JP4599595B2 - Method and apparatus for producing transparent conductive film - Google Patents

Method and apparatus for producing transparent conductive film Download PDF

Info

Publication number
JP4599595B2
JP4599595B2 JP2005350575A JP2005350575A JP4599595B2 JP 4599595 B2 JP4599595 B2 JP 4599595B2 JP 2005350575 A JP2005350575 A JP 2005350575A JP 2005350575 A JP2005350575 A JP 2005350575A JP 4599595 B2 JP4599595 B2 JP 4599595B2
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
power
producing
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005350575A
Other languages
Japanese (ja)
Other versions
JP2007154255A (en
Inventor
内嗣 南
俊弘 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT) filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2005350575A priority Critical patent/JP4599595B2/en
Publication of JP2007154255A publication Critical patent/JP2007154255A/en
Application granted granted Critical
Publication of JP4599595B2 publication Critical patent/JP4599595B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

本発明は、透明導電膜の製造方法に関し、特にマグネトロンスパッタリング装置を用いた透明導電膜の製造方法および製造装置に関する。   The present invention relates to a method for producing a transparent conductive film, and more particularly to a method and apparatus for producing a transparent conductive film using a magnetron sputtering apparatus.

近年、液晶ディスプレイ、プラズマディスプレイ等のフラットパネルディスプレイ(以下、FPDという)の大型化、高性能化に伴い、それらに用いる透明導電膜に要求される性能の向上やコストの低減の要求が高まっている。   In recent years, with the increase in size and performance of flat panel displays (hereinafter referred to as FPDs) such as liquid crystal displays and plasma displays, there has been an increasing demand for performance improvement and cost reduction required for transparent conductive films used therefor. Yes.

従来、透明導電膜を作製する薄膜形成技術として、マグネトロンスパッタリング装置が知られている(特許文献1参照)。マグネトロンスパッタリング装置は、放電などによりターゲット付近にプラズマを発生させ、このプラズマ中のイオンをターゲットに衝突させることにより粒子をスパッタし、その粒子を基体に付着させることにより成膜することが出来る。   Conventionally, a magnetron sputtering apparatus is known as a thin film forming technique for producing a transparent conductive film (see Patent Document 1). The magnetron sputtering apparatus can form a film by generating plasma near the target by discharge or the like, sputtering particles by colliding ions in the plasma with the target, and attaching the particles to a substrate.

また、FPDに用いられる透明導電膜としては、錫ドープ酸化インジウム(In:Sn、以下、ITOという)が幅広く用いられているが、原料として含まれているインジウムが希少金属で高価なため、安定供給やコストの観点から懸念がある。 Moreover, as a transparent conductive film used for FPD, tin-doped indium oxide (In 2 O 3 : Sn, hereinafter referred to as ITO) is widely used, but indium contained as a raw material is a rare metal and expensive. Therefore, there are concerns from the viewpoint of stable supply and cost.

そこで、ITO透明導電膜の代替材料として、安価で豊富な供給が可能なアルミニウムドープ酸化亜鉛(ZnO:Al、以下、AZOという)等が注目されている。
特開平6−172995号公報
Therefore, aluminum-doped zinc oxide (ZnO: Al, hereinafter referred to as AZO) that can be supplied in abundant manner has attracted attention as an alternative material for the ITO transparent conductive film.
JP-A-6-172959

しかしながら、ZnO系透明導電膜等は、マグネトロンスパッタリング(以下、MSPという)法を用いて約300℃以下の基板上に作製される場合、ターゲット表面と対向して配置された基板上で抵抗率分布を生じるため、導電膜の低抵抗率化を阻害する大きな要因となっている。   However, when a ZnO-based transparent conductive film or the like is produced on a substrate of about 300 ° C. or lower using a magnetron sputtering (hereinafter referred to as MSP) method, the resistivity distribution on the substrate arranged to face the target surface. Therefore, it is a major factor that hinders the reduction of the resistivity of the conductive film.

本発明は、上述の課題を鑑みなされたもので、その目的とするところは、MSP法で酸化物による導電膜を形成する際に、抵抗率分布の均一性の向上を図る透明導電膜の製造方法および製造装置を提供することにある。 The present invention has been made in view of the above-described problems, and its object is to manufacture a transparent conductive film that improves the uniformity of resistivity distribution when forming a conductive film using an oxide by the MSP method. It is to provide a method and a manufacturing apparatus.

上記課題を解決するために、本発明のある態様の透明導電膜の製造方法は、酸化物をターゲットとして用い、不活性ガスに水素及び/又は有機ガスを導入した雰囲気中で、直流電力に高周波電力を重畳したスパッタ電圧を用いたマグネトロンスパッタリング法により基体上に透明導電膜を形成する。   In order to solve the above-described problems, a method for producing a transparent conductive film according to an aspect of the present invention is a method for producing high-frequency direct-current power in an atmosphere using an oxide as a target and introducing hydrogen and / or organic gas into an inert gas. A transparent conductive film is formed on the substrate by a magnetron sputtering method using a sputtering voltage with superimposed power.

前記酸化物としては、例えば、Al,Ga,B,In,Y,Sc,F,V,Si,Ge,Ti,Zr,Hfからなる群から選択された少なくとも一つの元素がドープされた酸化亜鉛であってもよい。より好ましくは、低コストで入手も比較的容易であり、抵抗率も低くくなるAl,Gaがよい。   Examples of the oxide include zinc oxide doped with at least one element selected from the group consisting of Al, Ga, B, In, Y, Sc, F, V, Si, Ge, Ti, Zr, and Hf. It may be. More preferably, Al and Ga, which are low in cost and relatively easy to obtain and have low resistivity, are preferable.

この態様によると、不活性ガスに水素及び/又は有機ガスを導入した雰囲気中で直流電力に高周波電力を重畳したスパッタ電圧を用いることで、エロージョン対向部での酸化を抑制可能となり、過剰な酸化が原因と考えられる酸化亜鉛を主成分とする透明導電膜の抵抗率分布の均一性を向上することができる。なお、直流電力に高周波電力を重畳した電圧が生成する放電プラズマを用いてもよい。また、雰囲気中に導入する水素や有機ガスは、不活性ガスと混合された状態で真空容器等に導入してもよいし、別々のガス供給源から真空容器等に導入された後に雰囲気中で混合されてもよい。   According to this aspect, by using a sputtering voltage in which high-frequency power is superimposed on DC power in an atmosphere in which hydrogen and / or organic gas is introduced into an inert gas, it is possible to suppress oxidation at the erosion facing portion, and excessive oxidation. Therefore, it is possible to improve the uniformity of the resistivity distribution of the transparent conductive film containing zinc oxide as a main component. Note that discharge plasma generated by a voltage in which high-frequency power is superimposed on DC power may be used. In addition, hydrogen or organic gas introduced into the atmosphere may be introduced into a vacuum vessel or the like in a state where it is mixed with an inert gas, or after being introduced into a vacuum vessel or the like from a separate gas supply source, It may be mixed.

前記不活性ガスとしては、例えば、アルゴンガスを用いることが出来る。また、有機ガスとしては、例えば、C−C結合を持たないメタン、アルコール、ケトン等の還元性を発現する有機ガスを用いることが出来る。また、前記雰囲気中に導入する水素導入量が0.1%〜2.0%の範囲であってもよい。より好ましくは、水素導入量が0.2%〜1.0%の範囲であるとよい。更により好ましくは0.3%〜0.6%の範囲であるとよい。この態様によれば、透明電極の抵抗率自体を低くすることができる。また、エロージョン対向部の抵抗率が低くなることで抵抗率分布も改善される。   As the inert gas, for example, argon gas can be used. Moreover, as organic gas, organic gas which expresses reducibility, such as methane, alcohol, a ketone, etc. which do not have CC bond, for example can be used. Further, the amount of hydrogen introduced into the atmosphere may be in the range of 0.1% to 2.0%. More preferably, the amount of hydrogen introduced is in the range of 0.2% to 1.0%. Even more preferably, it may be in the range of 0.3% to 0.6%. According to this aspect, the resistivity itself of the transparent electrode can be lowered. Further, the resistivity distribution is also improved by reducing the resistivity of the erosion facing portion.

また、直流電力に重畳する高周波電力の周波数は2MHz〜700MHzの範囲であってもよい。また、前記高周波電力は、前記直流電力の30%〜300%の範囲であってもよい。より好ましくは、前記直流電力の60%〜200%の範囲であってもよい。   Further, the frequency of the high-frequency power superimposed on the DC power may be in the range of 2 MHz to 700 MHz. Further, the high frequency power may be in a range of 30% to 300% of the direct current power. More preferably, it may be in the range of 60% to 200% of the DC power.

なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。   A combination of the above-described elements as appropriate can also be included in the scope of the invention for which patent protection is sought by this patent application.

本発明によれば、抵抗率分布の均一性を向上した透明導電膜を作製することができる。   According to the present invention, a transparent conductive film with improved uniformity of resistivity distribution can be produced.

(基本原理)
従来、ターゲットのエロージョン対向部の抵抗率の増加は、高エネルギーに加速された酸素(エロージョン部上の直流電界(スパッタ電圧)により基板上に向かって加速される酸素(負イオン))の衝撃による膜のダメージが原因と考えられていた。
(Basic principle)
Conventionally, the increase in resistivity of the target erosion facing portion is due to the impact of oxygen accelerated to high energy (oxygen (negative ions) accelerated toward the substrate by a DC electric field (sputtering voltage) on the erosion portion). It was thought to be caused by film damage.

しかし、発明者らの研究によりこの研究成果(解釈)が正確でないことが発見され、その知見に基づいて本発明は考案されたものである。   However, the inventors' research has found that this research result (interpretation) is not accurate, and the present invention has been devised based on this finding.

発明者らの解釈では、エロージョン対向部における基板上では、他の部分と比較して到達する酸素の量が多く、かつ酸素の活性度も高いことが、エロージョン対向部における抵抗率上昇の主原因と考えている。   According to the inventors' interpretation, on the substrate at the erosion facing portion, the amount of oxygen reaching the substrate is larger than that at other portions and the oxygen activity is high, which is the main cause of the increase in resistivity at the erosion facing portion. I believe.

換言すれば、マグネトロンスパッタリングでは、原理上、アルゴンガス(正イオン)を加速してスパッタリングを生じることのできる部分(直流電界)が存在(分布)するため、酸素イオン(負イオン)が加速する部分も存在(分布)する。   In other words, in magnetron sputtering, in principle, there is a portion (DC electric field) that can generate sputtering by accelerating argon gas (positive ions), so that oxygen ions (negative ions) are accelerated. Is also present (distributed).

結果として、基板上へ到達する酸素の活性度及び酸素の量に分布を生じる。膜作製条件に依存するが、酸化亜鉛等の場合、通常、基板上はターゲットからスパッタされた酸素のみですでに酸化過剰(酸素の供給過剰)の状態にある。そのため、エロージョン対向部では、さらに酸化過剰(酸素の供給過剰)となり、抵抗率が高くなると考えられる。   As a result, there is a distribution in the activity and amount of oxygen that reaches the substrate. Although depending on the film production conditions, in the case of zinc oxide or the like, normally, the substrate is already in an excessively oxidized state (excessive supply of oxygen) only with oxygen sputtered from the target. Therefore, it is considered that the erosion facing portion is further oxidized excessively (oxygen supply excessively), and the resistivity is increased.

そこで、発明者らは、酸化過剰な状態を抑制すべく、還元性のある水素や有機ガスを導入することで抵抗率や抵抗率分布が改善されることを見いだした。   Therefore, the inventors have found that the resistivity and the resistivity distribution are improved by introducing reducing hydrogen or organic gas in order to suppress the excessive oxidation state.

一方、発明者らは、高周波電力のみまたは直流電力のみでは水素や有機ガスの還元性が不足するが、高周波電力を直流電力に重畳することで水素や有機ガスの還元性を高めるこことにより低抵抗率や抵抗率分布が改善されることを見いだした。   On the other hand, the inventors have insufficient reduction of hydrogen and organic gas with only high-frequency power or direct-current power, but this reduces the reduction of hydrogen and organic gas by superimposing high-frequency power on DC power. We found that the resistivity and resistivity distribution were improved.

図1は、直流電力を一定にして高周波電力を異ならせてAr雰囲気中でガラス基板上に作製したAZO膜の抵抗率分布を比較したグラフである。   FIG. 1 is a graph comparing resistivity distributions of AZO films fabricated on a glass substrate in an Ar atmosphere with constant DC power and different high frequency power.

図1に示すように、Ar雰囲気中においても高周波電力を直流電力に重畳した場合は、直流電力のみの場合と比較して、抵抗率自体が下がるだけでなく抵抗率分布の均一性が向上する。また、高周波電力の重畳により成膜速度が向上する作用効果がある。   As shown in FIG. 1, when high frequency power is superimposed on DC power even in an Ar atmosphere, the resistivity itself is lowered and the uniformity of the resistivity distribution is improved as compared with the case of only DC power. . In addition, there is an effect that the film forming speed is improved by superposition of the high frequency power.

以上の知見に基づき、水素や有機ガスを導入した雰囲気中で、直流電力に高周波電力を重畳したスパッタ電圧を用いたマグネトロンスパッタリング法を行うことにより、更なる抵抗率や抵抗率分布の改善を果たすことが可能となった。   Based on the above knowledge, further improvement of resistivity and resistivity distribution is achieved by performing magnetron sputtering method using sputtering voltage in which high frequency power is superimposed on DC power in an atmosphere introduced with hydrogen or organic gas. It became possible.

以下、図面を参照しながら、本発明を実施するための最良の形態について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

(実施形態)
図2は、本実施形態に係るマグネトロンスパッタリング装置10の一例を模式的に示した要部断面図である。なお、図2は、マグネトロンスパッタリング装置10の構成のうち、真空チャンバ70に収容された構成を示す。
(Embodiment)
FIG. 2 is a main part sectional view schematically showing an example of the magnetron sputtering apparatus 10 according to the present embodiment. FIG. 2 shows a configuration housed in the vacuum chamber 70 among the configurations of the magnetron sputtering apparatus 10.

マグネトロンスパッタリング装置10では、ターゲット20と薄膜が形成される土台となる基体30とが対向して配置されている。ターゲット20と反対側の基体30の面に接する状態でアノード60が設けられている。アノード60は、スパッタされたターゲット20の成分が薄膜として形成される基体30を保持する基体ホルダとして機能する。一方、ターゲット20は、ターゲットホルダを有するマグネトロンカソード部22によって保持されている。   In the magnetron sputtering apparatus 10, a target 20 and a base body 30 that is a base on which a thin film is formed are arranged to face each other. An anode 60 is provided in contact with the surface of the substrate 30 opposite to the target 20. The anode 60 functions as a substrate holder that holds the substrate 30 on which the components of the sputtered target 20 are formed as a thin film. On the other hand, the target 20 is held by a magnetron cathode portion 22 having a target holder.

マグネトロンカソード部22は、ステンレスなどの金属で形成されている。また、マグネトロンカソード部22は、高周波電源と直流電源を有する電力供給源40により交流電力(高周波電力)を重畳した直流電力が供給され、カソードとしても機能する。マグネトロンカソード部22の背面には、磁界発生手段として磁石50およびヨーク52が設けられている。磁石50およびヨーク52との隙間には、マグネトロンカソード部22を冷却する手段として、冷却水などの冷媒を循環させるパイプ54が設けられている。磁石50としては、永久磁石を用いてもよいし、電磁石を用いてもよい。   The magnetron cathode portion 22 is made of a metal such as stainless steel. Further, the magnetron cathode unit 22 is supplied with DC power on which AC power (high frequency power) is superimposed by a power supply source 40 having a high frequency power source and a DC power source, and also functions as a cathode. A magnet 50 and a yoke 52 are provided on the back surface of the magnetron cathode portion 22 as magnetic field generating means. In the gap between the magnet 50 and the yoke 52, a pipe 54 for circulating a coolant such as cooling water is provided as means for cooling the magnetron cathode portion 22. As the magnet 50, a permanent magnet or an electromagnet may be used.

なお、マグネトロンカソード部22を冷却する手段は、冷却水の循環による放熱に限られず、アルミニウムブロックのような金属による放熱であってもよい。磁石50およびヨーク52は、ステンレスなどの金属等で形成されたシールド板43によって囲まれている。シールド板43により、ターゲット20のエロージョン部上方以外での放電やスパッタリングを防止する。   The means for cooling the magnetron cathode portion 22 is not limited to heat radiation by circulating cooling water, and may be heat radiation by a metal such as an aluminum block. The magnet 50 and the yoke 52 are surrounded by a shield plate 43 formed of a metal such as stainless steel. The shield plate 43 prevents discharge and sputtering other than above the erosion portion of the target 20.

真空チャンバ70は、ターゲット20と基体30とを含む空間を所望の真空度に維持することが可能であり、スパッタリングガスを供給するガス供給源72と、真空チャンバ内を排気し所望の真空度を得るための真空ポンプ74が取り付けられている。また、成膜時の基体30の温度を変更するための加熱手段(不図示)が設けられている。   The vacuum chamber 70 can maintain the space including the target 20 and the substrate 30 at a desired degree of vacuum. The gas supply source 72 that supplies the sputtering gas and the inside of the vacuum chamber are evacuated to obtain the desired degree of vacuum. A vacuum pump 74 for obtaining is attached. Further, a heating means (not shown) for changing the temperature of the substrate 30 during film formation is provided.

以下、上述の実施形態に係るマグネトロンスパッタリング装置10を用いた透明導電膜の製造方法について実施例を参照して説明する。   Hereinafter, the manufacturing method of the transparent conductive film using the magnetron sputtering apparatus 10 which concerns on the above-mentioned embodiment is demonstrated with reference to an Example.

(実施例)
はじめに、マグネトロンスパッタリング装置10で使用される本実施例に係るターゲット20および基体30について説明する。
(Example)
First, the target 20 and the substrate 30 according to the present embodiment used in the magnetron sputtering apparatus 10 will be described.

ターゲット20は、直径約150mmの高密度焼結体であるZnOにAlをドープしたものを使用する。なお、ターゲットの形状は円形だけでなく方形等任意のものであってもよく、装置や材料、成膜条件に応じて適宜選択すればよい。また、基体30にはガラス基板を使用する。そして、ターゲット20および基体30をマグネトロンスパッタリング装置10の所定の位置に配置し、真空ポンプ74により所望の真空度となるよう真空チャンバ70内を排気する。その際、基体30であるガラス基板を加熱手段(不図示)により200℃に加熱する。   The target 20 is made of ZnO, which is a high-density sintered body having a diameter of about 150 mm, doped with Al. Note that the shape of the target is not limited to a circle but may be any shape such as a square, and may be appropriately selected according to the apparatus, material, and film forming conditions. Further, a glass substrate is used for the base 30. Then, the target 20 and the substrate 30 are disposed at predetermined positions of the magnetron sputtering apparatus 10, and the vacuum chamber 70 is evacuated by the vacuum pump 74 so as to achieve a desired degree of vacuum. In that case, the glass substrate which is the base | substrate 30 is heated to 200 degreeC with a heating means (not shown).

真空チャンバ70が所望の真空度となった状態で、ArにHをX%導入したスパッタガスをガス供給源72から真空チャンバ70内に供給する。なお、雰囲気中に導入するHや有機ガスは、不活性ガスと混合されてから真空チャンバ70に導入してもよいし、別々のガス供給源から真空チャンバ70に導入されてもよい。ここで、スパッタガス圧は0.4Paである。そして、電力供給源40からマグネトロンカソード部22に高周波電力を重畳した直流電力を印加し透明導電膜を作成する。本実施例では、高周波電力は100W、直流電力は80Wである。 In a state where the vacuum chamber 70 has a desired degree of vacuum, a sputtering gas in which X 2 % of H 2 is introduced into Ar is supplied from the gas supply source 72 into the vacuum chamber 70. Note that the H 2 or organic gas introduced into the atmosphere may be introduced into the vacuum chamber 70 after being mixed with an inert gas, or may be introduced into the vacuum chamber 70 from a separate gas supply source. Here, the sputtering gas pressure is 0.4 Pa. And the direct-current power which superimposed the high frequency electric power is applied to the magnetron cathode part 22 from the power supply source 40, and a transparent conductive film is created. In this embodiment, the high frequency power is 100 W and the direct current power is 80 W.

ここで高周波電力は、直流電力の30%〜300%、より好ましくは60%〜200%の範囲で設定されているとよい。高周波電力の割合が少なすぎる又は多すぎると、直流成分、高周波成分の一方の特性が強すぎてしまうからである。   Here, the high frequency power may be set in the range of 30% to 300%, more preferably 60% to 200% of the DC power. This is because if the ratio of the high-frequency power is too small or too large, one of the characteristics of the DC component and the high-frequency component is too strong.

また、直流電力に重畳する高周波電力の周波数は2MHz〜700MHzの範囲が好ましい。周波数が2MHzより小さいと、プラズマが生成しにくくなる一方、周波数が700MHzより大きくなると、電力損失が増大し、スパッタ効率が悪化するからである。より好ましくは、10MHz〜100MHzの範囲であればよく、例えば、13.56MHzの周波数が好適に用いられる。   Further, the frequency of the high frequency power superimposed on the DC power is preferably in the range of 2 MHz to 700 MHz. This is because, when the frequency is less than 2 MHz, it is difficult to generate plasma, whereas when the frequency is greater than 700 MHz, the power loss increases and the sputtering efficiency deteriorates. More preferably, it may be in the range of 10 MHz to 100 MHz, and for example, a frequency of 13.56 MHz is suitably used.

図3は、Arガスに導入するHの導入量を異ならせてガラス基板上に作製したAZO膜の抵抗率分布を比較したグラフである。図3に示すように、Arのみの条件(X=0%)と比較してH導入量X=0.4%、0.6%、0.8%の条件で作製したAZO膜は、抵抗率が低くなると共に抵抗率分布の均一性も向上している。これは、エロージョン対向部での酸化を抑制することができているためと考えられる。 FIG. 3 is a graph comparing the resistivity distributions of AZO films fabricated on a glass substrate with different amounts of H 2 introduced into Ar gas. As shown in FIG. 3, the AZO film produced under the conditions of the H 2 introduction amount X = 0.4%, 0.6%, 0.8% compared to the condition of Ar only (X = 0%) The resistivity is lowered and the uniformity of the resistivity distribution is also improved. This is considered to be because the oxidation at the erosion facing portion can be suppressed.

一方、H導入量X=1.0%の条件で作製したAZO膜は、抵抗率が若干上昇すると共に抵抗率分布の均一性も若干低下している。これは、H導入量の増加による結晶性の悪化が原因と考えられる。以上の結果を考慮すると、H導入量の好ましい範囲の上限は2.0%以下、より好ましくは1.0%以下である。H導入量の好ましい範囲の下限は0.1%以上、より好ましくは0.2%以上である。それ以下であるとH導入による酸化の抑制が不十分となるからである。それ以上では水素が膜中に取り込まれたり酸素が過剰に還元されてしまう。 On the other hand, in the AZO film produced under the condition of the H 2 introduction amount X = 1.0%, the resistivity slightly increases and the uniformity of the resistivity distribution also slightly decreases. This is considered to be caused by deterioration of crystallinity due to an increase in the amount of H 2 introduced. Considering the above results, the upper limit of the preferable range of the H 2 introduction amount is 2.0% or less, more preferably 1.0% or less. The lower limit of the preferable range of the H 2 introduction amount is 0.1% or more, more preferably 0.2% or more. This is because if it is less than that, the suppression of oxidation by the introduction of H 2 becomes insufficient. Above that, hydrogen is taken into the film and oxygen is excessively reduced.

図4は、本実施例の作製法により作製されたAZO膜の平均抵抗率と水素導入量との関係を示すグラフである。図4に示すように、基体表面全体について場所と膜厚について平均した抵抗率は、水素導入量が0%の場合と比較して、水素導入量が約0.2%から約0.7%の範囲で低下しており、効果が認められる。より好ましくは、水素導入量が0.3%以上、0.6%以下のArをスパッタガスに用いるとよい。   FIG. 4 is a graph showing the relationship between the average resistivity of the AZO film produced by the production method of this example and the amount of hydrogen introduced. As shown in FIG. 4, the average resistivity with respect to the location and film thickness of the entire substrate surface is about 0.2% to about 0.7% in hydrogen introduction amount compared to 0% hydrogen introduction amount. The effect is recognized. More preferably, Ar having a hydrogen introduction amount of 0.3% to 0.6% is used as the sputtering gas.

直流電力を一定にして高周波電力を異ならせてガラス基板上に作製したAZO膜の抵抗率分布を比較したグラフである。It is the graph which compared the resistivity distribution of the AZO film produced on the glass substrate by making DC power constant and making high frequency power different. 本実施形態に係るマグネトロンスパッタリング装置の一例を模式的に示した要部断面図である。It is principal part sectional drawing which showed typically an example of the magnetron sputtering apparatus which concerns on this embodiment. Arガスに導入するHの導入量を異ならせてガラス基板上に作製したAZO膜の抵抗率分布を比較したグラフである。By varying the introduction of H 2 to be introduced into Ar gas is a graph comparing the resistivity distribution of the AZO film formed on a glass substrate. 本実施例の作製法により作製されたAZO膜の平均抵抗率と水素導入量との関係を示すグラフである。It is a graph which shows the relationship between the average resistivity of the AZO film produced by the production method of a present Example, and the amount of hydrogen introduction.

符号の説明Explanation of symbols

10 マグネトロンスパッタリング装置、 20 ターゲット、 22 マグネトロンカソード部、 30 基体、 40 電力供給源、 43 シールド板、 50 磁石、 52 ヨーク、 54 パイプ、 60 アノード、 70 真空チャンバ、 72 ガス供給源、 74 真空ポンプ。   10 magnetron sputtering apparatus, 20 target, 22 magnetron cathode section, 30 substrate, 40 power supply source, 43 shield plate, 50 magnet, 52 yoke, 54 pipe, 60 anode, 70 vacuum chamber, 72 gas supply source, 74 vacuum pump.

Claims (9)

酸化亜鉛をターゲットとして用い、不活性ガスに水素、メタン、アルコール及びケトンからなる群から選択された少なくとも一つのガスを導入した雰囲気中で、直流電力に高周波電力を重畳したスパッタ電圧を用いたマグネトロンスパッタリング法により基体上に透明導電膜を形成する透明導電膜の製造方法。 Magnetron using sputtering voltage in which high frequency power is superimposed on DC power in an atmosphere in which at least one gas selected from the group consisting of hydrogen, methane, alcohol and ketone is introduced as an inert gas using zinc oxide as a target A method for producing a transparent conductive film, comprising forming a transparent conductive film on a substrate by a sputtering method. 前記酸化亜鉛は、Al,Ga,B,In,Y,Sc,F,V,Si,Ge,Ti,Zr,Hfからなる群から選択された少なくとも一つの元素がドープされている請求項1に記載の透明導電膜の製造方法。   The zinc oxide is doped with at least one element selected from the group consisting of Al, Ga, B, In, Y, Sc, F, V, Si, Ge, Ti, Zr, and Hf. The manufacturing method of the transparent conductive film of description. 前記不活性ガスはArである請求項1または2に記載の透明導電膜の製造方法。   The method for producing a transparent conductive film according to claim 1, wherein the inert gas is Ar. 前記雰囲気中に導入する水素導入量が0.1%〜2.0%の範囲である請求項1乃至3のいずれかに記載の透明導電膜の製造方法。   The method for producing a transparent conductive film according to claim 1, wherein the amount of hydrogen introduced into the atmosphere is in the range of 0.1% to 2.0%. 前記雰囲気中に導入する水素導入量が0.2%〜1.0%の範囲である請求項1乃至3のいずれかに記載の透明導電膜の製造方法。   The method for producing a transparent conductive film according to claim 1, wherein the amount of hydrogen introduced into the atmosphere is in the range of 0.2% to 1.0%. 前記不活性ガスに導入する水素導入量が0.3%〜0.6%の範囲である請求項1乃至3のいずれかに記載の透明導電膜の製造方法。   The method for producing a transparent conductive film according to claim 1, wherein the amount of hydrogen introduced into the inert gas is in the range of 0.3% to 0.6%. 直流電力に重畳する高周波電力の周波数は2MHz〜700MHzの範囲である請求項1乃至6のいずれかに記載の透明導電膜の製造方法。   The method for producing a transparent conductive film according to claim 1, wherein the frequency of the high-frequency power superimposed on the direct-current power is in the range of 2 MHz to 700 MHz. 前記高周波電力は、前記直流電力の30%〜300%の範囲であることを特徴とする請求項1乃至7のいずれかに記載の透明導電膜の製造方法。   The method for producing a transparent conductive film according to claim 1, wherein the high-frequency power is in a range of 30% to 300% of the direct-current power. 前記高周波電力は、前記直流電力の60%〜200%の範囲であることを特徴とする請求項1乃至7のいずれかに記載の透明導電膜の製造方法。   The method for manufacturing a transparent conductive film according to claim 1, wherein the high-frequency power is in a range of 60% to 200% of the direct-current power.
JP2005350575A 2005-12-05 2005-12-05 Method and apparatus for producing transparent conductive film Expired - Fee Related JP4599595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350575A JP4599595B2 (en) 2005-12-05 2005-12-05 Method and apparatus for producing transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350575A JP4599595B2 (en) 2005-12-05 2005-12-05 Method and apparatus for producing transparent conductive film

Publications (2)

Publication Number Publication Date
JP2007154255A JP2007154255A (en) 2007-06-21
JP4599595B2 true JP4599595B2 (en) 2010-12-15

Family

ID=38238992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350575A Expired - Fee Related JP4599595B2 (en) 2005-12-05 2005-12-05 Method and apparatus for producing transparent conductive film

Country Status (1)

Country Link
JP (1) JP4599595B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582470B (en) * 2007-10-09 2010-09-15 兰州大成科技股份有限公司 Method for preparing single crystal silicon film components
KR101236039B1 (en) * 2007-12-18 2013-02-21 주식회사 엘지화학 Conductive laminate and manufacturing method thereof
CN102165559B (en) 2008-09-30 2013-09-04 Lg化学株式会社 Transparent conductive film, and transparent electrode comprising same
EP2338178A1 (en) * 2008-10-21 2011-06-29 Applied Materials, Inc. Transparent conductive zinc oxide display film and production method therefor
JP5492479B2 (en) * 2009-07-10 2014-05-14 ジオマテック株式会社 Method for producing transparent conductive film
RU2451768C2 (en) * 2009-12-21 2012-05-27 Учреждение Российской Академии Наук Институт Сильноточной Электроники Сибирского Отделения Ран (Исэ Со Ран) Method for transparent conductive coating production
JP5445395B2 (en) * 2010-08-25 2014-03-19 住友金属鉱山株式会社 Method for producing transparent conductive film and method for producing thin film solar cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105533A (en) * 2001-10-01 2003-04-09 Mitsubishi Heavy Ind Ltd Method of producing transparent electroconductive film and transparent electroconductive film
JP2003532997A (en) * 2000-05-12 2003-11-05 ウンアクシス ドイチェランド ゲーエムベーハー Indium-tin oxide (ITO) film and method for producing the same
JP2004176099A (en) * 2002-11-26 2004-06-24 Ulvac Japan Ltd Apparatus for manufacturing transparent electroconductive film, and method for manufacturing the film
JP2004259764A (en) * 2003-02-24 2004-09-16 Shin Etsu Handotai Co Ltd Light emitting element and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532997A (en) * 2000-05-12 2003-11-05 ウンアクシス ドイチェランド ゲーエムベーハー Indium-tin oxide (ITO) film and method for producing the same
JP2003105533A (en) * 2001-10-01 2003-04-09 Mitsubishi Heavy Ind Ltd Method of producing transparent electroconductive film and transparent electroconductive film
JP2004176099A (en) * 2002-11-26 2004-06-24 Ulvac Japan Ltd Apparatus for manufacturing transparent electroconductive film, and method for manufacturing the film
JP2004259764A (en) * 2003-02-24 2004-09-16 Shin Etsu Handotai Co Ltd Light emitting element and method for manufacturing the same

Also Published As

Publication number Publication date
JP2007154255A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP4599595B2 (en) Method and apparatus for producing transparent conductive film
WO2009084441A1 (en) Method and apparatus for forming transparent conductive film
WO2004106581A2 (en) Transparent conductive oxides
JP2000040429A (en) Manufacturing of zinc oxide transparent conductive film
US20120160663A1 (en) Sputter Deposition and Annealing of High Conductivity Transparent Oxides
WO2010144761A2 (en) Ionized physical vapor deposition for microstructure controlled thin film deposition
JP2007084881A (en) Tablet of oxide sintered body for vapor deposition, and transparent oxide conductive film
JP2009176927A (en) Method of manufacturing solar battery
CN108274009B (en) Cr target material repairing method
JP4473852B2 (en) Sputtering apparatus and sputtering method
JPH02232358A (en) Production of transparent conductive film and apparatus for producing such film
WO2009084527A1 (en) Method for manufacturing solar cell, and solar cell
JPWO2009038091A1 (en) Manufacturing method of solar cell
JP5145342B2 (en) Method for forming transparent conductive film
JP2008156708A (en) Method for producing transparent electroconductive film
JP2008097969A (en) Zinc oxide based transparent conductive film, and its manufacturing method
JP4229803B2 (en) Method for producing transparent conductive film
JP2010024532A (en) Magnetron sputtering apparatus, film-forming method, and method for manufacturing optical component
JP2014141698A (en) Film deposition method for aluminium oxide
US20100206719A1 (en) Method for manufacturing solar cell
JP2014057034A (en) Method of depositing aluminum oxide
JPWO2009093580A1 (en) Manufacturing method of liquid crystal display device
JP2005320192A (en) Oxide sintered compact, spattering target, and transparent conductive thin film
JPH056286B2 (en)
JP2015157993A (en) sputtering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4599595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees