JP4600143B2 - Air passage opening and closing device - Google Patents

Air passage opening and closing device Download PDF

Info

Publication number
JP4600143B2
JP4600143B2 JP2005137332A JP2005137332A JP4600143B2 JP 4600143 B2 JP4600143 B2 JP 4600143B2 JP 2005137332 A JP2005137332 A JP 2005137332A JP 2005137332 A JP2005137332 A JP 2005137332A JP 4600143 B2 JP4600143 B2 JP 4600143B2
Authority
JP
Japan
Prior art keywords
door
air passage
sealing material
protrusion
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005137332A
Other languages
Japanese (ja)
Other versions
JP2006315437A (en
Inventor
基博 北田
俊作 平山
重義 長屋
秀夫 浅野
康博 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005137332A priority Critical patent/JP4600143B2/en
Publication of JP2006315437A publication Critical patent/JP2006315437A/en
Application granted granted Critical
Publication of JP4600143B2 publication Critical patent/JP4600143B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、回転可能な平板状のドアにより空気通路を開閉する装置に関するもので、車両用空調装置に用いて好適なものである。   The present invention relates to an apparatus for opening and closing an air passage by a rotatable flat door, and is suitable for use in a vehicle air conditioner.

従来、車両用空調装置においては、回転可能な平板状のドアを用いた空気通路開閉装置が採用されている。例えば、車室内へ吹き出す空気の吹出口を開閉する吹出モードドアや車室内への吹出空気温度を調整するエアミックスドアがこの種の空気通路開閉装置の代表例である。   Conventionally, in an air conditioner for a vehicle, an air passage opening / closing device using a rotatable flat door is employed. For example, a blow mode door that opens and closes an air outlet for air blown into the vehicle interior and an air mix door that adjusts the temperature of air blown into the vehicle interior are typical examples of this type of air passage opening and closing device.

吹出モードドアのうちデフロスタドアは、フットモード時にデフロスタ吹出口を微小開度だけ開口する微小開度位置に操作される。また、エアミックスドアにおいても、冷風通路の全閉状態(最大暖房状態)から温度制御域に移行する時には冷風通路を微小開度だけ開く微小開度位置に操作される。同様に、温風通路の全閉状態(最大冷房状態)から温度制御域に移行する時にも温風通路を微小開度だけ開く微小開度位置にエアミックスドアが操作される。   Among the blowout mode doors, the defroster door is operated to a minute opening position that opens the defroster outlet by a minute opening degree in the foot mode. In the air mix door, when the cold air passage is shifted from the fully closed state (maximum heating state) to the temperature control region, the air mix door is operated to a minute opening position that opens the cold air passage by a minute opening. Similarly, the air mix door is operated to a minute opening position that opens the warm air passage by a minute opening degree when the warm air passage is shifted from the fully closed state (maximum cooling state) to the temperature control region.

上記のように、デフロスタドアやエアミックスドアを構成する回転式の平板状ドアが微小開度位置に操作されると、ドア先端部の微小隙間を通過して空気が流れ、この微小隙間によって空気流れが急激に絞られ、この微小隙間を空気が高速で噴出して平板状ドア先端部の下流側の拡大空間に流れ込む。   As described above, when the rotary flat plate door constituting the defroster door or the air mix door is operated to the minute opening position, the air flows through the minute gap at the door front end, and the minute gap causes the air to flow. The flow is rapidly squeezed, and the air is ejected through the minute gap at a high speed and flows into the expansion space on the downstream side of the flat door end.

ここで、ドア先端部の微小隙間を空気が通過する際に、空気流れの圧力エネルギーが速度エネルギーに変換され、これに伴って、ドア先端部下流側空間の圧力がドア先端部上流側空間に比して急激に低下する。   Here, when air passes through the minute gap at the door tip, the pressure energy of the air flow is converted into velocity energy, and the pressure in the downstream space on the door tip is transferred to the upstream space on the door tip. Compared to a sudden drop.

このドア先端部下流側空間の圧力が急低下することが原因(詳細は後述)となって、回転式の平板状ドアの自励振動が起こり、異音が発生する等の不具合を生じる。   Due to the sudden drop in the pressure in the downstream space on the front end of the door (details will be described later), self-excited vibration of the rotary flat plate door occurs and abnormal noise occurs.

そこで、特許文献1においては、ドア微小開度時におけるドア先端部の微小隙間を通過する空気流れをドア軸方向で不均一にする自励振動防止手段を設けることが記載されている。   Therefore, Patent Document 1 describes providing a self-excited vibration preventing means for making the air flow passing through the minute gap at the front end of the door at the minute opening degree of the door uneven in the door axial direction.

この自励振動防止手段は、具体的には、ドア先端部に対向するケース壁面に設けた突出壁部にて構成している。この突出壁部は、その高さをドア軸方向に直線、曲線、凹凸、または階段状に変化させる形状になっている。   Specifically, the self-excited vibration preventing means is constituted by a protruding wall portion provided on the case wall surface facing the front end portion of the door. The protruding wall portion has a shape that changes its height in a straight line, curved line, unevenness, or stepped shape in the door axial direction.

また、特許文献2においては、ドア先端部に設けられるシール材に凹凸切り欠き形状部を設けて、ドア微小開度時における2次元的な渦の発生を抑制し、異音の発生を抑制することが記載されている。
特開平11−291741号公報 実用新案登録第2570855号公報
Moreover, in patent document 2, the uneven | corrugated notch shape part is provided in the sealing material provided in a door front-end | tip part, the generation | occurrence | production of a two-dimensional vortex at the time of a door small opening degree is suppressed, and generation | occurrence | production of abnormal noise is suppressed. It is described.
JP-A-11-291741 Utility Model Registration No. 2570855

上記特許文献1であると、突出壁部の高さをドア軸方向に複雑に変化させる構成であるので、自励振動のための最適形状を求めることが煩雑であり、かつ、突出壁部の形成も面倒であり、コストアップの原因となる。また、特許文献2では、シール材に凹凸切り欠き形状部を設けるので、シール性の確保が困難となる。   Since it is the structure which changes the height of a protrusion wall part complicatedly in the door axial direction as it is the said patent document 1, it is complicated to obtain | require the optimal shape for self-excited vibration, and the protrusion wall part Formation is also troublesome and causes cost increase. Moreover, in patent document 2, since an uneven | corrugated notch shape part is provided in a sealing material, it becomes difficult to ensure sealing performance.

本発明は、上記点に鑑み、ドア微小開度時におけるドアの自励振動を簡単な構成で抑制できるとともに、シール性を確実に確保できるようにすることを目的とする。   In view of the above points, an object of the present invention is to suppress a self-excited vibration of a door at a small opening degree of the door with a simple configuration and to ensure a sealing property with certainty.

上記目的を達成するため、請求項1に記載の発明では、回転可能な平板状ドア(13)により空気通路(12)を開閉する空気通路開閉装置であって、
前記平板状ドア(13)は、ドア基板部(13a)と、前記ドア基板部(13a)の外周縁部に固着されたシール材(13d)とを有しており、
前記平板状ドア(13)により前記空気通路(12)を全閉するときは前記シール材(13d)が前記空気通路(12)の壁面(11a)に圧接するようになっており、
一方、前記平板状ドア(13)が微小開度位置に操作され、前記平板状ドア(13)の先端部をなす前記シール材(13d)と前記空気通路(12)の壁面(11a)との間に微小隙間(16)が形成されるときに、前記平板状ドア(13)の前記シール材(13d)下流側面と前記壁面(11a)との間に前記微小隙間(16)を拡大する拡大空間(14)が形成されるようになっており、
前記空気通路(12)の全閉時に前記シール材(13d)が前記壁面(11a)に圧接する位置を接触位置(C)としたときに、前記壁面(11a)のうち前記接触位置(C)よりも所定距離だけ空気流れ下流側の位置に前記拡大空間(14)へ突き出す突起(15)が設けられ、
前記壁面(11a)における前記接触位置(C)と前記突起(15)の頂部とを結ぶ線と、前記平板状ドア(13)の前記シール材(13d)の下流側面とがなす角度をθ2としたときに、この角度(θ2)が15°未満となるように前記突起(15)の高さ(h)を設定し、
前記平板状ドア(13)の微小開度時に、前記微小隙間(16)から前記拡大空間(14)に流れ込む空気流れを前記突起(15)により阻害するようにしたことを特徴とする。
In order to achieve the above object, the invention according to claim 1 is an air passage opening and closing device for opening and closing the air passage (12) by a rotatable flat door (13),
The flat door (13) includes a door substrate portion (13a) and a sealing material (13d) fixed to an outer peripheral edge portion of the door substrate portion (13a).
When the air passage (12) is fully closed by the flat door (13), the sealing material (13d) comes into pressure contact with the wall surface (11a) of the air passage (12),
On the other hand, the flat door (13) is operated to a minute opening position, and the sealing material (13d) that forms the tip of the flat door (13 ) and the wall surface (11a) of the air passage (12). When the minute gap (16) is formed between them, the enlargement that enlarges the minute gap (16) between the downstream surface of the sealing material (13d) and the wall surface (11a) of the flat door (13). A space (14) is formed,
When the position where the sealing material (13d) is pressed against the wall surface (11a) when the air passage (12) is fully closed is the contact position (C), the contact position (C) of the wall surface (11a ). A protrusion (15) projecting into the expansion space (14) at a position downstream of the air flow by a predetermined distance than
An angle formed between a line connecting the contact position (C) on the wall surface (11a) and the top of the protrusion (15) and a downstream side surface of the sealing material (13d) of the flat door (13) is θ2. The height (h) of the protrusion (15) is set so that the angle (θ2) is less than 15 °,
The projection (15) inhibits the air flow that flows into the expansion space (14) from the minute gap (16) when the flat door (13) has a minute opening.

これによると、平板状ドア(13)の微小開度時に、微小隙間(16)の絞り作用によって空気流れの速度が上昇するのを突起(15)により抑制できる。この結果、拡大空間(14)の圧力低下を抑制できるので、ドアの自励振動を良好に抑制できる
このように突起(15)は微小隙間(16)下流側の拡大空間(14)へ突き出して空気流れの速度上昇(拡大空間(14)の圧力低下)を抑制する作用を果たすものであって、単純な突出(リブ)形状でよい。
According to this, at the time of the minute opening degree of the flat door (13), it is possible to suppress the increase in the air flow speed due to the narrowing action of the minute gap (16) by the protrusion (15). As a result, since the pressure drop in the expansion space (14) can be suppressed, the self-excited vibration of the door can be suppressed well. Thus, the protrusion (15) protrudes into the expansion space (14) downstream of the minute gap (16). It functions to suppress an increase in the speed of air flow (a pressure drop in the expansion space (14)), and may be a simple protrusion (rib) shape.

このため、特許文献1のようにケース壁面の突出壁部の形状をドア軸方向に複雑に変化させるという必要がなく、簡単な構成で低コストにて実施できる。   For this reason, it is not necessary to change the shape of the protruding wall portion of the case wall surface in a complicated manner in the door axis direction as in Patent Document 1, and it can be implemented with a simple configuration at low cost.

また、特許文献2のようにドア先端部のシール材に凹凸切り欠き形状部を設ける必要がなく、空気通路全閉時のシール性を確保しやすい。   Further, unlike Patent Document 2, it is not necessary to provide a concave-convex notched portion in the seal material at the door front end portion, and it is easy to ensure the sealing performance when the air passage is fully closed.

請求項1に記載の発明では、前記壁面(11a)における前記接触位置(C)と前記突起(15)の頂部とを結ぶ線と、前記平板状ドア(13)の前記シール材(13d)の下流側面とがなす角度をθ2としたときに、この角度(θ2)が15°未満となるように前記突起(15)の高さ(h)を設定している。
本発明者の検討によれば、上記のように角度(θ2)が15°未満となるように突起高さ(h)を設定することにより、突起(15)の必要高さを適切に確保でき、ドアの自励振動抑制作用をより有効に発揮できる
In invention of Claim 1, the line which connects the said contact position (C) in the said wall surface (11a) and the top part of the said protrusion (15), and the said sealing material (13d) of the said flat door (13) The height (h) of the protrusion (15) is set so that the angle (θ2) is less than 15 ° when the angle formed with the downstream side surface is θ2.
According to the study by the present inventor, the required height of the protrusion (15) can be appropriately secured by setting the protrusion height (h) so that the angle (θ2) is less than 15 ° as described above. In addition, the self-excited vibration suppressing action of the door can be exhibited more effectively .

求項に記載の発明のように、請求項に記載の空気通路開閉装置において、前記突起(15)は、具体的には、前記平板状ドア(13)の軸方向の全域にわたって細長く延びる突出形状として形成すればよい。
As in the embodiment described in Motomeko 2, the air passage switching device according to claim 1 wherein said protrusion (15), specifically, elongated over the entire axial direction of the flat door (13) What is necessary is just to form as an extended protrusion shape.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1〜図3は第1実施形態を示すもので、本発明を車両用空調装置のデフロスタ吹出口の開閉装置に適用した例を示す。図1は図2のA部断面図である。空調ユニットケース10は周知のごとく樹脂製の部材であり、車室内最前部の計器盤(インパネ)の内側空間に搭載される。
(First embodiment)
1 to 3 show a first embodiment, and show an example in which the present invention is applied to an opening / closing device for a defroster outlet of a vehicle air conditioner. 1 is a cross-sectional view of a portion A in FIG. The air conditioning unit case 10 is a resin member as is well known, and is mounted in the inner space of the instrument panel at the foremost part of the passenger compartment.

この空調ユニットケース10の内部空間は車室内へ向かって送風される空気が流れる空気通路を構成するともに、この内部空間に冷房用熱交換器、暖房用熱交換器、空気通路開閉用のドア等の機器が収納される。   The internal space of the air conditioning unit case 10 constitutes an air passage through which air blown toward the passenger compartment flows, and in this internal space, a cooling heat exchanger, a heating heat exchanger, an air passage opening / closing door, etc. Equipment is stored.

空調ユニットケース10の上面部には箱状壁部11が上方へ突き出すように一体成形され、この箱状壁部11の内側に、空調ユニットケース10の内部空間と連通するデフロスタ吹出口12が形成される。   A box-shaped wall 11 is integrally formed on the upper surface of the air-conditioning unit case 10 so as to protrude upward, and a defroster outlet 12 communicating with the internal space of the air-conditioning unit case 10 is formed inside the box-shaped wall 11. Is done.

デフロスタ吹出口12には、冷房用熱交換器および暖房用熱交換器を通過して温度調整された空調風が矢印aのように流入するようになっている。なお、空調ユニットケース10の上面部付近には、図示しないフェイス吹出口およびフット吹出口が配置され、これらフェイス吹出口およびフット吹出口にも温度調整された空調風が流入するようになっている。   The defroster outlet 12 is supplied with conditioned air whose temperature has been adjusted after passing through the cooling heat exchanger and the heating heat exchanger as indicated by an arrow a. A face air outlet and a foot air outlet (not shown) are arranged in the vicinity of the upper surface of the air conditioning unit case 10, and the conditioned air whose temperature is adjusted flows into the face air outlet and the foot air outlet. .

箱状壁部11の形状、すなわち、デフロスタ吹出口12の開口形状は、図2に示すように車両左右(幅)方向に細長く延びる長方形になっている。この箱状壁部11(デフロスタ吹出口12)の上端部には図示しないデフロスタダクトの入口部が接続され、このデフロスタダクトの出口部には車両窓ガラスの内面に向かって空気を吹き出すデフロスタノズル部が設けられている。   The shape of the box-shaped wall 11, that is, the opening shape of the defroster outlet 12 is a rectangular shape that extends in the vehicle left-right (width) direction as shown in FIG. 2. An inlet portion of a defroster duct (not shown) is connected to an upper end portion of the box-shaped wall portion 11 (defroster outlet 12), and a defroster nozzle portion that blows air toward the inner surface of the vehicle window glass at the outlet portion of the defroster duct. Is provided.

箱状壁部11内には回転式の平板状ドアからなるデフロスタドア13が配置され、デフロスタ吹出口12を開閉するようになっている。従って、デフロスタ吹出口12がドア開閉対象の空気通路を構成する。   A defroster door 13 composed of a rotary flat plate door is disposed in the box-shaped wall portion 11 so as to open and close the defroster outlet 12. Accordingly, the defroster outlet 12 constitutes an air passage for opening and closing the door.

本実施形態では、デフロスタドア13としてドア基板部13aの中央部に回転軸13bを配置したバタフライドアを用いている。このバタフライドアからなるデフロスタドア13は、図2に示すようにデフロスタ吹出口12の長方形の開口形状に対応した横長の長方形になっている。   In the present embodiment, a butterfly door in which a rotation shaft 13b is arranged at the center of the door substrate portion 13a is used as the defroster door 13. The defroster door 13 made of this butterfly door has a horizontally long rectangle corresponding to the rectangular opening of the defroster outlet 12 as shown in FIG.

このため、ドア基板部13aも横長の長方形になっており、回転軸13bはこの長方形の中央部をドア長手方向(ドア長辺方向)に平行に延びるように配置され、回転軸13bの両端部は箱状壁部11に設けられた軸受け穴により回転自在に支持される。回転軸13bの一端部13cは箱状壁部11の外部に突き出してドア駆動機構(図示せず)に連結される。   For this reason, the door substrate portion 13a is also a horizontally long rectangle, and the rotation shaft 13b is disposed so that the central portion of the rectangle extends in parallel to the door longitudinal direction (door long side direction), and both end portions of the rotation shaft 13b. Is rotatably supported by a bearing hole provided in the box-shaped wall portion 11. One end 13c of the rotating shaft 13b protrudes outside the box-shaped wall 11 and is connected to a door drive mechanism (not shown).

ドア基板部13aと回転軸13bは樹脂材料にて一体成形され、ドア13のうち剛性の高い部分(剛体部)を構成する。一方、ドア本体部13aの外周縁部にはシール材13dが一体に固着されている。このシール材13dは図2に示すようにドア本体部13aの外周縁部の全周に沿って額縁状に形成される。   The door substrate portion 13a and the rotating shaft 13b are integrally formed of a resin material, and constitute a highly rigid portion (rigid body portion) of the door 13. On the other hand, a sealing material 13d is integrally fixed to the outer peripheral edge of the door main body 13a. As shown in FIG. 2, the sealing material 13d is formed in a frame shape along the entire circumference of the outer peripheral edge of the door body 13a.

この額縁状のシール材13dは弾性変形が容易なリップ状のシール部材を構成する。ここで、シール材13dを構成する弾性材として具体的には熱可塑性エラストマーが好適である。この熱可塑性エラストマーは、常温ではゴム弾性を示し、一方、高温加熱時には溶融して流動性を示し、熱可塑性樹脂と同様に射出成形できるものである。そのため、剛体部をなすドア基板部13aおよび回転軸13bと、シール材13dとを一体成形できる。   This frame-shaped sealing material 13d constitutes a lip-shaped sealing member that is easily elastically deformed. Here, specifically, a thermoplastic elastomer is suitable as the elastic material constituting the sealing material 13d. This thermoplastic elastomer exhibits rubber elasticity at room temperature, while it melts and exhibits fluidity when heated at high temperatures, and can be injection-molded in the same manner as a thermoplastic resin. Therefore, the door substrate portion 13a and the rotating shaft 13b that form the rigid body portion and the sealing material 13d can be integrally formed.

箱状壁部11の内面には、デフロスタドア13のシール材13dに対向するシール壁面11a、11bが一体成形されており、デフロスタ吹出口12の全閉時にはシール材13dの先端部がこのシール壁面11a、11bに圧接するようになっている。なお、デフロスタ吹出口12の全開時(デフロスタモード時)には、デフロスタドア13を図1の位置から時計方向に略90°回転した位置に操作する。   Sealing wall surfaces 11a and 11b facing the sealing material 13d of the defroster door 13 are integrally formed on the inner surface of the box-shaped wall portion 11, and when the defroster outlet 12 is fully closed, the tip of the sealing material 13d is the sealing wall surface. 11a and 11b are press-contacted. When the defroster outlet 12 is fully opened (in the defroster mode), the defroster door 13 is operated to a position rotated approximately 90 ° clockwise from the position of FIG.

図3(a)(b)はデフロスタドア13を微小開度位置に操作した状態を示すもので、図3(a)は図1のB部の拡大図であり、図3(b)は図3(a)の斜視図である。デフロスタドア13が反時計方向に回転してデフロスタ吹出口12を閉じる方向に操作される際に、デフロスタドア13の先端部(ドア基板部13aの先端側部位とシール材13d)の空気流れ下流側の面と、箱状壁部11の一方のシール壁面11aとの間でテーパ状拡大空間14を形成する。この拡大空間14は、空気流れ方向に沿って空間断面積をテーパ状(断面三角状)に徐々に拡大するものである。   3 (a) and 3 (b) show a state where the defroster door 13 is operated to a minute opening position. FIG. 3 (a) is an enlarged view of a portion B in FIG. 1, and FIG. It is a perspective view of 3 (a). When the defroster door 13 rotates counterclockwise and is operated in a direction to close the defroster outlet 12, the air flow downstream of the tip of the defroster door 13 (the tip of the door substrate portion 13 a and the sealing material 13 d). A tapered enlarged space 14 is formed between this surface and one seal wall surface 11 a of the box-shaped wall portion 11. The expansion space 14 gradually expands the space cross-sectional area in a tapered shape (triangular cross section) along the air flow direction.

因みに、箱状壁部11の他方のシール壁面11bに対向する、デフロスタドア13の先端部の空気流れ下流側の面は図1に示すように箱状壁部11内部の拡大空間に直接面しているので、上記のごときテーパ状拡大空間14が形成されない。   Incidentally, the surface on the downstream side of the air flow at the tip of the defroster door 13 facing the other seal wall surface 11b of the box-shaped wall 11 directly faces the enlarged space inside the box-shaped wall 11 as shown in FIG. Therefore, the tapered enlarged space 14 as described above is not formed.

そして、箱状壁部11の一方のシール壁面11aにおいて、デフロスタドア13の先端部の空気流れ下流側部位に、ドア先端部(シール材13d部分)へ向かって突き出す突起15が箱状壁部11に一体成形されている。 Then, in one of the sealing wall 11 a box-shaped wall portion 11, the air flow downstream portion of the distal end portion of the defroster door 13, a door tip (sealing member 13d part) to the headed protruding projection 15 is box-shaped wall portion 11 is integrally formed.

この突起15は本実施形態では断面三角状の形状にしている。突起15の形成位置は、ドア先端部下流側の面とシール壁面11aとにより形成されるテーパ状拡大空間14の範囲内に設定してある。   In the present embodiment, the protrusion 15 has a triangular cross section. The formation position of the protrusion 15 is set within the range of the tapered enlarged space 14 formed by the surface on the downstream side of the door tip and the seal wall surface 11a.

そして、突起15は図3(b)に示すようにドア長手方向(ドア軸方向)と平行に細長く延びる形状になっている。より具体的には、突起15はシール材13dの長手方向全域の範囲にわたって成形され、ドア13の微小開度時にはドア先端部(シール材13d部分)と対向するようになっている。   As shown in FIG. 3B, the protrusion 15 has a shape extending elongated in parallel with the door longitudinal direction (door axial direction). More specifically, the protrusion 15 is formed over the entire range of the sealing material 13d in the longitudinal direction, and is opposed to the door tip (sealing material 13d portion) when the door 13 is slightly opened.

次に、上記構成において本実施形態の作動を説明する。車両用空調装置の送風機(図示せず)を作動させると、この送風機の送風空気が空調ユニットケース10の内部空間を車室内へ向かって流れる。そして、車両用空調装置の吹出モードとしてデフロスタモードが設定されると、デフロスタドア13は、図1の位置から時計方向に略90°回転した位置に操作され、デフロスタ吹出口12を全開する。   Next, the operation of this embodiment in the above configuration will be described. When a blower (not shown) of the vehicle air conditioner is operated, the blown air of the blower flows through the internal space of the air conditioning unit case 10 toward the vehicle interior. When the defroster mode is set as the blowing mode of the vehicle air conditioner, the defroster door 13 is operated to a position rotated approximately 90 ° clockwise from the position of FIG. 1 to fully open the defroster outlet 12.

これに対し、吹出モードとしてフットモードが設定されると、デフロスタドア13は図3(a)(b)に示す微小開度位置に操作され、デフロスタ吹出口12を微小開度だけ開口する。   On the other hand, when the foot mode is set as the blowing mode, the defroster door 13 is operated to the minute opening position shown in FIGS. 3A and 3B and opens the defroster outlet 12 by the minute opening.

このように、デフロスタドア13が微小開度位置に操作されると、次のようなメカニズムにてデフロスタドア13の自励振動が発生する。図4はこの自励振動の発生メカニズムの説明図であり、デフロスタドア13が微小開度位置に操作されると、シール材13dの先端部とシール壁面11aとの間に微小隙間16が形成され、この微小隙間16を通過して空気がテーパ状拡大空間14内へと流れる(矢印a参照)。   Thus, when the defroster door 13 is operated to the minute opening position, the self-excited vibration of the defroster door 13 is generated by the following mechanism. FIG. 4 is an explanatory diagram of the mechanism for generating this self-excited vibration. When the defroster door 13 is operated to a minute opening position, a minute gap 16 is formed between the tip of the sealing material 13d and the seal wall surface 11a. Then, air passes through the minute gap 16 and flows into the tapered enlarged space 14 (see arrow a).

この際、微小隙間16によって空気流れが急激に絞られるので、空気は高速でテーパ状拡大空間14に流れ込む。ここで、ドア先端部の微小隙間16を空気が通過する際に、空気流れの圧力エネルギーが速度エネルギーに変換され、これに伴って、ドア先端部下流側のテーパ状拡大空間14の圧力がドア先端部上流側空間に比して急激に低下する。   At this time, since the air flow is rapidly narrowed by the minute gap 16, the air flows into the tapered expansion space 14 at a high speed. Here, when air passes through the minute gap 16 at the front end of the door, the pressure energy of the air flow is converted into velocity energy, and accordingly, the pressure in the tapered enlarged space 14 on the downstream side of the front end of the door is changed to the door. Compared to the space upstream of the tip, it rapidly decreases.

このようにドア先端部下流側のテーパ状拡大空間14の圧力が急低下すると、ドア先端部前後の圧力差にてシール材13dが矢印bのようにシール壁面11a側に吸引される。このシール材13dの変位によって微小隙間16の大きさが小さくなると、微小隙間16の通過空気量および通過空気速度も低下するので、テーパ状拡大空間14の圧力が上昇する。   As described above, when the pressure in the tapered enlarged space 14 on the downstream side of the door front end decreases rapidly, the sealing material 13d is sucked toward the seal wall surface 11a as indicated by the arrow b due to the pressure difference between the front and rear ends of the door. When the size of the minute gap 16 is reduced due to the displacement of the sealing material 13d, the amount of air passing through the minute gap 16 and the passing air speed are also reduced, so that the pressure in the tapered enlarged space 14 is increased.

これにより、ドア先端部前後の圧力差が減少するので、シール材13dが自身の弾性復元力にて矢印c方向へ変位し、微小隙間16が元の大きさに復帰する。すると、ドア先端部前後の圧力差が再び増大して、シール材13dが再び拡大空間14側に矢印bのように吸引される。以下、このような動作が微小な時間間隔で繰り返されてデフロスタドア13の自励振動が発生する。   As a result, the pressure difference between the front and rear ends of the door decreases, so that the sealing material 13d is displaced in the direction of arrow c by its own elastic restoring force, and the minute gap 16 returns to its original size. Then, the pressure difference between the front and rear ends of the door increases again, and the sealing material 13d is again sucked into the enlarged space 14 as indicated by the arrow b. Hereinafter, such an operation is repeated at a minute time interval, and the self-excited vibration of the defroster door 13 is generated.

ところで、図4に示すテーパ状拡大空間14の傾斜角度θ1、すなわち、シール壁面11aとドア先端部の下流側面とがなす傾斜角度θ1は、θ1=10〜30°の範囲でドア自励振動が特に発生しやすいことが分かった。つまり、傾斜角度θ1>30°になると、下流側の拡大空間14が微小隙間16に対して急拡大するので、微小隙間16通過後の空気速度が空間14で急激に低下する。   By the way, the inclination angle θ1 of the tapered expansion space 14 shown in FIG. 4, that is, the inclination angle θ1 formed by the seal wall surface 11a and the downstream side surface of the door front end portion, the door self-excited vibration is in the range of θ1 = 10 to 30 °. It was found that it was particularly likely to occur. That is, when the inclination angle θ1> 30 °, the downstream expansion space 14 rapidly expands with respect to the minute gap 16, so that the air velocity after passing through the minute gap 16 rapidly decreases in the space 14.

このことは、拡大空間14のうち、圧力低下部が微小隙間16通過直後の微小範囲のみになることを意味し、ドア自励振動が発生しにくくなる。   This means that in the enlarged space 14, the pressure drop portion is only in a very small range immediately after passing through the minute gap 16, and the door self-excited vibration is less likely to occur.

また、傾斜角度θ1<10°になると、ドア先端部の下流側面がシール壁面11aに対して略平行に近づくので、ドア先端部の下流側面の全域がシール壁面11aとの間で薄く長く延びる微小隙間16を形成するようになる。   Further, when the inclination angle θ1 <10 °, the downstream side surface of the door front end portion approaches substantially parallel to the seal wall surface 11a, so that the entire area of the downstream side surface of the door front end portion extends thinly and long between the seal wall surface 11a. A gap 16 is formed.

このような薄く長く延びる微小隙間16であると、微小隙間16の長い流路で空気流れが徐々に絞られるので、空気流れの圧力の急低下が発生せず、この結果、ドア自励振動が発生しにくくなる。   With such a thin and long minute gap 16, the air flow is gradually throttled in the long flow path of the minute gap 16, so that there is no sudden drop in the pressure of the air flow. Less likely to occur.

なお、図1に示すように箱状壁部11の他方のシール壁面11bに対向するドア先端部の空気流れ下流側の面は箱状壁部11内部の拡大空間に直接面しているので、一方のシール壁面11aのようなテーパ状拡大空間14を形成しない。このため、シール壁面11側では、ドア先端部の微小隙間による空気の高速化現象が、微小隙間直後のごく一部の範囲で起きるだけであるので、自励振動は生じない。
As shown in FIG. 1, the surface on the downstream side of the air flow at the front end of the door facing the other seal wall surface 11b of the box-shaped wall 11 directly faces the enlarged space inside the box-shaped wall 11, so The tapered enlarged space 14 like the one seal wall surface 11a is not formed. Therefore, in the sealing wall 11 b side, high-speed phenomenon of air by the small gap of the door tip, since only occur in a small portion of the range immediately after the small gap, the self-excited vibration does not occur.

本発明者は、ドア先端部前後の圧力差とドア先端部の微小隙間16との関係について実験検討したところ、図5のような結果が得られた。図5の横軸は微小隙間16の寸法で、縦軸はドア先端部前後の圧力差である。図5の横軸の左端部は、シール材13dの先端部がシール壁面11aに接触して隙間寸法=0となる状態を示しており、この隙間寸法が増大するにつれて圧力差(空間14の圧力低下度合い)が増大し、そして、隙間寸法が所定値のときに圧力差がピークとなる。   The inventor experimentally examined the relationship between the pressure difference before and after the door front end and the minute gap 16 at the door front end, and obtained the results shown in FIG. The horizontal axis in FIG. 5 is the dimension of the minute gap 16, and the vertical axis is the pressure difference before and after the door tip. The left end portion of the horizontal axis in FIG. 5 shows a state in which the tip of the sealing material 13d comes into contact with the seal wall surface 11a and the gap dimension = 0, and the pressure difference (pressure in the space 14 increases as the gap dimension increases. The degree of decrease) increases, and the pressure difference peaks when the gap dimension is a predetermined value.

この圧力差がピークとなる隙間寸法は、車両用空調装置の室内空調ユニット構成により変化するが、通常のユニット構成であれば、隙間寸法=0.5〜1.0mm程度の範囲で圧力差がピークとなることが分かった。   The gap size at which this pressure difference peaks varies depending on the configuration of the indoor air conditioning unit of the vehicle air conditioner. However, if the unit configuration is a normal unit, the pressure difference is in the range of gap size = 0.5 to 1.0 mm. It turned out to be a peak.

そこで、本実施形態では、デフロスタドア13の微小開度位置操作時にドア先端部下流側の面と一方のシール壁面11aとにより形成されるテーパ状拡大空間14の範囲内に、ドア先端部(シール材13d部分)へ向かって突き出す突起15を配置している。これによると、突起15はドア先端部の微小隙間16を通過してテーパ状拡大空間14内に入り込む空気流れを阻害する作用を発揮する。   Therefore, in the present embodiment, the door front end (seal) is within the range of the tapered enlarged space 14 formed by the surface on the downstream side of the door front end and the one seal wall surface 11a when the minute opening position of the defroster door 13 is operated. A protrusion 15 protruding toward the material 13d portion) is arranged. According to this, the projection 15 exerts an effect of inhibiting the air flow that passes through the minute gap 16 at the front end of the door and enters the tapered enlarged space 14.

この結果、拡大空間14内に入り込む空気流れの速度上昇が抑制されるので、この速度上昇の抑制、すなわち、速度低下に相当する分だけテーパ状拡大空間14内の圧力低下度合いが減少する。これにより、ドア先端部前後の圧力差が減少してドア13の自励振動を良好に抑制できる。   As a result, an increase in the speed of the air flow entering the expansion space 14 is suppressed, and therefore, the degree of pressure decrease in the tapered expansion space 14 is reduced by an amount corresponding to the suppression of the increase in speed, that is, the decrease in speed. Thereby, the pressure difference before and behind the front end of the door is reduced, and the self-excited vibration of the door 13 can be suppressed well.

なお、突起15のシール壁面11aからの突出高さhは、図6に示す角度θ2が15°未満(θ2<15°)となるように設定することが好ましい。このように突出高さhを設定すれば、テーパ状拡大空間14内の流路断面方向に対する突起15の突出比率を所定値以上に設定でき、上記圧力差の減少効果を有効に発揮できる。ここで、角度θ2は、シール壁面11aにおけるドア先端部の接触位置Cと突起15の頂部とを結ぶ線とドア先端部の下流側面とがなす角度である。   The protrusion height h of the protrusion 15 from the seal wall surface 11a is preferably set so that the angle θ2 shown in FIG. 6 is less than 15 ° (θ2 <15 °). By setting the protrusion height h in this way, the protrusion ratio of the protrusion 15 with respect to the flow path cross-sectional direction in the tapered enlarged space 14 can be set to a predetermined value or more, and the effect of reducing the pressure difference can be effectively exhibited. Here, the angle θ2 is an angle formed by a line connecting the contact position C of the door tip on the seal wall surface 11a and the top of the protrusion 15 and the downstream side surface of the door tip.

図7は本実施形態による作用効果を示す説明図で、図5に対応する図であり、図中実線(1)は図4に示すように突起15を設けない従来技術におけるドア先端部前後の圧力差と隙間寸法との関係を示し、これに対し、破線(2)は突起15を設けた本実施形態によるドア先端部前後の圧力差と隙間寸法との関係を示す。   FIG. 7 is an explanatory view showing the effects of the present embodiment, and is a view corresponding to FIG. 5. In FIG. The relationship between the pressure difference and the gap dimension is shown. On the other hand, the broken line (2) shows the relationship between the pressure difference before and after the front end of the door according to the present embodiment provided with the protrusion 15 and the gap dimension.

なお、(2)における突起15は図3に示す位置に、図3と同じ断面三角状の形状で設けている。突起15のシール壁面11aからの突出高さは0.8mmであり、微小隙間16=0.4mmのとき、図6の角度θ2は13°である。   In addition, the protrusion 15 in (2) is provided in the position shown in FIG. 3 in the same cross-sectional shape as in FIG. The protrusion height of the protrusion 15 from the seal wall surface 11a is 0.8 mm, and when the minute gap 16 = 0.4 mm, the angle θ2 in FIG. 6 is 13 °.

本実施形態によると、ドア先端部前後の圧力差を破線(2)に示すように従来技術の実線(1)に対して1/2未満の十分小さい値に減少でき、この結果、ドア自励振動を良好に抑制できることを確認できた。   According to the present embodiment, the pressure difference between the front and rear ends of the door can be reduced to a sufficiently small value less than 1/2 of the solid line (1) of the prior art as shown by the broken line (2). It was confirmed that the vibration can be satisfactorily suppressed.

(第2実施形態)
上記第1実施形態では、箱状壁部11側(ケース10側)のシール壁面11aに突起15を成形しているが、第2実施形態では、図8に示すようにドア13側、具体的にはドア基板部13aに突起15を一体成形している。
(Second Embodiment)
In the first embodiment, the protrusion 15 is formed on the seal wall surface 11a on the box-shaped wall 11 side (case 10 side). However, in the second embodiment, as shown in FIG. The projection 15 is integrally formed on the door substrate portion 13a.

第2実施形態においても、ドア先端部の微小隙間16からテーパ状拡大空間14内に入り込む空気流れを突起15によって阻害することにより、微小隙間16から流出する空気の速度上昇を抑制して、テーパ状拡大空間14内の圧力低下を抑制できる。これにより、ドア自励振動を良好に抑制できる。   Also in the second embodiment, the air flow entering the tapered enlarged space 14 from the minute gap 16 at the front end of the door is inhibited by the protrusion 15, thereby suppressing the increase in the speed of the air flowing out from the minute gap 16 and taper. The pressure drop in the enlarged space 14 can be suppressed. Thereby, a door self-excited vibration can be suppressed favorably.

なお、ドア基板部13aと一体成形された突起15の高さhは、角度θ3が15°未満(θ1<15°)となる高さを確保するように設定することが好ましい。ここで、角度θ3は、シール壁面11aにおけるドア先端部の接触位置Cと突起15の頂部とを結ぶ線とシール壁面11aとがなす角度である。   In addition, it is preferable to set the height h of the protrusion 15 integrally formed with the door substrate portion 13a so as to secure a height at which the angle θ3 is less than 15 ° (θ1 <15 °). Here, the angle θ3 is an angle formed by a line connecting the contact position C of the door tip portion on the seal wall surface 11a and the top of the protrusion 15 and the seal wall surface 11a.

(他の実施形態)
なお、本発明は上述の第1、第2実施形態に限定されることなく、以下述べるごとく種々変形可能である。
(1)第1、第2実施形態では、突起15の断面形状を断面三角状に形成しているが、突起15の断面形状を断面三角状に限らず、断面半円状、断面台形状等の他の形状にしてもよい。
(2)第1、第2実施形態では、本発明をデフロスタドアに適用しているが、特許文献1(特開平11−291741号公報)のように、冷温風の風量割合を調整して車室内への吹出空気温度を調整するエアミックスドア等に本発明を適用してもよい。
(3)第1、第2実施形態では、回転式平板状ドアとして、ドア基板部13aの中央部に回転軸13bを配置したバタフライドアを用いる例について説明したが、ドア基板部13aの一端部に回転軸13bを配置し、ドア基板部13aの他端部が回転先端側となる片持ちドア(特許文献1のエアミックスドア参照)により回転式平板状ドアを構成する場合に本発明を適用してもよい。
(4)第1、第2実施形態では、ドア基板部13aの外縁部にゴム系弾性材からなるシール材13dを一体に固着する例(ゴムシール方式のドア)について説明したが、このゴム系弾性材からなるシール材13dを廃止し、ドア基板部13aの表裏両面あるいは少なくとも一面に、シール用パッキン材を貼り付け、このシール用パッキン材を用いて空気通路全閉時のシール作用を得るドア構成(パッキンシール方式のドア)に対して本発明を適用してもよい。
(Other embodiments)
The present invention is not limited to the first and second embodiments described above, and can be variously modified as described below.
(1) In the first and second embodiments, the cross-sectional shape of the protrusion 15 is formed in a triangular cross section, but the cross-sectional shape of the protrusion 15 is not limited to a triangular cross section, but a semicircular cross section, a trapezoidal cross section, etc. Other shapes may be used.
(2) In the first and second embodiments, the present invention is applied to the defroster door. However, as in Patent Document 1 (Japanese Patent Laid-Open No. 11-291174), the vehicle is adjusted by adjusting the air volume ratio of the cool and warm air. You may apply this invention to the air mix door etc. which adjust the blowing air temperature to room | chamber interior.
(3) In the first and second embodiments, as an example of using a butterfly door in which the rotation shaft 13b is disposed at the center of the door base plate portion 13a as the rotary flat plate door, the one end portion of the door base plate portion 13a is described. The present invention is applied to the case where the rotary shaft 13b is disposed on the door and the cantilever door (see the air mix door in Patent Document 1) is configured such that the other end portion of the door base plate portion 13a is the rotation tip side. May be.
(4) In the first and second embodiments, the example (rubber seal type door) in which the sealing material 13d made of a rubber-based elastic material is integrally fixed to the outer edge portion of the door substrate portion 13a has been described. The door structure which abolishes the sealing material 13d which consists of material, affixes the sealing packing material on the front-and-back both surfaces or at least one surface of the door board | substrate part 13a, and obtains the sealing effect at the time of air passage full closure using this sealing packing material The present invention may be applied to a (packing seal type door).

本発明の第1実施形態を示す要部断面図で、図2のA部断面図である。It is principal part sectional drawing which shows 1st Embodiment of this invention, and is A section sectional drawing of FIG. 図1に示すデフロスタ吹出口部の概略斜視図である。It is a schematic perspective view of the defroster blower outlet part shown in FIG. (a)は図1のB部拡大断面図、(b)は(a)の斜視図である。(A) is the B section expanded sectional view of Drawing 1, and (b) is a perspective view of (a). ドア自励振動の発生メカニズムを説明する要部断面図である。It is principal part sectional drawing explaining the generation | occurrence | production mechanism of door self-excited vibration. ドア先端部前後の圧力差と隙間寸法との関係を示すグラフである。It is a graph which shows the relationship between the pressure difference before and behind a door front-end | tip part, and a clearance dimension. ケース側の突起の高さ寸法の決め方を説明する説明図である。It is explanatory drawing explaining how to determine the height dimension of the case side protrusion. ドア先端部前後の圧力差と隙間寸法との関係を示すグラフで、第1実施形態と従来技術とを比較して示す。It is a graph which shows the relationship between the pressure difference before and behind a door front-end | tip part, and a clearance dimension, and compares and shows 1st Embodiment and a prior art. 本発明の第2実施形態を示す要部断面図である。It is principal part sectional drawing which shows 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10…ケース、11a…シール壁面、12…デフロスタ吹出口(空気通路)、
13…デフロスタドア(平板状ドア)、14…拡大空間、15…突起、16…微小隙間。
10 ... Case, 11a ... Seal wall surface, 12 ... Defroster outlet (air passage),
13 ... defroster door (flat door), 14 ... expansion space, 15 ... projection, 16 ... minute gap.

Claims (2)

回転可能な平板状ドア(13)により空気通路(12)を開閉する空気通路開閉装置であって、
前記平板状ドア(13)は、ドア基板部(13a)と、前記ドア基板部(13a)の外周縁部に固着されたシール材(13d)とを有しており、
前記平板状ドア(13)により前記空気通路(12)を全閉するときは前記シール材(13d)が前記空気通路(12)の壁面(11a)に圧接するようになっており、
一方、前記平板状ドア(13)が微小開度位置に操作され、前記平板状ドア(13)の先端部をなす前記シール材(13d)と前記空気通路(12)の壁面(11a)との間に微小隙間(16)が形成されるときに、前記平板状ドア(13)の前記シール材(13d)下流側面と前記壁面(11a)との間に前記微小隙間(16)を拡大する拡大空間(14)が形成されるようになっており、
前記空気通路(12)の全閉時に前記シール材(13d)が前記壁面(11a)に圧接する位置を接触位置(C)としたときに、前記壁面(11a)のうち前記接触位置(C)よりも所定距離だけ空気流れ下流側の位置に前記拡大空間(14)へ突き出す突起(15)が設けられ、
前記壁面(11a)における前記接触位置(C)と前記突起(15)の頂部とを結ぶ線と、前記平板状ドア(13)の前記シール材(13d)の下流側面とがなす角度をθ2としたときに、この角度(θ2)が15°未満となるように前記突起(15)の高さ(h)を設定し、
前記平板状ドア(13)の微小開度時に、前記微小隙間(16)から前記拡大空間(14)に流れ込む空気流れを前記突起(15)により阻害するようにしたことを特徴とする空気通路開閉装置。
An air passage opening and closing device for opening and closing an air passage (12) by a rotatable flat door (13),
The flat door (13) includes a door substrate portion (13a) and a sealing material (13d) fixed to an outer peripheral edge portion of the door substrate portion (13a).
When the air passage (12) is fully closed by the flat door (13), the sealing material (13d) comes into pressure contact with the wall surface (11a) of the air passage (12),
On the other hand, the flat door (13) is operated to a minute opening position, and the sealing material (13d) that forms the tip of the flat door (13) and the wall surface (11a) of the air passage (12). When the minute gap (16) is formed between them, the enlargement that enlarges the minute gap (16) between the downstream surface of the sealing material (13d) and the wall surface (11a) of the flat door (13). A space (14) is formed,
When the position where the sealing material (13d) is pressed against the wall surface (11a) when the air passage (12) is fully closed is the contact position (C), the contact position (C) of the wall surface (11a). A protrusion (15) projecting into the expansion space (14) at a position downstream of the air flow by a predetermined distance than
An angle formed between a line connecting the contact position (C) on the wall surface (11a) and the top of the protrusion (15) and a downstream side surface of the sealing material (13d) of the flat door (13) is θ2. The height (h) of the protrusion (15) is set so that the angle (θ2) is less than 15 °,
The air passage opening and closing characterized in that the projection (15) inhibits the air flow that flows into the expansion space (14) from the minute gap (16) when the flat door (13) is slightly opened. apparatus.
前記突起(15)は、前記平板状ドア(13)の軸方向の全域にわたって細長く延びる突出形状であることを特徴とする請求項に記載の空気通路開閉装置。 2. The air passage opening and closing device according to claim 1 , wherein the protrusion (15) has a protruding shape that is elongated over the entire area in the axial direction of the flat door (13).
JP2005137332A 2005-05-10 2005-05-10 Air passage opening and closing device Expired - Fee Related JP4600143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137332A JP4600143B2 (en) 2005-05-10 2005-05-10 Air passage opening and closing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137332A JP4600143B2 (en) 2005-05-10 2005-05-10 Air passage opening and closing device

Publications (2)

Publication Number Publication Date
JP2006315437A JP2006315437A (en) 2006-11-24
JP4600143B2 true JP4600143B2 (en) 2010-12-15

Family

ID=37536498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137332A Expired - Fee Related JP4600143B2 (en) 2005-05-10 2005-05-10 Air passage opening and closing device

Country Status (1)

Country Link
JP (1) JP4600143B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9434233B2 (en) 2011-07-13 2016-09-06 Mitsubishi Heavy Industries, Ltd. Vehicular air conditioner

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5529364B2 (en) * 2007-01-26 2014-06-25 三菱重工業株式会社 Damper, air conditioning unit and vehicle air conditioning apparatus
JP4971927B2 (en) * 2007-09-27 2012-07-11 日本プラスト株式会社 Wind direction adjustment device
JP5173565B2 (en) * 2008-05-07 2013-04-03 三菱重工業株式会社 Damper device and vehicle air conditioner
JP5788034B2 (en) * 2014-01-28 2015-09-30 三菱重工業株式会社 Damper, air conditioning unit and vehicle air conditioning apparatus
KR102133382B1 (en) * 2014-11-13 2020-07-14 한온시스템 주식회사 Air conditioner for vehicle
DE102015204511A1 (en) * 2015-03-12 2016-09-15 Mahle International Gmbh door assembly
JP2020179736A (en) * 2019-04-24 2020-11-05 株式会社日本クライメイトシステムズ Vehicle air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213808U (en) * 1988-07-12 1990-01-29
JPH10100644A (en) * 1996-09-27 1998-04-21 Denso Corp Air conditioner
JPH11301240A (en) * 1998-04-17 1999-11-02 Denso Corp Air conditioner for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213808U (en) * 1988-07-12 1990-01-29
JPH10100644A (en) * 1996-09-27 1998-04-21 Denso Corp Air conditioner
JPH11301240A (en) * 1998-04-17 1999-11-02 Denso Corp Air conditioner for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9434233B2 (en) 2011-07-13 2016-09-06 Mitsubishi Heavy Industries, Ltd. Vehicular air conditioner

Also Published As

Publication number Publication date
JP2006315437A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP4600143B2 (en) Air passage opening and closing device
JP4396226B2 (en) Air passage opening and closing device
WO2015146124A1 (en) Air-blowing device
JP3952919B2 (en) Air conditioner for vehicles
JP5724827B2 (en) Aerodynamic sound reduction device
JP2008100593A (en) Ventilation passage switching device and vehicular air conditioner
JP6265302B2 (en) Air blowing device
JP4971927B2 (en) Wind direction adjustment device
JP2008105562A (en) Air passage switching device and air conditioner for vehicle
JP2015004452A (en) Air conditioner
JP2004330868A (en) Air-conditioner for vehicles
JP2009184495A (en) Air conditioner
JP2013133069A (en) Air conditioner for vehicle
JP4933219B2 (en) Air conditioner for vehicles
JP4140527B2 (en) Air passage opening and closing device
JP4618193B2 (en) Air passage opening and closing device
JP4400456B2 (en) Air passage opening and closing device
JP4572878B2 (en) Air passage opening and closing device
JP4277644B2 (en) Air conditioner for vehicles
JP6424953B2 (en) Air blowing device
JP5721549B2 (en) Air conditioner for vehicles
JP2007161085A (en) Link device and air conditioner for vehicle
JP2007196735A (en) Air passage opening and closing device
JPH0976726A (en) Air conditioning device
JP5790534B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4600143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees