JP4598328B2 - Method of kneading irregular refractories - Google Patents

Method of kneading irregular refractories Download PDF

Info

Publication number
JP4598328B2
JP4598328B2 JP2001273667A JP2001273667A JP4598328B2 JP 4598328 B2 JP4598328 B2 JP 4598328B2 JP 2001273667 A JP2001273667 A JP 2001273667A JP 2001273667 A JP2001273667 A JP 2001273667A JP 4598328 B2 JP4598328 B2 JP 4598328B2
Authority
JP
Japan
Prior art keywords
water
refractory
kneading
irregular
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001273667A
Other languages
Japanese (ja)
Other versions
JP2003081678A (en
Inventor
哲也 安部
泰次郎 松井
浩志 今川
徳雄 多喜
潔 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001273667A priority Critical patent/JP4598328B2/en
Publication of JP2003081678A publication Critical patent/JP2003081678A/en
Application granted granted Critical
Publication of JP4598328B2 publication Critical patent/JP4598328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、不定耐火原料に水を添加して混練する際、不定耐火原料の流動性を高め、低水分の混練を行って不定耐火物の品質を向上する不定耐火物の混練方法に関する。
【0002】
【従来の技術】
従来、転炉や電気炉等の精錬炉、及び溶鉄の搬送や貯湯に用いる取鍋やタンディッシュ、樋等には、製造と施工が比較的容易であり、施工の機械化(自動化)も行い易いことから、不定形耐火物が用いられている。この不定形耐火物は、不定形耐火原料の種類や配合等の改善によって、耐用性を良好にすることができ、適用範囲も拡大されている。
不定形耐火原料は、施工体等に充填した時の充填密度が高くなるように考慮して粒径を調整した骨材と、各種類の粉末添加剤を予め乾燥状態で混合しておき、不定形耐火原料に分散剤を添加し、更に、水を添加して一定時間の混練が行なわれる。
そして、不定形耐火原料と水を混練することにより、不定形耐火原料中に含まれる微粒子の表面が帯電し、添加された分散剤が水に溶解してイオン化して、不定形耐火原料に含まれる微粉粒子の表面に吸着され、微粒子の帯電を活性にして凝集を抑制し、不定形耐火物の流動性(フロー値)を高めている。
しかし、添加する水によっては、不定形耐火物の流動性を高めることができないものもあり、多量の水を添加して混練を行って不定形耐火物の流動性が施工時等の充填の支障とならないようにしている。
不定形耐火物中の水の量が多くなると、充填後、不定形耐火物を乾燥した際、気孔率が増加したり、強度の低下、乾燥時の水蒸気薄離等が発生し、耐溶損、耐磨耗性が低下する。
この対策として、特開平8−239276号公報に記載されているように、予め分散剤を水に溶解させて、混合液を生成し、この混合液と不定形耐火原料を混練することにより、不定形耐火原料を速やかに分散させ、均一な組成の不定形耐火物を製造し、強度を高くした不定形耐火物の施工方法が開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、特開平8−239276号公報に記載された方法では、添加した水に、CaやMg等の多価のイオンが含まれているため、不定形耐火原料に含まれる微粒子の表面電位が低下して凝集し易くなる。
しかも、微粒子の表面電位による凝集性を改善するには、分散剤と水の添加量を増す必要があり、不定形耐火物の製造コストが高くなる。
更に、分散剤や水の添加量の増加によって、不定形耐火物が強度が低下し、気孔率が高くなり、耐食性、耐磨耗性等も低下する。更に、不定形耐火物を内張りした精錬炉、及び溶鉄の搬送容器等の寿命が短くなり、耐火物の使用コストが高くなる等の問題が生じる。
【0004】
本発明はかかる事情に鑑みてなされたもので、不定形耐火原料を混練する際に添加する水の量を少なくしても不定形耐火原料の流動性を良くすることができ、不定形耐火原料を均一に混合して気孔率を低くし、不定形耐火物の耐食性や耐磨耗性を高め、耐火物の使用コストを低減することができる不定耐火物の混練方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う本発明の不定耐火物の混練方法においては、少なくとも粒度が1〜5mmの粗粒を有する骨材と、粒度が0.075mm未満のアルミナ微粉又はシリカ微粉とを含む不定耐火原料に分散剤を添加し、電気伝導度が5000μs/m以下の水を添加して混練する。
この方法により、水に含まれるCaやMg等の多価のイオンが減少し、不定耐火原料に含まれる微粒子の表面電位が中和されるのを防止し、微粒子の表面電位が低下するのを抑制することができ、微粒子の凝集を防止して、混練した後の不定耐火原料のフロー値を高めることができる。
電気伝導度が5000μs/mを超えると、微粒子の表面電位が水に含まれるCaやMg等の多価のイオンによって中和され、分散剤の働きが低下し、微粒子が凝集し易くなり、不定耐火原料の混練時の均一性が阻害される。
この電気伝導度は、低い程大きな効果が得られるため、2000μs/m以下の水を用いるのが好ましく、500μs/m以下の水を使用するとより好ましい結果が得られる。
【0006】
【0007】
更に、本発明に係る不定耐火物の混練方法において、前記不定形耐火原料に添加する水は、電解処理したアルカリイオン水を用いることもできる。
これにより、電解処理によりCaやMg等の多価のイオンを除去し、OH基を含む水にしているので、水の分子径が小さくなって微粒子の表面を濡れ易くでき、不定耐火原料の流動性を良好にすることができる。
【0008】
また、本発明に係る不定耐火物の混練方法において、前記不定形耐火原料に添加する水は、純水を用いることもできる。
これにより、CaやMg等の多価のイオンを除去した水を混練に用いるので、多価のイオンによる分散剤の分散性が阻害されるのを抑制し、不定耐火原料の混練を良好に行うことができる。
【0009】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1は本発明の一実施の形態に係る不定耐火物の混練方法の混練時に添加する水分添加量とフロー値の関係を表すグラフ、図2は添加水分量と耐食性指数の関係を表すグラフ、図3は添加水の種類と乾燥時の水蒸気爆裂指数の関係を表すグラフ、図4は添加水の種類と溶損速度の関係を表すグラフである。
不定形耐火物は、骨材となる耐火原料に、アルミナ微粉、シリカ微粉等の微粒子、セメント、リン酸塩、珪酸塩等の硬化剤を予め混合した不定形耐火原料に、分散剤を加え、更に、水を加えて混練して製造される。
しかし、不定形耐火原料に、分散剤と水を加えて混練した場合、水に含まれるCaやMg等の多価のイオンが、混練して製造される不定形耐火物の流動性に大きく影響することが判った。
この流動性は、分散剤を予め水に混合した混合液を用いて混練した場合についても同じ傾向を示すことも判明した。
【0010】
そこで、本発明の一実施の形態に係る不定耐火物の混練方法として、図1に示すように、不定形耐火原料に添加する水として、濾過膜で硬度分であるCa、Mg等を除去して電気伝導度が、例えば一般に使用されている電気伝導度計で測定した値が5000μs/m以下である純水、電解処理によりCa、Mg等を除去して電気伝導度を5000μs/m以下としたアルカリイオン水を使用し、分散剤を配合した後、それぞれ硬化剤を配合した不定形耐火原料に添加し、3分間の混練を行って、それぞれのフロー値(流動性)を調査した。
その結果、従来の浄水(水道水)に、同時に分散剤を混合した後添加水として用いた場合と比較して、水の添加量が6.0〜6.5質量%の範囲では、極端なフロー値の差は無いが、添加する水の量が6.0質量%未満になると、従来の浄水を用いる場合では、急激にフロー値が低下し、不定形耐火物の充填性が損なわれ、作業性や施工体の品質に影響がでることがわかった。
一方、硬度分であるCa、Mg等を除去した純水、あるいは硬度分を含まないアルカリイオン水を用いる場合、5.5質量%の低水分量であっても混練した不定形耐火物のフロー値を210〜200mmと高い領域に維持でき、この傾向は、水の量が5.0質量%になっても変化が無く、不定形耐火物の充填性が良好であった。
従って、作業性が良く、施工体の気孔率を低減でき、耐磨耗性等を改善することができる。
特に、図2に示すように、水分量を6質量%とした場合の不定形耐火物の耐食生指数を100とすると、水分量を5質量%とした場合の不定形耐火物は耐食性指数が85〜90に大幅に低減でき、耐食性が向上し、精錬炉や搬送用の取鍋、樋等の寿命を延長することができ、耐火物コストの低減を図ることができる。
【0011】
不定形耐火原料中に含まれるアルミナ微粉、シリカ微粉等の微粒子は、微粒子の表面が帯電しており、微粒子と微粒子が反発し合い、不定形耐火原料の分散性を高めているが、Ca、Mg等の多価のイオンを除去した電気伝導度が5000μs/m以下の純水を用いることにより、この帯電微粒子の表面電位が、Ca、Mg等の多価のイオンによって中和されるのを抑制し、不定形耐火原料中の微粒子の分散性を高めることができる。
更に、水に混合させた際の分散剤は、前記した微粒子を帯電させ、微粒子の表面の帯電を活性にし、より分散性を高める作用を有している。
この分散剤の働きを正常に作用させるため、分散剤の帯電が、水に含まれるCa、Mg等の多価のイオンによって中和されるのを抑制することにより、不定形耐火原料中の微粒子の分散性をより高めることができるものと推考される。
更に、アルカリイオン水は、電解処理によりCaやMg等の多価のイオンが除去されているので、Ca、Mg等の多価のイオンによって帯電微粒子の表面電位が中和するのを抑制し、微粒子の分散性を高めることができる。
しかも、OH基を含む水にしているため、水の分子径が小さくなって微粒子の表面を濡れ易くするため、不定形耐火原料中に含まれるアルミナ微粉、シリカ微粉等の微粒子の表面の帯電が良好になり、微粒子と微粒子の反発を活性化し、分散性をより高めることができる。
また、Ca、Mg等の多価のイオンを除去した純水やアルカリイオン水に混合した分散剤は、前記した微粒子の帯電を促進させ、微粒子の表面が帯電を活発にして分散性をより高めることができるものと推考される。
【0012】
不定形耐火原料として用いる骨材は、塩基性耐火原料、中性耐火原料、酸性耐火原料のいずれでも可能であり、例えば、アルミナ質、マグネシア質、スピネル質、カルシア質、チタニア、ジルコニア質、シリカ質、ろう石質、炭化珪素質、シャモット質、ドロマイト質等を用いることができ、これ等の組成の骨材の粒度は、均質な施工体を得るため、平均粒径が5mm以下のものを用い、更に、良好な充填密度が得られるように、1〜5mmの粗粒と、0.075〜1mm未満の中粒と、0.075mm未満の微粒子を配合したものを用いるのが好ましい。
また、前記した骨材の他に、6〜100mmの粗大骨材を配合することもでき、この他に、繊維類、金属線等も配合することにより、亀裂や剥離等を防止する効果が発現できる。
更に、硬化剤は、アルミナセメントが最も好ましいが、これに限らず、例えば、ケイ酸ソーダ、シリカゾル、アルミナゾル、リン酸アルミニウム、乳酸アルミニウム等から選ばれる1種、又は2種以上を骨材に配合して使用することができる。
この硬化剤の他に、適当な使用可能時間を得るため、必要に応じて硬化調整剤を添加することができ、硬化調整剤としては、ホウ酸、シュウ酸、クエン酸、グルコン酸、ホウ酸アンモニウム、ウルトラポリリン酸ソーダ、炭酸リチウム等の1種、又は2種以上を骨材に配合して使用することができる。
【0013】
不定形耐火原料に添加する分散剤としては、トリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソーダ、ナスタレンスルホン酸ソーダ、リグニンスルホン酸ソーダ、ウルトラポリリン酸ソーダ、炭酸ソーダ、ホウ酸ソーダ、クエン酸ソーダ、酒石酸塩等の1種、又は2種以上を添加することができる。
【0014】
この不定形耐火原料に、硬化剤や硬化調整剤、予め分散剤を添加した純水、あるいは電解処理したアルカリイオン水を5〜5.5質量%を添加して混練して形成される不定形耐火物は、溶損部位を囲った枠にバイブレータで振動を付与しながら速やかに流し込みを行い、溶損部を補修したり、バイブレータで振動しながら所定の大きさの型枠に流し込みを行って不定形耐火物のブロックを製造し、このブロックを施工体に内張り施工する。
【0015】
【実施例】
次に、本発明に係る不定形耐火物の混練方法の実施例について説明する。
アルミナ質が主成分で、微粒子を20質量%を含む骨材に、硬化剤としてアルミナセメント2質量%を配合した不定形耐火原料に、分散剤を添加し、混練に用いる水の種類を変えて混練を行って不定形耐火物のブロックを製造した。
そして、このブロックを乾燥する際の、従来の水道水を用いた水蒸気爆裂の発生指数を1とした場合の水蒸気爆裂の発生指数を図3に、また、この不定形耐火物のブロックを溶鋼の搬送用取鍋に使用した時の溶損速度を調査した結果を図4に示す。
水蒸気爆裂の発生指数は、混練に純水を用いた場合、及び混練にアルカリイオン水を用いた場合では、いずれも添加する水の量を5.5質量%以下にしても、流し込み施工に支障の無いフロー値が得られ、120〜900℃の温度での乾燥の際、水蒸気爆裂の発生が無く良好な結果が得られた。
これに対し、水道水を用いた従来法では、混練の際に、6質量%以上の水を添加することにより、施工に支障のないフロー値が得られたが、120〜900℃の温度での乾燥の際に水蒸気爆裂が発生した。
更に、混練に純水を用いた場合、及び、混練にアルカリイオン水を用いた場合の溶損速度は、それぞれ0.32mm/ch(チャージ)、0.31mm/ch(チャージ)と良好であったが、水道水を用いた場合では、0.37mm/ch(チャージ)と悪くなった。
【0016】
以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、純水は、濾過膜で硬度分であるCa、Mg等を除去する他に、イオン交換処理、蒸留処理等を用いて製造することができる。
更に、アルカリイオン水は、電解槽を用いて電解処理することにより製造したものを使用することができる。
【0017】
【発明の効果】
請求項1〜記載の不定耐火物の混練方法においては、不定耐火原料に、電気伝導度が5000μs/m以下の水を添加して混練するので、不定形耐火原料を混練する際の添加する水の量を少なくして不定形耐火原料の流動性(フロー値)を高くして充填施工を容易にし、不定形耐火物を均一な組成にして気孔率を低くでき、不定形耐火物の耐食性や耐磨耗性を高め、耐火物の使用コストを低減することができる。
【0018】
【0019】
請求項記載の不定耐火物の混練方法においては、不定形耐火原料に添加する水は、電解処理したアルカリイオン水を用いるので、微粒子の表面を濡れ易くでき、不定耐火物の流動性が良好になり、均一な組成にして気孔率をより低くでき、耐食性や耐磨耗性をより高めることができる。
【0020】
請求項記載の不定耐火物の混練方法においては、不定形耐火原料に添加する水は、純水を用いるので、均一な組成にして気孔率をより低くでき、耐食性や耐磨耗性をより高めることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る不定耐火物の混練方法の混練時の水分添加量とフロー値の関係を表すグラフである。
【図2】添加水分量と耐食性指数の関係を表すグラフである。
【図3】添加水の種類と乾燥時の水蒸気爆裂指数の関係を表すグラフである。
【図4】添加水の種類と溶損速度の関係を表すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention, when kneading by adding water to the irregular-sized refractory raw material, increasing the fluidity of the irregular-sized refractory material, kneading the irregular-sized refractory to improve the quality of the irregular-sized refractory performing kneading of low moisture Regarding the method.
[0002]
[Prior art]
Conventionally, refining furnaces such as converters and electric furnaces, and ladles, tundishes, firewood, etc. used for transporting and storing molten iron are relatively easy to manufacture and construct, and are easy to mechanize (automate) construction. For this reason, amorphous refractories are used. This amorphous refractory can improve the durability by improving the kind and composition of the amorphous refractory raw material, and its application range is expanded.
The irregular refractory raw material is prepared by mixing the aggregates adjusted in particle size in consideration of the filling density when filling the construction body and the like, and various types of powder additives in advance in a dry state. A dispersant is added to the regular refractory raw material, and further, water is added and kneading is performed for a predetermined time.
Then, by kneading the amorphous refractory raw material and water, the surface of the fine particles contained in the amorphous refractory raw material is charged, and the added dispersant dissolves in water and is ionized to be included in the amorphous refractory raw material. It is adsorbed on the surface of the fine powder particles to activate the charging of the fine particles to suppress agglomeration and enhance the fluidity (flow value) of the amorphous refractory.
However, depending on the water added, the flowability of the amorphous refractory cannot be increased, and when a large amount of water is added and kneaded, the fluidity of the amorphous refractory is a hindrance to filling during construction. I am trying not to become.
When the amount of water in the amorphous refractory increases, when the amorphous refractory is dried after filling, the porosity increases, strength decreases, water vapor separation occurs during drying, etc. Abrasion resistance is reduced.
As a countermeasure against this, as described in JP-A-8-239276, a dispersant is dissolved in water in advance to form a mixed solution, and this mixed solution and an irregular refractory raw material are kneaded, so that A construction method for an amorphous refractory having a high strength is disclosed by rapidly dispersing a regular refractory raw material to produce an amorphous refractory having a uniform composition.
[0003]
[Problems to be solved by the invention]
However, in the method described in JP-A-8-239276, since the added water contains multivalent ions such as Ca and Mg, the surface potential of the fine particles contained in the amorphous refractory raw material is lowered. And easily aggregate.
In addition, in order to improve the cohesiveness due to the surface potential of the fine particles, it is necessary to increase the addition amount of the dispersant and water, which increases the production cost of the amorphous refractory.
Furthermore, the increase in the amount of dispersant and water added reduces the strength of the amorphous refractory, increases the porosity, and decreases the corrosion resistance, wear resistance, and the like. Furthermore, the life of a refining furnace lined with an indeterminate refractory, a transporting container for molten iron, and the like are shortened, and the use cost of the refractory increases.
[0004]
The present invention has been made in view of such circumstances, and the fluidity of the amorphous refractory raw material can be improved even if the amount of water added when kneading the amorphous refractory raw material is reduced. to lower the porosity and uniformly mixed, aims to enhance the corrosion resistance and abrasion resistance of monolithic refractories, provides a kneading method indefinite shaped refractory material can reduce the cost of using refractory And
[0005]
[Means for Solving the Problems]
In the kneading method of the irregular-sized refractory of the present invention along the object, irregular shaped refractory containing and aggregate having a coarse grain of at least the particle size 1 to 5 mm, and a fine alumina powder or silica powder of particle size less than is 0.075mm A dispersant is added to the raw material, and water having an electric conductivity of 5000 μs / m or less is added and kneaded.
In this way, reduced multivalent ions of Ca or Mg or the like contained in the water, to prevent the surface potential of the fine particles contained in the irregular-sized refractory raw material is neutralized, the surface potential of the particles is reduced can be suppressed, to prevent aggregation of the fine particles, it is possible to increase the flow value of the irregular-sized refractory raw material after kneading.
When the electric conductivity exceeds 5000 μs / m, the surface potential of the fine particles is neutralized by polyvalent ions such as Ca and Mg contained in water, the function of the dispersant is lowered, and the fine particles are likely to aggregate, which is indefinite. Uniformity at the time of kneading of the shaped refractory raw material is hindered.
The lower the electrical conductivity, the greater the effect. Therefore, it is preferable to use water of 2000 μs / m or less, and more preferable results are obtained when water of 500 μs / m or less is used.
[0006]
[0007]
Further, in the kneading method for irregular-sized refractory according to the present invention, water added to the monolithic refractory raw material can also be used alkali ion water obtained by electrolysis.
Thus, a multivalent ion such as Ca and Mg were removed by electrolytic treatment, since water containing OH groups, the molecular size of water smaller can easily wet the surface of the fine particles, the irregular shaped refractory raw material The fluidity can be improved.
[0008]
Further, in the kneading method for irregular-sized refractory according to the present invention, water added to the monolithic refractory raw material can also be used pure water.
Thus, the use of multi-valent ions were removed water, such as Ca and Mg in kneading, suppressing the dispersion of the polyvalent dispersant by ions is inhibited, well kneading indefinite shaped refractory raw material It can be carried out.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Figure 1 is a graph chart showing the relationship water amount and flow value to be added during kneading of the kneading method indefinite shaped refractory according to an embodiment, FIG. 2 which represents a relationship between the addition amount of water and corrosion resistance index of the present invention FIG. 3 is a graph showing the relationship between the type of added water and the steam explosion index during drying, and FIG. 4 is a graph showing the relationship between the type of added water and the dissolution rate.
The amorphous refractory is added to the refractory raw material that is premixed with fine particles such as alumina fine powder, silica fine powder, hardeners such as cement, phosphate, silicate, etc. Furthermore, it is manufactured by adding water and kneading.
However, when a dispersant and water are added to an amorphous refractory raw material and kneaded, polyvalent ions such as Ca and Mg contained in the water greatly affect the fluidity of the amorphous refractory produced by kneading. I found out that
It has also been found that this fluidity shows the same tendency when kneaded using a mixed liquid in which a dispersant is mixed with water in advance.
[0010]
Therefore, as the kneading method indefinite shaped refractory according to an embodiment of the present invention, as shown in FIG. 1, as the water to be added to the monolithic refractory raw material, a hardness component in the filtration membrane Ca, Mg, or the like removed The electrical conductivity is, for example, 5000 μs / m or less by removing Ca, Mg or the like by pure water having a value measured by a commonly used electrical conductivity meter of 5000 μs / m or less, or by electrolytic treatment. The alkaline ionized water was used, and after adding a dispersant, each was added to an amorphous refractory raw material containing a curing agent and kneaded for 3 minutes, and each flow value (fluidity) was investigated.
As a result, compared with the case where the conventional additive water (tap water) is mixed with a dispersant at the same time and used as added water, the amount of water added is in the range of 6.0 to 6.5 % by mass. Although there is no difference in the flow value, when the amount of water to be added is less than 6.0 % by mass , when using conventional water purification, the flow value decreases rapidly, and the filling property of the irregular refractory is impaired. It was found that workability and construction quality were affected.
On the other hand, when using pure water from which Ca, Mg, etc., which are hardness components, or alkali ion water not containing hardness components, is used, the flow of the kneaded amorphous refractory even if the moisture content is as low as 5.5 % by mass. The value could be maintained in a high region of 210 to 200 mm, and this tendency did not change even when the amount of water was 5.0 % by mass , and the filling property of the amorphous refractory was good.
Therefore, workability is good, the porosity of the construction body can be reduced, and wear resistance and the like can be improved.
In particular, as shown in FIG. 2, assuming that the corrosion resistance index of the amorphous refractory when the moisture content is 6 % by mass is 100, the amorphous refractory when the moisture content is 5 % by mass has a corrosion resistance index. It can be significantly reduced to 85 to 90, corrosion resistance is improved, the life of a smelting furnace, a ladle for transportation, a bowl, etc. can be extended, and the refractory cost can be reduced.
[0011]
Fine particles such as alumina fine powder and silica fine powder contained in the irregular refractory raw material are charged on the surface of the fine particles, and the fine particles repel each other, increasing the dispersibility of the irregular refractory raw material. By using pure water having an electric conductivity of 5000 μs / m or less from which polyvalent ions such as Mg are removed, the surface potential of the charged fine particles is neutralized by polyvalent ions such as Ca and Mg. It can suppress and can improve the dispersibility of the fine particles in the amorphous refractory raw material.
Furthermore, the dispersing agent when mixed with water has the effect of charging the above-mentioned fine particles, activating the surface of the fine particles, and further improving the dispersibility.
In order to make this dispersant function normally, fine particles in the amorphous refractory raw material are suppressed by suppressing neutralization of the charge of the dispersant by polyvalent ions such as Ca and Mg contained in water. It is presumed that the dispersibility of can be further increased.
Furthermore, since alkaline ionized water has removed polyvalent ions such as Ca and Mg by electrolytic treatment, it suppresses neutralization of the surface potential of charged fine particles by polyvalent ions such as Ca and Mg. The dispersibility of the fine particles can be improved.
In addition, since water containing OH groups is used, the surface of fine particles such as alumina fine powder and silica fine powder contained in the amorphous refractory raw material is charged in order to make the surface of the fine particles wet easily by reducing the molecular diameter of water. As a result, the repulsion between the fine particles and the fine particles can be activated and the dispersibility can be further improved.
In addition, a dispersant mixed with pure water or alkaline ionized water from which polyvalent ions such as Ca and Mg are removed promotes the charging of the fine particles, and the surface of the fine particles is activated to increase the dispersibility. It is assumed that it is possible.
[0012]
The aggregate used as the amorphous refractory material can be any of basic refractory material, neutral refractory material, and acidic refractory material. For example, alumina, magnesia, spinel, calcia, titania, zirconia, silica Quality, waxy stone quality, silicon carbide quality, chamotte quality, dolomite quality, etc. The particle size of the aggregates of these compositions should have an average particle size of 5 mm or less in order to obtain a homogeneous construction body Furthermore, it is preferable to use a mixture of coarse particles of 1 to 5 mm, medium particles of less than 0.075 to 1 mm, and fine particles of less than 0.075 mm so that a good packing density can be obtained.
In addition to the above-mentioned aggregates, coarse aggregates of 6 to 100 mm can also be blended, and in addition to this, the effects of preventing cracks, peeling, etc. are manifested by blending fibers, metal wires, etc. it can.
Furthermore, the hardener is most preferably alumina cement, but is not limited to this, and for example, one or two or more selected from sodium silicate, silica sol, alumina sol, aluminum phosphate, aluminum lactate, etc. are blended into the aggregate. Can be used.
In addition to this curing agent, a curing regulator can be added as necessary to obtain an appropriate usable time. Examples of the curing regulator include boric acid, oxalic acid, citric acid, gluconic acid, boric acid. One kind or two or more kinds of ammonium, sodium ultrapolyphosphate, lithium carbonate and the like can be used in the aggregate.
[0013]
Dispersants added to amorphous refractory raw materials include sodium tripolyphosphate, sodium hexametaphosphate, acid hexametaphosphate soda, polyacrylic acid soda, sulfonic acid soda, nastalene sulfonic acid soda, lignin sulfonic acid soda, ultrapolyphosphate soda, One type or two or more types of sodium carbonate, sodium borate, sodium citrate, tartrate, and the like can be added.
[0014]
An irregular shape formed by adding 5 to 5.5 % by mass of this amorphous refractory raw material with 5 to 5.5 % by mass of a curing agent, a curing modifier, pure water to which a dispersant has been added in advance, or alkaline ionized water that has been subjected to electrolytic treatment. The refractory is poured quickly into the frame surrounding the damaged part while applying vibration with a vibrator to repair the damaged part, or poured into a mold of a predetermined size while vibrating with a vibrator. An irregular refractory block is manufactured, and this block is lined on the construction body.
[0015]
【Example】
Next, examples of the method for kneading the irregular refractory according to the present invention will be described.
A dispersant is added to an irregular refractory raw material in which 2 % by mass of alumina cement as a hardener is blended in an aggregate containing 20 % by mass of alumina and containing 20 % by mass of fine particles, and the type of water used for kneading is changed. Kneading was performed to produce an irregular refractory block.
Then, when the steam explosion occurrence index using conventional tap water when the block is dried is assumed to be 1, the steam explosion occurrence index is shown in FIG. 3, and the irregular refractory block is made of molten steel. The result of investigating the rate of erosion when used in a ladle for conveyance is shown in FIG.
The index of occurrence of water vapor explosion is such that when pure water is used for kneading and when alkaline ionized water is used for kneading, the amount of added water is less than 5.5 % by mass , which hinders the pouring work. A flow value with no water vapor was obtained, and when drying at a temperature of 120 to 900 ° C., no steam explosion occurred and good results were obtained.
In contrast, in the conventional method using tap water, a flow value that does not hinder the construction was obtained by adding 6 % by mass or more of water during kneading, but at a temperature of 120 to 900 ° C. Steam explosion occurred during the drying of the.
Further, when pure water was used for kneading and when alkaline ionized water was used for kneading, the erosion rates were as good as 0.32 mm / ch (charge) and 0.31 mm / ch (charge), respectively. However, in the case of using tap water, it was as bad as 0.37 mm / ch (charge).
[0016]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, pure water can be produced using an ion exchange treatment, a distillation treatment, etc., in addition to removing Ca, Mg, etc., which are hardness components with a filtration membrane.
Furthermore, the alkali ion water can use what was manufactured by electrolyzing using an electrolytic vessel.
[0017]
【The invention's effect】
In the kneading method of claim 1-3 irregular shaped refractory according to irregular-sized refractory raw material, the electrical conductivity so kneaded with the addition of less water 5000μs / m, when kneaded monolithic refractory material The amount of water to be added is reduced to increase the fluidity (flow value) of the amorphous refractory raw material, facilitating filling work, making the amorphous refractory uniform composition and lowering the porosity, and the amorphous refractory The corrosion resistance and wear resistance of the refractory can be reduced, and the use cost of the refractory can be reduced.
[0018]
[0019]
In the kneading method of claim 2 irregular shaped refractory according, the water added to the monolithic refractory raw material, since an alkali ion water obtained by electrolysis, can easily wet the surface of the fine particles, the irregular shaped refractory flowable Can be improved, the composition can be made uniform, the porosity can be lowered, and the corrosion resistance and wear resistance can be further increased.
[0020]
In the kneading method of claim 3 irregular-sized refractory according, water added to the monolithic refractory raw material, since use of pure water, can lower the porosity in the uniform composition, the corrosion resistance and abrasion resistance Can be increased.
[Brief description of the drawings]
1 is a graph showing the relationship between water amount and flow value during the kneading of the kneading method of indefinite shaped refractory according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the amount of added water and the corrosion resistance index.
FIG. 3 is a graph showing the relationship between the type of added water and the steam explosion index during drying.
FIG. 4 is a graph showing the relationship between the type of added water and the dissolution rate.

Claims (3)

少なくとも粒度が1〜5mmの粗粒を有する骨材と、粒度が0.075mm未満のアルミナ微粉又はシリカ微粉とを含む不定耐火原料に分散剤を添加し、電気伝導度が5000μs/m以下の水を添加して混練することを特徴とする不定耐火物の混練方法。 And aggregate at least the particle size has a coarse grain of 1 to 5 mm, particle size and adding a dispersant to the irregular-sized refractory raw material comprising alumina fines or fine silica powder of less than 0.075 mm, the electric conductivity of the following 5000μs / m kneading method indefinite shaped refractory which comprises kneading by adding water. 請求項記載の不定耐火物の混練方法において、前記不定形耐火原料に添加する水は、電解処理したアルカリイオン水であることを特徴とする不定耐火物の混練方法。In the kneading method of claim 1 irregular-sized refractory according, water added to the monolithic refractories ingredients, kneading method indefinite shaped refractory, characterized in that an alkali ion water obtained by electrolysis. 請求項記載の不定耐火物の混練方法において、前記不定形耐火原料に添加する水は、純水であることを特徴とする不定耐火物の混練方法。In the kneading method of claim 1 irregular-sized refractory according, water added to the monolithic refractories ingredients, kneading method indefinite shaped refractory which is a pure water.
JP2001273667A 2001-09-10 2001-09-10 Method of kneading irregular refractories Expired - Fee Related JP4598328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001273667A JP4598328B2 (en) 2001-09-10 2001-09-10 Method of kneading irregular refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001273667A JP4598328B2 (en) 2001-09-10 2001-09-10 Method of kneading irregular refractories

Publications (2)

Publication Number Publication Date
JP2003081678A JP2003081678A (en) 2003-03-19
JP4598328B2 true JP4598328B2 (en) 2010-12-15

Family

ID=19098853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001273667A Expired - Fee Related JP4598328B2 (en) 2001-09-10 2001-09-10 Method of kneading irregular refractories

Country Status (1)

Country Link
JP (1) JP4598328B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692162A (en) * 1979-12-24 1981-07-25 Kogyo Gijutsuin Manufacture of low shrinkage quartz glass type refractories
JPH0741754A (en) * 1993-07-28 1995-02-10 Canon Inc Abrasive composition and method of polishing therewith
JPH08239276A (en) * 1995-03-06 1996-09-17 Kawasaki Steel Corp Application of castable refractory material
JPH08276410A (en) * 1995-04-07 1996-10-22 Nippon Cement Co Ltd Cast molding method for ceramics
JP2000286091A (en) * 1999-03-30 2000-10-13 Kanegafuchi Chem Ind Co Ltd Antistatic method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692162A (en) * 1979-12-24 1981-07-25 Kogyo Gijutsuin Manufacture of low shrinkage quartz glass type refractories
JPH0741754A (en) * 1993-07-28 1995-02-10 Canon Inc Abrasive composition and method of polishing therewith
JPH08239276A (en) * 1995-03-06 1996-09-17 Kawasaki Steel Corp Application of castable refractory material
JPH08276410A (en) * 1995-04-07 1996-10-22 Nippon Cement Co Ltd Cast molding method for ceramics
JP2000286091A (en) * 1999-03-30 2000-10-13 Kanegafuchi Chem Ind Co Ltd Antistatic method

Also Published As

Publication number Publication date
JP2003081678A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JPS5855107B2 (en) refractory materials
CN101121602A (en) Dispersion type magnesium air brick for bakie
JP7003849B2 (en) Manufacturing method of castable refractory
EP2824095B1 (en) Shaped refractory and process for producing same
JP2874831B2 (en) Refractory for pouring
JP4598328B2 (en) Method of kneading irregular refractories
CN110451933A (en) A kind of tundish prefabricated component and preparation method thereof
JP6962222B2 (en) Alumina-Magnesian Castable Refractory Durability Evaluation Method
CN110423103A (en) A kind of middle water containing opening environmentally friendly chamotte and preparation method thereof
JP4220131B2 (en) Amorphous refractory composition for ladle
JP3610523B2 (en) Fused slag refractory material composition and molten slag refractory material
CN113999028A (en) Aluminum back seam material for steel ladle and preparation method thereof
JPH08157267A (en) Castable refractory for flow-in execution
JP4608056B2 (en) Refractory for casting construction
JP4450423B2 (en) Indeterminate refractories for casting construction
JP4373081B2 (en) Refractory
JP2005088022A (en) Plugging-material for slidable opening/closing device of ladle
JPH08239276A (en) Application of castable refractory material
SU876249A1 (en) Composition for making intermediate and outer layers of casting multilayer cyramic moulds obtained by investment patterns
JP3783526B2 (en) Method for producing castable refractories containing waste material aggregate
JPH10130066A (en) Production of casting material using alumina based refractory waste material
JP3685568B2 (en) Indefinite refractory for secondary smelting ladle lining
CN106588053A (en) Castable for blast furnace slag spout
JP2539562B2 (en) Magnesia Carbon Amorphous refractory material
JP2002338347A (en) Zirconia-graphite fire resisting material and immersion nozzle for continuous casting using the material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100924

R151 Written notification of patent or utility model registration

Ref document number: 4598328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees