JPH062990A - Refrigerant flow dividing device - Google Patents

Refrigerant flow dividing device

Info

Publication number
JPH062990A
JPH062990A JP4202876A JP20287692A JPH062990A JP H062990 A JPH062990 A JP H062990A JP 4202876 A JP4202876 A JP 4202876A JP 20287692 A JP20287692 A JP 20287692A JP H062990 A JPH062990 A JP H062990A
Authority
JP
Japan
Prior art keywords
refrigerant
main body
inflow pipe
pipe
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4202876A
Other languages
Japanese (ja)
Other versions
JP2745981B2 (en
Inventor
Yoshiyuki Funakoshi
美之 船越
Mamoru Misaki
守 三▲崎▼
Yoichi Onuma
洋一 大沼
Hikoichi Tsuji
彦市 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4202876A priority Critical patent/JP2745981B2/en
Publication of JPH062990A publication Critical patent/JPH062990A/en
Application granted granted Critical
Publication of JP2745981B2 publication Critical patent/JP2745981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/45Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow control on the upstream side of the diverging point, e.g. with spiral structure for generating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE:To improve the dividing performance of a refrigerant flow dividing device for dividing a drifting refrigerant flow from an inlet pipe into a plurality of discharge pipes and to control the generation of a pulsation sound upon diverting. CONSTITUTION:In a flow passage from an inlet pipe 21 connected to an end side 3 of a main body 1 to an agitating area 2 in the main body 1, a throttle part 16 having a diameter smaller than the inside diameter of the inlet pipe 21 is disposed coaxially therewith. On the bottom 8 of the agitating area 2, a conical part 1 protrudes, whose top 10 is separated from the throttle part 16 and provided substantially coaxially therewith, to radially guide a refrigerant from the throttle part 16. The respective inlet ports 23 of a plurality of inlet pipes 22 connected to the bottom 8 are arranged at points by which the concentric circle around the axis is equally divided and at substantially intermediate positions between the throttle 16 and the top 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は冷凍装置等に使用され
る冷媒分流器に係るもので、流入する冷媒を複数の管路
に分配する冷媒分流器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant flow divider used in a refrigerating apparatus or the like, and more particularly to a refrigerant flow divider which divides an inflowing refrigerant into a plurality of pipelines.

【0002】[0002]

【従来の技術】従来の冷媒分流器としては、図2に示す
ものを挙げることができる(例えば特公昭60−255
9号公報)。この冷媒分流器は、上記本体51と、この
本体51の一端側に接続される流入管71と、両者5
1、71を接続する接続部材65とを有している。上記
接続部材65には、上記流入管51の内径よりも径小
で、かつそれと同軸上の位置に貫通孔66が穿設されて
おり、この貫通孔66によって本体内部52と流入管7
1とを連通すると共に、その流入経路に段差部68を形
成している。この段差部68に流入冷媒を衝突させると
共に、このときに生じる流入冷媒の乱れによって、冷媒
配管内においてすでに生じている冷媒の偏流状態を緩和
し、その後に上記貫通孔66に流通させ、本体内部52
に噴出させている。そしてこの冷媒を、その頂点が上記
貫通孔66の近傍で略同軸上にあって、貫通孔66に対
向して配置されているコーン部61を介して、直接に各
流出管72に分配している。
2. Description of the Related Art As a conventional refrigerant shunt, one shown in FIG. 2 can be cited (for example, Japanese Patent Publication No. 60-255).
No. 9). This refrigerant flow divider includes the main body 51, an inflow pipe 71 connected to one end of the main body 51, and both of them.
It has a connecting member 65 for connecting 1 and 71. A through hole 66 is formed in the connecting member 65 at a position smaller than the inner diameter of the inflow pipe 51 and coaxial therewith, and the through hole 66 allows the inside 52 of the main body and the inflow pipe 7 to pass through.
1 and the step portion 68 is formed in the inflow path. The stepped portion 68 is caused to collide with the inflowing refrigerant, and the turbulence of the inflowing refrigerant generated at this time alleviates the uneven flow state of the refrigerant that has already occurred in the refrigerant pipe, and then allows the refrigerant to flow through the through hole 66, and the inside of the main body 52
Is spurting out. Then, this refrigerant is directly distributed to each outflow pipe 72 via a cone portion 61 having its apex located substantially coaxially in the vicinity of the through hole 66 and facing the through hole 66. There is.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記冷媒
分流器の段差部68への冷媒の衝突だけでは、依然とし
て完全に冷媒の偏流状態は解消しておらず、また上記貫
通孔66から噴出する冷媒は、コーン部61を経て直接
に各流出管72に流入するので、その冷媒の分配は不均
等のままであるという問題がある。加えて上記コーン部
61の頂点が上記貫通孔66の近傍まで突出しているた
め、本体内部52の容積が減少し、冷媒の脈動音を吸収
しきれないという問題もある。
However, only the collision of the refrigerant with the stepped portion 68 of the refrigerant flow divider has not completely eliminated the uneven flow state of the refrigerant, and the refrigerant ejected from the through hole 66 does not remain. Since it directly flows into each outflow pipe 72 via the cone portion 61, there is a problem that the distribution of the refrigerant remains uneven. In addition, since the apex of the cone portion 61 projects to the vicinity of the through hole 66, there is a problem that the volume of the inside 52 of the main body decreases and the pulsating sound of the refrigerant cannot be absorbed.

【0004】一方、図3に示す他の構造の冷媒分流器
(例えば実開平3−103965号公報)では、本体5
1の一端側に接続されている流入管71からの冷媒を、
一旦本体内部52に収容している。そしてこの冷媒を、
その流入口73が本体内部52の中程に同一高さ位置で
等分布している流出管72へと分配するようにしてい
る。この冷媒分流器は、第1の冷媒分流器のようにコー
ン部61を有していないため、その内部52の容積を大
きく確保できるので、第1の冷媒分流器よりはその脈動
音の発生を抑制し得るものの、冷媒を各流出管72に均
等に分配するためには、本体51そのものを精度よく取
付けた上で、各流出管72の挿入角度や挿入長さをそれ
ぞれ同一状態に精度よく保持しなければならないという
構造上の問題がある。
On the other hand, in a refrigerant flow divider having another structure shown in FIG. 3 (for example, Japanese Utility Model Laid-Open No. 3-103965), the main body 5
The refrigerant from the inflow pipe 71 connected to one end side of
It is once housed inside the main body 52. And this refrigerant,
The inflow port 73 is distributed to the outflow pipes 72 that are evenly distributed at the same height in the middle of the main body 52. Since this refrigerant shunt does not have the cone portion 61 unlike the first refrigerant shunt, a large volume of the inside 52 can be secured, so that the pulsating sound is generated more than the first refrigerant shunt. Although it can be suppressed, in order to evenly distribute the refrigerant to each outflow pipe 72, the main body 51 itself is attached with high precision, and the insertion angle and the insertion length of each outflow pipe 72 are kept accurately in the same state. There is a structural problem that must be done.

【0005】この発明は上記従来の欠点を解決するため
になされたものであって、その目的は、高い精度を要す
ることなく良好な分流性能が得られると共に、分流時の
冷媒脈動音の発生を抑制することが可能な冷媒分流器を
提供することにある。
The present invention has been made to solve the above-mentioned conventional drawbacks, and an object thereof is to obtain good flow dividing performance without requiring high accuracy and to generate a refrigerant pulsating sound at the time of flow dividing. It is to provide a refrigerant flow divider that can be suppressed.

【0006】[0006]

【課題を解決するための手段】そこで請求項1の冷媒分
流器は、本体1の一端側3に流入管21を、他端側4に
複数の流出管22をそれぞれ接続すると共に、上記本体
1の内部に撹拌領域2を形成し、上記流入管21からの
冷媒が上記撹拌領域2を経由して、上記各流出管22に
分配される冷媒分流器において、上記流入管21から上
記撹拌領域2へと至る流通経路に、流入管21と略同軸
にその内径よりも径小な絞り部16を設け、上記撹拌領
域2の底部8には、その頂点10が上記絞り部16から
離れた位置に配置されると共に、絞り部16からの冷媒
を放射状に導く錐状部11を突出させ、さらに上記流出
管22の流入口23は、上記軸心を中心とする同心円を
等配する各点であって、上記絞り部16と上記頂点10
との略中間の位置に配置されていることを特徴としてい
る。
Therefore, in the refrigerant distributor of claim 1, an inflow pipe 21 is connected to one end side 3 of the main body 1 and a plurality of outflow pipes 22 are connected to the other end side 4 thereof, and the main body 1 is also connected. In the refrigerant distributor in which the stirring region 2 is formed inside and the refrigerant from the inflow pipe 21 is distributed to the respective outflow pipes 22 via the stirring region 2, the stirring region 2 from the inflow pipe 21 A narrowed portion 16 having a diameter smaller than the inner diameter thereof is provided substantially coaxially with the inflow pipe 21 in the flow path leading to, and the apex 10 of the bottom portion 8 of the stirring region 2 is located at a position away from the narrowed portion 16. The conical portion 11 which is arranged and guides the refrigerant from the throttle portion 16 radially is projected, and the inflow port 23 of the outflow pipe 22 is a point at which concentric circles centering on the axis are equally arranged. The narrowing portion 16 and the apex 10
It is characterized in that it is arranged at a position approximately in the middle of.

【0007】また請求項2の冷媒分流器は、上記錐状部
11の周囲には、その外側が上記流入管21側へと傾斜
する斜面9を形成していることを特徴としている。
Further, the refrigerant distributor of claim 2 is characterized in that a peripheral surface of the conical portion 11 is formed with an inclined surface 9 which is inclined toward the inflow pipe 21 side.

【0008】[0008]

【作用】上記請求項1の冷媒分流器では、すでに偏流状
態にある冷媒が流入しても、絞り部16に衝突すること
による撹拌効果と、絞り部16から高速で噴出する冷媒
が錐状部11に衝突し、周囲に放射状に導かれて撹拌領
域2で循環することによる撹拌効果とによって、上記流
入冷媒の偏流状態を解消し、撹拌領域2内を均一な分散
状態にすることができる。そして流出管22は、その流
入口23が上記絞り部16と上記錐状部11の頂点10
との略中間に位置するように配置しているので、絞り部
16からの直接の冷媒ではなくて、偏流状態の解消した
循環冷媒を流出管21から流出させることができる。し
たがって分流性能を一段と向上させることができる。ま
た上記頂点10が絞り部16から離れているため、撹拌
領域2の容積を大きく確保できるので、上記循環による
撹拌を向上させると共に、分流時の脈動音が吸収でき、
その発生も抑制できる。
In the refrigerant distributor of the first aspect, even if a refrigerant that is already in a non-uniform flow state flows in, the stirring effect by colliding with the throttle portion 16 and the refrigerant ejected from the throttle portion 16 at high speed are conical. With the stirring effect by colliding with 11, and being radially guided to the periphery and circulating in the stirring region 2, the above-mentioned uneven flow state of the inflowing refrigerant can be eliminated, and the stirring region 2 can be made into a uniform dispersion state. The outlet 23 of the outflow pipe 22 has an apex 10 of the constricted portion 16 and the conical portion 11.
Since it is arranged so as to be located approximately in the middle of the above, it is possible to let out not the refrigerant directly from the throttle portion 16 but the circulating refrigerant in which the uneven flow state has been eliminated from the outflow pipe 21. Therefore, the flow dividing performance can be further improved. Further, since the apex 10 is separated from the throttle portion 16, a large volume of the stirring area 2 can be secured, so that stirring by the circulation can be improved and pulsating sound at the time of diversion can be absorbed.
The occurrence can be suppressed.

【0009】上記請求項2の冷媒分流器によれば、錐状
部11から周囲に流れる冷媒を斜面9によって案内する
ことが可能となるため、撹拌効果が向上する。
According to the refrigerant distributor of claim 2, the refrigerant flowing from the conical portion 11 to the periphery can be guided by the inclined surface 9, so that the stirring effect is improved.

【0010】[0010]

【実施例】次にこの発明の冷媒分流器の具体的な実施例
について、図面を参照しつつ詳細に説明する。図1はこ
の発明の一実施例を示す縦断面図である。同図におい
て、1は本体であって、この本体1はその内部に横断面
が円形の撹拌領域2を有する。本体1の上端面3には、
上記撹拌領域2とその軸心5が略同一でわずかに径大の
穿設孔6が、下端面4側に向かって所定距離だけ穿設さ
れている。このため穿設孔6の奥端には、段部7が形成
されることになる。15は接続部材であり、冷媒の流入
管21が接続されている。この接続部材15は、上記穿
設孔6に嵌入され、上記段部7に当接することによって
軸方向が位置決めされ、ろう付によって固定されてい
る。この接続部材15には、上記流入管21の外径より
もわずかに径大である差込孔17が下端面4側に向かっ
て所定の深さまで穿設されると共に、さらにこれに隣接
して、流入管21の内径よりも充分に径小である貫通孔
(絞り部)16が、上記軸心5と略同一になるように穿
設されている。このため上記差込孔17の奥端である貫
通孔16との境には、段差部18が形成されることにな
る。この差込孔17に銅製の流入管21を、その先端が
この段差部18に当接するまで挿入し、ろう付で接合す
ることによって冷媒を撹拌領域2へ流入可能にしてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, specific embodiments of the refrigerant flow divider of the present invention will be described in detail with reference to the drawings. FIG. 1 is a vertical sectional view showing an embodiment of the present invention. In the figure, reference numeral 1 denotes a main body, and the main body 1 has a stirring region 2 having a circular cross section inside thereof. On the upper end surface 3 of the main body 1,
The agitating region 2 and the axial center 5 thereof are substantially the same and a slightly larger diameter perforation hole 6 is bored toward the lower end surface 4 side by a predetermined distance. Therefore, the stepped portion 7 is formed at the rear end of the drilled hole 6. Reference numeral 15 is a connecting member, to which a refrigerant inflow pipe 21 is connected. The connecting member 15 is fitted in the hole 6 and is positioned in the axial direction by coming into contact with the step 7 and fixed by brazing. An insertion hole 17 having a diameter slightly larger than the outer diameter of the inflow pipe 21 is formed in the connection member 15 toward the lower end surface 4 side to a predetermined depth, and further adjacent thereto. A through hole (throttled portion) 16 having a diameter sufficiently smaller than the inner diameter of the inflow pipe 21 is formed so as to be substantially the same as the shaft center 5. Therefore, a step portion 18 is formed at the boundary with the through hole 16 which is the innermost end of the insertion hole 17. The inflow pipe 21 made of copper is inserted into the insertion hole 17 until the tip of the inflow pipe 21 comes into contact with the step portion 18, and is joined by brazing so that the refrigerant can flow into the stirring region 2.

【0011】一方、本体1の下端面4側の底部8の内面
には、その中心部に円錐部(錐状部)11が、またその
外周部に、外側に向かって緩やかな上り傾斜となる斜面
9がそれぞれ形成されている。上記円錐部11は、その
頂点10が上記軸心5上にあると共に、上記斜面9の上
部と略同一の高さ位置であって、上端面3側に突出する
形状のものである。この円錐部11は、その頂点10が
上記貫通孔16の出口に近接して配置されている第1従
来例(図2)のような大きなコーン部ではなく、上記貫
通孔16の出口から充分な距離を置いて配置されている
ので、撹拌領域2の容積を大きく確保することができ
る。また底部8の中心と同心円の円周を等配した各位置
に銅製のキャピラリチューブ(流出管)22が、上端面
3側に向かって上記軸心5と略平行に、その流入口23
が上記頂点10と上記貫通孔16との略中間の位置に配
置されるように挿入されている。そして底部8は、キャ
ピラリチューブ22の挿入角度がずれないように固定で
きる程度の肉厚に形成されている。
On the other hand, on the inner surface of the bottom portion 8 on the lower end surface 4 side of the main body 1, a conical portion (pyramidal portion) 11 is formed at the center portion thereof, and at the outer peripheral portion thereof, there is a gentle upward inclination toward the outside. Each slope 9 is formed. The apex 10 of the conical portion 11 is located on the axial center 5, is at substantially the same height as the upper portion of the slope 9, and has a shape protruding toward the upper end surface 3 side. The cone portion 11 is not a large cone portion such as the first conventional example (FIG. 2) in which the apex 10 is arranged in the vicinity of the outlet of the through hole 16, but is sufficient from the outlet of the through hole 16. Since they are arranged at a distance, a large volume of the stirring area 2 can be secured. Further, a copper capillary tube (outflow pipe) 22 is provided at each position where the circumference of a circle concentric with the center of the bottom portion 8 is equidistantly provided, and an inflow port 23 of the copper capillary tube (outflow pipe) 22 is provided substantially parallel to the axial center 5 toward the upper end surface 3 side.
Are inserted so as to be arranged at a position approximately in the middle between the apex 10 and the through hole 16. The bottom portion 8 is formed with a wall thickness that can be fixed so that the insertion angle of the capillary tube 22 does not shift.

【0012】次に上記構成の冷媒分流器の冷媒の流通状
態を説明する。一般に空気調和機の膨張弁を通過した冷
媒は、それ以後の流通の過程で飽和蒸気から気液に分離
した気液混相の状態となっている。また配管の折り曲が
り部を流体が流通するときには遠心力が作用するが、上
記のような混相の冷媒が流通すると、その比重の差によ
って、例えばある配管断面において、一方の側に液相が
偏って流れる、いわゆる偏流現象が生じることになる。
そしてすでに偏流状態にある冷媒が流入管21から流入
すると、段差部18に衝突することによってその流れが
乱れることになる。この乱れによって、ある程度、気液
両相が撹拌され混合されることになる。さらにこの冷媒
は、流入管21の内径よりも径小である貫通孔16を通
過することによって、その速度を増し、貫通孔16から
噴出することになる。この高速の冷媒の噴流は、その頂
点10が貫通孔16と略同一の軸心5上にある円錐部1
1に衝突し、図1における矢印で示すように、斜面9か
ら本体1の内周面へと飛散し、第1の従来例(図2)よ
りはその内容積が大きくなった撹拌領域2内を循環す
る。この循環によって気液混相の冷媒は、上記衝突によ
る混合状態から一段と撹拌混合が進み、上記偏流状態を
解消することができる。そしてキャピラリチューブ22
は、その流入口23が上記貫通孔16と上記頂点10と
の略中間に位置するまで挿入されているので、高速の冷
媒の噴流を直接その流入口23に受けることはない。こ
のように撹拌領域2が均一な混合状態にあるため、各キ
ャピラリチューブ22に対してその取付精度を高くしな
くても冷媒が均等に分流されることになる。さらに撹拌
領域2の容積を大きくしたので、分流時の脈動音の発生
も抑制される。
Next, the flow state of the refrigerant in the refrigerant distributor having the above structure will be described. Generally, the refrigerant that has passed through the expansion valve of the air conditioner is in a gas-liquid mixed phase in which it is separated from saturated vapor into gas and liquid in the subsequent circulation process. Further, when the fluid flows through the bent portion of the pipe, centrifugal force acts, but when the mixed-phase refrigerant flows as described above, the difference in specific gravity causes the liquid phase to be biased to one side in a certain pipe cross section, for example. A so-called drift phenomenon occurs.
Then, if the refrigerant that is already in a non-uniform flow state flows in from the inflow pipe 21, the flow collides with the step portion 18 and the flow is disturbed. Due to this turbulence, both the gas and liquid phases are agitated and mixed to some extent. Further, this refrigerant passes through the through hole 16 having a diameter smaller than the inner diameter of the inflow pipe 21, thereby increasing the speed thereof and ejecting from the through hole 16. The jet stream of the high-speed refrigerant has a cone 10 whose apex 10 is on the same axis 5 as that of the through hole 16.
1 and then, as shown by the arrow in FIG. 1, scattered from the slope 9 to the inner peripheral surface of the main body 1, and the inside volume of the stirring area 2 became larger than that of the first conventional example (FIG. 2). Circulate. By this circulation, the gas-liquid mixed-phase refrigerant is further agitated and mixed from the mixed state caused by the collision, and the above-mentioned non-uniform flow state can be eliminated. And the capillary tube 22
Is inserted until the inflow port 23 is located approximately in the middle of the through hole 16 and the apex 10, so that the high-speed refrigerant jet is not directly received by the inflow port 23. Since the stirring region 2 is in a uniform mixed state in this way, the refrigerant is evenly divided even without increasing the mounting accuracy of each capillary tube 22. Furthermore, since the volume of the stirring area 2 is increased, the generation of pulsating sound at the time of branching is also suppressed.

【0013】以上の説明のように上記実施例における冷
媒分流器においては、接続部材15の段差部18での冷
媒の衝突による一次撹拌と、広い撹拌領域2での冷媒の
循環による二次撹拌とによって、流入冷媒の偏流状態を
解消し、撹拌領域2内に均等な分散状態を得ることを可
能にしている。そして従来例よりも底部8を厚肉にして
キャピラリチューブ22の挿入角度がずれることがない
ように堅固に固定可能にすると共に、撹拌領域2への挿
入代を大きくしたので、上記冷媒の分流を一段と均等に
実施でき、キャピラリチューブ22の取付精度を、従来
例のように高いものにしなくてもその性能を向上させる
ことができる。また撹拌領域2の容積も大きくしたの
で、分流時に脈動音が発生しても充分に吸収することが
できる。
As described above, in the refrigerant distributor of the above embodiment, the primary agitation by the collision of the refrigerant at the step portion 18 of the connecting member 15 and the secondary agitation by the circulation of the refrigerant in the wide agitation region 2 are performed. By this, it is possible to eliminate the uneven flow state of the inflowing refrigerant and obtain a uniform dispersed state in the stirring region 2. Further, the bottom portion 8 is made thicker than in the conventional example so that the capillary tube 22 can be firmly fixed so that the insertion angle does not shift and the insertion margin into the stirring area 2 is increased, so that the refrigerant is diverted. The performance can be more evenly implemented, and the performance can be improved without increasing the mounting accuracy of the capillary tube 22 as in the conventional example. Further, since the volume of the stirring area 2 is also increased, even if a pulsating sound is generated at the time of branching, it can be sufficiently absorbed.

【0014】[0014]

【発明の効果】以上のように請求項1の冷媒分流器で
は、撹拌領域の容積を大きくすると共に、底部に錐状部
を設けて流入冷媒の循環による撹拌を向上させ、加えて
流出管の流入口が撹拌領域の中程に配置されるように流
入管を挿入しているので、その分流性能を向上させるこ
とができる。また撹拌領域が大きくなることに伴い、分
流時の脈動音の発生も抑制できる。
As described above, in the refrigerant flow divider according to the first aspect of the present invention, the volume of the agitation region is increased, and the conical portion is provided at the bottom to improve the agitation due to the circulation of the inflowing refrigerant. Since the inflow pipe is inserted so that the inflow port is arranged in the middle of the stirring region, the flow dividing performance can be improved. In addition, as the stirring area becomes larger, it is possible to suppress the generation of pulsating sound when the flow is divided.

【0015】また請求項2の冷媒分流器によれば、撹拌
効果が向上するので、分流性能を一段と向上し得る。
Further, according to the refrigerant distributor of the second aspect, the stirring effect is improved, so that the flow dividing performance can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の冷媒分流器の一実施例を示す縦断面
図である。
FIG. 1 is a vertical sectional view showing an embodiment of a refrigerant flow divider of the present invention.

【図2】従来例を示す縦断面図である。FIG. 2 is a vertical sectional view showing a conventional example.

【図3】別の従来例を示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing another conventional example.

【符号の説明】[Explanation of symbols]

1 本体 2 撹拌領域 3 一端側 4 他端側 8 底部 10 頂点 11 錐状部 16 絞り部 21 流入管 22 流出管 23 流入口 1 Main Body 2 Stirring Region 3 One End Side 4 Other End Side 8 Bottom 10 Apex 11 Cone-Shaped Part 16 Throttling Part 21 Inflow Pipe 22 Outflow Pipe 23 Inlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大沼 洋一 滋賀県草津市岡本町字大谷1000番地の2 ダイキン工業株式会社滋賀製作所内 (72)発明者 辻 彦市 滋賀県草津市岡本町字大谷1000番地の2 ダイキン工業株式会社滋賀製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yoichi Onuma Yoichi Onuma 1000 Otani, Okamoto-cho, Kusatsu-shi, Shiga No. 2 at Shiga Works, Daikin Industries, Ltd. (72) Inventor Hiko Tsuji 1000 Otani, Okamoto-cho, Kusatsu-shi, Shiga No. 2 Inside Daikin Industries, Ltd. Shiga Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 本体(1)の一端側(3)に流入管(2
1)を、他端側(4)に複数の流出管(22)をそれぞ
れ接続すると共に、上記本体(1)の内部に撹拌領域
(2)を形成し、上記流入管(21)からの冷媒が上記
撹拌領域(2)を経由して、上記各流出管(22)に分
配される冷媒分流器において、上記流入管(21)から
上記撹拌領域(2)へと至る流通経路に、流入管(2
1)と略同軸にその内径よりも径小な絞り部(16)を
設け、上記撹拌領域(2)の底部(8)には、その頂点
(10)が上記絞り部(16)から離れた位置に配置さ
れると共に、絞り部(16)からの冷媒を放射状に導く
錐状部(11)を突出させ、さらに上記流出管(22)
の流入口(23)は、上記軸心を中心とする同心円を等
配する各点であって、上記絞り部(16)と上記頂点
(10)との略中間の位置に配置されていることを特徴
とする冷媒分流器。
1. An inflow pipe (2) is provided at one end side (3) of the main body (1).
1) is connected to a plurality of outflow pipes (22) on the other end side (4), and a stirring region (2) is formed inside the main body (1), and the refrigerant from the inflow pipe (21) is In the refrigerant flow distributor, which is distributed to each of the outflow pipes (22) via the stirring region (2), an inflow pipe is provided in a flow path from the inflow pipe (21) to the stirring region (2). (2
1), a throttle portion (16) having a diameter smaller than its inner diameter is provided substantially coaxially with the apex (10) of the bottom portion (8) of the stirring area (2) separated from the throttle portion (16). The conical portion (11), which is arranged at a position and radially guides the refrigerant from the throttle portion (16), is projected, and the outflow pipe (22) is further provided.
The inflow port (23) is located at each point that equidistantly arranges concentric circles centered on the axial center, and is located at a position approximately in the middle between the narrowed portion (16) and the apex (10). A refrigerant shunt characterized by.
【請求項2】 上記錐状部(11)の周囲には、その外
側が上記流入管(21)側へと傾斜する斜面(9)を形
成していることを特徴とする請求項1の冷媒分流器。
2. The refrigerant according to claim 1, wherein an outer peripheral surface of the conical portion (11) is formed with an inclined surface (9) inclined toward the inflow pipe (21) side. Shunt.
JP4202876A 1992-06-19 1992-06-19 Refrigerant flow divider Expired - Fee Related JP2745981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4202876A JP2745981B2 (en) 1992-06-19 1992-06-19 Refrigerant flow divider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4202876A JP2745981B2 (en) 1992-06-19 1992-06-19 Refrigerant flow divider

Publications (2)

Publication Number Publication Date
JPH062990A true JPH062990A (en) 1994-01-11
JP2745981B2 JP2745981B2 (en) 1998-04-28

Family

ID=16464666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4202876A Expired - Fee Related JP2745981B2 (en) 1992-06-19 1992-06-19 Refrigerant flow divider

Country Status (1)

Country Link
JP (1) JP2745981B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189725A (en) * 1995-01-05 1996-07-23 Nippondenso Co Ltd Refrigerant evaporator
JP2001091105A (en) * 1999-09-22 2001-04-06 Mitsubishi Electric Corp Refrigerant distributor and method for production thereof
EP2184564A2 (en) * 2008-11-10 2010-05-12 Lg Electronics Inc. Distributor and refrigerant circulation system comprising the same
KR101045759B1 (en) * 2006-06-29 2011-06-30 다이킨 고교 가부시키가이샤 Expansion valve with refrigerant flow dividing structure and refrigeration unit utilizing the same
JP2013242088A (en) * 2012-05-21 2013-12-05 Daikin Industries Ltd Flow divider and air conditioner
WO2014155518A1 (en) * 2013-03-26 2014-10-02 三菱電機株式会社 Expansion valve and cooling cycle device using same
JP5823078B2 (en) * 2013-03-26 2015-11-25 三菱電機株式会社 Expansion valve and refrigeration cycle apparatus using the same
US9564821B2 (en) 2012-09-20 2017-02-07 Fuji Electric Co., Ltd. Switching power supply device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3091321B1 (en) * 2013-12-13 2019-07-17 Nec Corporation Refrigerant distribution device and cooling device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189725A (en) * 1995-01-05 1996-07-23 Nippondenso Co Ltd Refrigerant evaporator
JP2001091105A (en) * 1999-09-22 2001-04-06 Mitsubishi Electric Corp Refrigerant distributor and method for production thereof
KR101045759B1 (en) * 2006-06-29 2011-06-30 다이킨 고교 가부시키가이샤 Expansion valve with refrigerant flow dividing structure and refrigeration unit utilizing the same
US8052064B2 (en) 2006-06-29 2011-11-08 Daikin Industries, Ltd. Expansion valve with refrigerant flow dividing structure and refrigeration unit utilizing the same
EP2184564A2 (en) * 2008-11-10 2010-05-12 Lg Electronics Inc. Distributor and refrigerant circulation system comprising the same
EP2184564A3 (en) * 2008-11-10 2014-09-24 LG Electronics, Inc. Distributor and refrigerant circulation system comprising the same
JP2013242088A (en) * 2012-05-21 2013-12-05 Daikin Industries Ltd Flow divider and air conditioner
US9564821B2 (en) 2012-09-20 2017-02-07 Fuji Electric Co., Ltd. Switching power supply device
WO2014155518A1 (en) * 2013-03-26 2014-10-02 三菱電機株式会社 Expansion valve and cooling cycle device using same
WO2014155816A1 (en) * 2013-03-26 2014-10-02 三菱電機株式会社 Expansion valve and cooling cycle device using same
JP5823078B2 (en) * 2013-03-26 2015-11-25 三菱電機株式会社 Expansion valve and refrigeration cycle apparatus using the same

Also Published As

Publication number Publication date
JP2745981B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
JP4609388B2 (en) Gas-liquid two-phase fluid distributor
JPH062990A (en) Refrigerant flow dividing device
US4221335A (en) Flow controller and support therefor, and flow controller-noise reducer combinations
US11319229B2 (en) Aeration device
CN211854540U (en) Flow guiding type distributor
US5243838A (en) Refrigerant shunt
JP3273198B2 (en) Shower nozzle for squall shower
CN212132965U (en) Distributor with built-in jet orifice plate
JPH05223109A (en) Rectifying duct
JPH11257801A (en) Refrigerant distributor
JP2746681B2 (en) Refrigerant flow divider
CN117128672A (en) Dispenser
JPS63319030A (en) Ejector
CN220669840U (en) Distributor
JP2001116397A (en) Refrigerant distributor
JP2009002557A (en) Refrigerant flow divider and refrigerating device
KR200473576Y1 (en) Distribution guider for fluid distributor
US20220168695A1 (en) Venturi Tube
CN217979378U (en) Dispenser
JP2820443B2 (en) Shunt
JP7172331B2 (en) Ejector
JPH03161063A (en) Foam discharging opening
EP4005659A1 (en) Venturi tube
CN212692180U (en) Divide liquid structure and air conditioner that liquid efficiency is high
JPH11159502A (en) Fluid rectifier

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees