JP5492479B2 - Method for producing transparent conductive film - Google Patents

Method for producing transparent conductive film Download PDF

Info

Publication number
JP5492479B2
JP5492479B2 JP2009164172A JP2009164172A JP5492479B2 JP 5492479 B2 JP5492479 B2 JP 5492479B2 JP 2009164172 A JP2009164172 A JP 2009164172A JP 2009164172 A JP2009164172 A JP 2009164172A JP 5492479 B2 JP5492479 B2 JP 5492479B2
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
film thickness
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009164172A
Other languages
Japanese (ja)
Other versions
JP2011018623A (en
Inventor
浩幸 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geomatec Co Ltd
Original Assignee
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geomatec Co Ltd filed Critical Geomatec Co Ltd
Priority to JP2009164172A priority Critical patent/JP5492479B2/en
Publication of JP2011018623A publication Critical patent/JP2011018623A/en
Application granted granted Critical
Publication of JP5492479B2 publication Critical patent/JP5492479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

本発明は、透明導電膜の製造方法に係り、特に、膜厚が薄い場合において抵抗率が小さく、且つ光の透過率が高い透明導電膜の製造方法に関する。 The present invention relates to a method for producing a transparent conductive film, in particular, low resistivity in the case where the film thickness is thin, and a method for producing a transparent conductive film has high light transmittance.

携帯電話、電子手帳等の携帯端末(PDA、Personal Digital Assistant)、ゲーム機、カーナビゲーション、パーソナルコンピュータ、券売機、銀行の端末等の電子表示機器分野において、その表示装置やセンサーの電極には、インジウム(In)、亜鉛(Zn)、錫(Sn)、等に他の元素を添加した酸化物により形成される透明導電膜や、銅やその合金等により形成される金属膜が用いられている。特に透明導電膜は、電子表示機器の表示装置に設置されるタッチパネルの構成要素であることから、その需要が高まっている。   In the field of electronic display devices such as mobile phones (PDA, Personal Digital Assistant), game machines, car navigation systems, personal computers, ticket vending machines, bank terminals, etc., display devices and sensor electrodes are A transparent conductive film formed of an oxide obtained by adding other elements to indium (In), zinc (Zn), tin (Sn), or the like, or a metal film formed of copper or an alloy thereof is used. . In particular, since the transparent conductive film is a constituent element of a touch panel installed in a display device of an electronic display device, its demand is increasing.

透明導電膜の中でも、インジウム(In)−錫(Sn)の酸化物(ITO,Indium Tin Oxide)による透明導電膜は、抵抗値が比較的低く、可視領域での光の透過率が高く、且つエッチングが容易であることから、多くの電子表示機器に使用されている。   Among transparent conductive films, a transparent conductive film made of an oxide of indium (In) -tin (Sn) (ITO, Indium Tin Oxide) has a relatively low resistance, a high light transmittance in the visible region, and Since it is easy to etch, it is used in many electronic display devices.

そして、上述の電子表示機器分野においては、特に透明導電膜の電気的特性の向上が求められている。つまり、その表示装置に使用される液晶パネルの高精細化に伴い、画素ピッチの縮小に対応して透明導電膜の低抵抗化が必要となってきており、具体的には、抵抗率が1×10−4〜1×10−5Ωcm程度の透明導電膜が求められている。 And in the above-mentioned electronic display device field | area, the improvement of the electrical property of a transparent conductive film is calculated | required especially. In other words, as the liquid crystal panel used in the display device becomes higher in definition, it is necessary to reduce the resistance of the transparent conductive film in response to the reduction in the pixel pitch. Specifically, the resistivity is 1 A transparent conductive film of about × 10 −4 to 1 × 10 −5 Ωcm is required.

特許文献1には、フォロカソード型イオンプレーティングにより、(222)面のピーク強度Iと、(400)面のピーク強度Iの比I/Iが6〜100の範囲であり、抵抗率が0.8×10−4〜3.5×10−4Ωcmの範囲であり、移動度が30〜50cm/Vsecの範囲であり、波長550nmの光の透過率が80〜100%の範囲であるITO膜が開示されている。 Patent Document 1, by Roman cathode type ion plating, (222) and the peak intensity I 1 of the plane, in the range ratio I 1 / I 2 of from 6 to 100 of the peak intensity I 2 of the (400) plane, The resistivity is in the range of 0.8 × 10 −4 to 3.5 × 10 −4 Ωcm, the mobility is in the range of 30 to 50 cm 2 / Vsec, and the transmittance of light with a wavelength of 550 nm is 80 to 100%. An ITO film that is in the range is disclosed.

また、特許文献2には、カソード上のターゲット表面平行磁界強度を6000e以上に保持し、そのターゲットに直流電界と高周波電界を重畳して印加し、250V以下のスパッタ電圧でスパッタすることにより、透明導電膜を製造する技術が提案されており、この技術により抵抗率が1.25×10−4〜1.9×10−4ΩcmのITO膜が得られている。 Further, in Patent Document 2, the target surface parallel magnetic field strength on the cathode is maintained at 6000 e or more, a direct current electric field and a high frequency electric field are superimposed and applied to the target, and sputtering is performed at a sputtering voltage of 250 V or less. A technique for manufacturing a conductive film has been proposed, and an ITO film having a resistivity of 1.25 × 10 −4 to 1.9 × 10 −4 Ωcm is obtained by this technique.

特許第3831433号公報Japanese Patent No. 3831433 特許第2936276号公報Japanese Patent No. 2936276

一方、ITO膜等の透明導電膜において、低抵抗化と同時に薄膜化、すなわち膜厚を薄くすることもまた重要な因子とされている。しかし、透明導電膜を含む薄膜分野では、薄膜の膜厚が薄い程抵抗値が高く、熱、湿度、及び薬液への耐久性が低いという問題点がある。一般に成膜とは、基板上に薄膜材料の分子を積んでいく工程であるが、基板との格子間隔の不整合等により、成膜初期段階から材料固有の結晶格子を形成することは難しい。したがって、ある程度の分子層を積み上げた後、すなわち膜厚が厚くなった後に、固有の結晶構造を呈し、電導度が高くなるという、薄膜成膜の基本的な課題ともいえる。特に透明導電膜は、金属薄膜と比較して膜厚に対する導電度の依存性が大きく、膜厚が薄いと、抵抗値が極端に大きくなる。したがって、透明導電膜は、その膜厚を少なくとも数十nm程度まで厚くし、安定した物性を維持できる膜厚で使用される。   On the other hand, in a transparent conductive film such as an ITO film, it is also an important factor to reduce the film thickness, that is, to reduce the film thickness at the same time as reducing resistance. However, in the thin film field including a transparent conductive film, there is a problem that the thinner the thin film, the higher the resistance value and the lower the durability to heat, humidity, and chemicals. In general, film formation is a process in which molecules of a thin film material are stacked on a substrate, but it is difficult to form a crystal lattice unique to the material from the initial stage of film formation due to mismatching of the lattice spacing with the substrate or the like. Therefore, it can be said that it is a basic problem of thin film deposition in which a certain crystal structure is exhibited and conductivity is increased after a certain amount of molecular layers are stacked, that is, after the film thickness is increased. In particular, the transparent conductive film has a greater dependence of the conductivity on the film thickness than the metal thin film, and the resistance value becomes extremely large when the film thickness is small. Therefore, the transparent conductive film is used in such a film thickness that the film thickness can be increased to at least several tens of nanometers and stable physical properties can be maintained.

また、透明導電膜の中でも、特にITO薄膜は、その光学的特性に関し、400nm以下の波長領域において光の吸収が大きく、それに伴い、淡い茶色の透過色を呈するため、透明性が低下するという問題点がある。さらに、光の吸収に加えて、光の干渉による着色(干渉色)が起こるという問題点もある。これらの呈色や着色は膜厚が厚くなるほど著しくなるため、透過率が低下し、透明性がさらに損なわれることとなる。   Further, among the transparent conductive films, particularly the ITO thin film has a problem in that the optical properties thereof are large in light absorption in a wavelength region of 400 nm or less, and accordingly, a light brown transmission color is exhibited, so that the transparency is lowered. There is a point. In addition to light absorption, there is also a problem that coloring (interference color) occurs due to light interference. Since these coloration and coloring become more significant as the film thickness increases, the transmittance decreases and the transparency is further impaired.

すなわち、透明導電膜はその厚さが数十nm程度又はそれ以上の厚さである時、抵抗値が小さくなり、その値が安定するが、膜厚の増加に伴い、薄膜における光の吸収が大きくなり、透過率が低下する。一方、膜厚が薄くなるほど光の吸収が小さく、透過率が向上するが、抵抗値が増大し、さらにその抵抗値が安定して一定にならない。したがって、透明導電膜の膜厚が薄い場合、その用途が限定されるという問題点がある。   That is, when the transparent conductive film has a thickness of about several tens of nanometers or more, the resistance value decreases and stabilizes. However, as the film thickness increases, light absorption in the thin film decreases. It becomes larger and the transmittance decreases. On the other hand, the thinner the film thickness, the smaller the light absorption and the better the transmittance, but the resistance value increases, and the resistance value does not become stable and constant. Therefore, when the film thickness of a transparent conductive film is thin, there exists a problem that the use is limited.

この点に関して、特許文献1では、抵抗率が0.8×10−4〜3.5×10−4Ωcmの範囲であり、波長550nmの光の透過率が80〜100%の範囲であるITO膜が開示されているが、その膜厚は150nm程度であり、膜厚が150nmよりも薄いITO膜(特に膜厚が20nm以下のITO膜)の電気的特性及び光学的特性は示されていない。また、特許文献2においては、抵抗率が1.25×10−4〜1.9×10−4ΩcmのITO膜が開示されているが、その膜厚及び光学的特性に関しては記載されていない。 In this regard, in Patent Document 1, the resistivity is in the range of 0.8 × 10 −4 to 3.5 × 10 −4 Ωcm, and the transmittance of light having a wavelength of 550 nm is in the range of 80 to 100%. Although a film is disclosed, the film thickness is about 150 nm, and the electrical and optical characteristics of an ITO film with a film thickness smaller than 150 nm (particularly, an ITO film with a film thickness of 20 nm or less) are not shown. . Patent Document 2 discloses an ITO film having a resistivity of 1.25 × 10 −4 to 1.9 × 10 −4 Ωcm, but does not describe its film thickness and optical characteristics. .

本発明の目的は、膜厚が薄い場合であっても、低抵抗率及び高透過率を維持する透明導電膜の製造方法であって、再現性の高い製造方法を提供することにある。 An object of the present invention is to provide a method for producing a transparent conductive film that maintains a low resistivity and a high transmittance even when the film thickness is thin, and to provide a production method with high reproducibility.

前記課題は、本発明の透明導電膜の製造方法によれば、基板上に設けられる酸化インジウム錫(ITO)膜からなる透明導電膜を成膜する方法であって、前記基板を、酸化インジウム錫(ITO)のターゲットを有するスパッタ装置内に設置し、キャリアガス中に含まれる酸素の流量が0.1〜1.0%の範囲、前記基板温度が230〜250℃の範囲、前記ターゲットの表面磁場が600〜800Gの範囲とし、DC電源に、対DC電力比が、0.5〜2.0の範囲であるRF電力を重畳して印加し、スパッタリングを行うことにより、膜厚が8〜20nmの範囲であり、且つ、抵抗率が1.5×10−4Ωcm以下である透明導電膜を成膜すること、により解決される。 The subject is a method of forming a transparent conductive film comprising an indium tin oxide (ITO) film provided on a substrate according to the method for producing a transparent conductive film of the present invention, wherein the substrate is formed of indium tin oxide. It is installed in a sputtering apparatus having an (ITO) target, the flow rate of oxygen contained in the carrier gas is in the range of 0.1 to 1.0%, the substrate temperature is in the range of 230 to 250 ° C., the surface of the target The magnetic field is in the range of 600 to 800 G, the RF power with the DC power ratio in the range of 0.5 to 2.0 is superimposed on the DC power source, and sputtering is performed, so that the film thickness is 8 to The problem is solved by forming a transparent conductive film having a range of 20 nm and a resistivity of 1.5 × 10 −4 Ωcm or less.

このとき、通常のスパッタリング装置を用いて、抵抗率が小さい透明導電膜を得ることができる。また、ターゲットの表面磁場、キャリアガスの組成比、スパッタ時の電力を上述の範囲とすることで、再現性よく、抵抗率が小さい透明導電膜を得ることができる。
また、膜厚が薄いため、干渉色による影響が少なく、透明性の高い透明導電膜を得ることができる。さらに、得られる透明導電膜はその抵抗率が小さいため、透明性が高く、且つ抵抗率が小さい透明導電膜を得ることが可能となる。
また、透明導電膜の膜厚が8〜20nmの範囲であり、膜厚が薄い場合、干渉色により透明性が低下するといった影響を受けることがない。また、膜厚が薄い場合であっても、その抵抗率は低く、具体的には1.5×10−4Ωcm以下であり、良好な電気的特性を有する。したがって、従来技術による透明導電膜の光学的特性と電気的特性を大幅に改良した透明導電膜を成膜することができる。
At this time, a transparent conductive film having a low resistivity can be obtained using a normal sputtering apparatus. In addition, by setting the surface magnetic field of the target, the composition ratio of the carrier gas, and the power during sputtering within the above ranges, a transparent conductive film with low reproducibility can be obtained.
Moreover, since the film thickness is thin, there is little influence of interference color, and a highly transparent transparent conductive film can be obtained. Furthermore, since the obtained transparent conductive film has a low resistivity, it is possible to obtain a transparent conductive film having high transparency and low resistivity.
Moreover, when the film thickness of the transparent conductive film is in the range of 8 to 20 nm and the film thickness is thin, there is no influence that the transparency is lowered by the interference color. Further, even when the film thickness is thin, the resistivity of its low, specifically at 1.5 × 10 -4 Ωcm or less, has good electrical characteristics. Therefore, it is possible to form a transparent conductive film in which the optical characteristics and electrical characteristics of the transparent conductive film according to the prior art are greatly improved.

このとき、X線回折法における(222)面のピーク強度I と(400)面のピーク強度I との比I /I が0.1〜1.0の範囲である透明導電膜を成膜すると好適である。
このように、膜厚が薄い場合であっても、X線回折法における(400)面に由来する回折ピーク強度が強いため、その抵抗率は低く、良好な電気的特性を有する。したがって、従来技術による透明導電膜の光学的特性と電気的特性を大幅に改良した透明導電膜を成膜することができる。
In this case, the transparent conductive film ratio I 1 / I 2 of the peak intensity I 2 of the X-ray diffraction method (222) plane peak intensity I 1 and (400) plane is in a range of 0.1 to 1.0 It is preferable to form a film .
Thus, even when the film thickness is small, the diffraction peak intensity derived from the (400) plane in the X-ray diffraction method is strong, so that the resistivity is low and it has good electrical characteristics. Therefore, it is possible to form a transparent conductive film in which the optical characteristics and electrical characteristics of the transparent conductive film according to the prior art are greatly improved.

また、350〜700nmの範囲の波長の光に対する透過率が、85%以上である透明導電膜を成膜すると好ましい。
このように、本発明により成膜される透明導電膜は、可視光領域の全域を含む広い波長範囲において、高い透過率を有する。特に、波長が短い範囲の光に対しても従来技術と比較して高い透過率を有する。したがって、従来技術では透過性が低い波長範囲の光も充分に透過させることができるため、波長範囲の制限を受けることなく、波長を制御する光学部材において導電性を付与した設計が可能となる。
Further, transmittance of light with a wavelength in the range of 350~700nm are preferred If you form a transparent conductive film is 85% or more.
Thus, the transparent conductive film formed by the present invention has a high transmittance in a wide wavelength range including the entire visible light region. In particular, the light having a short wavelength range has a high transmittance as compared with the prior art. Thus, since in the prior art can be transmitted sufficiently even light of low wavelength range permeability, without being limited by the wavelength range that Do can be designed having conductivity in an optical member for controlling the wavelength .

また、前記基板として、ガラス基板又は樹脂基板を用いると好ましい。
このとき、透明導電膜の成膜時に、基板温度を少なくとも230〜250℃の範囲まで昇温することができるため、得られる透明導電膜の結晶性が向上し、その結果、抵抗率が小さい透明導電膜を得ることができる。
Moreover , it is preferable to use a glass substrate or a resin substrate as the substrate.
At this time, since the substrate temperature can be raised to a range of at least 230 to 250 ° C. during the formation of the transparent conductive film, the crystallinity of the obtained transparent conductive film is improved, and as a result, the transparent having a low resistivity is obtained. A conductive film can be obtained.

本発明の透明導電膜の製造方法によれば、透明導電膜の成膜条件を適切に制御することにより、再現性よく、電気的及び光学的特性の良好な透明導電膜を得ることができる。また、膜厚が薄い場合であっても、抵抗率が低く、電気的及び光学的特性の良好な透明導電膜を得ることができる。
透明導電膜の膜厚が薄い場合でも、干渉色により透明性が低下するといった影響を受けることがなく、良好な光学的特性を有する透明導電膜を得ることができる。また、膜厚が薄い場合であっても、抵抗率が低いため、良好な電気的特性を有する透明導電膜を得ることができる。
また請求項3の発明によれば、可視光領域全域を含む幅広い波長範囲の光に対する透過率が高い透明導電膜を得ることができる。したがって、本発明により得られる透明導電膜は、導電性を有する光学部材を設計する上で有用である。
さらにまた、請求項4の発明によれば、透明導電膜の成膜時、基板温度を高温で保持することができる。したがって、得られる透明導電膜の結晶性が向上し、導電性の良い透明導電膜を提供することができる。
According to the manufacturing method of the present onset light of the transparent conductive film, by appropriately controlling the deposition conditions of the permeable transparent conductive film, that good reproducibility to obtain a good transparent conductive film of the electrical and optical properties it can. Further, even when the film thickness is thin, a transparent conductive film with low resistivity and good electrical and optical characteristics can be obtained.
Even when the film thickness of the transparent conductive film is thin, the transparent conductive film having good optical characteristics can be obtained without being affected by the decrease in transparency due to the interference color. Further, even when the film thickness is thin, since the resistivity is low, a transparent conductive film having good electrical characteristics can be obtained.
According to the invention of claim 3, it is possible to obtain a transparent conductive film having a high transmittance for light in a wide wavelength range including the entire visible light region. Therefore, the transparent conductive film obtained by the present invention is useful in designing an optical member having conductivity.
Furthermore, according to the invention of claim 4, the substrate temperature can be maintained at a high temperature when the transparent conductive film is formed. Accordingly, the crystallinity of the obtained transparent conductive film is improved, and a transparent conductive film having good conductivity can be provided.

本発明の実施例1a乃至4に係るXRDパターン図である。It is an XRD pattern figure which concerns on Example 1a thru | or 4 of this invention. 本発明の実施例1a乃至4に係る光特性のグラフ図(リファレンス:空気)である。It is a graph (reference: air) of the optical characteristic which concerns on Example 1a thru | or 4 of this invention. 本発明の実施例1a乃至4に係る光特性のグラフ図(リファレンス:ガラス)である。It is a graph (reference: glass) of the optical characteristic which concerns on Example 1a thru | or 4 of this invention. 本発明の実施例1a乃至5及び比較例1乃至6に係る膜厚と抵抗率の関係を示すグラフ図である。It is a graph which shows the relationship between the film thickness and resistivity which concern on Examples 1a-5 of this invention, and Comparative Examples 1-6. 比較例1乃至5に係るXRDパターン図である。FIG. 6 is an XRD pattern diagram according to Comparative Examples 1 to 5.

本発明の実施形態に係る透明導電膜の製造方法を図面に基づいて説明する。なお、以下に説明する材料、構成等は、本発明を限定するものでなく、本発明の趣旨の範囲内で種々改変することができるものである。 The manufacturing method of the transparent conductive film which concerns on embodiment of this invention is demonstrated based on drawing. The materials, configurations, and the like described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.

図1は本発明の実施例1a乃至4に係るXRDパターン図であり、図2は本発明の実施例1a乃至4に係る光特性のグラフ図(リファレンス:空気)であり、図3は本発明の実施例1a乃至4に係る光特性のグラフ図(リファレンス:ガラス)であり、図4は本発明の実施例1a乃至5及び比較例1乃至6に係る膜厚と抵抗率の関係を示すグラフ図であり、図5は比較例1乃至5に係るXRDパターン図である。   FIG. 1 is an XRD pattern diagram according to Examples 1a to 4 of the present invention, FIG. 2 is a graph of optical characteristics (reference: air) according to Examples 1a to 4 of the present invention, and FIG. FIG. 4 is a graph showing optical characteristics according to Examples 1a to 4 of the present invention (reference: glass), and FIG. 4 is a graph showing the relationship between film thickness and resistivity according to Examples 1a to 5 and Comparative Examples 1 to 6 of the present invention. FIG. 5 is an XRD pattern diagram according to Comparative Examples 1 to 5.

一般に、透明導電膜の電気的特性を向上させるためには、抵抗率を小さくして電気伝導度を大きくし、導電性を高める必要がある。透明導電膜の抵抗率を小さくするためには、キャリア密度(n)を最大限に増加させ、ホール移動度(μ)を大きくすることが必要である。   In general, in order to improve the electrical characteristics of the transparent conductive film, it is necessary to reduce the resistivity to increase the electrical conductivity and increase the conductivity. In order to reduce the resistivity of the transparent conductive film, it is necessary to maximize the carrier density (n) and increase the hole mobility (μ).

透明導電膜の中でも、ITO膜は縮退したn型の半導体特性を持つことで知られており、この薄膜の電気的特性は、主としてイオン化不純物散乱と中性不純物散乱が支配的である。キャリア密度(n)を増加させるためには、酸素欠損量とドーピング量を増大させることが必要であり、ITO膜においては、成膜中の酸素分圧の最適化による酸素空孔形成と、より多くの錫(Sn)原子をインジウム(In)サイトに置換させることにより達成される。   Among the transparent conductive films, the ITO film is known to have degenerate n-type semiconductor characteristics. The electrical characteristics of this thin film are mainly dominated by ionized impurity scattering and neutral impurity scattering. In order to increase the carrier density (n), it is necessary to increase the amount of oxygen vacancies and the amount of doping. In the ITO film, the formation of oxygen vacancies by optimizing the oxygen partial pressure during film formation, and more This is achieved by replacing many tin (Sn) atoms with indium (In) sites.

一方、ITO膜の抵抗率は、成膜時の基板温度に依存し、基板温度が高いほど抵抗率の値は小さくなる。また、低温で成膜した後、200〜300℃でアニールすることにより得られる薄膜の抵抗率を小さくすることができる。このように、ホール移動度(μ)を高めるためには、成膜時の基板温度を可能な限り高くしてInの格子欠陥や、Sn及びSnOの不安定な結合状態を少なくし、結晶性を向上させる必要がある。この時、正規の格子点に入るイオンを増加させるために伝導電子の散乱が減少してキャリアが増加する。しかし、必要以上に酸素濃度を高めると酸素空孔が減少するためキャリアが減少する。 On the other hand, the resistivity of the ITO film depends on the substrate temperature during film formation, and the resistivity value decreases as the substrate temperature increases. Moreover, the resistivity of the thin film obtained by annealing at 200-300 degreeC after forming into a film at low temperature can be made small. Thus, in order to increase the hole mobility (μ), the substrate temperature during film formation is increased as much as possible to reduce the lattice defects of In and the unstable bonding state of Sn and SnO 2 , It is necessary to improve the performance. At this time, in order to increase ions entering regular lattice points, scattering of conduction electrons decreases and carriers increase. However, if the oxygen concentration is increased more than necessary, oxygen vacancies are reduced and carriers are reduced.

すなわち、ホール移動度(μ)とキャリア濃度(n)と、成膜条件を検討することにより、最適な関係を見出すことが重要となる。   That is, it is important to find the optimum relationship by examining the hole mobility (μ), the carrier concentration (n), and the film formation conditions.

一般的には、透明導電膜のスパッタ時、ターゲット表面を高磁場とすることで、カソードの電圧を低くして、得られる薄膜の抵抗率を小さくすることができる。また、DC電力にRF電力を重畳させることで、さらにカソード電圧を低くすることができ、抵抗率を小さくすることが可能となる。   In general, when the transparent conductive film is sputtered, a high magnetic field is applied to the target surface, whereby the cathode voltage can be lowered and the resistivity of the obtained thin film can be reduced. Moreover, by superimposing RF power on DC power, the cathode voltage can be further reduced, and the resistivity can be reduced.

実施形態の透明導電膜の製造方法では、プレナーマグネトロン型のスパッタ装置を用い、ターゲット表面磁場が600〜800Gとなるようにして成膜される。より具体的には、スパッタ装置の内部に配設されたマグネットの磁力強度を高めて600〜800Gとするか、又はターゲット表面との距離を調整することにより、ターゲット表面磁場が600〜800Gとなるように制御する。 In the manufacturing method of the transparent conductive film of this embodiment, it forms into a film so that a target surface magnetic field may become 600-800G using a planar magnetron type | mold sputtering device. More specifically, the target surface magnetic field becomes 600 to 800 G by increasing the magnetic strength of the magnet disposed inside the sputtering apparatus to 600 to 800 G or adjusting the distance to the target surface. To control.

この時、磁場強度を強くすると、スパッタリング効率を向上させることができるが、強磁場条件下においては、マグネットの材質変更によるマグネットの水分劣化が大きくなったり、強磁場が故に周囲の磁場遮蔽や取り扱い負荷が増大したりする等の問題が発生するため、略700G程度とし、過度に強磁場条件としない方が好ましい。   At this time, if the magnetic field strength is increased, the sputtering efficiency can be improved. However, under strong magnetic field conditions, moisture deterioration of the magnet due to changes in the magnet material increases, and the surrounding magnetic field is shielded and handled due to the strong magnetic field. Since a problem such as an increase in load occurs, it is preferable that the load is set to about 700 G and the magnetic field is not excessively strong.

透明導電膜の抵抗率は、上述のように、膜厚依存性が大きいため、各膜厚帯における最適化が必要である。抵抗率を小さくするためには、少なくともDC電力とRF電力の比、酸素量及び基板温度を適正な範囲で制御する必要があり、特に膜厚が薄い領域においては、これらの制御が重要である。以下に、DC電力とRF電力の比、酸素量及び基板温度等の成膜条件を詳細に説明する。   As described above, since the resistivity of the transparent conductive film is highly dependent on the film thickness, optimization in each film thickness band is necessary. In order to reduce the resistivity, it is necessary to control at least the ratio of DC power to RF power, the amount of oxygen, and the substrate temperature within an appropriate range. These controls are particularly important in a thin film region. . Hereinafter, film forming conditions such as the ratio of DC power to RF power, the amount of oxygen, and the substrate temperature will be described in detail.

DC電力にRF電力を重畳させると、ターゲット表面近傍のプラズマ密度の向上とターゲット表面でのインピーダンスの低下が起こりカソード全体の電圧低下がおこる。電圧低下により基板へ入り込むプラズマダメージが低下し、RF電力重畳での高密度プラズマにより酸素とITOの反応が促進され、結晶成長に寄与する。   When RF power is superimposed on DC power, the plasma density in the vicinity of the target surface is improved and the impedance on the target surface is reduced, resulting in a voltage drop across the cathode. Plasma damage entering the substrate is reduced due to the voltage drop, and the reaction between oxygen and ITO is promoted by the high-density plasma with RF power superposition, contributing to crystal growth.

実施形態の透明導電膜の製造方法において、そのDC電力とRF電力の比は、DC電力を1とした時、RF電力が0.5〜2.0の出力となるように、DC電力にRF電力を重畳させると好ましい。このようにDC電力とRF電力の比率を制御することにより、再現性よく同質の透明導電膜を製造することが可能となる。また、上記の比率でDC電力にRF電力を重畳させて成膜することにより、ホール移動度(μ)が高く、キャリア濃度(n)の高い透明導電膜を得ることができる。 In the manufacturing method of the transparent conductive film of this embodiment, the ratio of the DC power and the RF power is set to the DC power so that the RF power becomes an output of 0.5 to 2.0 when the DC power is 1. It is preferable to superimpose RF power. Thus, by controlling the ratio of DC power and RF power, it is possible to manufacture a transparent conductive film having the same quality with good reproducibility. In addition, a transparent conductive film having high hole mobility (μ) and high carrier concentration (n) can be obtained by forming a film by superimposing RF power on DC power at the above ratio.

また、成膜時の基板温度は、200〜300℃、好ましくは230〜250℃の範囲とすることが好ましい。この時、上述のように、高温であると透明導電膜の結晶性が向上し、低抵抗化することができるが、昇温可能な温度の上限は用いる基板の耐熱性に依存し、適当な温度が選択される。   Further, the substrate temperature during film formation is preferably 200 to 300 ° C., more preferably 230 to 250 ° C. At this time, as described above, when the temperature is high, the crystallinity of the transparent conductive film can be improved and the resistance can be lowered. However, the upper limit of the temperature that can be raised depends on the heat resistance of the substrate to be used and is appropriate. The temperature is selected.

用いられる基板の材料として、ガラス、樹脂基板等を用いることができる。樹脂基板としては、耐熱性の高い樹脂を用いることができ、ポリアリル系耐熱樹脂などのスーパーエンジニアリング樹脂を用いることができる。   As a material of the substrate used, glass, a resin substrate, or the like can be used. As the resin substrate, a resin having high heat resistance can be used, and a super engineering resin such as a polyallyl heat-resistant resin can be used.

また、基板の材料として、ガラス素材、樹脂素材を各種複合した素材でも構わない。また、基板の形状としては、表面が平滑で、形が崩れずに取り扱いができるものであれば、折り曲げが可能な薄いフィルムを用いることができるなど、特に限定はない。   Further, the substrate material may be a material obtained by combining various glass materials and resin materials. Further, the shape of the substrate is not particularly limited as long as the surface is smooth and can be handled without losing its shape, a thin film that can be bent can be used.

用いられるターゲットは、In,Sn,Zn,Cd−Sn,Cd−In等の金属ターゲット、又はこれら酸化物の焼結体ターゲットに、必要に応じてドナーとなる元素を添加したものが用いられる。したがって、本実施形態の透明導電膜の製造方法では、用途により、錫を2.5〜15重量%添加したITOの他、ITOにGa,Geを添加したものとすることも可能である。 As the target to be used, a metal target such as In, Sn, Zn, Cd—Sn, or Cd—In, or a sintered target of these oxides added with an element serving as a donor as required is used. Therefore, in the manufacturing method of the transparent conductive film of this embodiment , it is possible to add Ga and Ge to ITO in addition to ITO to which 2.5 to 15% by weight of tin is added depending on applications.

実施形態の透明導電膜成膜方法において、透明導電膜の成膜前にスパッタ装置内を排気し、減圧を行うが、装置内の圧力は1×10−4Pa程度とすることが好ましい。また、装置内の排気後に導入されるキャリアガス中の酸素量は、同時に用いられる不活性ガスに対して流量比が0.1%以上1%以下であると好ましい。特に、不活性ガスと酸素との流量比が、300:1程度(酸素量:0.33%)であると好ましい。この時、不活性ガスとしてはアルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)等を用いることができるが、これらの中でもArが好ましい。 In the method for forming a transparent conductive film according to this embodiment , the sputtering apparatus is evacuated and depressurized before forming the transparent conductive film, and the pressure in the apparatus is preferably about 1 × 10 −4 Pa. . The oxygen amount in the carrier gas introduced after exhausting the apparatus is preferably 0.1% or more and 1% or less with respect to the inert gas used at the same time. In particular, the flow rate ratio between the inert gas and oxygen is preferably about 300: 1 (oxygen amount: 0.33%). At this time, argon (Ar), krypton (Kr), xenon (Xe) or the like can be used as the inert gas, and among these, Ar is preferable.

本発明の透明導電膜の製造方法に関して以下、実施例により、図1〜5に基づいて説明する。 Respect manufacturing method of the transparent conductive film of the present invention, hereinafter, the embodiment will be described with reference to Figures 1-5.

(実施例1a:膜厚8.4nm、実施例1b:膜厚10.0nm)
十分に洗浄されたガラス基板(コーニング社製、No.1737)を、プレナーマグネトロン型スパッタ装置の基板ホルダーに保持し、装置内を1×10−4Paまで排気した後、不活性ガスとしてArと反応ガスとして酸素を300:1(酸素量:0.33%)の流量比となるように導入した。また、ターゲットとして、InにSnOを10重量%添加した焼結体(密度:99%)を用いた。その後、装置内の全圧力を0.1〜0.9Pa程度に保持し、基板温度を230℃となるように加熱した。
(Example 1a: film thickness 8.4 nm, Example 1b: film thickness 10.0 nm)
A sufficiently cleaned glass substrate (Corning, No. 1737) is held on a substrate holder of a planar magnetron type sputtering apparatus, and the inside of the apparatus is evacuated to 1 × 10 −4 Pa. Oxygen was introduced as a reaction gas so as to have a flow rate ratio of 300: 1 (oxygen amount: 0.33%). As a target, a sintered body (density: 99%) in which SnO 2 was added to In 2 O 3 by 10% by weight was used. Thereafter, the total pressure in the apparatus was maintained at about 0.1 to 0.9 Pa, and the substrate temperature was heated to 230 ° C.

この時、DC電力とRF電力の比率が1:1となるように重畳してスパッタリングし、上述の各膜厚近傍を目標値としてITO膜を成膜した。この時、磁場強度の強いマグネットに交換し、ターゲット表面磁場は略700Gであり、DC電力とRF電力はカソードに接続してあり、投入電力比率はそれぞれ自由に制御可能となるように配設されている。   At this time, sputtering was performed so that the ratio of DC power to RF power was 1: 1, and an ITO film was formed with the vicinity of each film thickness as a target value. At this time, the magnet is replaced with a strong magnetic field strength, the target surface magnetic field is about 700G, the DC power and the RF power are connected to the cathode, and the input power ratio is arranged to be freely controllable. ing.

成膜後、ITO膜が成膜された基板をスパッタ装置から取り出し、得られたITO膜について、後述の各種測定を行った。   After the film formation, the substrate on which the ITO film was formed was taken out from the sputtering apparatus, and various measurements described below were performed on the obtained ITO film.

(実施例2:膜厚20.8nm、実施例3:膜厚14.7nm、実施例4:膜厚48.5nm、実施例5:膜厚100nm)
十分に洗浄されたガラス基板(コーニング社製、No.1737)を、プレナーマグネトロン型スパッタ装置の基板ホルダーに保持し、装置内を1×10−4Paまで排気した後、不活性ガスとしてArと反応ガスとして酸素を300:1(酸素量:0.33%)の流量比となるように導入した。また、ターゲットとして、InにSnOを10重量%添加した焼結体(密度:99%)を用いた。その後、装置内の全圧力を0.1〜0.9Pa程度に保持し、基板温度を250℃となるように加熱した。
(Example 2: film thickness 20.8 nm, Example 3: film thickness 14.7 nm, Example 4: film thickness 48.5 nm, Example 5: film thickness 100 nm)
A sufficiently cleaned glass substrate (Corning, No. 1737) is held on a substrate holder of a planar magnetron type sputtering apparatus, and the inside of the apparatus is evacuated to 1 × 10 −4 Pa. Oxygen was introduced as a reaction gas so as to have a flow rate ratio of 300: 1 (oxygen amount: 0.33%). As a target, a sintered body (density: 99%) in which SnO 2 was added to In 2 O 3 by 10% by weight was used. Thereafter, the total pressure in the apparatus was maintained at about 0.1 to 0.9 Pa, and the substrate temperature was heated to 250 ° C.

この時、DC電力とRF電力の比率が1:1となるように重畳してスパッタリングし、上述の各膜厚近傍を目標値としてITO膜を成膜した。この時のターゲット表面磁場は略700Gであり、DC電力とRF電力はカソードに接続してあり、投入電力比率はそれぞれ自由に制御可能となるように配設されている。   At this time, sputtering was performed so that the ratio of DC power to RF power was 1: 1, and an ITO film was formed with the vicinity of each film thickness as a target value. At this time, the target surface magnetic field is about 700 G, DC power and RF power are connected to the cathode, and the input power ratio is arranged to be freely controllable.

成膜後、ITO膜が成膜された基板をスパッタ装置から取り出し、得られたITO膜について、後述の各種測定を行った。また、分析条件は実施例1a及び1bと共通である。   After the film formation, the substrate on which the ITO film was formed was taken out from the sputtering apparatus, and various measurements described below were performed on the obtained ITO film. The analysis conditions are the same as those in Examples 1a and 1b.

(比較例1:膜厚9.9nm、比較例2:14.5nm、比較例3:22.5nm、比較例4:48.2nm、比較例5:95.5nm、比較例6:膜厚205nm)
十分に洗浄されたガラス基板(コーニング社製、No.1737)を、プレナーマグネトロン型スパッタ装置の基板ホルダーに保持し、装置内を1×10−4Paまで排気した後、不活性ガスとしてArと反応ガスとして酸素を300:1の流量比となるように導入した。また、ターゲットとして、InにSnOを10重量%添加した焼結体(密度:99%)を用いた。その後、全圧力を0.1〜0.9Pa程度に保持し、基板温度を250℃となるように加熱した。
(Comparative example 1: film thickness 9.9 nm, comparative example 2: 14.5 nm, comparative example 3: 22.5 nm, comparative example 4: 48.2 nm, comparative example 5: 95.5 nm, comparative example 6: film thickness 205 nm )
A sufficiently cleaned glass substrate (Corning, No. 1737) is held on a substrate holder of a planar magnetron type sputtering apparatus, and the inside of the apparatus is evacuated to 1 × 10 −4 Pa. Oxygen was introduced as a reaction gas so as to have a flow rate ratio of 300: 1. As a target, a sintered body (density: 99%) in which SnO 2 was added to In 2 O 3 by 10% by weight was used. Thereafter, the total pressure was maintained at about 0.1 to 0.9 Pa, and the substrate temperature was heated to 250 ° C.

この時、DC電力が1kWとなるようにしてスパッタリングし、上述の各膜厚近傍を目標値としてITO膜を成膜した。この時のターゲット表面磁場は略700Gである。   At this time, sputtering was performed so that the DC power was 1 kW, and an ITO film was formed with the vicinity of each film thickness described above as a target value. The target surface magnetic field at this time is about 700G.

成膜後、ITO膜が成膜された基板をスパッタ装置から取り出し、得られたITO膜について、後述の各種測定を行った。また、分析条件も実施例1a〜4と共通である。   After the film formation, the substrate on which the ITO film was formed was taken out from the sputtering apparatus, and various measurements described below were performed on the obtained ITO film. The analysis conditions are the same as those in Examples 1a to 4.

(XRD測定)
実施例1a〜4及び比較例1〜5で得られたITO膜に関し、X線回折測定を行い、結晶性を評価した。なお、X線回折測定は以下の条件で行った。実施例1a〜4に関し、得られたXRDパターン図を図1に示す。また、図5には比較例1〜5のXRDパターン図を合わせて示す。
・測定装置:Smart.Lab.RIGAKU製
・ターゲット:Cu
・光学系:集中法
・管電圧・管電流:40kV,30mA
・測定モード:ステップ・θ-2θ連動・通常
・アットネーター:Open
・測定角度:15〜70°
・入射スリット:1.5mm
・ステップ角:0.04°
・受光スリット:1.5mm
・計数時間:4°/min
・測定温度:室温
(XRD measurement)
The ITO films obtained in Examples 1a to 4 and Comparative Examples 1 to 5 were subjected to X-ray diffraction measurement to evaluate crystallinity. X-ray diffraction measurement was performed under the following conditions. Regarding Examples 1a to 4, the obtained XRD pattern diagrams are shown in FIG. FIG. 5 also shows XRD pattern diagrams of Comparative Examples 1 to 5.
Measurement device: Smart. Lab. Made by RIGAKU ・ Target: Cu
・ Optical system: Concentration method ・ Tube voltage ・ Tube current: 40 kV, 30 mA
・ Measurement mode: Step ・ θ-2θ interlock ・ Normal ・ Atnotator: Open
・ Measurement angle: 15-70 °
-Incident slit: 1.5 mm
・ Step angle: 0.04 °
・ Reception slit: 1.5mm
・ Counting time: 4 ° / min
・ Measurement temperature: Room temperature

その結果、図1において、実施例1a〜4のXRDパターン図では、2θ=30°付近に(222)面に帰属される回折ピーク、また、2θ=35°付近に(400)面に帰属される回折ピークが観測された。なお、図1は各膜厚のITO膜に関するXRDパターンを、それぞれ間隔をあけて示したものである。   As a result, in FIG. 1, in the XRD pattern diagrams of Examples 1a to 4, diffraction peaks attributed to the (222) plane near 2θ = 30 °, and to the (400) plane near 2θ = 35 °. A diffraction peak was observed. FIG. 1 shows XRD patterns related to ITO films of various film thicknesses at intervals.

一般に、(400)面の回折ピーク強度が強いほど、そのITO膜は低抵抗化する傾向があることが知られている。従来技術によるITO膜を測定した比較例1〜5のXRDパターン図(図5)と比較して、本発明の実施例1a〜4によるITO膜のXRDパターン図(図1)では、(400)面の回折ピーク強度が強く、且つ膜厚が8nm(より具体的には8.4nm)と薄い場合であってもそのピークが観測される。
したがって、本発明の実施例1a〜4によるITO膜は、低い抵抗率を有することが明確である。
In general, it is known that the higher the diffraction peak intensity on the (400) plane, the lower the resistance of the ITO film. Compared to the XRD pattern diagrams of Comparative Examples 1 to 5 (FIG. 5) in which the ITO film according to the prior art was measured, the XRD pattern diagrams (FIG. 1) of the ITO films according to Examples 1a to 4 of the present invention (400) Even when the diffraction peak intensity of the surface is strong and the film thickness is as thin as 8 nm (more specifically, 8.4 nm), the peak is observed.
Therefore, it is clear that the ITO films according to Examples 1a to 4 of the present invention have a low resistivity.

一方、図5において、従来技術による比較例1〜5のXRDパターン図では、2θ=35°付近の(400)面に帰属される回折ピークが小さく、膜厚が約50nm(より具体的には48.2nm)以上の時に観測されるようになることが明らかとなった。したがって、従来技術によるITO膜は、少なくとも50nm程度(より具体的には48.2nm)以上の膜厚を有していないと、その抵抗率が大きくなってしまうことが、XRDパターン図からも明確である。   On the other hand, in FIG. 5, in the XRD pattern diagrams of Comparative Examples 1 to 5 according to the prior art, the diffraction peak attributed to the (400) plane near 2θ = 35 ° is small, and the film thickness is about 50 nm (more specifically, It has become clear that it is observed at 48.2 nm) or more. Therefore, it is clear from the XRD pattern diagram that the ITO film according to the prior art has a high resistivity unless it has a film thickness of at least about 50 nm (more specifically, 48.2 nm) or more. It is.

比較例1〜5との対比において、実施例1a〜4のように、本発明の実施例1a〜4のITO膜は膜厚が十分に薄い場合であっても、低い抵抗率を保持していることが、X線回折により示された。 In contrast to Comparative Examples 1 to 5, as in Examples 1a to 4 , the ITO films of Examples 1a to 4 of the present invention retain a low resistivity even when the film thickness is sufficiently thin. It was shown by X-ray diffraction.

また、実施例1a〜4の各ピークの詳細と、(222)面のピーク強度と(400)面のピーク強度の比を表1に示す。また、比較例1〜5の各ピークの詳細と、(222)面のピーク強度と(400)面のピーク強度の比をそれぞれ表2に示す。   Table 1 shows the details of each peak of Examples 1a to 4 and the ratio between the peak intensity of the (222) plane and the peak intensity of the (400) plane. Table 2 shows the details of each peak of Comparative Examples 1 to 5, and the ratio between the peak intensity of the (222) plane and the peak intensity of the (400) plane.

Figure 0005492479
Figure 0005492479

Figure 0005492479
Figure 0005492479

その結果、実施例1a〜4では(222)面のピーク強度Iと(400)面のピーク強度Iの比、すなわちI/Iが0.1〜1.0の範囲であることが示された。一方、従来技術により成膜された比較例1〜5では、I/Iが少なくとも1より大きく、(400)面のピーク強度が弱いことが示された。上述のように、(400)面のピークが大きい時、低抵抗化する傾向があることが知られているが、(400)面のピーク強度に関し、より具体的には、I/Iが0.1〜1.0の範囲という閾値を定めることができる。 As a result, the ratio of the peak intensity I 2 of Example 1A~4 (222) plane peak intensity I 1 and (400) plane, i.e. I 1 / I 2 is in the range of 0.1 to 1.0 It has been shown. On the other hand, in Comparative Examples 1 to 5 formed by the conventional technique, it was shown that I 1 / I 2 was at least larger than 1 and the peak intensity of the (400) plane was weak. As described above, it is known that when the peak of the (400) plane is large, the resistance tends to decrease. More specifically, the peak intensity of the (400) plane is more specifically I 1 / I 2. Can be defined as a range of 0.1 to 1.0.

(透過率測定)
実施例1a〜4で得られたITO膜に関し、光の透過率を測定した。透過率は日立電子製自記分光測定器(U−4100)で計測し、リファレンスを空気としたものを図2に、リファレンスをガラスとしたものを図3に示す。なお、図2及び図3中には膜厚を示したが、各膜厚は実施例1a〜4の膜厚であり、それぞれ順に8.4、10.0、14.7、20.8、48.5nmのITO膜の光の透過率を示している。
(Transmittance measurement)
With respect to the ITO films obtained in Examples 1a to 4, the light transmittance was measured. The transmittance was measured with a Hitachi Electronic Recording Spectrometer (U-4100). FIG. 2 shows the air as the reference, and FIG. 3 shows the glass as the reference. In addition, although the film thickness was shown in FIG.2 and FIG.3, each film thickness is a film thickness of Example 1a-4, and is 8.4, 10.0, 14.7, 20.8, respectively. The light transmittance of the 48.5 nm ITO film is shown.

その結果、実施例1a〜4は、リファレンスを空気とした時、可視光領域全域、すなわち波長が350nm〜700nmの範囲において、光の透過率が70%以上であることが示された。また、膜厚が8.4〜14.7nmのITO膜(実施例1a〜2)では、透過率が75%以上であることが示された。さらにリファレンスがガラスである時(図3)は、波長が350nm〜700nmの範囲において、膜厚が8.4〜14.7nmのITO膜(実施例1a〜2)は85%以上の透過率を有することが示された。   As a result, in Examples 1a to 4, when the reference was air, the light transmittance was 70% or more in the entire visible light region, that is, in the wavelength range of 350 nm to 700 nm. Moreover, it was shown that the transmittance | permeability is 75% or more in the ITO film | membrane (Example 1a-2) whose film thickness is 8.4-14.7 nm. Further, when the reference is glass (FIG. 3), the ITO film (Examples 1a to 2) having a film thickness of 8.4 to 14.7 nm has a transmittance of 85% or more in the wavelength range of 350 to 700 nm. It was shown to have.

また、紫外光領域、すなわち波長が300nm程度の短波長領域において、膜厚が8.4〜14.7nmのITO膜(実施例1a〜2)では、透過率が65%以上であることが示された。したがって、本発明の実施例1a〜4のITO膜は紫外光領域における透過を必要とする分野、例えば滅菌、触媒、描画等で紫外光を必要とする分野においてもまた有用である。 Further, in the ultraviolet light region, that is, in the short wavelength region having a wavelength of about 300 nm, the ITO film (Examples 1a to 2) having a film thickness of 8.4 to 14.7 nm has a transmittance of 65% or more. It was done. Therefore, the ITO films of Examples 1a to 4 of the present invention are also useful in fields that require transmission in the ultraviolet region, for example, fields that require ultraviolet light for sterilization, catalyst, drawing, and the like.

上述の測定結果より、本発明の実施例1a〜4のITO膜において、その膜厚を十分に薄くすることにより、紫外光領域を含む、全波長領域の光の透過率を向上させることが可能であることが示された。これは、膜厚が厚いために生じる干渉色や薄膜の吸収による呈色が、膜厚を薄くすることにより軽減されたためである。 From the above measurement results, in the ITO films of Examples 1a to 4 of the present invention , it is possible to improve the light transmittance in the entire wavelength region including the ultraviolet region by sufficiently reducing the film thickness. It was shown that. This is because the interference color generated due to the thick film thickness and the coloration due to the absorption of the thin film are reduced by reducing the film thickness.

(抵抗率計算)
抵抗値は三菱油化製4端針製テスタ(ロレスタAP)により測定し、膜厚はアルバック製の触針式膜厚計(DEKTAK)で測定した。得られた抵抗値R(Ω)及び膜厚d(nm)を基に、以下の式1を用いて抵抗率ρ(Ωcm)を算出した。
ρ=d×10−7×R ・・・(1)
実施例1a〜5及び従来技術による比較例1〜6のITO膜の抵抗率を図4及び表3に示す。
(Resistivity calculation)
The resistance value was measured with a Mitsubishi Yuka 4-end needle tester (Loresta AP), and the film thickness was measured with an ULVAC stylus-type film thickness meter (DEKTAK). Based on the obtained resistance value R (Ω) and film thickness d (nm), the resistivity ρ (Ωcm) was calculated using the following formula 1.
ρ = d × 10 −7 × R (1)
4 and Table 3 show the resistivity of the ITO films of Examples 1a to 5 and Comparative Examples 1 to 6 according to the prior art.

Figure 0005492479
Figure 0005492479

その結果、同程度の膜厚の時、実施例1a〜5は、従来技術による比較例1〜6と比較して、抵抗率が小さいことが示された。また、本発明の実施例において、膜厚が8.4nmという薄い場合であってもその抵抗率は小さく、1.2×10−4Ωcmであった。それ以外の膜厚でも、本発明の実施例によるITO膜は、その膜厚が同程度の従来技術による比較例1〜6と比較して、抵抗率が小さく、1.5×10−4Ωcm以下である。したがって、本発明の実施例のITO膜は、特に膜厚が8〜20nm(より具体的には、8.4〜20.8nm)の範囲では、従来技術により成膜されたITO膜と比較して、抵抗率が小さいことが示された。 As a result, it was shown that when the film thickness was comparable, Examples 1a to 5 had a lower resistivity than Comparative Examples 1 to 6 according to the prior art. In the examples of the present invention, even when the film thickness was as thin as 8.4 nm, the resistivity was small, 1.2 × 10 −4 Ωcm. At other film thicknesses, the ITO film according to the example of the present invention has a smaller resistivity than that of the comparative examples 1 to 6 according to the prior art having the same film thickness, and is 1.5 × 10 −4 Ωcm. It is as follows. Thus, the ITO film of the present onset Ming embodiment (more specifically, 8.4~20.8Nm) especially thickness 8~20nm in the range of, the ITO film formed by the prior art comparative It was shown that the resistivity is small.

(ホール移動度、キャリア濃度、ホール係数測定)
また、実施例1a〜4に関し、ホール移動度(μ)、キャリア濃度(n)、ホール係数を、東洋テクニカ製RESITEST8200により測定した。その結果を表4に示す。
(Hole mobility, carrier concentration, Hall coefficient measurement)
Moreover, regarding Examples 1a to 4, the hole mobility (μ), the carrier concentration (n), and the Hall coefficient were measured by RESITEST 8200 manufactured by Toyo Technica. The results are shown in Table 4.

Figure 0005492479
Figure 0005492479

その結果、ホール移動度(μ)は36.4〜43.7cm/Vsの範囲、キャリア濃度(n)は1.20×1021〜1.54×1021cm−3の範囲、ホール係数4.0〜5.2cm/Cの範囲のITO膜が得られたことが示された。 As a result, the hole mobility (μ) is in the range of 36.4 to 43.7 cm 2 / Vs, the carrier concentration (n) is in the range of 1.20 × 10 21 to 1.54 × 10 21 cm −3 , and the Hall coefficient. It was shown that an ITO film in the range of 4.0-5.2 cm 3 / C was obtained.

したがって、上述の各種測定より、本発明の実施例のITO膜は可視光領域全域を含む広い波長範囲、すなわち波長350〜700nmの範囲で十分な光透過率を有し、膜厚が薄い場合であっても、その抵抗率は十分に小さい値を有することが示された。 Therefore, from the various measurements described above, the ITO film of the embodiment of the present invention has a sufficient light transmittance in a wide wavelength range including the entire visible light region, that is, a wavelength range of 350 to 700 nm, and a thin film thickness. Even so, the resistivity was shown to have a sufficiently small value.

特に膜厚が約15nm(より具体的には、14.7nm)以下の時、波長350〜700nmの範囲において光の透過率は85%以上となり、例えば、得られたITO膜を介してディスプレイを目視する場合、高い視認性を確保することができる。また、その抵抗値及び膜厚の測定により、本発明の実施例のITO膜は、膜厚が薄い場合であっても、1.5×10−4Ωcm以下の抵抗率を有し、十分に小さな抵抗率のITO膜を得ることができる。 In particular, when the film thickness is about 15 nm or less (more specifically, 14.7 nm), the light transmittance is 85% or more in the wavelength range of 350 to 700 nm. For example, the display is formed through the obtained ITO film. When visually observing, high visibility can be secured. Moreover, by the measurement of the resistance value and the film thickness, the ITO film of the example of the present invention has a resistivity of 1.5 × 10 −4 Ωcm or less even when the film thickness is thin, An ITO film having a small resistivity can be obtained.

一般に、(400)面の回折ピーク強度が強い場合、そのITO膜が低抵抗化する傾向があることが知られているが、従来技術においては、膜厚が約50nm(より具体的には48.2nm)以上の時、(400)面の回折ピークが顕著になってくることに対し、本発明の実施例のITO膜は、膜厚が約8nm(より具体的には、8.4nm)であっても(400)面の回折ピークが観測された。したがって、本発明の実施例のITO膜は膜厚が十分に薄い場合であっても、低い抵抗率を保持していることが、抵抗率測定だけでなく、X線回折からも明らかとなった。さらにこの時、(222)面のピーク強度Iと(400)面のピーク強度Iの比が0.1〜1.0であることが示された。 In general, it is known that when the diffraction peak intensity on the (400) plane is strong, the ITO film tends to have a low resistance. However, in the prior art, the film thickness is about 50 nm (more specifically, 48 nm). .2 nm) or more, the diffraction peak of the (400) plane becomes prominent, whereas the ITO film of the example of the present invention has a film thickness of about 8 nm (more specifically, 8.4 nm). Even so, a diffraction peak of (400) plane was observed. Therefore, it was revealed not only from the resistivity measurement but also from the X-ray diffraction that the ITO film of the embodiment of the present invention has a low resistivity even when the film thickness is sufficiently thin. . When addition this, (222) ratio of the peak intensity I 2 of the peak intensity I 1 and (400) plane of the surface was shown to be 0.1 to 1.0.

これらITO膜の形成方法としては、スパッタリング法により形成することができ、電源、磁場を含めて、基板温度、反応ガス、成膜レートの調整を行い、適当な条件を組み合わせることで膜厚が薄くても良好ITO膜を得ることが可能となる。特に電源は、DC電力を1とした時、RF電力が0.5〜2.0の出力となるように、DC電力にRF電力を重畳させるとよい。また、反応ガスは、不活性ガスに対する酸素を0.1%〜1.0%程度とし、さらに磁場に関し、ターゲットの表面磁場を600〜800Gとすると、上述のITO膜をガラス等の基板上に成膜することができる。   As a method for forming these ITO films, the film can be formed by sputtering, and the thickness of the film can be reduced by adjusting the substrate temperature, reaction gas, and film formation rate, including the power supply and magnetic field, and combining appropriate conditions. However, a good ITO film can be obtained. In particular, when the DC power is set to 1, the power supply may superimpose the RF power on the DC power so that the RF power has an output of 0.5 to 2.0. The reactive gas has an oxygen content of about 0.1% to 1.0% with respect to the inert gas. Further, regarding the magnetic field, when the surface magnetic field of the target is 600 to 800 G, the above ITO film is placed on a substrate such as glass. A film can be formed.

本発明による透明導電膜は、膜厚が薄い場合であっても、抵抗率が1.5×10−4Ωcm以下という良好な電気的特性を有する。したがって、本発明の透明導電膜は、携帯電話、電子手帳等の携帯端末(PDA、Personal Digital Assistant)、ゲーム機、カーナビゲーション、パーソナルコンピュータ、券売機、銀行の端末等の電子機器分野において、特に薄い膜厚の透明導電膜が必要とされる各種センサーやディスプレイ等に有用であると期待される。
また、本発明の透明導電膜は、可視光領域、紫外光領域、近赤外光領域を含む幅広い範囲にわたって高い透過率を保持しているため、各種光学フィルター、電磁波防止、帯電防止や光電変換素子等のオプトエレクトロニクス分野における利用や応用が可能である。
The transparent conductive film according to the present invention has good electrical characteristics such that the resistivity is 1.5 × 10 −4 Ωcm or less even when the film thickness is small. Therefore, the transparent conductive film of the present invention is particularly useful in the field of electronic devices such as mobile terminals (PDA, Personal Digital Assistant) such as mobile phones and electronic notebooks, game machines, car navigation systems, personal computers, ticket vending machines, and bank terminals. It is expected to be useful for various sensors and displays that require a thin transparent conductive film.
In addition, since the transparent conductive film of the present invention maintains high transmittance over a wide range including the visible light region, the ultraviolet light region, and the near infrared light region, various optical filters, electromagnetic wave prevention, antistatic and photoelectric conversion Applications and applications in the field of optoelectronics such as devices are possible.

Claims (4)

基板上に設けられる酸化インジウム錫(ITO)膜からなる透明導電膜を成膜する方法であって、
前記基板を、酸化インジウム錫(ITO)のターゲットを有するスパッタ装置内に設置し、
キャリアガス中に含まれる酸素の流量が0.1〜1.0%の範囲、
前記基板温度が230〜250℃の範囲、
前記ターゲットの表面磁場が600〜800Gの範囲とし、
DC電源に、対DC電力比が、0.5〜2.0の範囲であるRF電力を重畳して印加し、スパッタリングを行うことにより、
膜厚が8〜20nmの範囲であり、且つ、抵抗率が1.5×10 −4 Ωcm以下である透明導電膜を成膜することを特徴とする透明導電膜の製造方法。
A method of forming a transparent conductive film made of an indium tin oxide (ITO) film provided on a substrate ,
The substrate is placed in a sputtering apparatus having a target of indium tin oxide (ITO),
The flow rate of oxygen contained in the carrier gas is in the range of 0.1 to 1.0%,
The substrate temperature is in the range of 230 to 250 ° C .;
The surface magnetic field of the target is in the range of 600 to 800 G,
By applying a RF power with a DC power ratio in a range of 0.5 to 2.0 superimposed on the DC power source and performing sputtering ,
A method for producing a transparent conductive film, comprising forming a transparent conductive film having a thickness of 8 to 20 nm and a resistivity of 1.5 × 10 −4 Ωcm or less .
線回折法における(222)面のピーク強度Iと(400)面のピーク強度Iとの比I/Iが0.1〜1.0の範囲である透明導電膜を成膜することを特徴とする請求項1に記載の透明導電膜の製造方法In the X-ray diffraction method (222) the ratio I 1 / I 2 is a transparent conductive film area by der of 0.1 to 1.0 between the peak intensity I 2 of the peak intensity I 1 and (400) plane of the plane formed The method for producing a transparent conductive film according to claim 1, wherein the film is formed . 350〜700nmの範囲の波長の光に対する透過率が、85%以上である透明導電膜を成膜することを特徴とする請求項に記載の透明導電膜の製造方法Transmittance of light with a wavelength in the range of 350~700nm The method for producing a transparent conductive film according to claim 2, characterized in that a transparent conductive film is 85% or more. 前記基板として、ガラス基板又は樹脂基板を用いることを特徴とする請求項に記載の透明導電膜の製造方法The method for producing a transparent conductive film according to claim 3 , wherein a glass substrate or a resin substrate is used as the substrate.
JP2009164172A 2009-07-10 2009-07-10 Method for producing transparent conductive film Expired - Fee Related JP5492479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164172A JP5492479B2 (en) 2009-07-10 2009-07-10 Method for producing transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164172A JP5492479B2 (en) 2009-07-10 2009-07-10 Method for producing transparent conductive film

Publications (2)

Publication Number Publication Date
JP2011018623A JP2011018623A (en) 2011-01-27
JP5492479B2 true JP5492479B2 (en) 2014-05-14

Family

ID=43596240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164172A Expired - Fee Related JP5492479B2 (en) 2009-07-10 2009-07-10 Method for producing transparent conductive film

Country Status (1)

Country Link
JP (1) JP5492479B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8465823B1 (en) * 2011-12-22 2013-06-18 Oracle International Corporation Optical media having transparent back side coating
WO2014024819A1 (en) * 2012-08-06 2014-02-13 積水ナノコートテクノロジー株式会社 Light-permeable electrically-conductive film, and touch panel equipped with light-permeable electrically-conductive film
US10138541B2 (en) 2012-08-31 2018-11-27 Kaneka Corporation Method for producing substrate with transparent electrode, and substrate with transparent electrode
CN104871258B (en) 2012-12-19 2017-05-17 株式会社钟化 Substrate with transparent electrode and method for producing same
JP6261987B2 (en) * 2013-01-16 2018-01-17 日東電工株式会社 Transparent conductive film and method for producing the same
JP6261988B2 (en) * 2013-01-16 2018-01-17 日東電工株式会社 Transparent conductive film and method for producing the same
JP6215062B2 (en) * 2013-01-16 2017-10-18 日東電工株式会社 Method for producing transparent conductive film
CN104919541B (en) * 2013-01-16 2017-05-17 日东电工株式会社 Transparent conductive film and production method therefor
JP6061698B2 (en) * 2013-01-24 2017-01-18 ジオマテック株式会社 Protection panel integrated touch panel sensor, manufacturing method thereof, and portable electronic device
JP6200729B2 (en) * 2013-08-27 2017-09-20 日立造船株式会社 Sputtering apparatus and thin film forming method
TWI643969B (en) 2013-12-27 2018-12-11 日商半導體能源研究所股份有限公司 Manufacturing method of oxide semiconductor
JP6211557B2 (en) * 2014-04-30 2017-10-11 日東電工株式会社 Transparent conductive film and method for producing the same
KR20170008196A (en) * 2014-05-20 2017-01-23 닛토덴코 가부시키가이샤 Transparent conductive film and method for producing same
KR20220156821A (en) * 2020-03-19 2022-11-28 닛토덴코 가부시키가이샤 transparent conductive film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790578A (en) * 1993-09-22 1995-04-04 Hitachi Ltd High-frequency magnetron sputtering device
JPH07278791A (en) * 1994-04-15 1995-10-24 Hitachi Ltd Low resistance transparent conductive film
JP4069436B2 (en) * 2000-03-30 2008-04-02 セイコーエプソン株式会社 Manufacturing method of color filter substrate
DE10023459A1 (en) * 2000-05-12 2001-11-15 Balzers Process Systems Gmbh Depositing transparent conducting indium-tin oxide layers on substrate used in the production of transparent conducting electrodes in organic LED displays comprises using combined HF/DC sputtering of indium-tin oxide target
KR20060060696A (en) * 2003-08-29 2006-06-05 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 I t o thin film and method for producing same
JP2006188733A (en) * 2005-01-06 2006-07-20 Osaka Vacuum Ltd Facing-target type sputtering apparatus and facing-target type sputtering method
JP4599595B2 (en) * 2005-12-05 2010-12-15 学校法人金沢工業大学 Method and apparatus for producing transparent conductive film

Also Published As

Publication number Publication date
JP2011018623A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
JP5492479B2 (en) Method for producing transparent conductive film
US11382245B2 (en) Ultra-thin conductor based semi-transparent electromagnetic interference shielding
Liu et al. Tuning phase transition temperature of VO2 thin films by annealing atmosphere
JP5005772B2 (en) Conductive laminate and manufacturing method thereof
Kim et al. Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices
Ma et al. Influence of annealing temperature on the properties of transparent conductive and near-infrared reflective ZnO: Ga films
JP2010157497A (en) Substrate with transparent conductive film and method of manufacturing the same
TWI601163B (en) Substrate with transparent electrode and its manufacturing method
WO2010026899A1 (en) Substrate with transparent electrode and method for manufacturing substrate with transparent electrode
KR20180081048A (en) Light-transmitting conductive film and light-modulating film
CN103993288B (en) A kind of preparation method of electrically conducting transparent FTO/Ag/FTO laminated film
Bhoomanee et al. Diffusion-induced doping effects of Ga in ZnO/Ga/ZnO and AZO/Ga/AZO multilayer thin films
KR20100049536A (en) Conductor layer manufacturing method
WO2016071000A1 (en) Metal oxide thin film, method for depositing metal oxide thin film and device comprising metal oxide thin film
Liu et al. ZnO/Cu/ZnO multilayer films: Structure optimization and investigation on photoelectric properties
Sun et al. Optimization of TiO2/Cu/TiO2 multilayers as a transparent composite electrode deposited by electron-beam evaporation at room temperature
Liang et al. Structural and optoelectronic properties of transparent conductive c-axis-oriented ZnO based multilayer thin films with Ru interlayer
US20110089026A1 (en) Touch panel manufacturing method and film formation apparatus
KR100982129B1 (en) Zinc oxide-based thin film and method for preparing the same
Zhu et al. Influence of oxygen and argon flow on properties of aluminum-doped zinc oxide thin films prepared by magnetron sputtering
JP5582530B2 (en) Ultraviolet region transmissive transparent conductive film and method for producing the same
KR100682741B1 (en) Fabrication method of zinc oxide based transparent conductive oxide thin film
KR20150080849A (en) Composite transparent electrodes
Wang et al. The investigation of ZnS/Au/ZnS transparent conductive films with different Au layer thickness
WO2009093580A1 (en) Process for producing liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5492479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees