関係を示す図である。縦軸にレジストがムラ無く拡がった直径を示す。横軸に加速度を示す。
各プロットは、到達回転数を6000rpmとし、同種のレジストの滴下量(0.3g、0.35g、0.4g、0.45g、0.5g)及び加速度を変化させた結果をプロットしたものである。加速度を増加させることで拡がり直径が大きくなることがわかる。
FIG. 3 is a diagram showing the relationship between the acceleration and drop amount by the semi-dynamic coating method. The vertical axis represents the diameter of the resist that has spread evenly. The horizontal axis shows acceleration.
Each plot is obtained by plotting the results of changing the dripping amount (0.3 g, 0.35 g, 0.4 g, 0.45 g, 0.5 g) and acceleration of the same kind of resist at an arrival rotational speed of 6000 rpm. is there. It can be seen that the diameter is increased by increasing the acceleration.

は、セミダイナミック塗布法による最高到達回転数と滴下量の関係を示す図である。縦軸にレジストがムラ無く拡がった直径を示す。横軸に最高到達回転数を示す。
各プロットは、加速度を30000rpm/secで固定し同種のレジストの滴下量(0.3g、0.35g、0.4g、0.45g、0.5g)及び最高到達回転数を変化させた結果をプロットしたものである。
図3に示すように、加速度を増加させることでレジストの拡がり直径が大きくなることがわかり、このときの加速度は20000rpm/sec以上が好ましく、30000rpm/sec以上がより好ましい。これより低い加速度になれば0.5gでも遠心力が不足しレジストが拡がらず塗布ムラとなってしまう場合がある。また、加速度は40000rpm/sec以下が好ましく、35000rpm/sec以下がより好ましい。これより高い加速度になった場合、真空吸着されている被処理基板がチャックより外れ被処理基板の破損につながる場合がある。
FIG. 2 is a graph showing the relationship between the maximum number of rotations achieved by the semi-dynamic coating method and the amount of dripping. The vertical axis represents the diameter of the resist that has spread evenly. The horizontal axis indicates the maximum number of revolutions reached.
Each plot shows the result of changing the dripping amount (0.3 g, 0.35 g, 0.4 g, 0.45 g, 0.5 g) of the same kind of resist and the maximum rotation speed while fixing the acceleration at 30000 rpm / sec. It is a plot.
As shown in FIG. 3, it can be seen that increasing the acceleration increases the resist spreading diameter, and the acceleration at this time is preferably 20000 rpm / sec or more, and more preferably 30000 rpm / sec or more. If the acceleration is lower than this, the centrifugal force may be insufficient even at 0.5 g, and the resist may not spread, resulting in coating unevenness. The acceleration is preferably 40000 rpm / sec or less, more preferably 35000 rpm / sec or less. If the acceleration is higher than this, the substrate to be processed that is vacuum-sucked may come off the chuck and damage the substrate to be processed.

また、図2に示すように、レジストをムラ無く拡げるためには、最高到達回転数は4000rpm以上が好ましく、5000rpm以上がより好ましい。これより低い回転数になれば0.5gでも遠心力が不足しレジストが拡がらず塗布ムラとなってしまう場合がある。また、最高到達回転数は8000rpm以下が好ましく、6000rpm以下がより好ましい。これより高い回転数になれば被処理基板の熱履歴による変形があった場合、真空吸着されている被処理基板がチャックより外れ被処理基板の破損につながる場合がある。 In addition, as shown in FIG. 2, in order to spread the resist without unevenness, the maximum rotation speed is preferably 4000 rpm or more, and more preferably 5000 rpm or more. If the rotational speed is lower than this, the centrifugal force may be insufficient even at 0.5 g, and the resist may not spread, resulting in coating unevenness. Further, the maximum rotation speed is preferably 8000 rpm or less, and more preferably 6000 rpm or less. If the rotational speed is higher than this, if the substrate to be processed is deformed due to the thermal history, the substrate to be processed that is vacuum-sucked may come off the chuck and cause damage to the substrate to be processed.

このように、本実施の形態によれば、加速塗布工程P2の段階で全面が滴下されたレジストに薄く覆われており、従来技術の有機溶媒のような別液を使用したプリウエットと同様の表面張力を下げる効果が、膜厚形成用の液であるレジストによって得られ、更に、滴下液はこれまでの省液方法よりも少量で済む。
また、最初にウエハ20を完全に静止させた状態を設け、次にレジストがウエハ20に接液すると同時に高い加速度にてウエハ20の回転を開始することにより、効率的に遠心力を増加させることができ、被処理基板外への無駄なレジストの放出を抑えながらレジストのプリウエット膜を作ることができる。
Thus, according to the present embodiment, the entire surface is thinly covered with the resist dropped in the stage of the acceleration coating step P2, and is the same as the pre-wet using a separate liquid such as an organic solvent in the prior art. The effect of lowering the surface tension is obtained by a resist which is a liquid for forming a film thickness. Further, the dripping liquid is smaller than the conventional liquid saving method.
Further, by first providing a state in which the wafer 20 is completely stationary, and then starting the rotation of the wafer 20 at a high acceleration at the same time as the resist comes into contact with the wafer 20, the centrifugal force can be efficiently increased. Thus, a resist pre-wet film can be formed while suppressing wasteful release of the resist to the outside of the substrate to be processed.

次に、目標の回転数に到達した時点で、図1に示す時刻t2〜t3間において、その到達回転数を維持し一定の回転数(速度)で回転させる(定速回転工程P3)。
このようにすることにより臨界表面張力の下がっている被処理基板に更に効率的にレジストを塗り拡げることができる。この時点で、定速回転工程P3に移行した場合においても、レジストの滴下を継続してもよい。レジストの滴下は継続すれば、よりプリウエットの効果が得られ更に省液が可能となる。
Next, when the target rotational speed is reached, the reached rotational speed is maintained and rotated at a constant rotational speed (speed) between times t2 and t3 shown in FIG. 1 (constant speed rotation process P3).
By doing so, the resist can be spread more efficiently on the substrate to be processed whose critical surface tension is lowered. At this time, even when the process proceeds to the constant speed rotation process P3, the dropping of the resist may be continued. If dripping of the resist is continued, a prewetting effect can be obtained, and further liquid saving can be achieved.

このときの回転数は4000rpm以上が好ましく、5000rpm以上がより好ましい。これより低い回転数になれば0.5gでも遠心力が不足し、レジストが拡がらず塗布ムラとなってしまう場合がある。また、最高到達回転数は8000rpm以下が好ましく、6000rpm以下がより好ましい。これより高い回転数になれば被処理基板の熱履歴による変形があった場合、真空吸着されている被処理基板がチャックより外れ被処理基板の破損につながるケースもある。   The rotation speed at this time is preferably 4000 rpm or more, and more preferably 5000 rpm or more. If the rotational speed is lower than this, the centrifugal force may be insufficient even at 0.5 g, and the resist may not spread and uneven coating may occur. Further, the maximum rotation speed is preferably 8000 rpm or less, and more preferably 6000 rpm or less. If the rotational speed is higher than this, when the substrate to be processed is deformed due to the thermal history, the substrate to be processed that is vacuum-sucked may come off the chuck and cause damage to the substrate to be processed.

その後、滴下終了と同時に図1の時刻t3〜4間に示すように、ウエハ20の回転数を急速に減速させ、低速で回転させることで、所望する膜厚を得るための厚膜を形成する(安定化処理工程P4)。
ここで、上記の方法で厚膜の形成を行った場合、ウエハ20の重量中心とスピンチャックの中心とが、例えばウエハ20径が150mmの場合、ウエハ20には結晶方向を明確にするための直線部分(オリフラ)が存在し総合重量中心は約0.4mmズレており、このズレにより4000rpm以上の回転数で回転させると回転軸にぶれが生じ、面内の膜厚均一性に影響を及ぼす場合がある。
Thereafter, simultaneously with the end of dropping, as shown between time t3 and time 4 in FIG. 1, the number of rotations of the wafer 20 is rapidly decelerated and rotated at a low speed to form a thick film for obtaining a desired film thickness. (Stabilization process P4).
Here, when the thick film is formed by the above-described method, when the wafer 20 has a center of weight and the center of the spin chuck, for example, the diameter of the wafer 20 is 150 mm, the crystal orientation of the wafer 20 is clarified. There is a straight part (orientation flat) and the center of total weight is shifted by about 0.4 mm. When this is rotated at a rotational speed of 4000 rpm or more, the rotation axis is shaken, affecting the film thickness uniformity in the surface. There is a case.

この問題について、安定化処理工程P4で時間及び回転数を最適化することで、面内の均一性を改善することが出来る。また、その安定化処理工程P4において回転数等を最適化すれば、レジスト自体の温度変更や、レジストの周りの環境温度の変更など、レシピ個別の調整は不要となる。また、ズレを防止するための位置センサー等の設置や、設備の改造は必要ない。   With respect to this problem, in-plane uniformity can be improved by optimizing the time and the rotational speed in the stabilization process P4. Further, if the rotational speed and the like are optimized in the stabilization processing step P4, individual recipe adjustments such as a change in the temperature of the resist itself and a change in the environmental temperature around the resist become unnecessary. Also, there is no need to install a position sensor or other equipment to prevent misalignment or to modify the equipment.

更に、近年の塗布装置においては、1台の装置に複数系統のノズルを持つ装置も開発されており、ノズル個別にレジスト自体の温度変更、環境温度、湿度の変更を行う必要があったが、このような変更は、生産量の低下を招いていた。しかし、本実施の形態の安定処理工程を設けることにより、所望の均一性を得るためには回転数及び時間のパラメータを各種のレジスト毎に変更すればよいだけで、レジスト自体の温度変更、環境温度、湿度の変更などは必要ない。   Furthermore, in recent coating apparatuses, an apparatus having a plurality of nozzles in one apparatus has been developed, and it has been necessary to change the temperature of the resist itself, environmental temperature, and humidity individually for each nozzle. Such changes have led to a decrease in production. However, in order to obtain the desired uniformity by providing the stable processing step of the present embodiment, it is only necessary to change the rotation speed and time parameters for each type of resist. There is no need to change temperature or humidity.

具体的なパラメータとしては、回転数と時間が選択される。これらのパラメータは、使用する溶剤(レジストといっても種々の用材を使用する)の揮発速度や薬液自体の表面張力、粘度などで最適値は異なる。例えば、使用する主溶剤が2−ヘプタノンのときは、回転数1000〜3000rpm、時間は2〜4secとし、また、使用する主溶剤が乳酸エチルのときは、回転数は300〜3000rpm、時間は2〜4secとすればよい。   As specific parameters, the rotation speed and time are selected. These parameters have different optimum values depending on the volatilization rate of the solvent to be used (resist is used as various materials), the surface tension and viscosity of the chemical itself. For example, when the main solvent to be used is 2-heptanone, the rotation speed is 1000 to 3000 rpm and the time is 2 to 4 seconds. When the main solvent to be used is ethyl lactate, the rotation speed is 300 to 3000 rpm and the time is 2 It may be set to ˜4 sec.

このときの回転数は100rpm以上が好ましく、300rpm以上がより好ましい。これより低い回転数になると、レジストが表面張力により収縮し外周部が塗布ムラとなってしまう場合がある。また、回転数は図1に示す時刻t4〜t5間における膜厚決定回転数の70%以下が好ましく、50%以下がより好ましい。これより高い回転数になると膜厚決定に影響し、後の膜厚調整が困難になる。   The rotation speed at this time is preferably 100 rpm or more, and more preferably 300 rpm or more. If the rotational speed is lower than this, the resist may shrink due to surface tension and the outer peripheral portion may be unevenly coated. Further, the rotation speed is preferably 70% or less, more preferably 50% or less, of the film thickness determination rotation speed between times t4 and t5 shown in FIG. If the rotational speed is higher than this, the film thickness determination is affected, and subsequent film thickness adjustment becomes difficult.

この後は一般的な工程として、所定の膜厚にするために図1の時刻t4〜t5間において、所定回転数で所定時間回転を行い膜厚を決定し(膜厚決定工程P5)、図1の時刻t5〜t6間において、裏面に付着したレジストを除去するために所定回転数で所定時間回転を行いウエハ20の裏面を洗浄する(裏面洗浄工程P6)。そして、図1の時刻t6〜t7間において、表面及び裏面の溶剤を乾燥するために所定回転数で所定時間回転を行ってウエハ20を乾燥させる(乾燥工程P7)。このような一連の工程がある。   Thereafter, as a general process, in order to obtain a predetermined film thickness, the film thickness is determined by rotating for a predetermined time at a predetermined rotation speed between times t4 and t5 in FIG. 1 (film thickness determining process P5). Between time t5 and time t1 of 1, the wafer 20 is rotated at a predetermined rotation speed for a predetermined time to remove the resist attached to the back surface, thereby cleaning the back surface of the wafer 20 (back surface cleaning process P6). Then, between times t6 and t7 in FIG. 1, the wafer 20 is dried by rotating at a predetermined rotation speed for a predetermined time in order to dry the solvent on the front surface and the back surface (drying process P7). There is such a series of steps.

従来においては、これら後半の工程(図1の時刻t4〜t7間)は、使用するレジスト毎にレジスト自体の温度変更、環境温度、湿度の変更を行う必要があり、更にはレジスト毎に後半の工程の回転数や回転時間を変更することが必要であったが、このような変更は、生産量の低下を招いてしまっていた。
しかし、本実施の形態の安定化処理工程P4を設けることによって、回転数及び時間のパラメータを各種のレジスト毎に変更すれば、どんなレジストであっても所望の均一性を有する膜厚を得ることが出来る。よって、後半の工程を行う時点において、どんなレジストでも所望の均一な膜厚を有しているので、後半の工程(図1の時刻t4〜t7間)において各種のパラメータを変更することなく共有することができる。
Conventionally, these latter half steps (between times t4 and t7 in FIG. 1) require the resist itself to be changed in temperature, environmental temperature, and humidity for each resist used, and moreover, the latter half for each resist. Although it was necessary to change the number of rotations and the rotation time of the process, such a change has led to a decrease in production volume.
However, by providing the stabilization processing step P4 of the present embodiment, if the rotation speed and time parameters are changed for each type of resist, a film thickness having a desired uniformity can be obtained for any resist. I can do it. Therefore, since any resist has a desired uniform film thickness at the time of the latter half of the process, various parameters are shared without change in the latter half of the process (between times t4 and t7 in FIG. 1). be able to.

ここで、発明したシーケンスでのステップ毎の膜厚推移を図4〜図6に示す。
図4は、本実施の形態の塗布方法の加速塗布工程P2の終了直後の膜厚の分布を示す図である。縦軸は膜厚(単位:Å)。横軸はウエハ20のセンターをX軸方向に直線上に測定した座標位置を示す。各プロットは測定を行った3枚の平均値を示す。グラフは、センター付近が薄くなる、すり鉢型になっていることがわかる。
Here, the film thickness transition for each step in the invented sequence is shown in FIGS.
FIG. 4 is a view showing the film thickness distribution immediately after the acceleration coating process P2 of the coating method of the present embodiment. The vertical axis is the film thickness (unit: Å). The horizontal axis indicates the coordinate position of the center of the wafer 20 measured on a straight line in the X-axis direction. Each plot shows an average value of three sheets subjected to measurement. It can be seen that the graph has a mortar shape where the vicinity of the center is thin.

図5は、本発明の塗布方法の安定化処理工程P4の終了後の分布を示す図である。縦軸は膜厚(単位:Å)。横軸はウエハ20のセンターをX軸方向に直線上に測定した座標位置を示す。各プロットは、安定化処理時間を1、3、5secと振ったときの膜厚を示す。グラフは図4のすり鉢型から比較すると平坦化が進みセンター付近での膜厚は安定化処理時間に依存せずほぼ同じになる。しかし、外周部では安定化処理を長く行うほど薄くなり、各条件での差が拡くなっている。   FIG. 5 is a view showing the distribution after the end of the stabilization process P4 of the coating method of the present invention. The vertical axis is the film thickness (unit: Å). The horizontal axis indicates the coordinate position of the center of the wafer 20 measured on a straight line in the X-axis direction. Each plot shows the film thickness when the stabilization processing time is shaken as 1, 3, 5 sec. Compared with the mortar type of FIG. 4, the graph is flattened and the film thickness in the vicinity of the center is almost the same regardless of the stabilization processing time. However, the longer the stabilization process, the thinner the outer periphery, and the difference in each condition increases.

図6は、本発明の塗布方法の乾燥工程P7の終了後の分布を示す図である。縦軸は膜厚(単位:Å)。横軸はウエハ20のセンターをX軸方向に直線上に測定した座標位置を示す。各プロットは、安定化処理時間を1、3、5sec振ったときの膜厚を示す。グラフは、安定化処理時間を1と5sec振って処理を行ったウエハ20はセンター付近が薄くなるすり鉢型が進み均一性が悪くなる。しかし、3secで処理を行ったウエハ20は液体が表面張力で中央に集まろうとする力と外周部で遠心力により放出されるレジストがバランスし、平坦になっていることが分かる。   FIG. 6 is a view showing the distribution after the end of the drying step P7 of the coating method of the present invention. The vertical axis is the film thickness (unit: Å). The horizontal axis indicates the coordinate position of the center of the wafer 20 measured on a straight line in the X-axis direction. Each plot shows the film thickness when the stabilization processing time is shaken for 1, 3, 5 seconds. In the graph, the wafer 20 that has been processed with the stabilization processing time varied by 1 and 5 seconds has a mortar shape in which the vicinity of the center is thin and the uniformity is deteriorated. However, it can be seen that the wafer 20 processed in 3 seconds is flat with the balance between the force with which the liquid tries to gather in the center by surface tension and the resist released by the centrifugal force at the outer periphery.

以上のように、本実施の形態の塗布方法を用いれば、加速塗布工程P2と、定速回転工程P3との最適化によって省液性の向上が可能となる。更に、安定化処理工程P4の最適化によって均一性の向上が可能となり、レジスト温度や環境温度の調整も不要であるため、複数のノズルを保有する装置であっても、個別に調整をすることが出来る。   As described above, if the coating method of the present embodiment is used, the liquid-saving property can be improved by optimizing the acceleration coating process P2 and the constant speed rotation process P3. Furthermore, optimization of the stabilization processing step P4 enables improvement of uniformity, and adjustment of the resist temperature and environmental temperature is unnecessary, so even an apparatus having a plurality of nozzles can be adjusted individually. I can do it.

本発明の実施の形態に係る半導体装置の製造工程における塗布方法の処理工程を示す図である。It is a figure which shows the process process of the coating method in the manufacturing process of the semiconductor device which concerns on embodiment of this invention. 本実施の形態の塗布方法(セミダイナミック塗布法)による加速度と滴下量の関係を示す図である。It is a figure which shows the relationship between the acceleration by the coating method (semi-dynamic coating method) of this Embodiment, and dripping amount. 本実施の形態の塗布方法(セミダイナミック塗布法)による最高到達回転数と滴下量の関係を示す図である。It is a figure which shows the relationship between the highest rotation speed by the application | coating method (semi-dynamic application | coating method) of this Embodiment, and dripping amount. 本実施の形態の塗布方法の定速回転工程終了直後の膜厚の分布を示す図である。It is a figure which shows distribution of the film thickness immediately after completion | finish of the constant speed rotation process of the coating method of this Embodiment. 本実施の形態の塗布方法の安定化処理工程終了後の分布を示す図である。It is a figure which shows distribution after completion | finish of the stabilization process of the coating method of this Embodiment. 本実施の形態の塗布方法の乾燥工程終了後の分布を示す図である。It is a figure which shows distribution after completion | finish of the drying process of the coating method of this Embodiment. 従来の塗布処理工程を示す図である。It is a figure which shows the conventional application | coating process. 従来の他の塗布処理工程を示す図である。It is a figure which shows the other conventional application | coating process.

符号の説明Explanation of symbols

20 ウエハ
P1 静止工程
P2 加速塗布工程
P3 定速回転工程
P4 安定化処理工程
P5 膜厚決定工程
P6 裏面洗浄工程
P7 乾燥工程
20 Wafer P1 Static process P2 Accelerated coating process P3 Constant speed rotation process P4 Stabilization process P5 Film thickness determination process P6 Back surface cleaning process P7 Drying process

Claims (4)

基板の上方から塗布液を前記基板の回転を停止させた状態で滴下した後に前記基板を回転させ、前記基板の回転に伴う遠心力により前記塗布液を前記基板の上面に塗布する塗布方法において、
前記塗布液が前記基板の上面に接液すると同時に前記基板の回転を開始し、前記基板の回転速度が4000rpm以上8000rpm以下の第1の回転速度になるまで前記基板の回転速度を20000rpm/sec以上40000rpm/sec以下の加速度で加速させる加速塗布工程を含むことを特徴とする塗布方法。
In the coating method of rotating the substrate after dropping the coating liquid from above the substrate in a state where the rotation of the substrate is stopped, and applying the coating liquid to the upper surface of the substrate by centrifugal force accompanying the rotation of the substrate,
The substrate starts rotating at the same time as the coating solution comes into contact with the upper surface of the substrate, and the rotation speed of the substrate is set to 20000 rpm / sec or more until the rotation speed of the substrate reaches a first rotation speed of 4000 rpm or more and 8000 rpm or less . A coating method comprising an acceleration coating step of accelerating at an acceleration of 40000 rpm / sec or less .
前記加速塗布工程で前記基板の回転速度を加速させた後、前記基板を前記第1の回転速度で定速回転させる定速回転工程を更に含むことを特徴とする請求項1に記載の塗布方法。   2. The coating method according to claim 1, further comprising a constant speed rotation step of rotating the substrate at a constant speed at the first rotation speed after accelerating the rotation speed of the substrate in the acceleration coating step. . 前記加速塗布工程から継続して、前記定速回転工程においても前記基板上に塗布液を供給し続けることを特徴とする請求項2に記載の塗布方法。   3. The coating method according to claim 2, wherein the coating liquid is continuously supplied onto the substrate even in the constant speed rotation step, continuing from the acceleration coating step. 前記定速回転工程で前記基板を前記第1の回転速度で定速回転させた後、前記基板の回転速度が前記第1の回転速度よりも遅い第2の回転速度になるまで前記基板の回転速度を急速に減速させ、次いで前記基板を前記第2の回転速度で定速回転させる安定化処理工程を更に含むことを特徴とする請求項2または3に記載の塗布方法。   After the substrate is rotated at the first rotation speed at the constant rotation speed in the constant speed rotation step, the rotation of the substrate is performed until the rotation speed of the substrate becomes a second rotation speed lower than the first rotation speed. The coating method according to claim 2, further comprising a stabilization processing step of rapidly decelerating and then rotating the substrate at a constant speed at the second rotation speed.
JP2006309038A 2006-11-15 2006-11-15 Application method Expired - Fee Related JP4611961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006309038A JP4611961B2 (en) 2006-11-15 2006-11-15 Application method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006309038A JP4611961B2 (en) 2006-11-15 2006-11-15 Application method

Publications (2)

Publication Number Publication Date
JP2008124369A JP2008124369A (en) 2008-05-29
JP4611961B2 true JP4611961B2 (en) 2011-01-12

Family

ID=39508776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006309038A Expired - Fee Related JP4611961B2 (en) 2006-11-15 2006-11-15 Application method

Country Status (1)

Country Link
JP (1) JP4611961B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5457866B2 (en) * 2010-02-08 2014-04-02 株式会社日立ハイテクノロジーズ Spin coating method and spin coater
JP5296021B2 (en) * 2010-07-23 2013-09-25 東京エレクトロン株式会社 Coating processing method, program, computer storage medium, and coating processing apparatus
KR102167485B1 (en) * 2012-09-13 2020-10-19 호야 가부시키가이샤 Mask blank manufacturing method and a method of manufacturing mask for transfer
KR102239197B1 (en) * 2012-09-13 2021-04-09 호야 가부시키가이샤 Method for manufacturing mask blank and method for manufacturing transfer mask
JP6106413B2 (en) * 2012-11-13 2017-03-29 Hoya株式会社 Reflective mask blank and method of manufacturing reflective mask

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270373A (en) * 1996-01-29 1997-10-14 Dainippon Screen Mfg Co Ltd Processing solution feeding method and device
JPH09267067A (en) * 1996-01-29 1997-10-14 Dainippon Screen Mfg Co Ltd Treating liquid feed method and device thereof
JPH10146561A (en) * 1996-11-20 1998-06-02 Dainippon Screen Mfg Co Ltd Coating fluid coating method
JPH11297589A (en) * 1998-04-09 1999-10-29 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus
JP2004273488A (en) * 2003-03-05 2004-09-30 Canon Sales Co Inc Coating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270373A (en) * 1996-01-29 1997-10-14 Dainippon Screen Mfg Co Ltd Processing solution feeding method and device
JPH09267067A (en) * 1996-01-29 1997-10-14 Dainippon Screen Mfg Co Ltd Treating liquid feed method and device thereof
JPH10146561A (en) * 1996-11-20 1998-06-02 Dainippon Screen Mfg Co Ltd Coating fluid coating method
JPH11297589A (en) * 1998-04-09 1999-10-29 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus
JP2004273488A (en) * 2003-03-05 2004-09-30 Canon Sales Co Inc Coating method

Also Published As

Publication number Publication date
JP2008124369A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
US8505479B2 (en) Resist coating apparatus
JP4745358B2 (en) Spin coating method and spin coating apparatus
JP5296021B2 (en) Coating processing method, program, computer storage medium, and coating processing apparatus
JP4611961B2 (en) Application method
KR101509595B1 (en) Coating method and computer storage medium
JP5337180B2 (en) Coating processing method, program, computer storage medium, and coating processing apparatus
US7906173B2 (en) Resist coating method and resist coating apparatus
JP2012196609A (en) Coating method and coating apparatus
US10569297B2 (en) Coating method
JP2009078250A (en) Coating treatment method, coating treatment device, and memory medium readable by computer
JP3315608B2 (en) Coating liquid application method
JP2009207984A (en) Coating treatment method, program, computer storage medium, and coating treatment apparatus
JP2013230468A (en) Coating method, program, computer storage medium, and coating apparatus
JP2006156565A (en) Rotation applying method
JPH11260717A (en) Resist coating method and apparatus
JP2005019560A (en) Coating device
JP2007275697A (en) Spin coat apparatus and spin coat method
JP2008124368A (en) Coating method
JP5127127B2 (en) Coating method
JP2010042325A (en) Coating method and coating apparatus
JPH10154650A (en) Coating liquid applying method
JP3315609B2 (en) Coating liquid application method
JP2649156B2 (en) Resist coating apparatus and method
JP2015000356A (en) Coating film forming method
KR100874611B1 (en) The meathod of multi layer coatings

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees