JP4609388B2 - Gas-liquid two-phase fluid distributor - Google Patents

Gas-liquid two-phase fluid distributor Download PDF

Info

Publication number
JP4609388B2
JP4609388B2 JP2006182386A JP2006182386A JP4609388B2 JP 4609388 B2 JP4609388 B2 JP 4609388B2 JP 2006182386 A JP2006182386 A JP 2006182386A JP 2006182386 A JP2006182386 A JP 2006182386A JP 4609388 B2 JP4609388 B2 JP 4609388B2
Authority
JP
Japan
Prior art keywords
liquid
gas
distributor
cylindrical container
phase fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006182386A
Other languages
Japanese (ja)
Other versions
JP2008008599A (en
Inventor
源太郎 大村
春幸 西嶋
悦久 山田
裕嗣 武内
秀也 松井
良子 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006182386A priority Critical patent/JP4609388B2/en
Priority to US11/821,879 priority patent/US20080000263A1/en
Priority to DE102007029342A priority patent/DE102007029342A1/en
Priority to CN200710109516XA priority patent/CN101097104B/en
Publication of JP2008008599A publication Critical patent/JP2008008599A/en
Application granted granted Critical
Publication of JP4609388B2 publication Critical patent/JP4609388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/45Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow control on the upstream side of the diverging point, e.g. with spiral structure for generating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Description

本発明は、空気調和装置等の冷媒回路に配設されて二相冷媒を複数の熱交換器等に分配する分配器に関し、特に、均一な混合割合の二相冷媒を均等に分岐する構造に関する。   The present invention relates to a distributor that is disposed in a refrigerant circuit such as an air conditioner and distributes a two-phase refrigerant to a plurality of heat exchangers, and more particularly to a structure that equally divides a two-phase refrigerant having a uniform mixing ratio. .

従来より、図4に示すように、冷媒圧縮機102、冷媒凝縮器103、エジェクタ104、室内熱交換器105の第1冷媒蒸発器113および気液分離器106を冷媒配管107によって順次環状に接続していると共に、気液分離器106の液相冷媒側とエジェクタ104の吸引部108とを室内熱交換器105の第2冷媒蒸発器114を配したバイパス配管109によって接続している冷凍サイクル100が提案されている(特許文献1)。   Conventionally, as shown in FIG. 4, the refrigerant compressor 102, the refrigerant condenser 103, the ejector 104, the first refrigerant evaporator 113 and the gas-liquid separator 106 of the indoor heat exchanger 105 are sequentially connected in an annular manner by a refrigerant pipe 107. In addition, the refrigeration cycle 100 in which the liquid-phase refrigerant side of the gas-liquid separator 106 and the suction part 108 of the ejector 104 are connected by a bypass pipe 109 in which the second refrigerant evaporator 114 of the indoor heat exchanger 105 is arranged. Has been proposed (Patent Document 1).

ここで、エジェクタ4は、図5に示すように、室内熱交換器105の側面に取り付けられている。エジェクタ4は、図6に示すように、冷媒凝縮器103で凝縮液化された液相冷媒をノズル110より噴出することによって、吸引部108より気相冷媒を吸引して、ディフューザ111内で液相冷媒と気相冷媒を混合すると共に昇圧した後に、後記する分配器112を介して第1冷媒蒸発器13へ気液二相状態の冷媒(以下、「二相冷媒」と言う)を送るものである。分配器112は、図12に示すように、エジェクタ104より流出した気液二相状態の冷媒を第1冷媒蒸発器113の複数本のチューブの各々に均等に分配する配管である。 Here, the ejector 4 is attached to the side surface of the indoor heat exchanger 105 as shown in FIG. As shown in FIG. 6, the ejector 4 sucks the gas-phase refrigerant from the suction unit 108 by ejecting the liquid-phase refrigerant condensed and liquefied by the refrigerant condenser 103 from the nozzle 110, and the liquid-phase refrigerant in the diffuser 111. after boosting with mixed refrigerant and gas-phase refrigerant, a first refrigerant evaporator 1 13 to the gas-liquid two-phase state refrigerant (hereinafter, referred to as "two-phase refrigerant") via the distributor 112 to be described later to send those It is. As shown in FIG. 12, the distributor 112 is a pipe that evenly distributes the gas-liquid two-phase refrigerant flowing out from the ejector 104 to each of the plurality of tubes of the first refrigerant evaporator 113.

この分配器112の役割は、多様な流動状態(スラグ流、ミスト流、環状流等)で流入する二相冷媒を各配管へ均等に供給することである。しかし、ノズル110より噴出した冷媒は、その気液割合や流速次第では、重力の影響で下方分配管112aには、液相の多い冷媒が通過し、上方分配管112bには、気相の多い冷媒が通過する。これにより、分配器112はその役割を完全には果たしていなかった。   The role of the distributor 112 is to uniformly supply the two-phase refrigerant flowing in various flow states (slag flow, mist flow, annular flow, etc.) to each pipe. However, depending on the gas-liquid ratio and flow velocity, the refrigerant ejected from the nozzle 110 passes through the lower distribution pipe 112a through the lower distribution pipe 112a due to the influence of gravity, and the upper distribution pipe 112b has a larger gas phase. The refrigerant passes through. As a result, the distributor 112 did not fully fulfill its role.

また、エジェクタの下流で圧力損失が発生するとエジェクタによる昇圧効果が減殺される。このため、エジェクタ下流での圧力損失は極力回避すべきである。それにもかかわらず、ディフューザ111から分配管112へ直接流入するため、流路断面積が大きく絞られる方向へ変化し、この絞り効果により、圧力損失が発生していた。なお、周知のように膨張弁サイクルでは、エジェクタサイクルに比し、分配器部での圧力損失分が膨張弁の絞り量にて調節されるので圧力損失の影響は少ない。
一方、二相冷媒の分配器としては、特許文献2、3に開示されるものがあるが、気液を分離した後、液体を上方へ持ち上げ搬送するためエネルギロスが生じる。また、これらは、旋回部径より大きい径を有する下流側の円形上面や、液膜保持用の緩い傾斜の円垂面が必要となるため、極めて大きく実用的ではない容器となり、いずれもその役割を果たすには不完全なものであった。
Further, when a pressure loss occurs downstream of the ejector, the pressure increasing effect by the ejector is diminished. For this reason, pressure loss downstream of the ejector should be avoided as much as possible. Nevertheless, since it flows directly from the diffuser 111 to the distribution pipe 112, the flow passage cross-sectional area changes in a direction that is greatly reduced, and pressure loss occurs due to this restriction effect. As is well known, the expansion valve cycle is less affected by the pressure loss than the ejector cycle because the pressure loss in the distributor is adjusted by the throttle amount of the expansion valve.
On the other hand, there are two-phase refrigerant distributors disclosed in Patent Documents 2 and 3. However, after separating the gas and liquid, the liquid is lifted and conveyed, resulting in energy loss. In addition, these require a circular upper surface on the downstream side having a diameter larger than the diameter of the swivel part, and a gently inclined circular surface for holding the liquid film, which makes the container extremely large and impractical. It was incomplete to fulfill.

特許第3265649号公報Japanese Patent No. 3265649 特開平6−201225号公報JP-A-6-201225 特開平5−340648号公報JP-A-5-340648

本発明は、上記問題に鑑みてなされたものであり、その目的は、多様な流動様式で流入する二相冷媒を圧力損失無しに各配管へ均等に供給することが可能な分配器を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a distributor that can evenly supply two-phase refrigerant flowing in various flow modes to each pipe without pressure loss. That is.

本発明は、前記課題を解決するための手段として、特許請求の範囲の各請求項に記載の気液二相流体の分配器を提供する。
請求項1に記載の発明によれば、気液二相流体の分配器は、上部が円筒状となっている円筒状容器と、前記円筒状容器の上部の円形断面に対して接線方向に接続された入口管と、前記円筒状容器の下部の側壁前記分配管の端部が接続されて、前記円筒状容器の下部の円形断面に対して径方向外側に向かって延びている分配管と、を備えていることを特徴とする。
The present invention provides a gas-liquid two-phase fluid distributor according to each of the claims as means for solving the problems.
According to the first aspect of the present invention, the gas-liquid two-phase fluid distributor is connected in a tangential direction to a cylindrical container having a cylindrical upper part and a circular cross section of the upper part of the cylindrical container. An inlet pipe, and an end of the distribution pipe connected to a lower side wall of the cylindrical container, and a distribution pipe extending radially outward with respect to the circular cross section of the lower part of the cylindrical container ; It is characterized by providing.

入口管が、円筒状容器の円形断面に対して接線方向に接続されているため、二相流体は円筒状容器内で周知の遠心分離作用により入口流動様式に関係なく気相と液相に分離される。液相は、円筒状容器の内面で薄い液膜を形成し、その重力により滴下することと冷媒旋回流の作用とが相まって均一な液膜厚さを形成する。均一な厚さを形成した液膜は、旋回しながら下方へ流動して円筒状容器の下部に配設された複数の分配管に至る。この分配管内では、均一な厚さを形成した液膜と気相冷媒が流入するため、気液が均等に混合された二相流体が形成されて流動することとなる。そして、二相流体は、容器内でその重力により移動するのでエネルギロス(圧力損失)は極めて小さい。   Since the inlet tube is connected tangentially to the circular cross section of the cylindrical vessel, the two-phase fluid is separated into the gas phase and the liquid phase in the cylindrical vessel by a well-known centrifugal action regardless of the inlet flow mode. Is done. In the liquid phase, a thin liquid film is formed on the inner surface of the cylindrical container, and dropping by the gravity and the action of the refrigerant swirl flow combine to form a uniform liquid film thickness. The liquid film having a uniform thickness flows downward while swirling and reaches a plurality of distribution pipes arranged at the lower part of the cylindrical container. In this distribution pipe, a liquid film and a gas phase refrigerant having a uniform thickness flow in, so that a two-phase fluid in which gas and liquid are evenly mixed is formed and flows. And since a two-phase fluid moves by the gravity in a container, an energy loss (pressure loss) is very small.

請求項2に記載の発明によれば、気液二相流体の分配器は、円筒状容器の下部が、逆円錐形状に形成されていることを特徴とする。二相流体は容器の内面に沿って旋回流を形成しながら重力により容器下方に向けて流動する際に、遠心分離作用により発生した逆円錐面上の液膜はその遠心力に対し逆円錐面により上向きの分力が作用するので、その落下速度が緩和される。さらには、逆円錐面により(周速がほぼ一定であるので、半径rが小さくなる分)角速度ωが上昇し、遠心力mrωが大きくなり、遠心分離作用が助長される。そのため一層均一な厚さの液膜が逆円錐面上を旋回しながら落下していくこととなる。 According to a second aspect of the present invention, the gas-liquid two-phase fluid distributor is characterized in that the lower portion of the cylindrical container is formed in an inverted conical shape. The two-phase fluid forms a swirling flow along the inner surface of the container and flows toward the bottom of the container due to gravity. Since the upward component force acts, the fall speed is reduced. Further, the angular velocity ω is increased by the inverted conical surface (the radius r is decreased because the peripheral speed is substantially constant), the centrifugal force mrω 2 is increased, and the centrifugal separation action is promoted. Therefore, the liquid film having a more uniform thickness falls while turning on the inverted conical surface.

請求項3に記載の発明によれば、気液二相流体の分配器は、入口管が、前記円筒状容器に接続される直前で湾曲していることを特徴とする。この湾曲部が遠心分離作用を発生させる機能を有するので、その分、遠心分離作用を発生させる円筒状容器を小さくすることが可能となる。   According to a third aspect of the present invention, the gas-liquid two-phase fluid distributor is characterized in that the inlet pipe is curved immediately before being connected to the cylindrical container. Since the curved portion has a function of generating a centrifugal separation action, it is possible to reduce the cylindrical container that generates the centrifugal separation action accordingly.

請求項4に記載の発明によれば、冷凍サイクルは、エジェクタの下流に請求項1から3のいずれか1項に記載の分配器を備えることを特徴とする。   According to the invention described in claim 4, the refrigeration cycle includes the distributor according to any one of claims 1 to 3 downstream of the ejector.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は本発明に係る分配器の第1実施形態を模式図で表したものであり、図1(a)は、分配器の上面図を、図1(b)は分配器の側面断面図を表している。図1において、符号10は第1実施形態の分配器、1は円筒状容器、2は入口管、3は分配管、である。
(First embodiment)
FIG. 1 schematically shows a first embodiment of a distributor according to the present invention. FIG. 1A is a top view of the distributor, and FIG. 1B is a side sectional view of the distributor. Represents. In FIG. 1, reference numeral 10 denotes a distributor according to the first embodiment, 1 denotes a cylindrical container, 2 denotes an inlet pipe, and 3 denotes a distribution pipe.

入口管2は、円筒状容器1の上部の円形断面に対して接線方向に接続されている。円筒状容器1の下部には、複数の分配管3が周方向に均等な角度で分割された位置に接続され、径方向に延びている。すなわち、複数の分配管3は、相互の間隔が均等距離となるように円筒状容器1に接続されている。   The inlet pipe 2 is connected in a tangential direction with respect to the circular cross section of the upper part of the cylindrical container 1. At the lower part of the cylindrical container 1, a plurality of distribution pipes 3 are connected to positions divided at equal angles in the circumferential direction and extend in the radial direction. That is, the plurality of distribution pipes 3 are connected to the cylindrical container 1 so that the distance between them is an equal distance.

そして、気液二相冷媒(例えば、液相の気相に対する比は約0.3容積%)は入口管2より円筒状容器1内にその外周部接線方向から流入して、円筒状容器1内で旋回する過程でこれに作用する遠心力により気体aと液体bに分離し、重い液体bは外周側に、軽い気体aは中央部に集まる。気体aは旋回しながら移動する過程で均一圧力となって流出口3aから分配管3に流入する。   A gas-liquid two-phase refrigerant (for example, the ratio of the liquid phase to the gas phase is about 0.3% by volume) flows into the cylindrical container 1 from the inlet pipe 2 from the tangential direction of the outer periphery thereof, and the cylindrical container 1 The gas a and the liquid b are separated by the centrifugal force acting on this in the process of turning inside, the heavy liquid b gathers at the outer peripheral side, and the light gas a gathers at the center. The gas a becomes a uniform pressure in the process of moving while swirling, and flows into the distribution pipe 3 from the outlet 3a.

一方、液体bは、円筒壁1aの内面に沿って旋回しかつその重力により自由落下し、旋回しながら液膜を形成し、進むに従って表面張力作用により液膜の厚さが全周に亘って均一な厚さとなって各分配管3に流入する。なお、液相体積割合0.3容積%のとき液膜厚さは約0.1mm程度である。液体bは、自由落下することによりエネルギロスが無く、下方へ移動することが可能となる。   On the other hand, the liquid b swirls along the inner surface of the cylindrical wall 1a and freely falls by its gravity, forms a liquid film while swirling, and the thickness of the liquid film over the entire circumference by the surface tension action as it advances. A uniform thickness flows into each distribution pipe 3. When the liquid phase volume ratio is 0.3% by volume, the liquid film thickness is about 0.1 mm. The liquid b is free to fall and has no energy loss, and can move downward.

こうして、分配管3付近では、液体bは全周にわたって均一厚さの薄膜となり、また、気体aは全周に亘って均一圧力となって各分配管3に流入するので、気液二相冷媒は各々均等に分配される。逆に、分配管3の取付位置の間隔を不等とすれば、各分配管3への分配比率を変えることも可能である。   Thus, in the vicinity of the distribution pipe 3, the liquid b becomes a thin film having a uniform thickness over the entire circumference, and the gas a flows into the distribution pipe 3 with a uniform pressure over the entire circumference. Are distributed equally. On the contrary, if the intervals between the mounting positions of the distribution pipes 3 are unequal, the distribution ratio to each distribution pipe 3 can be changed.

(第2実施形態)
図2は本発明に係る分配器の第2実施形態の側面断面図を模式図で表したものである。上面図は、図1(a)と同じになるので掲載を省略する。第2実施形態の分配器は、円筒状容器のみが第1実施形態と異なる。したがって、第1実施形態の部分で実質的に同じ部分については、同じ参照符号を付すことによりその説明を省略する。
(Second Embodiment)
FIG. 2 is a schematic side view of a second embodiment of the distributor according to the present invention. The top view is the same as FIG. The distributor of the second embodiment is different from the first embodiment only in the cylindrical container. Therefore, about the substantially same part in the part of 1st Embodiment, the description is abbreviate | omitted by attaching | subjecting the same referential mark.

図2において、符号20は第2実施形態の分配器、21は上部21bが円筒状で下部21cが逆円錐状となった容器(以下、「上部円筒状容器」と言う)である。   In FIG. 2, reference numeral 20 denotes a distributor according to the second embodiment, and 21 denotes a container having an upper part 21 b in a cylindrical shape and a lower part 21 c in an inverted conical shape (hereinafter referred to as “upper cylindrical container”).

二相冷媒が容器21の内面21aに沿って旋回流を形成しながら容器21下方に向けて流動する際に、遠心分離作用により発生した逆円錐面上の液膜は、その遠心力に対し逆円錐面21cにより上向きの分力が作用するので、その落下速度が緩和される。さらには、逆円錐面により角速度ωが上昇し遠心分離作用が助長される。そのため一層均一な厚さの液膜が逆円錐面上を旋回落下していくこととなる。   When the two-phase refrigerant flows toward the lower side of the container 21 while forming a swirling flow along the inner surface 21a of the container 21, the liquid film on the reverse conical surface generated by the centrifugal separation is opposite to the centrifugal force. Since the upward component force acts by the conical surface 21c, the falling speed is reduced. Furthermore, the angular velocity ω is increased by the inverted conical surface, and the centrifugal separation action is promoted. Therefore, a liquid film having a more uniform thickness turns and falls on the inverted conical surface.

なお、円錐の切断頂部付近(すなわち、分配管接続部付近)の円形断面の直径D2は、入口管内径D1より大きいことが好ましい。絞り効果による圧力損失を避けるためである。また円錐の傾斜角は、容器入口における流速、冷媒の乾き度、D1、D2等のパラメータにより最適値が設定される。   In addition, it is preferable that the diameter D2 of the circular cross section near the cutting top of the cone (that is, near the distribution pipe connecting portion) is larger than the inlet pipe inner diameter D1. This is to avoid pressure loss due to the throttling effect. The cone inclination angle is set to an optimum value according to parameters such as the flow velocity at the container inlet, the dryness of the refrigerant, and D1 and D2.

こうして、分配管3付近では、液体bは全周に亘って一層均一な厚さの薄膜となり、また、気体aは全周に亘って均一圧力となって各分配管3に流入するので、気液二相冷媒はより均等に分配される。   Thus, in the vicinity of the distribution pipe 3, the liquid b becomes a thin film having a more uniform thickness over the entire circumference, and the gas a flows into the distribution pipe 3 with a uniform pressure over the entire circumference. The liquid two-phase refrigerant is distributed more evenly.

(第3実施形態)
図3は本発明に係る分配器の第3実施形態の上面図を模式図で表したものである。側面断面図は、図1(b)と同じになるので掲載を省略する。第3実施形態の分配器は、入口管のみが第1実施形態と異なる。したがって、第1実施形態の部分で実質的に同じ部分については、同じ参照符号を付すことによりその説明を省略する。
(Third embodiment)
FIG. 3 is a schematic diagram showing a top view of a third embodiment of the distributor according to the present invention. The side sectional view is the same as FIG. The distributor of the third embodiment is different from the first embodiment only in the inlet pipe. Therefore, about the substantially same part in the part of 1st Embodiment, the description is abbreviate | omitted by attaching | subjecting the same referential mark.

図2において、符号30は第3実施形態の分配器、32は入口管である。入口管32は、円筒状容器1に接続される直前で湾曲している湾曲部32aを有する。この湾曲部32aが遠心分離作用を発生させる機能を有するので、その分、円筒状容器1を小さくすることが可能となる。   In FIG. 2, reference numeral 30 denotes a distributor according to the third embodiment, and 32 denotes an inlet pipe. The inlet pipe 32 has a curved portion 32 a that is curved immediately before being connected to the cylindrical container 1. Since the curved portion 32a has a function of generating a centrifugal separation action, the cylindrical container 1 can be made smaller accordingly.

本発明に係る分配器の第1実施形態を模式図で表したものである。1 is a schematic view of a first embodiment of a distributor according to the present invention. 本発明に係る分配器の第実施形態を模式図で表したものである。FIG. 2 is a schematic diagram showing a second embodiment of a distributor according to the present invention. 本発明に係る分配器の第実施形態を模式図で表したものである。FIG. 3 schematically shows a third embodiment of a distributor according to the present invention. 従来のエジェクタを備えた冷凍サイクルである。It is the refrigerating cycle provided with the conventional ejector. 図4のサイクルを構成する室内熱交換器の斜視図である。It is a perspective view of the indoor heat exchanger which comprises the cycle of FIG. 図4のサイクルを構成するエジェクタと分配器である。It is the ejector and distributor which comprise the cycle of FIG.

符号の説明Explanation of symbols

1 円筒状容器
2 入口管
3 分配管
10 第1実施形態の分配器
DESCRIPTION OF SYMBOLS 1 Cylindrical container 2 Inlet pipe 3 Distribution pipe 10 Distributor of 1st Embodiment

Claims (4)

入口管(2、32)から流入した気液二相流体を複数の分配管(3)に分配する気液二相流体の分配器であって、
上部が円筒状となっている円筒状容器(1、21)と、
前記円筒状容器の上部の円形断面に対して接線方向に接続された前記入口管(2、32)と、
前記円筒状容器の下部の側壁前記分配管(3)の端部が接続されて、前記円筒状容器の下部の円形断面に対して径方向外側に向かって延びている前記分配管(3)と、
を備えていることを特徴とする気液二相流体の分配器(10、20、30)。
A gas-liquid two-phase fluid distributor that distributes a gas-liquid two-phase fluid flowing from an inlet pipe (2, 32) to a plurality of distribution pipes (3),
A cylindrical container (1, 21) whose upper part is cylindrical,
The inlet pipe (2, 32) connected tangentially to the circular cross section of the upper part of the cylindrical container;
An end of the distribution pipe (3) is connected to the lower side wall of the cylindrical container, and the distribution pipe (3) extends radially outward with respect to the circular cross section of the lower part of the cylindrical container. When,
A gas-liquid two-phase fluid distributor (10, 20, 30) characterized by comprising:
前記円筒状容器(21)の下部(21c)が、逆円錐形状に形成されていることを特徴とする請求項1に記載の分配器(20)。   The distributor (20) according to claim 1, wherein the lower part (21c) of the cylindrical container (21) is formed in an inverted conical shape. 前記入口管(32)が、前記円筒状容器(1、21)に接続される直前で湾曲していることを特徴とする請求項1または2に記載の分配器。   3. Distributor according to claim 1 or 2, characterized in that the inlet pipe (32) is curved just before being connected to the cylindrical container (1, 21). エジェクタの下流に請求項1から3のいずれか1項に記載の分配器を備えていることを特徴とする冷凍サイクル。   A refrigeration cycle comprising the distributor according to any one of claims 1 to 3 downstream of the ejector.
JP2006182386A 2006-06-30 2006-06-30 Gas-liquid two-phase fluid distributor Expired - Fee Related JP4609388B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006182386A JP4609388B2 (en) 2006-06-30 2006-06-30 Gas-liquid two-phase fluid distributor
US11/821,879 US20080000263A1 (en) 2006-06-30 2007-06-26 Distributor of a gas-liquid two phase fluid
DE102007029342A DE102007029342A1 (en) 2006-06-30 2007-06-26 Distributor e.g. for gas-liquid two phase fluid, has cylindrical vessel with cylindrical upper part and inlet pipe is connected in tangential direction with respect to circular cross section of upper portion of cylindrical vessel
CN200710109516XA CN101097104B (en) 2006-06-30 2007-06-27 Gas-liquid two-phase liquid distributor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006182386A JP4609388B2 (en) 2006-06-30 2006-06-30 Gas-liquid two-phase fluid distributor

Publications (2)

Publication Number Publication Date
JP2008008599A JP2008008599A (en) 2008-01-17
JP4609388B2 true JP4609388B2 (en) 2011-01-12

Family

ID=38777177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006182386A Expired - Fee Related JP4609388B2 (en) 2006-06-30 2006-06-30 Gas-liquid two-phase fluid distributor

Country Status (4)

Country Link
US (1) US20080000263A1 (en)
JP (1) JP4609388B2 (en)
CN (1) CN101097104B (en)
DE (1) DE102007029342A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832458B2 (en) * 2008-03-13 2011-12-07 株式会社デンソー Vapor compression refrigeration cycle
US10527329B2 (en) 2008-04-18 2020-01-07 Denso Corporation Ejector-type refrigeration cycle device
WO2009128271A1 (en) * 2008-04-18 2009-10-22 株式会社デンソー Ejector-type refrigeration cycle device
JP5003665B2 (en) * 2008-04-18 2012-08-15 株式会社デンソー Ejector refrigeration cycle
CN101907376B (en) * 2009-06-02 2012-07-25 江森自控楼宇设备科技(无锡)有限公司 Device for distributing refrigerant in refrigeration system
JP4894942B2 (en) * 2009-06-12 2012-03-14 ダイキン工業株式会社 Divider, expansion valve provided with the diverter, and refrigeration apparatus provided with the expansion valve
US8434324B2 (en) * 2010-04-05 2013-05-07 Denso Corporation Evaporator unit
US20110259551A1 (en) * 2010-04-23 2011-10-27 Kazushige Kasai Flow distributor and environmental control system provided the same
JP5083390B2 (en) * 2010-08-02 2012-11-28 ダイキン工業株式会社 Refrigerant flow divider, refrigerant flow divider integrated expansion device and refrigeration device
CN102003845B (en) * 2010-09-19 2012-07-04 深圳麦克维尔空调有限公司 Fluid distributor for air heat exchanger of air conditioner
JP5640857B2 (en) * 2011-03-28 2014-12-17 株式会社デンソー Pressure reducing device and refrigeration cycle
DK2718644T3 (en) 2011-06-10 2020-11-30 Carrier Corp EJECTOR WITH DRIVING POWER VILLAGE
JP5920110B2 (en) 2012-02-02 2016-05-18 株式会社デンソー Ejector
CN102607216A (en) * 2012-03-28 2012-07-25 湖南科技大学 Cyclone refrigerant branching device
CN103673419B (en) * 2012-09-12 2016-06-01 珠海格力电器股份有限公司 A kind of air-conditioning and air conditioner diverter thereof
JP6079552B2 (en) * 2012-11-20 2017-02-15 株式会社デンソー Ejector
JP5999071B2 (en) * 2012-12-27 2016-09-28 株式会社デンソー Ejector
JP6119566B2 (en) * 2012-12-27 2017-04-26 株式会社デンソー Ejector
CN103206882B (en) * 2013-03-29 2015-05-20 合肥通用机械研究院 Pipe fitting for improving efficiency of evaporator by enabling refrigerant to flow spirally
WO2015073106A1 (en) * 2013-11-18 2015-05-21 Carrier Corporation Flash gas bypass evaporator
CN103657492A (en) * 2013-12-09 2014-03-26 云南大红山管道有限公司 Energy-saving efficient self-stirring container
CN106796067A (en) * 2014-10-08 2017-05-31 三菱电机株式会社 Refrigerant piping and heat pump assembly
CN106322807B (en) * 2015-07-03 2021-05-28 开利公司 Ejector heat pump
CN106016850B (en) * 2016-07-15 2018-05-18 珠海格力电器股份有限公司 A kind of air-conditioning, dry type shell and tube evaporator and its coolant distributor component
CN106933268B (en) * 2017-02-28 2018-09-25 中国石油大学(北京) Laboratory steam quality monitoring device, monitoring method and steam drive experimental provision
JP2018178781A (en) * 2017-04-05 2018-11-15 株式会社デンソー Ejector, fuel battery system using the same and refrigeration cycle system
FR3081985B1 (en) * 2018-05-31 2020-10-09 Valeo Systemes Thermiques FLUID DISTRIBUTOR, AND CORRESPONDING THERMAL EXCHANGER.
AU2019280973A1 (en) 2018-06-07 2020-12-17 Amgen Inc. Detection assay for protein-polynucleotide conjugates
CN110260570A (en) * 2019-06-21 2019-09-20 珠海格力电器股份有限公司 Eddy flow generating elements, current divider, shunt assembly, heat exchanger and the air conditioner of current divider

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141331U (en) * 1974-05-10 1975-11-20
JPS57207771A (en) * 1981-06-15 1982-12-20 Mitsubishi Heavy Ind Ltd Distributor for refrigerant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2084755A (en) * 1935-05-03 1937-06-22 Carrier Corp Refrigerant distributor
US2063380A (en) * 1935-10-18 1936-12-08 Peerless Ice Machine Company Refrigerant distributor
US4372766A (en) * 1981-11-16 1983-02-08 Chicago Bridge & Iron Company Apparatus and method for concentrating a liquid mixture by freezing the solvent
JP3358250B2 (en) * 1992-10-21 2002-12-16 株式会社デンソー Refrigerant evaporator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141331U (en) * 1974-05-10 1975-11-20
JPS57207771A (en) * 1981-06-15 1982-12-20 Mitsubishi Heavy Ind Ltd Distributor for refrigerant

Also Published As

Publication number Publication date
JP2008008599A (en) 2008-01-17
CN101097104B (en) 2011-03-30
DE102007029342A1 (en) 2008-01-03
CN101097104A (en) 2008-01-02
US20080000263A1 (en) 2008-01-03

Similar Documents

Publication Publication Date Title
JP4609388B2 (en) Gas-liquid two-phase fluid distributor
US6574986B2 (en) Oil separator and outdoor unit with the oil separator
US7131292B2 (en) Gas-liquid separator
JP5182159B2 (en) Ejector-type decompression device and refrigeration cycle provided with the same
KR102266411B1 (en) Cyclone for separation of gas-liquid mixture, and a refrigerant accumulator containing this cyclone
JP2008030034A (en) Inflow device for fluid fed tangentially to target device
US6430958B1 (en) Suction accumulator for air conditioning systems
CN104903594B (en) Ejector
JP2008527253A5 (en)
CN107525313B (en) Flash evaporator and air conditioning system with same
CN106839531A (en) A kind of gas bypass micro-channel evaporator
US6494935B2 (en) Vortex generator
EP1681522B1 (en) Gas liquid separator
JP2018155485A (en) Gas-liquid separation device and refrigeration device including gas-liquid separation device
JP2006266524A (en) Accumulator
CN109945555A (en) The dispenser of air conditioner
JP2012170863A (en) Gas-liquid separator
JP2022173565A (en) Accumulator and refrigeration cycle
CN106985637B (en) A kind of automobile air-conditioning refrigeration equipment
US1961408A (en) Spray head
JPH062990A (en) Refrigerant flow dividing device
CN209960810U (en) Refrigerant distributor and evaporator
JP2599831Y2 (en) Gas-liquid separator for space
CN206739683U (en) A kind of gas bypass micro-channel evaporator
JP6459235B2 (en) Gas-liquid separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4609388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees