JP4606641B2 - Method and apparatus for determining deterioration of lithium secondary battery - Google Patents

Method and apparatus for determining deterioration of lithium secondary battery Download PDF

Info

Publication number
JP4606641B2
JP4606641B2 JP2001146740A JP2001146740A JP4606641B2 JP 4606641 B2 JP4606641 B2 JP 4606641B2 JP 2001146740 A JP2001146740 A JP 2001146740A JP 2001146740 A JP2001146740 A JP 2001146740A JP 4606641 B2 JP4606641 B2 JP 4606641B2
Authority
JP
Japan
Prior art keywords
battery
determination
time
deterioration
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001146740A
Other languages
Japanese (ja)
Other versions
JP2002340997A (en
Inventor
正弥 宇賀治
徹 松井
聡 倉中
芳明 新田
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001146740A priority Critical patent/JP4606641B2/en
Publication of JP2002340997A publication Critical patent/JP2002340997A/en
Application granted granted Critical
Publication of JP4606641B2 publication Critical patent/JP4606641B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池の劣化判定方法および劣化判定装置に関する。
【0002】
【従来の技術】
リチウム二次電池は、高温環境下で、充電深度が深い状態のまま長時間保存したり充放電サイクルを行ったりすると、電池が劣化し、容量が低下する。いったん容量が低下した電池は、たとえ充分な充電を行ったとしても元の電池容量まで回復しない。これは、電解液の分解、電解液と電極材料との界面における不可逆な化学反応、電極材料の不可逆な相転移等によるものと考えられている。このような電池の劣化は、環境温度、保存時間および充放電サイクル条件に大きく依存している。そのため、従来は、電池を分解せずにその劣化の程度を正確に判定することは困難であった。
【0003】
以下にこれまでに提案された代表的な二次電池の劣化判定方法を記載する。
(1)電池の内部インピーダンスを計測する方法:特開平8−254573号公報、特開平8−273705号公報など
(2) 電池の構成要素である活物質の電気抵抗を測定する方法:特開昭56−103875号公報など
(3) 充放電のサイクル数をカウントする方法:特開平5−74501号公報、特開平6−20724号公報など
【0004】
【発明が解決しようとする課題】
上記(1)および(2)の二次電池の劣化判定方法は、二次電池の劣化の程度を間接的に推定する方法である。しかし、電池特性の劣化の程度は、電池の使用方法、使用環境などにより大きく異なるため、正確に把握できないという問題がある。また、上記(1)および(2)のような方法の場合、連続充放電中に電池の内部インピーダンスや活物質の電気抵抗を測定することが非常に困難である。そのため、電池の充放電を一時中止して測定しなければならないという問題もある。
【0005】
また、上記(3)の二次電池の劣化判定方法は、充放電のサイクル数を単純にカウントするものである。このような方法では、浅い充放電の繰り返しを経た電池と深い充放電の繰り返しを経た電池とでは劣化状態が異なることから、正確に劣化の程度を判定することは非常に困難である。
【0006】
本発明は、以上の問題点を鑑み、リチウム二次電池の劣化の度合いを精度良く判定できる劣化判定方法および劣化判定装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、リチウム二次電池の定電流充電または定電流放電を行いながら所定時間あたりの電池電圧の変化(ΔV)を逐次求め、前記ΔVが所定値以下である時間を積算し、得られた積算時間から判定パラメータを決定し、前記判定パラメータおよび所定の判定基準値を用いて、式(1):
劣化率(%)=100×(判定基準値−判定パラメータ)÷判定基準値
から電池の劣化率を算出することを特徴とするリチウム二次電池の劣化判定方法に関する。
【0008】
前記判定パラメータとしては、前記積算時間そのものを用いてもよく、積算時間と定電流充電または定電流放電における電流値との積から求められた電気量を用いてもよい。
【0009】
前記判定基準値は、電池の環境温度に依存することが多い。そこで、判定基準値を電池の環境温度の関数で表し、判定基準値を温度によって変えることが好ましい。
【0010】
本発明は、また、(1)リチウム二次電池の定電流充電または定電流放電を行いながら電池電圧を逐次測定する電圧検知手段1、(2)手段1で得られたデータから所定時間あたりの電池電圧の変化(ΔV)を逐次求め、前記ΔVが所定値以下である時間を積算し、得られた積算時間から判定パラメータを決定する計算手段2、(3)所定の判定基準値を記憶する記憶手段3、(4)前記判定パラメータおよび前記判定基準値を用いて、式(1):
劣化率(%)=100×(判定基準値−判定パラメータ)÷判定基準値
から電池の劣化率を算出する劣化率判定手段4、を具備するリチウム二次電池の劣化判定装置に関する。
【0011】
本発明においては、電池の定電流充電または定電流放電を行いながら、一定の時間間隔で電池電圧を逐次測定し、所定時間あたりの電池電圧の変化(ΔV)、すなわち、ある測定時点における電池電圧とその次の測定時点における電池電圧との差が所定値以下である時間を積算する。ここで、ΔVが所定値以下であるときは、電池の充電曲線または放電曲線が平坦になる。従って、本発明で用いる判定パラメータとしては、横軸を時間、縦軸を電池電圧とする充電曲線または放電曲線において、平坦部分を与える横軸幅を用いることができる。
【0012】
【発明の実施の形態】
リチウム二次電池の正極および負極には、リチウムが可逆的に出入りできる材料が含まれている。例えば、正極材料としてはLiCoO2、LiNiO2、LiMn24などの遷移金属酸化物が、負極材料としてはグラファイト、低温焼成炭素などの炭素材料が用いられている。これらの材料の構造は、充放電時に大きく変化することが知られている。
【0013】
例えば、正極に用いられるLiCoO2の場合、リチウムの脱離に伴って組成が変化し、それに伴って結晶構造もそれぞれ格子定数が異なる六方晶(i)から六方晶(ii)へ変化し、二相の共存状態になる。結晶構造は、その後、六方晶(ii)の単相状態、単斜晶の単相状態を経て、再び六方晶(ii)に変化していく。
【0014】
また、負極に用いられるグラファイトの場合、リチウムの挿入・脱離に伴い、ステージ構造と呼ばれる層構造の変化を示すことが知られている。グラファイトは、単相状態と二相共存状態とを繰り返しながら、電池の満充電までに、少なくとも6種のステージ構造を経過する。
【0015】
通常、電池電圧(V)は、正極の電位(V+)と負極の電位(V−)との差{(V+)−(V−)}として表される。各電極の電位は電極材料の組成に大きく依存している。従って、各電極に含まれる材料が充放電中に構造変化を起こす場合、電池電圧も大きく変化する。電極材料が充放電中に単相状態や二相以上の共存状態を経由する場合を考えると、電極の電位は、電極材料が単相状態のときには、電極材料の組成に依存して変化するが、二相以上の共存状態のときには、ほぼ一定になる。
【0016】
高温環境下で、リチウム二次電池を放置したり充放電サイクルを繰り返したりすると、正極材料および負極材料の変化や容量低下を伴う不可逆な反応が起こり、電池特性が劣化する。そして、正極電位(V+)および負極電位(V−)も変化して、電池電圧が大きく変化する。ここで、電池の劣化の程度は、サイクル数、放置温度、放置期間の違いにより大きく異なるため、見積もることが困難であるが、電池電圧を測定することは可能である。また、電池電圧の変化は、上述のように、電池の劣化と直接関連する正極材料および負極材料の変化や容量低下と密接な関係を有する。
【0017】
そこで、本発明では、電池の定電流充電または定電流放電時に電池電圧を逐次測定し、ある測定時点における電池電圧とその次の測定時点における電池電圧との差を求め、これに基づいて電池の劣化を判定する。以下にその手順を示す。
【0018】
まず、判定基準値を決定するために、あらかじめ劣化していない電池の定電流充電または定電流放電時の電池電圧Vを逐次測定し、所定時間あたりの電池電圧の変化ΔVを求める。ΔVは、正極および負極の電位の変化率が同程度の場合には小さくなる。逆に、正極および負極の電位の変化率の差が大きくなると、ΔVも大きくなる。
【0019】
ΔVが上述のように電極材料の構造に依存することを考えると、正極材料および負極材料の構造が、いずれも二相以上の共存状態、またはいずれも単相状態である場合、両極の電位変化が互いに近くなり、ΔVは小さくなる。一方、正極材料および負極材料のどちらか一方が二相以上の共存状態であり、他方が単相状態である場合、ΔVは大きくなる。
【0020】
そこで、本発明では、劣化していない電池のΔVが、あらかじめ定めた所定値以下である時間の積算値を求める。そして、得られた積算時間から判定基準値を決定する。
【0021】
次に、劣化した電池のΔVが、あらかじめ定めた所定値以下である時間の積算値を求める。そして、得られた積算時間から判定パラメータを決定する。
【0022】
電池の劣化の程度が大きいほど、ΔVが大きい時間が長くなり、ΔVが小さい時間は短くなる。すなわち、電池の劣化の程度が大きいほど、前記積算値は小さくなる。判定パラメータは、前記積算値と相関しているため、前記積算値が小さくなると、判定パラメータも小さくなり、判定基準値との差は大きくなる。従って、判定基準値と判定パラメータとの差から、電池の劣化の程度を判定することができる。
【0023】
言い換えると、劣化していない電池の各電極材料が二相以上の共存状態である時間を判定基準値とし、劣化した電池の各電極材料が二相以上の共存状態である時間を判定パラメータとして、判定基準値と判定パラメータとの差から、電池の劣化の程度を判定することができる。
【0024】
電池電圧の逐次測定における測定時点の時間間隔(ΔT)は、電流値(A)に依存するが、定電流充電または定電流放電における全充電電気量または全放電電気量(Ah)と次式:
ΔT<(全充電電気量または全放電電気量)÷(電流値×100)
の関係を有することが好ましい。すなわちΔTは全充電時間または全放電時間の1%以下であることが望ましい。そして、ΔTをΔVを与える所定時間として用いる。
【0025】
ΔVのあらかじめ定められた所定値としては、電圧測定器にも依存するが、例えば通常の電池電圧の0.1%以下とすることが好ましい。すなわちリチウム二次電池の場合、平均的な電池電圧が3.6〜3.7Vであることから、前記所定値としては3.6〜3.7mV以下とすることが好ましい。
【0026】
なお、電池電圧は、電解液の分解等の副反応が起こらなければ、充電および放電のどちらにおいても基本的に同じ挙動を示す。従って、充電時と放電時のどちらからでも劣化率を判定できる。
【0027】
判定基準値は、電圧測定時の電池の環境温度の関数でもある。従って、電圧測定時の電池の環境温度によって、判定基準値を変化させることが好ましい。環境温度と判定基準値との関係はあらかじめ調べておけばよい。
【0028】
次に、本発明の電池の劣化判定装置の構成の概略を図1に示す。
この装置は、リチウム二次電池の電池電圧を逐次測定する電圧検知手段1、判定パラメータを求める計算手段2、判定基準値を記憶する記憶手段3、前記判定パラメータおよび前記判定基準値を用いて、電池の劣化率を算出する劣化率判定手段4を具備する。
【0029】
劣化したリチウム二次電池5と接続された電圧検知手段1では、リチウム二次電池の定電流充電または定電流放電を行いながら電池電圧が逐次測定される。そして、電圧検知手段1で得られた電圧のデータは計算手段2に送られる。計算手段2では、ΔVが逐次求められ、ΔVが所定値以下である時間の積算値から判定パラメータが算出される。次いで、判定パラメータは、劣化率判定手段4に送られる。そして、劣化率判定手段4が、記憶手段3に記憶されている判定基準値と判定パラメータとを比較する。そして、式(1):
劣化率(%)=100×(判定基準値−判定パラメータ)÷判定基準値
から劣化率が算出される。
【0030】
【実施例】
次に、本発明を実施例に基づいて具体的に説明する。
(i)電池の作製
本発明のリチウム二次電池の劣化判定方法を評価するための試験電池を作製した。図2に試験電池の構造を示す。この電池は直径18mm、高さ65mmで、通常市販されているものと同じく電池容量1800mAhである。
【0031】
図2において、電池ケース11には、正極12と負極13とをセパレータ14を介して捲回した極板群、および非水電解液が収容されている。極板群の下端面には絶縁板15が配されている。電池ケース11の開口部は、周囲にガスケット16を配した封口板17で密閉されている。封口板17は正極端子18を備えており、正極リード19と接続されている。
【0032】
正極12は、LiCoO2粉末85重量部、導電助剤の炭素粉末10重量部および結着剤のポリフッ化ビニリデン樹脂5重量部を含むスラリーを、アルミニウム箔に塗布し、乾燥後、圧延して作製した。また、負極13は、人造黒鉛粉末95重量部および結着剤のポリフッ化ビニリデン樹脂5重量部を含むスラリーを、銅箔に塗布し、乾燥後、圧延して作製した。また、セパレータ14には、ポリエチレン樹脂からなる厚さ27μmの微多孔性薄膜を使用した。非水電解液には、エチレンカーボネートとエチルメチルカーボネートとの体積比1:1の混合溶媒に1mol/LのLiPF6を溶解したものを使用した。
【0033】
《実施例1》
劣化を促進させるために20℃の恒温槽内で充放電サイクルをそれぞれ1サイクル、50サイクルおよび100サイクル行った試験電池を用意した。
充放電サイクルにおける放電は1800mAの定電流で行い、放電終止電圧は3.0Vとした。また、充電は1260mAの定電流充電とその後の4.2Vの定電圧充電を合計2時間行った。
【0034】
次に、充放電サイクル終了後の試験電池の定電流放電を20℃の恒温槽内で行った。電流値は360mAとし、放電終止電圧は3.0Vとした。そして、電圧計を用いて、定電流放電中の電池電圧を逐次測定した。
放電終止電圧3.0Vに達するまでの全放電時間は5〜6時間であったので、逐次測定における電圧測定時点の時間間隔(ΔT)は、全放電時間の1%(0.05〜0.06時間)以下である0.013時間とした。
【0035】
図3に、1サイクル、50サイクルおよび100サイクルの充放電を行った試験電池のそれぞれの放電曲線A、BおよびCを示す。図3において、縦軸は電池電圧、横軸は放電時間である。図3において、サイクル数が増加するのに伴い、全放電時間が徐々に減少しており、電池の劣化が進んでいることがわかる。また、放電末期の電池電圧3.7V付近に見られる平坦部分の大きさが、サイクル数が増加するのに伴って徐々に小さくなっていることがわかる。この平坦部分では前述したとおり、正極材料であるLiCoO2および負極材料である人造黒鉛のそれぞれが二相の共存状態である。サイクル数の増加に伴い、この二相の共存領域が減少しているのである。
【0036】
電圧計のデータは、所定の計算機で処理した。この計算機では、ΔVを逐次求めるとともに、ΔVが所定値以下である時間の積算値を求めた。得られた積算値は所定の記憶装置に格納した。
【0037】
次に、1サイクルの充放電を行っただけの電池について得られた積算値を判定基準値として用い、所定の計算機で、上記式(1)から、50サイクルおよび100サイクルの充放電を行った電池の劣化率をそれぞれ求めた。ただし、式(1)において、判定パラメータとしては、各電池のΔVが2.5mV以下である時間の積算値とした。サイクル数、全放電時間、ΔVが2.5mV以下である時間の積算値、および劣化率を表1にまとめて示す。
【0038】
【表1】

Figure 0004606641
【0039】
表1から、サイクル数の増加に伴って全放電時間が減少し、劣化率が上昇することがわかる。そして、全放電時間の減少と劣化率との間には直線的な相関性が見られる。電池の劣化を意味する全放電時間の減少と、算出された劣化率との間に相関性が見られることから、本発明がリチウム二次電池の劣化率の推定に有効であることがわかる。
【0040】
本実施例では、放電挙動から劣化率を判定したが、充電挙動から劣化率を判定することもできる。また、本実施例では、充放電サイクルによる劣化について検討したが、高温保存による劣化についても同様のことが言える。また、判定パラメータとして電流値と各電池のΔVが2.5mV以下である時間の積算値との積から求めた電気量を用いても劣化率を判定できることは言うまでもない。
【0041】
《実施例2》
実施例1と同様に20℃の恒温槽内で試験電池の充放電を1サイクル行った。
次いで、充放電サイクル後の試験電池の放電試験を、0℃、10℃、20℃、30℃または40℃の恒温槽内で行った。放電試験の条件は、恒温層内の温度が異なる点以外、実施例1と同様である。そして、実施例1と同様に、ΔVが2.5mV以下である時間の積算値を求めた。恒温層内の温度、全放電時間およびΔVが2.5mV以下である時間の積算値を表2にまとめて示す。
【0042】
【表2】
Figure 0004606641
【0043】
表2において、温度が高くなると全放電時間が長くなり、それに伴いΔVが2.5mV以下である時間の積算値も長くなっている。ここで、ΔVが2.5mV以下である時間の積算値を判定基準値として用いる場合を考える。表2の結果に基づいて判定基準値を温度の関数で表すと、温度が30℃未満では、
判定基準値 = 8.7×10-4 ×温度(℃)+ 0.363
で表され、温度が30℃以上では判定基準値はおよそ一定である。このことから、判定基準値を電池の環境温度の関数で表すことができること、温度によって判定基準値を変えることが好ましいことがわかる。
【0044】
《実施例3》
20℃で、電池を360mAの定電流で電池電圧が4.1Vに達するまで充電し、360mAの定電流で電池電圧が3.8Vになるまで放電する浅い充放電を500サイクル繰り返した。この電池に対し、実施例1と同様の放電試験を行い、実施例1と同様の方法で上記式(1)から劣化率を求めたところ15%であった。
このことから、本発明によれば、浅い充放電を繰り返した電池においても劣化率を正確に判定することができることがわかる。
一方、例えば特開平5−74501号公報に開示されている従来の充放電のサイクル数をカウントする方法では、上記のような浅い充放電を行ってもサイクルをカウントすることができず、電池の劣化率を正確に判定することができなかった。
【0045】
【発明の効果】
本発明によれば、リチウム二次電池の劣化の程度を正確に判定することができる劣化判定方法および劣化判定装置を提供することができる。
【図面の簡単な説明】
【図1】本発明のリチウム二次電池の劣化判定装置の構成を示す図である。
【図2】本発明の実施例で用いた試験電池の一部を切り欠いた斜視図である。
【図3】本発明の実施例1で得られた試験電池の放電曲線を示す図である。
【符号の説明】
1 電圧検知手段
2 計算手段
3 記憶手段
4 劣化率判定手段
5 リチウム二次電池
11 電池ケース
12 正極
13 負極
14 セパレータ
15 絶縁板
16 ガスケット
17 封口板
18 正極端子
19 正極リード[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deterioration determination method and a deterioration determination apparatus for a lithium secondary battery.
[0002]
[Prior art]
When a lithium secondary battery is stored for a long time or subjected to a charge / discharge cycle in a high temperature environment with a deep charging depth, the battery deteriorates and its capacity decreases. Once the capacity is reduced, the battery does not recover to the original capacity even if the battery is fully charged. This is considered to be due to decomposition of the electrolytic solution, irreversible chemical reaction at the interface between the electrolytic solution and the electrode material, irreversible phase transition of the electrode material, and the like. Such battery deterioration largely depends on environmental temperature, storage time, and charge / discharge cycle conditions. Therefore, conventionally, it has been difficult to accurately determine the degree of deterioration without disassembling the battery.
[0003]
The typical secondary battery deterioration determination method proposed so far is described below.
(1) Method of measuring the internal impedance of a battery: JP-A-8-254573, JP-A-8-273705, etc.
(2) A method for measuring the electrical resistance of an active material that is a constituent element of a battery: Japanese Patent Laid-Open No. 56-103875, etc.
(3) Method of counting the number of charge / discharge cycles: JP-A-5-74501, JP-A-6-20724, etc.
[0004]
[Problems to be solved by the invention]
The above-described secondary battery deterioration determination methods (1) and (2) are methods for indirectly estimating the degree of secondary battery deterioration. However, there is a problem that the degree of deterioration of the battery characteristics cannot be accurately grasped because it greatly varies depending on the battery usage method, usage environment, and the like. In the case of the methods (1) and (2), it is very difficult to measure the internal impedance of the battery and the electric resistance of the active material during continuous charge / discharge. Therefore, there also exists a problem that it must measure by stopping charging / discharging of a battery temporarily.
[0005]
Moreover, the deterioration determination method of the secondary battery of the above (3) simply counts the number of charge / discharge cycles. In such a method, since the deterioration state differs between the battery that has undergone repeated repeated charging and discharging and the battery that has undergone repeated repeated charging and discharging, it is very difficult to accurately determine the degree of deterioration.
[0006]
In view of the above problems, an object of the present invention is to provide a deterioration determination method and a deterioration determination apparatus that can accurately determine the degree of deterioration of a lithium secondary battery.
[0007]
[Means for Solving the Problems]
The present invention was obtained by sequentially obtaining a battery voltage change (ΔV) per predetermined time while performing constant current charging or constant current discharging of a lithium secondary battery, and integrating the time during which the ΔV is a predetermined value or less. A determination parameter is determined from the integration time, and using the determination parameter and a predetermined determination reference value, equation (1):
Degradation rate (%) = 100 × (judgment standard value−judgment parameter) ÷ judgment standard value
The present invention relates to a method for determining deterioration of a lithium secondary battery, wherein the battery deterioration rate is calculated from
[0008]
As the determination parameter, the integration time itself may be used, or an electric quantity obtained from the product of the integration time and a current value in constant current charging or constant current discharging may be used.
[0009]
The determination reference value often depends on the environmental temperature of the battery. Therefore, it is preferable to express the determination reference value as a function of the environmental temperature of the battery and change the determination reference value according to the temperature.
[0010]
The present invention also provides (1) voltage detection means 1 that sequentially measures battery voltage while performing constant current charging or constant current discharging of a lithium secondary battery, and (2) data per predetermined time from data obtained by means 1. The battery voltage change (ΔV) is sequentially obtained, the time during which the ΔV is equal to or less than the predetermined value is integrated, and the calculation means 2 for determining the determination parameter from the acquired integrated time, (3) the predetermined determination reference value is stored. Storage means 3, (4) Using the determination parameter and the determination reference value, equation (1):
Degradation rate (%) = 100 × (judgment standard value−judgment parameter) ÷ judgment standard value
The present invention relates to a deterioration determination device for a lithium secondary battery comprising deterioration rate determination means 4 for calculating the deterioration rate of a battery from
[0011]
In the present invention, the battery voltage is sequentially measured at constant time intervals while performing constant current charging or discharging of the battery, and the change in battery voltage per predetermined time (ΔV), that is, the battery voltage at a certain measurement time point. And the time during which the difference between the battery voltage at the next measurement time is equal to or less than a predetermined value is integrated. Here, when ΔV is equal to or less than a predetermined value, the battery charging curve or discharging curve becomes flat. Therefore, as a determination parameter used in the present invention, a horizontal axis width that gives a flat portion in a charge curve or a discharge curve in which the horizontal axis is time and the vertical axis is battery voltage can be used.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The positive electrode and the negative electrode of the lithium secondary battery contain materials that allow lithium to reversibly enter and exit. For example, as the positive electrode material, LiCoO 2 , LiNiO 2 , LiMn 2 O Four As the negative electrode material, transition metal oxides such as graphite and carbon materials such as low-temperature fired carbon are used. It is known that the structure of these materials changes greatly during charging and discharging.
[0013]
For example, LiCoO used for the positive electrode 2 In this case, the composition changes with the desorption of lithium, and accordingly the crystal structure changes from hexagonal crystal (i) having a different lattice constant to hexagonal crystal (ii), resulting in a two-phase coexistence state. Thereafter, the crystal structure changes to hexagonal (ii) again through the hexagonal (ii) single-phase state and the monoclinic single-phase state.
[0014]
In the case of graphite used for the negative electrode, it is known that the layer structure called a stage structure changes with the insertion / extraction of lithium. Graphite passes through at least six kinds of stage structures until the battery is fully charged while repeating the single-phase state and the two-phase coexistence state.
[0015]
Usually, the battery voltage (V) is expressed as a difference {(V +) − (V−)} between the positive electrode potential (V +) and the negative electrode potential (V−). The potential of each electrode greatly depends on the composition of the electrode material. Therefore, when the material contained in each electrode undergoes a structural change during charging / discharging, the battery voltage also changes greatly. Considering the case where the electrode material goes through a single-phase state or a coexistence state of two or more phases during charge and discharge, the electrode potential changes depending on the composition of the electrode material when the electrode material is in the single-phase state. In the coexistence state of two or more phases, it becomes almost constant.
[0016]
When the lithium secondary battery is left or the charge / discharge cycle is repeated under a high temperature environment, an irreversible reaction accompanied by a change in the positive electrode material and the negative electrode material and a decrease in capacity occurs, and the battery characteristics deteriorate. And the positive electrode potential (V +) and the negative electrode potential (V−) also change, and the battery voltage changes greatly. Here, since the degree of deterioration of the battery varies greatly depending on the number of cycles, the standing temperature, and the standing period, it is difficult to estimate, but the battery voltage can be measured. Further, as described above, the change in the battery voltage has a close relationship with the change in the positive electrode material and the negative electrode material and the decrease in the capacity, which are directly related to the deterioration of the battery.
[0017]
Therefore, in the present invention, the battery voltage is sequentially measured at the time of constant current charging or discharging of the battery, the difference between the battery voltage at one measurement time and the battery voltage at the next measurement time is obtained, and based on this, the battery voltage is determined. Determine deterioration. The procedure is shown below.
[0018]
First, in order to determine the determination reference value, the battery voltage V at the time of constant current charging or constant current discharging of a battery that has not deteriorated in advance is sequentially measured to determine the battery voltage change ΔV per predetermined time. ΔV is small when the rate of change in potential between the positive electrode and the negative electrode is approximately the same. Conversely, when the difference in the rate of change in potential between the positive electrode and the negative electrode increases, ΔV also increases.
[0019]
Considering that ΔV depends on the structure of the electrode material as described above, if the structures of the positive electrode material and the negative electrode material are both in a coexisting state of two or more phases, or both are in a single phase state, the potential change of both electrodes Are close to each other and ΔV becomes small. On the other hand, when either one of the positive electrode material and the negative electrode material is in a coexisting state of two or more phases and the other is in a single phase state, ΔV increases.
[0020]
Therefore, in the present invention, an integrated value of time during which ΔV of a battery that has not deteriorated is equal to or less than a predetermined value is obtained. Then, a determination reference value is determined from the obtained accumulated time.
[0021]
Next, an integrated value of time when ΔV of the deteriorated battery is equal to or less than a predetermined value is obtained. Then, a determination parameter is determined from the obtained accumulated time.
[0022]
The greater the degree of deterioration of the battery, the longer the time ΔV is large and the shorter the time ΔV is. That is, the integrated value decreases as the degree of deterioration of the battery increases. Since the determination parameter correlates with the integrated value, when the integrated value decreases, the determination parameter also decreases and the difference from the determination reference value increases. Therefore, the degree of battery deterioration can be determined from the difference between the determination reference value and the determination parameter.
[0023]
In other words, the time when each electrode material of a battery that has not deteriorated is in a coexistence state of two or more phases is used as a determination reference value, and the time that each electrode material of a deteriorated battery is in a coexistence state of two or more phases is used as a determination parameter. The degree of battery deterioration can be determined from the difference between the determination reference value and the determination parameter.
[0024]
The time interval (ΔT) at the time of measurement in the sequential measurement of the battery voltage depends on the current value (A), but the total charge amount or the total discharge amount (Ah) in constant current charge or constant current discharge and the following formula:
ΔT <(total charge electricity or total discharge electricity) ÷ (current value × 100)
It is preferable to have the following relationship. That is, ΔT is desirably 1% or less of the total charge time or the total discharge time. Then, ΔT is used as a predetermined time for giving ΔV.
[0025]
The predetermined value of ΔV, which depends on the voltage measuring device, is preferably 0.1% or less of a normal battery voltage, for example. That is, in the case of a lithium secondary battery, since the average battery voltage is 3.6 to 3.7 V, the predetermined value is preferably 3.6 to 3.7 mV or less.
[0026]
Note that the battery voltage basically exhibits the same behavior in both charging and discharging unless a side reaction such as decomposition of the electrolytic solution occurs. Therefore, the deterioration rate can be determined from either charging or discharging.
[0027]
The criterion value is also a function of the environmental temperature of the battery at the time of voltage measurement. Therefore, it is preferable to change the determination reference value according to the environmental temperature of the battery during voltage measurement. The relationship between the environmental temperature and the judgment reference value may be examined in advance.
[0028]
Next, FIG. 1 shows an outline of the configuration of the battery deterioration determination device of the present invention.
This apparatus uses a voltage detection means 1 for sequentially measuring a battery voltage of a lithium secondary battery, a calculation means 2 for obtaining a determination parameter, a storage means 3 for storing a determination reference value, the determination parameter, and the determination reference value. Deterioration rate determination means 4 for calculating the deterioration rate of the battery is provided.
[0029]
In the voltage detection means 1 connected to the deteriorated lithium secondary battery 5, the battery voltage is sequentially measured while performing constant current charging or constant current discharging of the lithium secondary battery. The voltage data obtained by the voltage detection means 1 is sent to the calculation means 2. In the calculation means 2, ΔV is sequentially obtained, and a determination parameter is calculated from an integrated value of time when ΔV is equal to or less than a predetermined value. Next, the determination parameter is sent to the deterioration rate determination means 4. Then, the deterioration rate determination unit 4 compares the determination reference value stored in the storage unit 3 with the determination parameter. And formula (1):
Degradation rate (%) = 100 × (judgment standard value−judgment parameter) ÷ judgment standard value
The deterioration rate is calculated from
[0030]
【Example】
Next, the present invention will be specifically described based on examples.
(I) Battery production
A test battery for evaluating the deterioration determination method of the lithium secondary battery of the present invention was produced. FIG. 2 shows the structure of the test battery. This battery has a diameter of 18 mm and a height of 65 mm, and has a battery capacity of 1800 mAh, which is the same as that on the market.
[0031]
In FIG. 2, a battery case 11 accommodates an electrode plate group obtained by winding a positive electrode 12 and a negative electrode 13 via a separator 14, and a non-aqueous electrolyte. An insulating plate 15 is disposed on the lower end surface of the electrode plate group. The opening of the battery case 11 is sealed with a sealing plate 17 having a gasket 16 disposed around it. The sealing plate 17 includes a positive terminal 18 and is connected to a positive lead 19.
[0032]
The positive electrode 12 is LiCoO 2 A slurry containing 85 parts by weight of powder, 10 parts by weight of carbon powder as a conductive additive and 5 parts by weight of polyvinylidene fluoride resin as a binder was applied to an aluminum foil, dried and rolled. The negative electrode 13 was prepared by applying a slurry containing 95 parts by weight of artificial graphite powder and 5 parts by weight of a polyvinylidene fluoride resin as a binder onto a copper foil, drying and rolling. The separator 14 was a microporous thin film made of polyethylene resin and having a thickness of 27 μm. Non-aqueous electrolyte includes 1 mol / L LiPF in a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 1. 6 What melt | dissolved was used.
[0033]
Example 1
In order to promote deterioration, a test battery was prepared in which a charge / discharge cycle was performed for 1 cycle, 50 cycles and 100 cycles in a constant temperature bath at 20 ° C.
The discharge in the charge / discharge cycle was performed at a constant current of 1800 mA, and the final discharge voltage was 3.0V. In addition, charging was performed by constant current charging at 1260 mA and subsequent constant voltage charging at 4.2 V for a total of 2 hours.
[0034]
Next, the constant current discharge of the test battery after completion | finish of a charging / discharging cycle was performed within a 20 degreeC thermostat. The current value was 360 mA, and the final discharge voltage was 3.0V. And the battery voltage during constant current discharge was measured sequentially using the voltmeter.
Since the total discharge time until reaching the final discharge voltage of 3.0 V was 5 to 6 hours, the time interval (ΔT) at the time of voltage measurement in sequential measurement was 1% of the total discharge time (0.05 to 0.00). 06 hours) or less, which was 0.013 hours.
[0035]
FIG. 3 shows discharge curves A, B, and C, respectively, of test batteries that were charged and discharged for 1 cycle, 50 cycles, and 100 cycles. In FIG. 3, the vertical axis represents the battery voltage, and the horizontal axis represents the discharge time. In FIG. 3, it can be seen that as the number of cycles increases, the total discharge time gradually decreases, and the deterioration of the battery is progressing. Moreover, it turns out that the magnitude | size of the flat part seen by the battery voltage 3.7V vicinity of the terminal stage of discharge becomes small gradually as the number of cycles increases. As described above, in this flat portion, LiCoO which is a positive electrode material is used. 2 Each of the artificial graphite as the negative electrode material is in a two-phase coexistence state. As the number of cycles increases, this two-phase coexistence region decreases.
[0036]
Voltmeter data was processed by a predetermined computer. In this computer, ΔV was sequentially obtained, and an integrated value of time during which ΔV was not more than a predetermined value was obtained. The obtained integrated value was stored in a predetermined storage device.
[0037]
Next, 50 cycles and 100 cycles were charged and discharged from the above formula (1) using the integrated value obtained for the battery that had just been charged and discharged for one cycle as a criterion value. The deterioration rate of each battery was determined. However, in Formula (1), as a determination parameter, it was set as the integrated value of time when (DELTA) V of each battery is 2.5 mV or less. Table 1 summarizes the number of cycles, total discharge time, integrated value of time when ΔV is 2.5 mV or less, and deterioration rate.
[0038]
[Table 1]
Figure 0004606641
[0039]
From Table 1, it can be seen that as the number of cycles increases, the total discharge time decreases and the deterioration rate increases. A linear correlation is observed between the decrease in the total discharge time and the deterioration rate. Since there is a correlation between the decrease in the total discharge time, which means battery deterioration, and the calculated deterioration rate, it can be seen that the present invention is effective in estimating the deterioration rate of the lithium secondary battery.
[0040]
In this embodiment, the deterioration rate is determined from the discharge behavior, but the deterioration rate can also be determined from the charge behavior. In this example, the deterioration due to the charge / discharge cycle was examined, but the same can be said for the deterioration due to high temperature storage. Needless to say, the deterioration rate can also be determined by using the amount of electricity obtained from the product of the current value and the integrated value of the time when ΔV of each battery is 2.5 mV or less as the determination parameter.
[0041]
Example 2
In the same manner as in Example 1, the test battery was charged and discharged in a constant temperature bath at 20 ° C. for one cycle.
Subsequently, the discharge test of the test battery after the charge / discharge cycle was performed in a thermostatic chamber at 0 ° C., 10 ° C., 20 ° C., 30 ° C. or 40 ° C. The conditions for the discharge test are the same as in Example 1 except that the temperature in the thermostatic layer is different. Then, in the same manner as in Example 1, the integrated value for the time when ΔV was 2.5 mV or less was obtained. Table 2 summarizes the integrated values of the temperature in the constant temperature layer, the total discharge time, and the time when ΔV is 2.5 mV or less.
[0042]
[Table 2]
Figure 0004606641
[0043]
In Table 2, as the temperature increases, the total discharge time becomes longer, and accordingly, the integrated value of the time when ΔV is 2.5 mV or less becomes longer. Here, consider a case where an integrated value of time when ΔV is 2.5 mV or less is used as a determination reference value. When the criterion value is expressed as a function of temperature based on the results in Table 2, when the temperature is less than 30 ° C.,
Determination standard value = 8.7 × 10 -Four X Temperature (° C) + 0.363
The criterion value is approximately constant when the temperature is 30 ° C. or higher. From this, it can be seen that the determination reference value can be expressed as a function of the environmental temperature of the battery, and it is preferable to change the determination reference value depending on the temperature.
[0044]
Example 3
At 20 ° C., the battery was charged at a constant current of 360 mA until the battery voltage reached 4.1 V, and shallow charge / discharge was repeated 500 cycles at a constant current of 360 mA until the battery voltage reached 3.8 V. This battery was subjected to the same discharge test as in Example 1, and the degradation rate was determined from the above formula (1) by the same method as in Example 1. As a result, it was 15%.
From this, it can be seen that according to the present invention, the deterioration rate can be accurately determined even in a battery that is repeatedly charged and discharged in a shallow manner.
On the other hand, for example, in the conventional method of counting the number of charge / discharge cycles disclosed in Japanese Patent Laid-Open No. 5-74501, the cycle cannot be counted even if the above-described shallow charge / discharge is performed. The deterioration rate could not be accurately determined.
[0045]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the deterioration determination method and deterioration determination apparatus which can determine correctly the grade of deterioration of a lithium secondary battery can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a lithium secondary battery deterioration determination apparatus according to the present invention.
FIG. 2 is a perspective view in which a part of a test battery used in an example of the present invention is cut away.
FIG. 3 is a diagram showing a discharge curve of a test battery obtained in Example 1 of the present invention.
[Explanation of symbols]
1 Voltage detection means
2 Calculation means
3 storage means
4 Deterioration rate judgment means
5 Lithium secondary battery
11 Battery case
12 Positive electrode
13 Negative electrode
14 Separator
15 Insulation plate
16 Gasket
17 Sealing plate
18 Positive terminal
19 Positive lead

Claims (4)

リチウム二次電池の定電流充電または定電流放電を行いながら所定時間あたりの電池電圧の変化(ΔV)を逐次求め、前記ΔVが所定値以下である時間を積算し、得られた積算時間から判定パラメータを決定し、前記判定パラメータおよび所定の判定基準値を用いて、式(1):
劣化率(%)=100×(判定基準値−判定パラメータ)÷判定基準値
から電池の劣化率を算出することを特徴とするリチウム二次電池の劣化判定方法。
The battery voltage change (ΔV) per predetermined time is sequentially obtained while performing constant current charging or constant current discharging of the lithium secondary battery, and the time when the ΔV is equal to or less than the predetermined value is integrated, and determination is made from the obtained integrated time. A parameter is determined, and using the determination parameter and a predetermined determination reference value, Equation (1):
Deterioration rate (%) = 100 × (determination reference value−determination parameter) ÷ deterioration rate of a battery is calculated from the determination reference value.
前記判定パラメータが、前記積算時間と定電流充電または定電流放電における電流値との積から求められた電気量である請求項1記載のリチウム二次電池の劣化判定方法。The method for determining deterioration of a lithium secondary battery according to claim 1, wherein the determination parameter is an amount of electricity obtained from a product of the integration time and a current value in constant current charging or constant current discharging. 前記判定基準値が、電池の環境温度の関数である請求項1記載のリチウム二次電池の劣化判定方法。The method for determining deterioration of a lithium secondary battery according to claim 1, wherein the determination reference value is a function of an environmental temperature of the battery. (1)リチウム二次電池の定電流充電または定電流放電を行いながら電池電圧を逐次測定する電圧検知手段1、
(2)手段1で得られたデータから所定時間あたりの電池電圧の変化(ΔV)を逐次求め、前記ΔVが所定値以下である時間を積算し、得られた積算時間から判定パラメータを決定する計算手段2、
(3)所定の判定基準値を記憶する記憶手段3、
(4)前記判定パラメータおよび前記判定基準値を用いて、式(1):
劣化率(%)=100×(判定基準値−判定パラメータ)÷判定基準値
から電池の劣化率を算出する劣化率判定手段4
を具備するリチウム二次電池の劣化判定装置。
(1) Voltage detection means 1 for sequentially measuring battery voltage while performing constant current charging or constant current discharging of a lithium secondary battery,
(2) The battery voltage change (ΔV) per predetermined time is sequentially obtained from the data obtained by the means 1, the time when the ΔV is not more than the predetermined value is integrated, and the determination parameter is determined from the obtained integrated time. Calculation means 2,
(3) storage means 3 for storing a predetermined determination reference value;
(4) Using the determination parameter and the determination reference value, Equation (1):
Deterioration rate (%) = 100 × (determination reference value−determination parameter) ÷ deterioration rate determination means 4 for calculating the deterioration rate of the battery from the determination reference value
An apparatus for determining deterioration of a lithium secondary battery comprising:
JP2001146740A 2001-05-16 2001-05-16 Method and apparatus for determining deterioration of lithium secondary battery Expired - Lifetime JP4606641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001146740A JP4606641B2 (en) 2001-05-16 2001-05-16 Method and apparatus for determining deterioration of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001146740A JP4606641B2 (en) 2001-05-16 2001-05-16 Method and apparatus for determining deterioration of lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002340997A JP2002340997A (en) 2002-11-27
JP4606641B2 true JP4606641B2 (en) 2011-01-05

Family

ID=18992335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001146740A Expired - Lifetime JP4606641B2 (en) 2001-05-16 2001-05-16 Method and apparatus for determining deterioration of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4606641B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649988B2 (en) 2008-07-02 2014-02-11 Panasonic Corporation Service life estimation method for lead storage battery and power source system
US9678167B2 (en) * 2011-01-14 2017-06-13 Toyota Jidosha Kabushiki Kaisha Degradation speed estimation method, and degradation speed estimation device, of lithium-ion battery
WO2012133670A1 (en) 2011-03-29 2012-10-04 クラリオン株式会社 Navigation device, travelable distance display system
JP2013148452A (en) * 2012-01-19 2013-08-01 Toyota Industries Corp Soh estimation device
JP6555459B2 (en) * 2013-10-31 2019-08-07 三菱自動車工業株式会社 Battery deterioration monitoring system
JP6209173B2 (en) 2015-02-26 2017-10-04 東洋ゴム工業株式会社 Degradation diagnosis method and degradation diagnosis system for sealed secondary battery
JP2020010494A (en) * 2018-07-06 2020-01-16 東芝テック株式会社 Charger and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285029A (en) * 1996-04-15 1997-10-31 Nec Corp Secondary battery charger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285029A (en) * 1996-04-15 1997-10-31 Nec Corp Secondary battery charger

Also Published As

Publication number Publication date
JP2002340997A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP6731041B2 (en) Lithium deposition detection method, secondary battery charging method and apparatus using the same, and secondary battery system
KR101804512B1 (en) Electrochemical cell based on lithium technology with internal reference electrode, process for its production and methods for simultaneous monitoring of the voltage or impedance of the anode and the cathode thereof
JP5130917B2 (en) Lithium secondary battery deterioration detection method and deterioration suppression method, deterioration detector and deterioration suppressor, battery pack and charger using the same
US20110121786A1 (en) Method of detecting condition of secondary battery
WO2014083853A1 (en) Device for estimating post-deterioration functionality of storage element, method for estimating post-deterioration functionality, and storage system
JP7111015B2 (en) Estimation device, power storage device, estimation method, and computer program
US20150060290A1 (en) Dynamic Formation Protocol for Lithium-Ion Battery
US20120316815A1 (en) Method for evaluating deterioration of lithium ion secondary battery, and battery pack
JP6355552B2 (en) Lithium ion secondary battery charging method and charging control system thereof
JP2009145137A (en) Inspection method of secondary battery
JP7322529B2 (en) Estimation device, power storage device, estimation method, and computer program
JP2014032826A (en) State estimation device of secondary cell
JP6165620B2 (en) Secondary battery module and secondary battery monitoring device
US20110074430A1 (en) Method for evaluating secondary battery
JP4606641B2 (en) Method and apparatus for determining deterioration of lithium secondary battery
JP2002352864A (en) Method for testing secondary battery
JP3460567B2 (en) Secondary battery deterioration detection method and charger equipped with deterioration detection function
JP4954791B2 (en) Voltage prediction method for power storage devices
KR102477915B1 (en) Method of producing lithium-ion battery
KR102259454B1 (en) Method for the in-situ recalibration of a comparison electrode incorporated into an electrochemical system
JP6741768B2 (en) Lithium-ion battery formation process
Erol Electrochemical impedance spectroscopy analysis and modeling of lithium cobalt oxide/carbon batteries
Gerschler et al. Investigation of open-circuit-voltage behaviour of lithium-ion batteries with various cathode materials under special consideration of voltage equalisation phenomena
JP2012221648A (en) Manufacturing method of nonaqueous electrolyte secondary battery
EP4287313A1 (en) Charging method for non-aqueous electrolyte secondary battery, charging/discharging method, and charging system for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101006

R150 Certificate of patent or registration of utility model

Ref document number: 4606641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

EXPY Cancellation because of completion of term