JP4601509B2 - モールド形電子回路装置及びその製造方法 - Google Patents

モールド形電子回路装置及びその製造方法 Download PDF

Info

Publication number
JP4601509B2
JP4601509B2 JP2005213019A JP2005213019A JP4601509B2 JP 4601509 B2 JP4601509 B2 JP 4601509B2 JP 2005213019 A JP2005213019 A JP 2005213019A JP 2005213019 A JP2005213019 A JP 2005213019A JP 4601509 B2 JP4601509 B2 JP 4601509B2
Authority
JP
Japan
Prior art keywords
bonding
temperature
resin
molded
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005213019A
Other languages
English (en)
Other versions
JP2007035718A (ja
Inventor
克英 大橋
滋夫 天城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2005213019A priority Critical patent/JP4601509B2/ja
Publication of JP2007035718A publication Critical patent/JP2007035718A/ja
Application granted granted Critical
Publication of JP4601509B2 publication Critical patent/JP4601509B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Description

本発明は、回路基板を樹脂モールド体に収容した電子回路装置に係り、特に、端子を一体に形成した樹脂モールド体に回路基板を収容したモールド形電子回路装置とその製造方法に関する。
近年、広い技術分野で制御の電子化が進み、このため各種の電子回路がデバイス化されているが、なかでも複数本の接続用端子を樹脂によりインサートしたモールド成形部品をケースとして用い、これに能動素子や受動素子が搭載された回路基板を収容した電子デバイス、いわゆるモールド形電子回路装置の多用化が進んでいる。
ところで、このモールド電子回路装置においては、生産性と信頼性の観点から、ケース用のモールド部品にインサートされている外部接続用の接続用端子と、モールド部品の内部に収容されている回路基板の導体部の接続には、通常、アルミ(アルミニウム)ワイヤのボンディング接合が用いられている。このとき回路基板は、ワイヤボンディング前にモールド部品の中に接合されるようになっているが、この回路基板の接合には、通常、シリコーン系接着剤の加熱硬化処理が用いられる。
そこで、従来技術では、この回路基板接合のための加熱硬化処理を行った後、モールド部品を常温まで冷却してからワイヤボンディングを施し、回路基板の導体部と接続用端子の接続が与えられるようにしていた。そして、この後、モールド部品の内部にシリコーン系ゲルを塗布して保護を図り、更にモールドカバー接着用のエポキシ系接着剤をモールド部品に塗布し、加熱硬化処理してカバーの接着を行い、モールド電子回路装置として完成させている。
上記従来技術は、製造工程に冷却期間を要する点に配慮がされておらず、製造工程の自動化に問題があった。
従来技術では、上記したように、回路基板接合のための加熱硬化処理を行った後、モールド部品を常温まで冷却してからワイヤボンディングを施しているが、ここでシリコーン系接着剤の場合、加熱硬化温度は130℃〜160℃であり、この温度に加熱した後、常温まで降下させるので、かなり永い冷却時間が必要になる。例えば送風冷却した場合、冷却に10分〜20分程度の時間を要し、従って、従来技術では、この期間が経過するまではワイヤボンディング工程に移行させないので、接着したモールド部品は停滞させておくしかない。
ここで、一連の工程を自動化した場合、従来技術では、回路基板接合のための加熱硬化処理を行ったモールド部品を停滞させておくための一種の溜まり場所となるバッファが自動化ライン内に必要になり、しかも、このバッファの設置に伴い、製造ラインのリードタイムも永くなってしまうという問題点があった。
しかして、リードタイムの短縮を意図してバッファの容量を抑え、或いはバッファを設けず、冷却途中でワイヤボンディングを実施したとすると、ボンディングの被接合部となっている接続用端子を取り囲んでいる樹脂部材がもつ樹脂部材特有の曲げ弾性率の変化の大きい温度域と重なり、ボンディング性にバラツキを発生させてしまうという問題があった。
一方、冷却時間の短縮を意図し、例えば低温の空気の送風などにより急冷したとすると、冷却後、製品に結露を発生させる虞があり、更には急冷により樹脂部材内部に歪を発生させてしまう虞もあり、何れの場合も信頼性の維持に問題が生じてしまうため、これらの手法は避けられていた。
本発明の目的は、信頼性を維持したまま製造工程の簡略化が得られるようにしたモールド形電子回路装置とその製造方法を提供することにある。
上記目的は、端子をインサートしたPBT−GF30%樹脂とPPS−GF40%樹脂及びPA6−GF30%樹脂の何れかによる樹脂製のモールド部品本体をケースとして用い、回路基板を前記モールド部品本体内に収容したモールド形電子回路装置において、前記端子と前記回路基板のボンディング接合が、前記モールド部品本体を構成している樹脂材の振動減衰特性Tanδの大きい温度範囲から外れ、前記樹脂材の加熱硬化処理温度の下限値以下の温度領域で且つ前記樹脂材の振動減衰特性Tanδの大きい温度範囲よりも高い温度領域において行なわれているようにして達成される。
同じく、上記目的は、端子をインサートしたBPT−GF30%樹脂とPPF−GF40%樹脂及びPA6−GF30%樹脂の何れかによる樹脂製のモールド部品本体をケースとして用い、回路基板を前記モールド部品本体内に収容したモールド形電子回路装置の製造方法において、前記端子と前記回路基板のボンディング接合が、前記モールド部品本体を構成している樹脂材の振動減衰特性Tanδの大きい温度範囲から外れ、前記樹脂材の加熱硬化処理温度の下限値以下の温度領域で且つ前記樹脂材の振動減衰特性Tanδの大きい温度範囲よりも高い温度領域において実行させることにより達成される。
本発明によれば、樹脂部材特有の曲げ弾性率の変化の大きい温度域を避け、高温度域でも常温と同レベルで変化率が少ない領域に製品の温度を保持したままワイヤボンディングするようにしたので、良好なボンディング性を確保することができる。
従って、本発明によれば、ワイヤボンディング前の冷却工程を廃止し、高温度に保持したままでボンディング接合しても、良好なボンディング性を確保することができるので、冷却工程に伴うバッファの廃止とリードタイムの短縮を図ることができる。
また、この結果、本発明に係る電子装置によれば、端子を取り囲む樹脂部材のわずかな温度変化に対して曲げ弾性率が大きく変化するのが防止され、端子のボンディング接合面とアルミワイヤとのワイヤボンディングの安定的な接合を確保して外部との電気信号の授受を安定的に行うことができる。
以下、本発明に係るモールド形電子回路装置とその製造方法について、複数の実施の形態を用い、図を参照して詳細に説明する。
<実施形態1>
図1と図2は、本発明によるモールド形電子回路装置の実施形態1で、ここでは当該モールド形電子回路装置を符号100で表わしてあり、このとき図1は斜視図で、図2は、図1のA−A線による断面図であり、従って、これらの図から明らかなように、このモールド形電子回路装置100は、所定の樹脂材(詳しくは後述する)により角形の枠状体として作られたモールド部品本体1を備え、これをケースとして構成したものである。
このときモールド部品本体1には、コネクタ用の複数個の端子2がインサートにより設けられ、その底部はアルミベース3により塞がれている。このときの端子2は、例えばニッケルメッキされた真鍮などの銅合金材で作られ、モールド部品本体1の方形の1辺を形成している枠部1aに規則的に配置された状態でインサートされていて、これにはアルミワイヤ7をボンディング接合するためのボンディング接合面2aが形成してあり、
ここでアルミベース3は、ケースの底板を構成する部材であるが、更に放熱板としても機能するもので、このため嵌合用の凹部3aを備え、この凹部3aにモールド部品本体1の枠状部分の底部に周回して形成されている凸部を嵌合させ、凹部3aに塗布したシリコーン系接着剤6の加熱硬化接着によりモールド部品本体1に取付けられている。このときの加熱温度は130℃〜160℃で処理時間は約1時間(1時間前後)である。
更に、このモールド部品本体1には、その四隅の角部にモールド形電子回路装置100を取り付けるための孔を備えたブッシュ5がインサートされている。そして、このモールド部品本体1の中には、アルミベース3に接合されることにより、図示のように、回路基板4が格納される。
このとき、この回路基板4には、例えば半導体素子や抵抗素子、静電容量素子など各種の回路素子4aが回路パターンにより接続された状態で搭載されている。そして、このとき回路パターン導体の一部が複数個の接続部4bを形成するようにしてあり、回路基板4がモールド部品本体1の中に収容された後、端子2のボンディング接合面2aと接続部4bがアルミワイヤ7によりボンディングされることになる。
回路基板4がボンディングされたら、モールド部品本体1の中にシリコーン系ゲル8が封入され、回路基板4の保護か得られるようにした後、モールドカバー10が取付られ、モールド形電子回路装置100として完成されるが、このため、枠状部分の頂部に、その枠状部分を周回して形成されている凹部1bが設けてあり、この凹部1bの中にエポキシ系接着剤9を塗布し、モールドカバー10の外周突起部を凹部1bに嵌合させ、加熱硬化接着により一体化している。
次に、モールド部品本体1を構成している樹脂材(合成樹脂材)について説明すると、この実施形態1では、このモールド部品本体1を構成している樹脂材として、GF(ガラスフィラ)を30%程度含有させたPBT(ポリ・ブチレン・テレフタレート)樹脂(以下、PBT−GF30%樹脂という)を用いており、これが実施形態1の特徴である。そして、この場合、モールド部品本体1を用いてモールド形電子回路装置100に完成させたときの工程フローは、図3に示すようになる。
この図3において、加熱硬化接着工程P11までが、上記したアルミベース3をシリコーン系接着剤6の加熱硬化接着によりモールド部品本体1に取付け、これにより回路基板4がモールド部品本体1に格納されるまでの処理工程であるが、ここで、この実施形態1による処理工程では、この加熱硬化接着工程P11を終えた後、破線で囲って示してある処理工程(廃止工程)は飛ばし、その先のワイヤボンディング接合工程P12に直ちに移行し、モールド部品本体1の端子2と回路パターン導体の一部にある接続部4bをアルミワイヤ7によりボンディング接合する処理を実行し、この後、更にモールド形電子回路装置100に完成させるまでの処理工程に進むようになっている。
このとき、従来技術では、加熱硬化接着処理を終えた後、破線で囲って示してある処理工程(廃止工程)を実行し、加熱硬化接着処理を終えて高温状態にあるモールド部品を冷却し、常温に戻るまで10分から20分程度、バッファに溜めてからワイヤボンディング接合を行っていたが、この実施形態1では、この冷却工程を廃止し、アルミベース3が加熱硬化接着された後のモールド部品本体1を冷却なしで、つまり、そのまま時間を置かないで温度が80℃〜130℃に保持されたままの状態でワイヤボンディング接合工程P12を実行している点に特徴がある。
ここで、このワイヤボンディング接合における問題点について、図4により簡単に説明する。なお、このとき、問題になるのは、端子2のボンディング接合面2aに対するアルミワイヤ7のボンディングだけであり、接続部4bに対するボンディングには問題がない。それは、この接続部4bがモールド部品本体1を構成している樹脂材の上に設けられていないからである。
図4は、図2の断面図の一部を拡大して示したもので、この図において、40はボンディング装置のボンディングホーンで、ボンディング時、端子2のボンディング接合面2aに置かれたアルミワイヤ7には、このボンディングホーン40の先端が、図示のように、上部から当てられる。このとき、ボンディングホーン40は、ボンディング接合面2aに対して垂直に当てられ、且つボンディング装置から一定の荷重が与えられるようになっている。
従って、このとき、モールド部品本体1の枠部1aと端子2、ボンディング接合面2aとアルミワイヤ7(ボンディングホーン40による加圧幅)、それにアルミワイヤ7(ボンディングホーン40による加圧幅)とボンディングホーン40(ボンディングホーン40による加圧幅)は、全て隙間無く接触されている。
ここで、ワイヤボンディングを行うには、ボンディング装置からボンディングホーン40に所定の強度の超音波を供給させてやる。そうするとボンディングホーン40に超音波振動41が現われ、これが端子2のボンディング接合面2aとアルミワイヤ7の接触部位に摺動による摩擦力を発生させ、この摩擦力が接合エネルギーとなってボンディング接合面2aとアルミワイヤ7が熱的に接合されるのである。
従って、このためには、端子2が或る程度の剛性をもって支持されていなければならないが、このとき端子2は、モールド部品本体1の枠部1aに支持られているので、この場合、モールド部品本体1を構成している材料の曲げ弾性率GPa と振動減衰特性Tanδが指標になり、曲げ弾性率GPa が或る程度以上で、振動減衰特性Tanδが或る程度以下であれば、ボンディング接合に問題が生じないことが判っている。
ところが合成樹脂材の曲げ弾性率GPa と振動減衰特性Tanδには温度依存性があり、このため従来技術では、冷却処理工程を設け、常温に戻してからボンディング処理しているのであるが、この実施形態では、図3の工程フローに示したように、廃止工程として冷却処理工程を省き、加熱硬化接着工程P11を終えた後、ワイヤボンディング接合工程P12に直ちに移行しているが、この場合、モールド部品本体1の温度は、ほとんど低下すること無く、そのまま80℃〜130℃になっている。
そこで、この実施形態1で、モールド部品本体1の温度が80℃〜130℃というかなり高い温度に保たれている状態でワイヤボンディング処理を実行しても支障無くボンディング接合が得られることについて、以下に詳しく説明する。
まず、この実施形態1の場合、モールド部品本体1の材料は、上記したように、PBT−GF30%樹脂であり、この場合、その曲げ弾性率GPa と振動減衰特性Tanδの温度依存性は図5に示すようになっている。
この図5から、実施形態1のPBT−GF30%樹脂の場合、マイナス温度域から温度上昇に伴い徐々に曲げ弾性率GPa は低下し、PBT−GF30%樹脂のガラス転移温度Tgである30℃を境に弾性率の低下が著しくなり、更に80℃の温度を境にして弾性率の低下が再度緩やかになっている。従って、樹脂の特性として、ガラス転移温度Tg以上になると、急激に弾性率は低下し、更に温度が上がりゴム状態になると弾性率の温度による変化は少なくなるという性質があることが判る。
また、振動減衰特性Tanδでは、図示のように、ガラス転移温度Tgを境にして徐々に値が大きくなり、50℃〜60℃の温度で値が急上昇している。しかし、ピーク値はスポット的であり、ピーク値を過ぎると値は低下し、100℃の温度では、ガラス転移温度Tgのときの値とほぼ同程度の値を示していることが判る。
次に、このPBT−GF30%樹脂によるモールド部品本体1におけるワイヤボンディング特性と温度依存性の関係について、実測した結果を図6に示す。このときのワイヤボンディング特性は、ボンディング時に印加する超音波振動の電圧出力値の総和で、且つ温度が20℃のときの特性に対する比とした。言い換えれば、ボンディング時の接合エネルギーの総和でもある。
この図6の結果から、出力平均としては、温度上昇に伴い出力は緩やかに下降しているが、各温度の実測(40個)の標準偏差(バラツキ)においては、温度が50℃前後をピークに低温20℃側及び高温80℃側の両側に向かうに従い標準偏差が減少しているが、これらは前記で述べたPBT−GF30%の振動減衰特性Tanδが大きな領域と重なることから、ボンディングの安定性に関しては、振動減衰特性Tanδの大きい温度範囲がボンディングにバラツキを発生させる領域であることが裏付けられる。
よってPBT−GF30%樹脂を用いた実施形態1において、モールド部品本体1の温度が図5に高温側ボンディング温度領域として示してある80℃〜130℃のとき、ワイヤボンディング接合を行っても、超音波の出力平均としては常温のときと遜色なく、しかも、この場合は振動減衰特性Tanδの大きい温度範囲(20℃〜80℃)から外すことができるので、バラツキの少ない安定したボンディング接合が得られることが判る。
このとき、図3に示されているように、この実施形態1では加熱硬化処理温度が130℃〜160℃であることから、モールド部品本体1の温度は、加熱硬化接着後、そのまま何もしなくても自然に80℃〜130℃の温度に保持されることになるので、ここで、ことさら時間を置いたりする必要はない。
従って、この実施形態1によれば、図3に廃止工程として示したように、加熱硬化接合処理工程P11とワイヤボンディング接合処理工程P12の間に冷却処理工程を設ける必要がないので、そのためのバッファが不要になり、処理中のモールド部品本体1を停滞させることのない連続した処理ライン構成ができ、リードタイムの短縮が図れる。
<実施形態2>
次に、本発明の別の実施形態である実施形態2について説明する。ここで、この実施形態2は、モールド形電子回路装置100のケースであるモールド部品本体1を構成している材料として、GFを40%含有させたPPS(ポリ・フェニレン・サルファイド)樹脂材(以下、PPS−GF40%樹脂という)を用いた場合の本発明の一実施形態である。
そして、この実施形態2では、モールド部品本体1にPPS−GF40%樹脂の使用を前提とした結果、モールド形電子回路装置100の組立に、図7に示す工程フローによる処理が実行されるようになっている点が特徴であり、その他は、モールド形電子回路装置100も含めて、実施形態1の場合と同じである。
ここで、この図7の工程フローが、図3に示した実施形態1の工程フローと異なっている点は、P21として示してある加熱硬化接合処理工程での加熱温度が180℃〜200℃になっている点と、P22として示してあるワイヤボンディング接合処理工程でのモールド部品本体1の温度が160℃〜180℃になっている点にあり、その他は、実施形態1の場合と同じである。
次に、この実施形態2で、モールド部品本体1の温度が160℃〜180℃という、かなり高い温度に保たれている状態でワイヤボンディング処理を実行しても支障無くボンディング接合が得られることについて、実施形態1のときと同様にして、以下に詳しく説明する。
実施形態2の場合、モールド部品本体1の材料は、上記したように、PPS−GF40%樹脂なので、その曲げ弾性率GPa と振動減衰特性Tanδの温度依存性は図8に示すようになっており、従って、このPPS−GF40%樹脂の場合も、マイナス温度域から温度上昇に伴い徐々に曲げ弾性率GPa が低下していて、PPS−GF40%樹脂のガラス転移温度Tgである90℃を境に弾性率の低下が著しくなり、更に140℃の温度を境にして弾性率の低下が再度緩やかになっている。つまり、この場合も、樹脂の特性として、ガラス転移温度Tg以上になると、急激に弾性率は低下し、更に温度が上がりゴム状態になると弾性率の温度による変化は少なくなるという性質があることが判る。
また、振動減衰特性Tanδでは、図示のように、ガラス転移温度Tgを境にして徐々に値が大きくなり、110℃〜120℃の温度で値が急上昇している。しかし、ピーク値はスポット的であり、ピーク値を過ぎると値は低下し、170℃の温度では、ガラス転移温度Tgのときの値とほぼ同程度の値を示していることが判る。
次に、このPPS−GF40%樹脂製のモールド部品本体1におけるワイヤボンディング特性と温度依存性の関係について実測した結果は図9に示す通りで、このときのワイヤボンディング特性もボンディング時に印加する超音波振動の電圧出力値の総和で、且つ温度が20℃のときの特性に対する比であり、ボンディング時の接合エネルギーの総和でもあり、この結果から、出力平均としては、温度上昇に伴い出力は緩やかに下降しているが、各温度の実測(40個)の標準偏差(バラツキ)においては、温度が120℃前後をピークに低温80℃側及び高温160℃側の両側に向かうに従い標準偏差が減少していて、これらは図8の振動減衰特性Tanδが大きな領域と重なることから、ボンディングの安定性に関しては、振動減衰特性Tanδの大きい温度範囲がボンディングにバラツキを発生させる領域であることが、ここでも裏付けられる。
従って、このPPS−GF40%樹脂を用いた実施形態2においては、モールド部品本体1の温度が図8に高温側ボンディング温度領域として示してある160℃〜180℃のときにワイヤボンディング接合を行っても、超音波の出力平均としては常温のときと遜色なく、しかも、この場合は振動減衰特性Tanδの大きい温度範囲(110℃〜120℃)から外すことができるので、バラツキの少ない安定したボンディング接合が得られることが判る。
しかも、ここで図7に示されているように、この実施形態2では加熱硬化処理温度が180℃〜200℃であることから、モールド部品本体1の温度は、加熱硬化接着後、そのまま何もしなくても自然に160℃〜180℃の温度に保持されることになるので、ここでも、ことさら時間を置いたりする必要はない。
従って、この実施形態2によっても、図7に示したように、加熱硬化接合処理工程P21とワイヤボンディング接合処理工程P22の間に冷却処理工程を設ける必要はなく、バッファも不要であり、この結果、処理中のモールド部品本体1を停滞させることのない連続した処理ライン構成が可能でリードタイムの短縮が図れることになる。
<実施形態3>
次に、本発明の更に別の実施形態である実施形態3について説明する。ここで、この実施形態3は、モールド形電子回路装置100のケースであるモールド部品本体1を構成している材料として、GFを30%含有させたPA6(ポリアミド6)樹脂材(以下、PA6−GF30%樹脂という)を用いた場合の本発明の一実施形態である。
そして、この実施形態3では、モールド部品本体1にPA6−GF30%樹脂を用いた結果、モールド形電子回路装置100の組立に、図10に示す工程フローによる処理が実行されるようになっている点が特徴であり、その他は、モールド形電子回路装置100も含めて、実施形態1の場合と同じである。
ここで、この図10の工程フローが、図3に示した実施形態1の工程フローと異なっている点は、P31として示してある加熱硬化接合処理工程での加熱温度が140℃〜160℃になっている点と、P32として示してあるワイヤボンディング接合処理工程でのモールド部品本体1の温度が100℃〜140℃になっている点にあり、その他は、実施形態1の場合と同じである。
次に、この実施形態3で、モールド部品本体1の温度が100℃〜140℃の温度に保たれている状態でワイヤボンディング処理を実行しても支障無くボンディング接合が得られることについて、実施形態1のときと同様にして、以下に詳しく説明する。
実施形態3の場合、モールド部品本体1の材料は、上記したように、PA6−GF30%樹脂なので、その曲げ弾性率GPa と振動減衰特性Tanδの温度依存性は図11に示すようになる。そして、このPA6−GF40%樹脂の場合も、マイナス温度域から温度上昇に伴い徐々に曲げ弾性率GPa が低下していて、PA6−GF30%樹脂のガラス転移温度Tgである50℃を境にして弾性率の低下が著しくなり、更に80℃の温度を境にして弾性率の低下が再度緩やかになっている。つまり、この場合も、樹脂の特性として、ガラス転移温度Tg以上になると、急激に弾性率は低下し、更に温度が上がりゴム状態になると弾性率の温度による変化は少なくなるという性質があることが判る。
また、振動減衰特性Tanδの場合、図示のように、ガラス転移温度Tgを境にして徐々に値が大きくなり、70℃〜80℃の温度で値が急上昇している。しかし、ここでもピーク値はスポット的で、ピーク値を過ぎると値は低下し、120℃の温度では、ガラス転移温度Tgのときの値とほぼ同程度の値を示していることが判る。
次に、このPA6−GF40%樹脂製のモールド部品本体1におけるワイヤボンディング特性と温度依存性の関係について実測した結果は図12に示す通りで、このときのワイヤボンディング特性もボンディング時に印加する超音波振動の電圧出力値の総和で、且つ温度が20℃のときの特性に対する比であり、ボンディング時の接合エネルギーの総和でもあり、この結果から、出力平均としては、温度上昇に伴い出力は緩やかに下降しているが、各温度の実測(40個)の標準偏差(バラツキ)においては、温度が70℃前後をピークに低温20℃側及び高温100℃側の両側に向かうに従い標準偏差が減少していて、これらは図11の振動減衰特性Tanδが大きな領域と重なることから、ボンディングの安定性に関しては、振動減衰特性Tanδの大きい温度範囲がボンディングにバラツキを発生させる領域であることが、ここでも裏付けられる。
従って、このPA6−GF40%樹脂を用いた実施形態3においては、モールド部品本体1の温度が図11に高温側ボンディング温度領域として示してある100℃〜150℃のときにワイヤボンディング接合を行っても、超音波の出力平均としては常温のときと遜色なく、しかも、この場合は振動減衰特性Tanδの大きい温度範囲(70℃〜80℃)から外すことができるので、バラツキの少ない安定したボンディング接合が得られることが判る。
しかも、ここで図10に示されているように、この実施形態3では加熱硬化処理温度が140℃〜160℃であることから、モールド部品本体1の温度は、加熱硬化接着後、そのまま何もしなくても自然に100℃〜140℃の温度に保持されることになるので、ここでも、ことさら時間を置いたりする必要はない。
従って、この実施形態3によっても、図11に示したように、加熱硬化接合処理工程P31とワイヤボンディング接合処理工程P32の間に冷却処理工程を設ける必要はなく、バッファも不要であり、この結果、処理中のモールド部品本体1を停滞させることのない連続した処理ライン構成が可能でリードタイムの短縮が図れることになる。
以上、説明したように、本発明の実施形態によれば、従来は避けられていた高温度域において、各樹脂部材特有の曲げ弾性率の変化の大きい温度域を避け、常温と同レベルの変化率の少ない温度で、製品の温度を保持したままワイヤボンディング接合しているので、良好なボンディング性が確保でき、この結果、設計自由度の向上を図ることができる。
また、本発明の実施形態によるボンディング製法によれば、ワイヤボンディング前の冷却工程を廃止して高温度に保持したままでボンディング接合できるので、冷却工程に伴うバッファーの廃止とリードタイムの短縮が望めることになり、コストパフォーマンスを大幅に図ることができる。
ところで、以上の実施形態1〜3では、PBT樹脂、PPS樹脂、それにPA6樹脂にガラスフィラを30%〜40%充填した樹脂材をモールド部品本体1に用いた場合について説明したが、本発明の実施形態は、これらの樹脂材に限定されるものでなく、熱可塑性樹脂や熱硬化性樹脂、若しくはこれらの樹脂に無機材料の繊維や有機材料の繊維等のフィラを充填した樹脂など、各種の樹脂材によっても実施が可能なことは言うまでもない。
本発明は、モータなどの回転体を形成するものや回転体を用いて角度や位置、変位をセンシングするセンサなどに適用される。例えば、自動車分野における流入空気量を調整するスロットル弁(バルブ)やそこに取り付けられるスロットルポジションセンサ、アクセル開度を検出するアクセル開度センサ、これらセンサを一連に制御構成するための各種センサなどである。また、本発明は、本発明と同じ課題を解決するものであれば、以上に列記した製品に限定されることなく適用できる。
本発明によるモールド形電子回路装置の一実施形態を示す斜視図である。 本発明によるモールド形電子回路装置の一実施形態を示す断面図である。 本発明の実施形態1による組み立て工程フロー図である。 本発明に関連するボンディング接合を説明するための模式図である。 PBT‐GF30%樹脂の曲げ弾性率と減衰特性の温度依存性を説明するための特性図である。 PBT‐GF30%樹脂におけるワイヤボンディング特性の温度依存性を説明するための特性図である。 本発明の実施形態2による組み立て工程フロー図である。 PPS‐GF40%樹脂の曲げ弾性率と減衰特性の温度依存性を説明するための特性図である。 PPS‐GF40%樹脂におけるワイヤボンディング特性の温度依存性を説明するための特性図である。 本発明の実施形態3による組み立て工程フロー図である。 PA6‐GF30%樹脂の曲げ弾性率と減衰特性の温度依存性を説明するための特性図である。 PA6‐GF30%樹脂におけるワイヤボンディング特性の温度依存性を説明するための特性図である。
符号の説明
1:モールド部品本体
1a:枠部(モールド部品本体の枠部)
1b:凹部(枠部1aの凹部)
2:端子(コネクタ用の端子)
2a:ボンディング接合面(端子2のボンディング接合面)
3:アルミベース
3a:凹部(アルミベース3の凹部)
4:回路基板
4a:回路素子
4b:接続部(回路パターン導体の一部に形成した接続部)
5:ブッシュ
6:シリコーン系接着剤
7:アルミワイヤ(ボンディングワイヤ)
8:シリコーン系ゲル
9:エポキシ系接着剤
10:モールドカバー
40:ボンディングホーン
41:超音波振動
100:モールド形電子回路装置

Claims (2)

  1. 端子をインサートしたPBT−GF30%樹脂とPPS−GF40%樹脂及びPA6−GF30%樹脂の何れかによる樹脂製のモールド部品本体をケースとして用い、回路基板を前記モールド部品本体内に収容したモールド形電子回路装置において、
    前記端子と前記回路基板のボンディング接合が、前記モールド部品本体を構成している樹脂材の振動減衰特性Tanδの大きい温度範囲から外れ、前記樹脂材の加熱硬化処理温度の下限値以下の温度領域で且つ前記樹脂材の振動減衰特性Tanδの大きい温度範囲よりも高い温度領域において行なわれていることを特徴とするモールド形電子回路装置。
  2. 端子をインサートしたBPT−GF30%樹脂とPPF−GF40%樹脂及びPA6−GF30%樹脂の何れかによる樹脂製のモールド部品本体をケースとして用い、回路基板を前記モールド部品本体内に収容したモールド形電子回路装置の製造方法において、
    前記端子と前記回路基板のボンディング接合が、前記モールド部品本体を構成している樹脂材の振動減衰特性Tanδの大きい温度範囲から外れ、前記樹脂材の加熱硬化処理温度の下限値以下の温度領域で且つ前記樹脂材の振動減衰特性Tanδの大きい温度範囲よりも高い温度領域において実行することを特徴とするモールド形電子回路装置の製造方法。
JP2005213019A 2005-07-22 2005-07-22 モールド形電子回路装置及びその製造方法 Expired - Fee Related JP4601509B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213019A JP4601509B2 (ja) 2005-07-22 2005-07-22 モールド形電子回路装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213019A JP4601509B2 (ja) 2005-07-22 2005-07-22 モールド形電子回路装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2007035718A JP2007035718A (ja) 2007-02-08
JP4601509B2 true JP4601509B2 (ja) 2010-12-22

Family

ID=37794646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213019A Expired - Fee Related JP4601509B2 (ja) 2005-07-22 2005-07-22 モールド形電子回路装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP4601509B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798436B2 (ja) * 2017-07-12 2020-12-09 株式会社オートネットワーク技術研究所 回路装置、回路装置の製造方法、およびコネクタ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180980A (ja) * 1990-11-14 1992-06-29 Hitachi Ltd 接着剤
JPH06224314A (ja) * 1992-12-04 1994-08-12 Toshiba Corp 半導体装置
JPH08208869A (ja) * 1995-01-31 1996-08-13 Takiron Co Ltd 制振性樹脂発泡体
JPH11273769A (ja) * 1998-03-20 1999-10-08 Aisin Aw Co Ltd 電子制御ユニット
JP2000301534A (ja) * 1999-02-19 2000-10-31 Hitachi Chem Co Ltd プリプレグ、金属張積層板及びこれらを用いた印刷配線板
WO2004075293A1 (ja) * 2003-02-19 2004-09-02 Hitachi Chemical Co., Ltd. 半導体用接着フィルム、これを用いた接着フィルム付金属板、接着フィルム付配線回路及び半導体装置並びに半導体装置の製造方法
JP2005175243A (ja) * 2003-12-12 2005-06-30 Asahi Kasei Chemicals Corp 電磁波シールド性を有する樹脂製筐体。

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180980A (ja) * 1990-11-14 1992-06-29 Hitachi Ltd 接着剤
JPH06224314A (ja) * 1992-12-04 1994-08-12 Toshiba Corp 半導体装置
JPH08208869A (ja) * 1995-01-31 1996-08-13 Takiron Co Ltd 制振性樹脂発泡体
JPH11273769A (ja) * 1998-03-20 1999-10-08 Aisin Aw Co Ltd 電子制御ユニット
JP2000301534A (ja) * 1999-02-19 2000-10-31 Hitachi Chem Co Ltd プリプレグ、金属張積層板及びこれらを用いた印刷配線板
WO2004075293A1 (ja) * 2003-02-19 2004-09-02 Hitachi Chemical Co., Ltd. 半導体用接着フィルム、これを用いた接着フィルム付金属板、接着フィルム付配線回路及び半導体装置並びに半導体装置の製造方法
JP2005175243A (ja) * 2003-12-12 2005-06-30 Asahi Kasei Chemicals Corp 電磁波シールド性を有する樹脂製筐体。

Also Published As

Publication number Publication date
JP2007035718A (ja) 2007-02-08

Similar Documents

Publication Publication Date Title
US8599571B2 (en) Memory card
US6707125B2 (en) Solid-state imaging apparatus and manufacturing method thereof
JP5635661B1 (ja) イメージセンサの2段階封止方法
JP4180613B2 (ja) センサ装置
US6825540B2 (en) Miniaturized, resin-sealed solid state imaging apparatus
JP6357535B2 (ja) センサおよびその製造方法
JP2019016689A (ja) 電子制御装置及び同製造方法
JP6966259B2 (ja) 樹脂封止型車載電子制御装置
JP4766053B2 (ja) Sdメモリカードおよびsdメモリカードの製造方法
US9437527B2 (en) Method for manufacturing electrical connections in a semiconductor device and the semiconductor device
US10504857B2 (en) Semiconductor package structure for improving die warpage and manufacturing method thereof
US8637971B2 (en) Semiconductor device and method of manufacturing semiconductor device
CN108336057B (zh) 半导体装置及其制造方法
JP4601509B2 (ja) モールド形電子回路装置及びその製造方法
JP6666048B2 (ja) 回路基板装置
US20130134569A1 (en) Semiconductor package
JP2011508229A (ja) センサ装置およびセンサ装置製造方法
JP2008078164A (ja) 半導体装置とその製造方法
JP4322195B2 (ja) 電子デバイスおよびそれを用いた電子機器
JP5990894B2 (ja) 半導体モジュール、半導体モジュールの製造方法及びカード
JP4403647B2 (ja) 記録媒体カード及びその製造方法
JP7037471B2 (ja) 電子回路装置、圧力センサ
JP2010251563A (ja) 半導体装置
JP6658104B2 (ja) 回路装置
KR100900235B1 (ko) 반도체 패키지 및 이의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4601509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees