JP4604330B2 - Cutting method with wire saw - Google Patents

Cutting method with wire saw Download PDF

Info

Publication number
JP4604330B2
JP4604330B2 JP2000305630A JP2000305630A JP4604330B2 JP 4604330 B2 JP4604330 B2 JP 4604330B2 JP 2000305630 A JP2000305630 A JP 2000305630A JP 2000305630 A JP2000305630 A JP 2000305630A JP 4604330 B2 JP4604330 B2 JP 4604330B2
Authority
JP
Japan
Prior art keywords
magnet
wire
adjacent
wire saw
cutting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000305630A
Other languages
Japanese (ja)
Other versions
JP2002118025A (en
Inventor
直義 佐々木
亮太郎 佐々木
俊文 桶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2000305630A priority Critical patent/JP4604330B2/en
Publication of JP2002118025A publication Critical patent/JP2002118025A/en
Application granted granted Critical
Publication of JP4604330B2 publication Critical patent/JP4604330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Nd−Fe−B系の焼結型永久磁石の製造方法に係り、所定の大きさに成形し焼結した磁石用ブロックを分割切断するが、これらの磁石用ブロックを複数個並べて保持し複数のワイヤが同時に分割切断するワイヤソーによる切断方法に関する。
【0002】
【従来の技術】
情報機器の小型化や薄型化に伴い、小さい形状や薄い形状をした永久磁石の需要が急増している、なかでも、強力な磁化が可能で比較的コストが低いNd−Fe−B系の焼結型永久磁石は、ハードデイスクのヘッド駆動用磁石として用いられる、図8に示す磁石片1はヘッド駆動用磁石とする中間製品であり、磁石片1に表面処理しメッキを施し着磁するとヘッド駆動用磁石になる、この磁石片1は図7に示す磁石用ブロック100を所定の厚みに切断したものである、磁石用ブロック100は微粉砕後の粉体をプレス成形し焼結したものであり、ワイヤソーの被加工物取り付け部に着脱自在な加工治具にガラス板の一面を貼着し、このガラス板の他面に磁石用ブロック100を複数個並べて貼着し磁石列10とする、加工治具をワイヤソーの被加工物取り付け部に装着し切断する、複数のワイヤが同時に磁石列10の磁石用ブロック100を切断する、図6はガラス板11に磁石用ブロック100を貼着した状態であり、磁石用ブロック100を図7に示す矢印Aの方向から見て示す、相互に隣接する磁石用ブロック100も貼着し磁石列10とするが、隣接部101はガラス板11の長手方向に直交している、磁石用ブロック100を切断するワイヤもガラス板11の長手方向に直交しており、ワイヤソーにおいて隣接部101と切断するワイヤは平行である。
【0003】
ところで、1個の磁石用ブロック100は例えば10乃至30個の磁石片1に切断する、磁石片1の厚みにより切断する個数は増減することになり、複数のワイヤが同時に磁石列10の磁石用ブロック100を切断する、予め、磁石列10の端部は除くことにして磁石片1にしないが、隣接部101に関して厚みのばらつきに相違が生じる、一例を示すと、磁石列10の両端部を除いて計125個に切断して厚みを測定し、そのサンプルを隣接部101に関して同一条件の母集団毎にばらつきを調べると、隣接部101を含む第1サンプルの母集団はσ=138μm、第1サンプルに隣接するサンプルだけでなる第2サンプルの母集団はσ=12μm、それ以外の第3サンプルの母集団はσ=5μmであった、まず、第1サンプルに該当する部分は磁石列10の端部と同じく磁石片1に適さない、第3サンプルに該当する部分は最もばらつきが小さく追加工無しで磁石片1に適する、問題は第2サンプルに該当する部分であり、必要な厚み精度に応じて追加工を施さないと磁石片1に適さない、追加工は追加の工程と時間を要し、コストが嵩み納期を長くする問題が生じることになる。
【0004】
【発明が解決しようとする課題】
本発明は、上記のような従来の技術における問題点を解決するためになされたものである、従って、本発明が解決しようとする課題は、第2サンプルに該当する部分の厚みばらつきを第3サンプルと同程度にすること、そのため、第2サンプルに該当する部分の厚みばらつきが生じない、切断精度の良いワイヤソーによる切断方法を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために本発明の請求項1に記載の発明は、複数の磁石用ブロックを相互に隣接する面が接する磁石列となし、前記磁石列を直線状に平行走行する複数のワイヤに当接して同時に複数の磁石片に切断する方法において、前記磁石用ブロックの相互に隣接する面を前記ワイヤが直線状に走行する方向と一致させないことを特徴とするワイヤソーによる切断方法としている。
【0006】
請求項2に記載の発明は、前記磁石用ブロックの相互に隣接する面を前記ワイヤが直線状に走行する方向と傾斜させる請求項1記載のワイヤソーによる切断方法としている。
【0007】
請求項3に記載の発明は、前記磁石用ブロックの相互に隣接する面を円弧形状にする請求項1記載のワイヤソーによる切断方法としている。
【0008】
請求項4に記載の発明は、前記磁石用ブロックの相互に隣接する面を複数の凹凸形状が噛み合う形状とする請求項1記載のワイヤソーによる切断方法としている。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について説明する、図1は本発明の切断方法を実施するワイヤソー7の説明図であり、図2はワイヤソー7の被加工物取り付け部に装着する加工治具12を示し、加工治具12にガラス板11を貼着し、ガラス板11に磁石用ブロックを貼着して磁石列10とする構成を示し、図1における矢印Xの方向から見た側面図である、図2の矢印Aは磁石用ブロックの方向を示し、図7に示す磁石用ブロック100の矢印Aと磁石用ブロックに対し同じ方向を示す、磁石用ブロック100の場合は図7に示す姿勢と上下反対に貼着されていることを示す、これから説明する他の磁石用ブロックについても同じである、図3乃至図5は本発明の切断方法の磁石列10により実施の形態を示す説明図である。
【0010】
図1はワイヤソー7の主要な構成を示す説明図である、繰り出しリール4に巻かれたワイヤ3をガイドローラ6で保持しながら引き出し、相互に平行かつ回転自在に配置された3本の溝付きローラ2に巻回する、ローラ2には複数列に矢印Fの方向に平行走行するワイヤ3が架けられる、ローラ2を巻回したワイヤ3はガイドローラ6で保持しながら引き出して巻き取りリール5に巻き取る、ワイヤ3と3本の溝付きローラ2により形作られる三角形の上部1辺に対し、ワイヤソー7の被加工物取り付け部は平行走行するワイヤ3に直交する上方から昇降する、被加工物取り付け部に装着された加工治具12にはガラス板11と磁石列10が貼着されており、矢印Dの方向に下降させると、磁石列10はワイヤ3の走行方向に長手方向が直交する姿勢で平行走行するワイヤ3に当接する、磁石列10がワイヤ3に当接してから磁石片1に切断される方法は従来と同じであり、磁石列10がワイヤ3に当接し押し付けられた状態で、当接した部分に遊離砥粒を含む加工液を流しながらワイヤ3が走行することで切断する。
【0011】
図3乃至図5は本発明の切断方法による磁石列10を示す、図3はガラス板11に磁石用ブロック200を貼着した状態であり、磁石用ブロック200の相互に隣接する面も貼着し磁石列10とするが、直線状の隣接部201はガラス板11の長手方向に対し傾斜させている、磁石用ブロック200を切断するワイヤ3はガラス板11の長手方向に直交しており、ワイヤ3に対して隣接部201は傾斜していることになる。
【0012】
図4はガラス板11に磁石用ブロック300を貼着した状態を示す、磁石用ブロック300の相互に隣接する面も貼着し磁石列10とするが、隣接部301は円弧形状をしており、相互に隣接する磁石用ブロック300は円弧形状の隣接する面を一致させる、すなわち、一方が凸状の円弧形状は他方が凹状の円弧形状で隣接する面を一致させる、磁石用ブロック300を切断するワイヤ3はガラス板11の長手方向に直交する直線状であり、ワイヤ3に対し円弧形状の隣接部301は直線と円弧が当接し一致しない。
【0013】
図5はガラス板11に磁石用ブロック400を貼着した状態を示す、磁石用ブロック400の相互に隣接する面も貼着し磁石列10とするが、隣接部401は複数の凹凸形状が噛み合う形状をしており、相互に隣接する磁石用ブロック400は凹凸形状の隣接する面を一致させる、すなわち、一方の凹形状に他方の凸形状が嵌合し隣接する面の全てを一致させる、磁石用ブロック400を切断するワイヤ3はガラス板11の長手方向に直交する直線状であり、ワイヤ3に対し隣接部401は隣接する面の全てが一致して平行になることが生じない。
【0014】
図3乃至図5に示す実施の形態において、隣接部201,301,401はワイヤソー7のワイヤ3に対し隣接する面の全てが一致して平行になる関係を生じない、従来の隣接部101がワイヤ3に平行になることから、隣接部101と位置が一致するか最も近いワイヤ3の走行を阻害していた、すなわち、発明者らの観察によるとワイヤ3は隣接部101に嵌入し易く、嵌入すると隣接部101に沿いワイヤ3が走行し、ワイヤ3の走行は嵌入した隣接部101に阻害される、隣接部101が本来ワイヤ3が走行する位置と完全に一致することはほとんどなく、ワイヤ3の走行は異なる位置にずれて直線状にも走行しないことが見られる、そのため、隣接部101に嵌入したワイヤ3の不安定な走行が両隣を走行するワイヤ3まで影響する、両隣のワイヤ3の走行までも不安定になると、第2サンプルに該当する部分の磁石片1に厚みのばらつきが生じる、本発明の切断方法による隣接部201,301,401はワイヤ3が嵌入することなく、両隣のワイヤ3の走行が不安定になることを防止できる、なお、相互に隣接する磁石用ブロックは隣接する面を一致させると説明したが、磁石用ブロックは粉体を成形し焼結したものであり、所定の形状誤差を有し完全に一致させることは難しいものである、しかし、磁石用ブロックが所定の形状誤差を有するものであっても、本発明の実施とその効果が得られることに変わりはない。
【0015】
【発明の効果】
本発明のワイヤソーによる切断方法によると、複数の磁石用ブロックを相互に隣接する面で接する磁石列となし、この磁石列を複数のワイヤが同時に分割切断しても、磁石用ブロックが相互に隣接する面と面の間の隣接部にワイヤが嵌入することなく走行が安定し、該ワイヤの両隣のワイヤも走行が安定する、そのため、従来は厚みのばらつきが生じていた第2サンプルに該当する部分の磁石片にもばらつきがなく、磁石列の両端部と隣接部を含む部分を除外した磁石片は、追加工を施さなくても磁石片に適する厚み精度とばらつきが得られる、その結果、追加の工程と時間が不要になりコストが節約でき納期を長くしない効果が生じる。
【図面の簡単な説明】
【図1】 ワイヤソーの主要な構成を示す説明図。
【図2】 ワイヤソーの被加工物取り付け部に装着する加工治具。
【図3】 磁石用ブロックの相互に隣接する面を傾斜させる磁石列。
【図4】 磁石用ブロックの相互に隣接する面を円弧状にする磁石列。
【図5】 磁石用ブロックの相互に隣接する面を凹凸が噛み合う形状とする磁石列。
【図6】 磁石用ブロックの相互に隣接する面がワイヤと平行な従来の磁石列。
【図7】 磁石用ブロックの斜視図。
【図8】 磁石片の斜視図。
【符号の説明】
1 磁石片
2 ローラ
3 ワイヤ
4 繰り出しリール
5 巻き取りリール
6 ガイドローラ
7 ワイヤソー
10 磁石列
11 ガラス板
12 加工治具
100,200,300,400 磁石用ブロック
101,201,301,401 隣接部
A 磁石用ブロックの方向を示す矢印。
D 加工治具を下降させる方向の矢印。
F ワイヤが平行走行する方向の矢印。
X 図2に示す加工治具の図1における矢視方向。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an Nd—Fe—B sintered permanent magnet, and divides and cuts a magnet block formed and sintered to a predetermined size. A plurality of these magnet blocks are arranged side by side. The present invention relates to a cutting method using a wire saw that holds and simultaneously cuts a plurality of wires.
[0002]
[Prior art]
With the downsizing and thinning of information equipment, the demand for small and thin permanent magnets is increasing rapidly. Among them, Nd—Fe—B based sintering is possible because of strong magnetization and relatively low cost. The bonded permanent magnet is used as a head drive magnet for a hard disk. The magnet piece 1 shown in FIG. 8 is an intermediate product in which the head drive magnet is used. When the magnet piece 1 is surface-treated, plated and magnetized, the head drive is performed. This magnet piece 1 is a magnet for which a magnet block 100 shown in FIG. 7 is cut to a predetermined thickness. The magnet block 100 is obtained by press-molding and sintering finely pulverized powder. Then, one surface of the glass plate is attached to a detachable processing jig on the workpiece attachment portion of the wire saw, and a plurality of magnet blocks 100 are aligned and attached to the other surface of the glass plate to form a magnet row 10. Jig wire saw A plurality of wires simultaneously cut the magnet block 100 of the magnet array 10 mounted on the work piece attachment portion and cut. FIG. 6 shows a state in which the magnet block 100 is attached to the glass plate 11 and the magnet block. The block 100 for magnets which adjoin each other and 100 is shown as seen from the direction of the arrow A shown in FIG. 7 to form a magnet row 10, but the adjacent portion 101 is orthogonal to the longitudinal direction of the glass plate 11. The wire for cutting the magnet block 100 is also orthogonal to the longitudinal direction of the glass plate 11, and the wire for cutting the adjacent portion 101 in the wire saw is parallel.
[0003]
By the way, one magnet block 100 is cut into, for example, 10 to 30 magnet pieces 1, and the number of pieces to be cut is increased or decreased depending on the thickness of the magnet piece 1, and a plurality of wires are simultaneously used for magnets in the magnet array 10. The block 100 is cut in advance, but the end of the magnet row 10 is excluded and the magnet piece 1 is not used. However, the thickness variation with respect to the adjacent portion 101 is different. When the sample is cut into a total of 125 and the thickness is measured, and the variation of each sample is examined for the population of the same condition with respect to the adjacent portion 101, the population of the first sample including the adjacent portion 101 is σ = 138 μm, The population of the second sample consisting of only samples adjacent to one sample was σ = 12 μm, and the population of the third sample other than that was σ = 5 μm. First, the portion corresponding to the first sample Similar to the end of the magnet row 10, the portion corresponding to the third sample is not suitable for the magnet piece 1 and has the smallest variation and is suitable for the magnet piece 1 without additional processing. The problem is the portion corresponding to the second sample, which is necessary. If additional work is not performed according to the thickness accuracy, it is not suitable for the magnet piece 1, and the additional work requires an additional process and time, resulting in a problem that the cost is increased and the delivery time is lengthened.
[0004]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems in the prior art. Therefore, the problem to be solved by the present invention is to solve the third variation in the thickness corresponding to the second sample. Accordingly, it is an object of the present invention to provide a cutting method using a wire saw with high cutting accuracy that does not cause variation in the thickness of the portion corresponding to the second sample.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a plurality of magnet blocks are formed as a magnet array in contact with adjacent surfaces, and the plurality of wires travel linearly in parallel with the magnet array. In the method of cutting into a plurality of magnet pieces at the same time, the cutting method using a wire saw is characterized in that the mutually adjacent surfaces of the magnet block do not coincide with the direction in which the wire travels linearly.
[0006]
According to a second aspect of the present invention, there is provided the wire saw cutting method according to the first aspect, wherein the mutually adjacent surfaces of the magnet block are inclined with respect to a direction in which the wire travels linearly.
[0007]
According to a third aspect of the present invention, there is provided the wire saw cutting method according to the first aspect, wherein the mutually adjacent surfaces of the magnet block are formed in an arc shape.
[0008]
According to a fourth aspect of the present invention, there is provided the wire saw cutting method according to the first aspect, wherein a plurality of concave and convex shapes are engaged with each other on the surfaces of the magnet blocks adjacent to each other.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below. FIG. 1 is an explanatory view of a wire saw 7 for carrying out the cutting method of the present invention, and FIG. 2 shows a processing jig 12 mounted on a workpiece attachment portion of the wire saw 7. FIG. 2 is a side view showing a configuration in which a glass plate 11 is attached to a processing jig 12 and a magnet block is attached to the glass plate 11 to form a magnet array 10, viewed from the direction of arrow X in FIG. 1. 2 indicates the direction of the magnet block, and indicates the same direction as the arrow A of the magnet block 100 shown in FIG. 7 and the magnet block. In the case of the magnet block 100, the orientation shown in FIG. The same applies to other magnet blocks to be described, which are shown to be attached upside down. FIGS. 3 to 5 are explanatory diagrams showing an embodiment by the magnet row 10 of the cutting method of the present invention. is there.
[0010]
FIG. 1 is an explanatory view showing the main configuration of a wire saw 7, with a wire 3 wound around a supply reel 4 being pulled out while being held by a guide roller 6, and having three grooves arranged in parallel and freely with each other. A wire 3 is wound around the roller 2, and a wire 3 that travels in parallel in the direction of the arrow F is stretched around the roller 2. The workpiece attachment portion of the wire saw 7 moves up and down from the upper side perpendicular to the wire 3 traveling in parallel with respect to the upper side of the triangle formed by the wire 3 and the three grooved rollers 2. A glass plate 11 and a magnet array 10 are attached to the processing jig 12 attached to the mounting portion. When the processing tool 12 is lowered in the direction of arrow D, the longitudinal direction of the magnet array 10 is orthogonal to the traveling direction of the wire 3. The method in which the magnet array 10 contacts the wire 3 and is cut into the magnet pieces 1 after the magnet array 10 contacts the wire 3 in the same posture is the same as the conventional method, and the magnet array 10 contacts the wire 3 and is pressed. In this state, the wire 3 travels while flowing a working fluid containing loose abrasive grains in the contacted portion, thereby cutting.
[0011]
3 to 5 show the magnet array 10 according to the cutting method of the present invention. FIG. 3 shows a state in which the magnet block 200 is attached to the glass plate 11, and the mutually adjacent surfaces of the magnet block 200 are also attached. However, the linear adjacent portion 201 is inclined with respect to the longitudinal direction of the glass plate 11, and the wire 3 for cutting the magnet block 200 is orthogonal to the longitudinal direction of the glass plate 11, The adjacent portion 201 is inclined with respect to the wire 3.
[0012]
FIG. 4 shows a state in which the magnet block 300 is adhered to the glass plate 11, and the mutually adjacent surfaces of the magnet block 300 are also adhered to form the magnet row 10, but the adjacent portion 301 has an arc shape. The mutually adjacent magnet blocks 300 match the adjacent surfaces of the arc shape, that is, the one of the convex arc shape is the other and the other is a concave arc shape, and the adjacent surfaces are matched, cutting the magnet block 300 The wire 3 is a straight line orthogonal to the longitudinal direction of the glass plate 11, and the arc-shaped adjacent portion 301 is in contact with the wire 3 so that the straight line and the arc are in contact with each other.
[0013]
FIG. 5 shows a state in which the magnet block 400 is adhered to the glass plate 11, and the surfaces adjacent to each other of the magnet block 400 are also adhered to form the magnet array 10, but the adjacent portion 401 has a plurality of concave and convex shapes engaged with each other. The magnet blocks 400 that are in shape and are adjacent to each other are arranged so that the adjacent surfaces of the concavo-convex shape coincide, that is, the other convex shape fits into one concave shape and all the adjacent surfaces coincide. The wire 3 that cuts the block 400 is a straight line that is orthogonal to the longitudinal direction of the glass plate 11, and the adjacent portion 401 does not occur in parallel with the wire 3 because all the adjacent surfaces coincide with each other.
[0014]
In the embodiment shown in FIG. 3 to FIG. 5, the adjacent portions 201, 301, 401 do not have a relationship in which all the adjacent surfaces of the wire saw 7 are aligned and parallel to each other. Since it is parallel to the wire 3, the position of the adjacent portion 101 coincides with or is obstructing the travel of the nearest wire 3, that is, according to the observations of the inventors, the wire 3 is easy to fit into the adjacent portion 101, When the wire 3 is inserted, the wire 3 travels along the adjacent portion 101, and the travel of the wire 3 is obstructed by the inserted adjacent portion 101. The adjacent portion 101 hardly coincides with the position where the wire 3 originally travels. 3 is shifted to different positions and does not travel linearly. Therefore, the unstable travel of the wire 3 fitted in the adjacent portion 101 affects the wire 3 traveling on both sides. When even the running of the adjacent wires 3 becomes unstable, the thickness of the magnet piece 1 corresponding to the second sample varies, and the adjacent portions 201, 301, 401 according to the cutting method of the present invention are inserted into the wires 3. However, it is possible to prevent the running of the adjacent wires 3 from becoming unstable. In addition, although the magnet blocks adjacent to each other are described as matching the adjacent surfaces, the magnet blocks are formed by sintering powder. In other words, it is difficult to completely match with a predetermined shape error. However, even if the magnet block has a predetermined shape error, the implementation and the effect of the present invention are effective. You can still get it.
[0015]
【The invention's effect】
According to the cutting method using the wire saw of the present invention, a plurality of magnet blocks are formed as magnet rows that contact each other on adjacent surfaces, and the magnet blocks are adjacent to each other even if a plurality of wires are divided and cut simultaneously. The running is stable without inserting a wire in the adjacent portion between the surfaces to be run, and the running of the wires on both sides of the wire is also stable. Therefore, this corresponds to the second sample in which variation in thickness has conventionally occurred. There is no variation in the magnet piece of the part, the magnet piece excluding the part including both ends and the adjacent part of the magnet row, thickness accuracy and variation suitable for the magnet piece can be obtained without additional processing, as a result, Additional steps and time are not required, cost is saved, and delivery is not prolonged.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the main configuration of a wire saw.
FIG. 2 is a processing jig to be mounted on a workpiece attachment portion of a wire saw.
FIG. 3 shows a magnet array that inclines adjacent surfaces of a magnet block.
FIG. 4 shows a magnet array in which the mutually adjacent surfaces of the magnet block are arcuate.
FIG. 5 shows a magnet array in which the adjacent surfaces of the magnet block are in mesh with the concavities and convexities.
FIG. 6 shows a conventional magnet array in which adjacent surfaces of a magnet block are parallel to a wire.
FIG. 7 is a perspective view of a magnet block.
FIG. 8 is a perspective view of a magnet piece.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Magnet piece 2 Roller 3 Wire 4 Feeding reel 5 Take-up reel 6 Guide roller 7 Wire saw 10 Magnet row 11 Glass plate 12 Processing jig 100,200,300,400 Magnet block 101,201,301,401 Adjacent part A Magnet Arrow indicating the direction of the block.
D Arrow for moving the processing jig down.
F Arrows in the direction that the wires run in parallel.
X The arrow direction in FIG. 1 of the processing jig shown in FIG.

Claims (4)

複数の磁石用ブロックを相互に隣接する面が接する磁石列となし、前記磁石列の長手方向に直交する姿勢で前記磁石列を直線状に平行走行する複数のワイヤに当接して同時に複数の磁石片に切断する方法において、前記磁石用ブロックの相互に隣接する面を前記ワイヤが直線状に走行する方向と一致させないことを特徴とするワイヤソーによる切断方法。A plurality of magnet blocks are formed as a magnet array in which adjacent surfaces contact each other, and a plurality of magnets are simultaneously brought into contact with a plurality of wires that run linearly in parallel with the magnet array in a posture orthogonal to the longitudinal direction of the magnet array. In the method of cutting into pieces, the wire saw cutting method is characterized in that the mutually adjacent surfaces of the magnet block do not coincide with the direction in which the wire runs linearly. 前記磁石用ブロックの相互に隣接する面を前記ワイヤが直線状に走行する方向と傾斜させる請求項1記載のワイヤソーによる切断方法。  The wire saw cutting method according to claim 1, wherein the surfaces of the magnet blocks adjacent to each other are inclined with respect to a direction in which the wire travels linearly. 前記磁石用ブロックの相互に隣接する面を円弧形状にする請求項1記載のワイヤソーによる切断方法。  The cutting method using a wire saw according to claim 1, wherein surfaces of the magnet blocks adjacent to each other are arcuate. 前記磁石用ブロックの相互に隣接する面を複数の凹凸形状が噛み合う形状とする請求項1記載のワイヤソーによる切断方法。  The cutting method using a wire saw according to claim 1, wherein a plurality of concave and convex shapes are engaged with each other on surfaces adjacent to each other for the magnet block.
JP2000305630A 2000-10-05 2000-10-05 Cutting method with wire saw Expired - Lifetime JP4604330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000305630A JP4604330B2 (en) 2000-10-05 2000-10-05 Cutting method with wire saw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000305630A JP4604330B2 (en) 2000-10-05 2000-10-05 Cutting method with wire saw

Publications (2)

Publication Number Publication Date
JP2002118025A JP2002118025A (en) 2002-04-19
JP4604330B2 true JP4604330B2 (en) 2011-01-05

Family

ID=18786455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000305630A Expired - Lifetime JP4604330B2 (en) 2000-10-05 2000-10-05 Cutting method with wire saw

Country Status (1)

Country Link
JP (1) JP4604330B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220197A (en) * 2006-02-16 2007-08-30 Tdk Corp Vcm device and method for manufacturing permanent magnet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251062A (en) * 1986-04-23 1987-10-31 Toshiba Corp Cutting location method
JPH1034639A (en) * 1996-07-25 1998-02-10 Babcock Hitachi Kk Method and device for cutting extrusion-molded body
JPH1058440A (en) * 1996-08-20 1998-03-03 Komatsu Electron Metals Co Ltd Manufacture of semiconductor wafer
JPH10100139A (en) * 1996-04-16 1998-04-21 Charles Hauser Method for orienting a plurality of single crystals aligned and disposed on cut support to simultaneously cut in cutting machine and apparatus for executing the method
JPH1190923A (en) * 1997-09-19 1999-04-06 Hitachi Cable Ltd Cutting method by multiple wire saw
JP2000141199A (en) * 1998-09-01 2000-05-23 Sumitomo Special Metals Co Ltd Cutting method for rare earth alloy by wire saw and manufacture of rare earth alloy plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118473B2 (en) * 1987-07-14 1995-12-18 九州電子金属株式会社 Method for manufacturing semiconductor wafer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251062A (en) * 1986-04-23 1987-10-31 Toshiba Corp Cutting location method
JPH10100139A (en) * 1996-04-16 1998-04-21 Charles Hauser Method for orienting a plurality of single crystals aligned and disposed on cut support to simultaneously cut in cutting machine and apparatus for executing the method
JPH1034639A (en) * 1996-07-25 1998-02-10 Babcock Hitachi Kk Method and device for cutting extrusion-molded body
JPH1058440A (en) * 1996-08-20 1998-03-03 Komatsu Electron Metals Co Ltd Manufacture of semiconductor wafer
JPH1190923A (en) * 1997-09-19 1999-04-06 Hitachi Cable Ltd Cutting method by multiple wire saw
JP2000141199A (en) * 1998-09-01 2000-05-23 Sumitomo Special Metals Co Ltd Cutting method for rare earth alloy by wire saw and manufacture of rare earth alloy plate

Also Published As

Publication number Publication date
JP2002118025A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
US20040033763A1 (en) Storage device slider with sacrificial lapping extension
JP4604330B2 (en) Cutting method with wire saw
JP2003209963A (en) Linear motor
JP2893597B2 (en) Manufacturing method of magnetic head
US20120036706A1 (en) Row bar for forming sliders and method of manufacturing slider
JP5672224B2 (en) Grooved roller and wire saw using the same
US9779871B2 (en) Manufacturing device for cleft magnet
JPH02301014A (en) Manufacture of floating type magnetic head
JP2007021682A (en) Magnet chuck
JPH1190923A (en) Cutting method by multiple wire saw
CN211089385U (en) Iron core positioning mechanism
CN216353764U (en) Special pay-off track structure of polishing
JP6528667B2 (en) Method of deburring ceramic core, deburring apparatus, and method of manufacturing ceramic core
CN210321681U (en) Positioning tool for measuring head for measuring bore diameter of bearing inner ring by electric spark cutting
CN214350105U (en) Wire-threading guiding device for wire cutting
CN217224076U (en) Laser cutting supporting platform for thin steel plate test piece
CN211639317U (en) Magnetic core grinding machanism
JPS6035308A (en) Magnetic head and its production
JPH022384B2 (en)
CN111030393A (en) Iron core positioning mechanism
KR0136418B1 (en) Metal in gap type magnetic head
JP2733337B2 (en) Method of manufacturing sliding brush
KR19980079917A (en) Manufacturing Method of Rotating Head Device, Manufacturing Method of Magnetic Head Unit, Rotating Head Device and Magnetic Head Unit
JP2505052Y2 (en) Side edge cutting machine for strip steel
WO2010110371A1 (en) Rack and pinion mechanism, accessor, and magnetic tape device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Ref document number: 4604330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3