JP4589943B2 - Heat treatment equipment - Google Patents

Heat treatment equipment Download PDF

Info

Publication number
JP4589943B2
JP4589943B2 JP2007155064A JP2007155064A JP4589943B2 JP 4589943 B2 JP4589943 B2 JP 4589943B2 JP 2007155064 A JP2007155064 A JP 2007155064A JP 2007155064 A JP2007155064 A JP 2007155064A JP 4589943 B2 JP4589943 B2 JP 4589943B2
Authority
JP
Japan
Prior art keywords
light
heat
heat treatment
air
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007155064A
Other languages
Japanese (ja)
Other versions
JP2008309354A (en
Inventor
永充 手錢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2007155064A priority Critical patent/JP4589943B2/en
Priority to TW097121407A priority patent/TWI418757B/en
Priority to KR1020080053983A priority patent/KR20080109627A/en
Priority to CN2008101115929A priority patent/CN101324404B/en
Publication of JP2008309354A publication Critical patent/JP2008309354A/en
Application granted granted Critical
Publication of JP4589943B2 publication Critical patent/JP4589943B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Liquid Crystal (AREA)
  • Furnace Details (AREA)

Description

本発明は、被処理物を熱処理する熱処理装置に関する。   The present invention relates to a heat treatment apparatus for heat treating an object to be treated.

従来から、熱処理装置としては、熱処理部内に被処理物が収納された状態で、前記熱処理部内の空気が循環しながら加熱することにより、前記被処理物を熱処理するものが知られている。   2. Description of the Related Art Conventionally, as a heat treatment apparatus, a heat treatment apparatus that heats an object to be processed by heating the object in the heat treatment part while circulating the air in the heat treatment part is known.

例えば、この熱処理装置は、液晶ディスプレイやプラズマディスプレイのフラットパネルディスプレイ(FPD)の製作等に用いられ、予めガラス板等の基板(被処理物)に対して特定の溶液を塗布して加熱乾燥させたものを前記加熱処理部内に収容し、加熱処理部内を循環する所定温度の熱風に晒して熱処理(焼成)するための装置である。   For example, this heat treatment apparatus is used for manufacturing a flat panel display (FPD) such as a liquid crystal display or a plasma display. A specific solution is applied to a substrate (processing object) such as a glass plate in advance and dried by heating. This is a device for storing the heat in the heat treatment part and subjecting it to a hot air of a predetermined temperature circulating in the heat treatment part to perform heat treatment (firing).

前記熱処理装置において、前記被処理物が所定温度の熱風に晒されて熱処理される際に、この熱処理に伴って被処理物上に塗布されている特定の溶液等が気化(昇華)し、揮発性有機化合物(VOC)等の昇華物が発生する。   In the heat treatment apparatus, when the object to be treated is subjected to heat treatment by being exposed to hot air of a predetermined temperature, a specific solution or the like applied on the object to be treated is vaporized (sublimated) and volatilized. Sublimates such as volatile organic compounds (VOC) are generated.

この昇華物は、前記熱処理部内に収納された被処理物の出し入れによる温度低下や、換気のために導入される外気等の影響で再結晶化し、この再結晶した昇華物が熱処理装置の内部に付着して被処理物の品質を低下させる等の問題を生じさせていた。   This sublimated material is recrystallized due to the temperature drop caused by taking in and out of the object to be processed stored in the heat treatment section, the influence of outside air introduced for ventilation, etc., and the recrystallized sublimated material is put inside the heat treatment apparatus. It has caused problems such as adhesion and deterioration of the quality of the object to be processed.

この問題を解消するために、前記熱処理部内を循環する熱風(加熱された空気)の循環経路における被処理物の下流側に、前記昇華物を酸化分解するための熱触媒を配置した熱処理装置が開発された(特許文献1参照)。   In order to solve this problem, there is provided a heat treatment apparatus in which a thermal catalyst for oxidatively decomposing the sublimate is arranged on the downstream side of an object to be treated in a circulation path of hot air (heated air) circulating in the heat treatment section. It was developed (see Patent Document 1).

この熱処理装置のように熱触媒が配置されることで、被処理物の熱処理によって発生して前記熱風に含まれることとなった昇華物の大部分は、直ぐに前記熱触媒と接触して酸化分解される。その結果、前記熱触媒を通過した熱風は、熱処理に伴って発生した昇華物を殆ど含まないものとなる。
特開2006−17357号公報
By arranging the thermal catalyst as in this heat treatment apparatus, most of the sublimates generated by the heat treatment of the object to be treated and contained in the hot air immediately come into contact with the thermal catalyst and undergo oxidative decomposition. Is done. As a result, the hot air that has passed through the thermal catalyst contains almost no sublimated material generated by the heat treatment.
JP 2006-17357 A

ところで、前記熱触媒は、被処理物から発生する昇華物の酸化分解反応を促進するためのものであり、一般に、活性金属が白金(Pt)やパラジウム(Pd)等の貴金属や、これらの貴金属の合金等で構成される。これら熱触媒は、約150〜200℃程度の温度雰囲気下から触媒活性を示し、通常は、230〜250℃程度で十分な触媒活性を示す。そして、さらに高温とすることで、より反応性が高くなる。即ち、前記熱触媒における触媒活性は、雰囲気の温度に依存する。   By the way, the thermal catalyst is for accelerating the oxidative decomposition reaction of the sublimate generated from the object to be treated. Generally, the active metal is a noble metal such as platinum (Pt) or palladium (Pd), or these noble metals. It is made of an alloy or the like. These thermal catalysts show catalytic activity from a temperature atmosphere of about 150 to 200 ° C., and usually show sufficient catalytic activity at about 230 to 250 ° C. And by making it still higher temperature, the reactivity becomes higher. That is, the catalytic activity of the thermal catalyst depends on the temperature of the atmosphere.

従って、被処理物や塗布する溶剤の種類等によって、熱風の温度を前記触媒活性に十分な温度(所定温度)まで昇温できない場合、即ち、比較的低温で被処理物の熱処理が行われる場合、上記熱触媒を備えた熱処理装置であっても熱処理部を循環する熱風に含まれる昇華物が十分に酸化分解されない場合がある。そのため、この酸化分解されなかった昇華物の前記装置内への付着により、被処理物の品質の低下等の問題が生じる可能性が懸念された。   Therefore, when the temperature of the hot air cannot be increased to a temperature sufficient for the catalytic activity (predetermined temperature) depending on the type of the object to be processed and the solvent to be applied, that is, when the object to be processed is heat-treated at a relatively low temperature. Even in the heat treatment apparatus provided with the thermal catalyst, the sublimate contained in the hot air circulating through the heat treatment part may not be sufficiently oxidized and decomposed. For this reason, there is a concern that the sublimate that has not been oxidatively decomposed may adhere to the apparatus and cause problems such as deterioration of the quality of the object to be processed.

そこで、本発明は、上記問題点に鑑み、熱処理部を循環する空気の温度に依存することなく、被処理物を熱処理する際に発生する昇華物を分解することができる熱処理装置を提供することを課題とする。   Therefore, in view of the above problems, the present invention provides a heat treatment apparatus capable of decomposing sublimates generated when heat treating an object to be treated without depending on the temperature of air circulating in the heat treatment part. Is an issue.

そこで、上記課題を解消すべく、本発明に係る熱処理装置は、被処理物を熱処理する熱処理部と空気を加熱して循環させる空気調整部とで構成される断熱炉を備え、この断熱炉は、前記被処理物を熱処理する際に発生する昇華物を分解可能な光触媒手段と、外部からの光を前記空気調整部内に採光する採光手段と、前記断熱炉内に配置されて前記採光手段によって採光された光を前記空気調整部内の所定位置に向けて反射する反射手段とを有し、前記光触媒手段は、少なくとも前記反射手段によって反射された光が照射され且つ前記循環する空気と接触する位置に配置されることを特徴とする。 Therefore, in order to solve the above problems, a heat treatment apparatus according to the present invention includes a heat insulation furnace including a heat treatment part for heat treating an object to be treated and an air adjustment part for heating and circulating air, the a degradable photocatalyst means a sublimate generated during the heat treatment of the treatment object, a lighting means for lighting the light from the outside into the air adjusting portion, the lighting means are disposed in the heat insulating furnace Reflecting means for reflecting the light collected by the light toward a predetermined position in the air adjusting unit, and the photocatalyst means is irradiated with at least the light reflected by the reflecting means and contacts the circulating air. It is arranged at a position.

かかる構成によれば、前記断熱炉内において、前記光触媒手段が採光された光を照射されるだけで、前記循環する空気に含まれる昇華物を分解する。即ち、光触媒手段は、雰囲気の温度に依存することなく、採光手段によって採光された光が照射されることで瞬時に触媒活性を示し、この状態で前記循環する空気と接触することで、この循環する空気に含まれる昇華物を分解する。   According to such a configuration, the sublimate contained in the circulating air is decomposed only by the photocatalyst means being irradiated with the collected light in the heat insulating furnace. That is, the photocatalyst means shows catalytic activity instantaneously by being irradiated with the light collected by the daylighting means without depending on the temperature of the atmosphere. In this state, the photocatalyst means is in contact with the circulating air. Decompose sublimates contained in the air.

しかも、光触媒手段における昇華物を分解する処理能力が小さくても、空気に含まれる昇華物は、空気と共に循環しつつ光触媒手段を何度も通過するため、所望の量が分解される。   Moreover, even if the processing capability of decomposing the sublimate in the photocatalyst means is small, the sublimate contained in the air passes through the photocatalyst means many times while circulating with the air, so that a desired amount is decomposed.

その結果、従来の熱触媒よりも低温で熱処理が行われたとしても、前記循環する空気に含まれる昇華物の分解が十分に行われる。   As a result, even if the heat treatment is performed at a temperature lower than that of the conventional thermal catalyst, the sublimate contained in the circulating air is sufficiently decomposed.

また、反射手段を断熱炉内に有することで、前記光触媒手段は、断熱炉が有する前記採光手段や光照射手段から直接光を照射される位置に配置されなくてもよい。そのため、配置の自由度、即ち、当該熱処理装置の設計の自由度が向上する。Further, by providing the reflection means in the heat insulation furnace, the photocatalyst means may not be arranged at a position where light is directly irradiated from the daylighting means or the light irradiation means of the heat insulation furnace. Therefore, the degree of freedom in arrangement, that is, the degree of freedom in designing the heat treatment apparatus is improved.

また、前記採光手段は、前記断熱炉の空気調整部側に設けられてもよい。 Further, the lighting means may be provided on the air adjusting portion side of the front Symbol adiabatic reactor.

かかる構成によれば、外部からの光を空気調整部内に採光するため、熱処理部は、前記採光された光が入射せず、嫌光性の被処理物を熱処理することができる。   According to such a configuration, since light from the outside is collected into the air adjustment unit, the heat treatment unit can heat treat the anaerobic object to be processed without incidence of the collected light.

また、光を照射する光照射手段を前記断熱炉の外部にさらに備え、前記光照射手段は、前記採光手段を介して少なくとも前記反射手段に光を照射できるように配置されてもよい。 Furthermore, the light irradiation morphism means for irradiating light further provided outside of the adiabatic reactor, the light irradiation unit may be disposed so as to be irradiated with light on at least said reflecting means through said lighting means.

かかる構成によれば、光照射手段によって一定光量の光が光触媒手段に照射される。そのため、光触媒手段は、装置の周辺の光量に依存することなく、十分な触媒活性が行われ、昇華物に対する安定した所望の分解性能を発揮できる。   According to such a configuration, the photocatalyst means is irradiated with a certain amount of light by the light irradiation means. Therefore, the photocatalyst means can perform sufficient catalytic activity without depending on the amount of light around the apparatus, and can exhibit a desired desired decomposition performance with respect to the sublimate.

また、前記採光手段は、前記断熱炉内と外部とを連通するように穿設された開口に嵌め込まれる耐熱ガラスで構成されてもよい。   Further, the daylighting means may be made of heat-resistant glass fitted into an opening formed so as to communicate the inside of the heat insulation furnace and the outside.

かかる構成によれば、簡単な構成によって、外部から断熱炉内に光が採光される。   According to this configuration, light is collected from the outside into the heat insulating furnace with a simple configuration.

また、前記耐熱ガラスは、前記採光した光が照射される範囲を広げるようなレンズに形成される構成であってもよい。   The heat-resistant glass may be formed on a lens that widens a range in which the collected light is irradiated.

かかる構成によれば、前記採光した光が前記断熱炉内のより広い範囲に照射される。そのため、光触媒手段に対する光の照射範囲が広がり、これに伴って昇華物を酸化分解できる範囲、即ち、光触媒手段における触媒活性を示す範囲が広がり、分解される前記昇華物の量が増加する。   According to this configuration, the collected light is irradiated to a wider range in the heat insulation furnace. Therefore, the range of light irradiation to the photocatalyst means is expanded, and accordingly, the range in which the sublimate can be oxidatively decomposed, that is, the range showing the catalytic activity in the photocatalyst means is expanded, and the amount of the sublimate decomposed increases.

また、前記採光手段は、一端が前記断熱炉内で他端が外部となるように配設された耐熱性を有する導光管で構成されてもよい。   Further, the daylighting means may be constituted by a heat-resistant light guide tube having one end disposed in the heat insulation furnace and the other end being the outside.

かかる構成によっても、簡単な構成によって、外部から断熱炉内に光が採光される。この場合、前記導光管は、光ファイバで構成されるのが好ましい。光ファイバは、容易に入手でき、配設の際の自由度が高いからである。   Also with such a configuration, light is extracted from the outside into the heat insulating furnace with a simple configuration. In this case, the light guide tube is preferably composed of an optical fiber. This is because the optical fiber is easily available and has a high degree of freedom in arrangement.

また、前記導光管の一端にレンズが設けられ、該レンズは、前記導光管の他端で採光した光が照射される範囲を広げるように構成されてもよい。   In addition, a lens may be provided at one end of the light guide tube, and the lens may be configured to widen a range irradiated with light collected at the other end of the light guide tube.

かかる構成によれば、上記同様、前記採光した光が前記断熱炉内のより広い範囲に照射され、光触媒手段に対する光の照射範囲が広がり、これに伴って分解される昇華物の量も増加する。   According to such a configuration, as described above, the collected light is irradiated to a wider range in the heat insulating furnace, the irradiation range of the light to the photocatalyst means is expanded, and the amount of sublimation decomposed is increased accordingly. .

また、上記課題を解決すべく、本発明に係る熱処理装置は、被処理物を熱処理する熱処理部と空気を加熱して循環させる空気調整部とで構成される断熱炉を備え、この断熱炉は、前記被処理物を熱処理する際に発生する昇華物を分解可能な光触媒手段と光を照射する光照射手段とを有し、前記空気調整部には、断熱炉外から空気を導入する導入管が接続され、前記光照射手段は、前記空気調整部内に光を照射するように前記導入管内に配置され、前記光触媒手段は、前記光照射手段によって光が照射され且つ前記循環する空気と接触する位置に配置されることを特徴としてもよい。 Moreover, in order to solve the above-mentioned problem, a heat treatment apparatus according to the present invention includes a heat insulation furnace including a heat treatment part for heat treating an object to be treated and an air adjusting part for heating and circulating air, A photocatalyst means capable of decomposing a sublimate generated when the object to be heat-treated and a light irradiation means for irradiating light, and the air adjusting section introduces air from outside the heat insulation furnace And the light irradiating means is disposed in the introduction pipe so as to irradiate light into the air adjusting section, and the photocatalytic means is irradiated with light by the light irradiating means and contacts the circulating air. It is good also as arrange | positioning in a position.

かかる構成によれば、前記光触媒手段が光照射手段によって光を照射されるだけで、上記同様、瞬時に触媒活性を示し、雰囲気の温度に依存することなく前記循環する空気に含まれる昇華物を分解する。また、光触媒手段における昇華物を分解する処理能力が小さくても、空気に含まれる昇華物は、空気と共に循環しつつ光触媒手段を何度も通過するため、所望の量が分解される。   According to such a configuration, the photocatalytic means is irradiated with light by the light irradiating means, and as in the case described above, the catalytic activity is instantaneously displayed, and the sublimate contained in the circulating air is independent of the temperature of the atmosphere. Decompose. Further, even if the processing capability of decomposing the sublimate in the photocatalyst means is small, the sublimate contained in the air passes through the photocatalyst means many times while circulating with the air, so that a desired amount is decomposed.

従って、低温で熱処理が行われたとしても、従来の熱触媒よりも前記循環する空気に含まれる昇華物の分解を十分に行うことができる。   Therefore, even if the heat treatment is performed at a low temperature, the sublimate contained in the circulating air can be sufficiently decomposed than the conventional thermal catalyst.

また、ガラス等を介することなく、直接、光が空気調整部内に照射されるため、光触媒手段に効率よく到達する。これは、光がガラス等を透過する際に、このガラス等の透過率に伴って光量が低減するからである。そのため、光触媒手段は、ガラス等を介して光を照射されるよりも十分に触媒活性を示し、より多くの昇華物を分解できる。 Moreover, since light is directly irradiated into the air adjusting unit without using glass or the like, the photocatalyst means can be efficiently reached. This is because when the light passes through the glass or the like, the amount of light decreases with the transmittance of the glass or the like. Therefore, the photocatalytic means exhibits a catalytic activity sufficiently more than that irradiated with light through glass or the like, and can decompose more sublimates.

しかも、導入管内に光照射手段が備えられていることから、内部を流通する加熱前の空気によって光照射手段の冷却が可能となる。 Moreover, since the light irradiating means is provided in the introduction tube, the light irradiating means can be cooled by the unheated air flowing inside.

また、照射された光を所定位置に配置される光触媒手段に向けて反射する反射手段を前記断熱炉内にさらに備えた構成であってもよい。   Moreover, the structure which further provided the reflection means in the said heat insulation furnace which reflects the irradiated light toward the photocatalyst means arrange | positioned in a predetermined position may be sufficient.

かかる構成によれば、前記光触媒手段は、断熱炉が有する前記採光手段や光照射手段から直接光を照射される位置に配置されなくてもよい。そのため、配置の自由度、即ち、当該熱処理装置の設計の自由度が向上する。   According to such a configuration, the photocatalyst unit may not be disposed at a position where the light is directly irradiated from the daylighting unit or the light irradiation unit included in the heat insulating furnace. Therefore, the degree of freedom in arrangement, that is, the degree of freedom in designing the heat treatment apparatus is improved.

また、前記反射手段は、光触媒機能も有する構成であってもよい。   Further, the reflecting means may have a photocatalytic function.

かかる構成によれば、前記光触媒手段と光触媒機能を有する反射手段とが光を受けて昇華物を分解できるため、分解される昇華物の量がより増加する。   According to this configuration, since the photocatalyst means and the reflection means having a photocatalytic function can receive light and decompose the sublimate, the amount of the sublimate to be decomposed further increases.

また、前記光触媒手段は、板状体の表面に光触媒機能を有する構成であってもよい。   Further, the photocatalytic means may have a photocatalytic function on the surface of the plate-like body.

かかる構成によれば、光触媒機能を備えた表面を所望の方向に向けて前記断熱炉内に容易に配置することができる。   According to such a configuration, the surface having a photocatalytic function can be easily disposed in the heat insulation furnace in a desired direction.

また、前記光触媒手段は、綿状体又はメッシュ状体の表面に光触媒が担持された構成を有し、前記循環する空気がその内部を通過するように配置される構成であってもよい。   The photocatalyst means may have a configuration in which a photocatalyst is supported on the surface of a cotton-like body or a mesh-like body, and the circulating air may be arranged to pass through the inside thereof.

かかる構成によれば、光触媒反応を示す表面の面積が増加し、それに伴って前記循環する空気との接触面積が増加する。また、前記循環する空気が光触媒手段の内部を通過する際、前記内部に乱流が発生して前記循環する空気と前記表面とが接する時間や回数が増加する。そのため、分解される昇華物の量が増加する。   According to such a configuration, the surface area showing the photocatalytic reaction increases, and accordingly, the contact area with the circulating air increases. Further, when the circulating air passes through the inside of the photocatalyst means, a turbulent flow is generated in the interior, and the time and number of times that the circulating air and the surface are in contact with each other increase. Therefore, the amount of sublimates to be decomposed increases.

また、前記光照射手段は複数配置され、これら複数の光照射手段は、異なる方向から前記光触媒手段に光を照射するようにそれぞれ配置される構成であってもよい。   Further, a plurality of the light irradiation means may be arranged, and the plurality of light irradiation means may be arranged to irradiate the photocatalyst means with light from different directions.

かかる構成によれば、光触媒手段の表面形状が入り組んだ形状となっても光が照射されない部位、即ち、影になる部位が減少若しくは無くなるため、触媒反応を示す面積が広くなり、効率よく昇華物が分解される。   According to such a configuration, even if the surface shape of the photocatalyst means becomes an intricate shape, the portion that is not irradiated with light, that is, the portion that becomes a shadow is reduced or eliminated, so that the area showing the catalytic reaction is widened and the sublimate efficiently. Is disassembled.

以上より、本発明によれば、熱処理部を循環する空気の温度に依存することなく、被処理物を熱処理する際に発生する昇華物を分解することができる熱処理装置を提供することができるようになる。   As described above, according to the present invention, it is possible to provide a heat treatment apparatus capable of decomposing sublimates generated when heat treating an object to be treated without depending on the temperature of air circulating in the heat treatment part. become.

まず、参考例について、添付図面を参照しつつ説明する。 First, a reference example will be described with reference to the attached drawings.

図1に示されるような熱処理装置10は、FPDの製造工程に用いられるものであり、クリーンルーム内に設置されるいわゆるクリーンオーブンと呼ばれるものである。   A heat treatment apparatus 10 as shown in FIG. 1 is used in an FPD manufacturing process and is called a so-called clean oven installed in a clean room.

この熱処理装置10は、断熱壁(炉壁)で空間が囲繞された断熱炉11と光(本参考例においては、紫外線)を照射するための光照射手段(紫外線照射手段)Lとを有する装置本体12を備えている。断熱炉11の内部空間は、仕切り壁13によって仕切られることで、熱処理部20(図1において、仕切り壁13よりも左側の部分)と空気調整部30(図1において、仕切り壁13よりも右側の部分)とが形成されている。 This heat treatment apparatus 10 includes a heat insulating furnace 11 whose space is surrounded by a heat insulating wall (furnace wall) and a light irradiation means (ultraviolet irradiation means) L for irradiating light (ultraviolet light in this reference example ). A main body 12 is provided. The internal space of the heat insulation furnace 11 is partitioned by the partition wall 13 so that the heat treatment unit 20 (the portion on the left side of the partition wall 13 in FIG. 1) and the air adjustment unit 30 (the right side of the partition wall 13 in FIG. 1). Part) and are formed.

仕切り壁13には、熱処理部20と空気調整部30とを連通する連通部14、15が設けられている。連通部14は、熱処理部20の空気を空気調整部30に導入するための吸気用連通部14であり、連通部15は、空気調整部30の空気を後述する送風機34によって熱処理部20に吹き出すための吹き出し用連通部15である。また、吸気用連通部14と吹き出し用連通部15とは、吹き出し用連通部15から空気調整部30の空気が熱処理部20側に吹き出され、これに伴って吸気用連通部14から熱処理部20の空気が空気調整部30に導入されることで、断熱炉11内に空気の循環流を形成することができるような位置にそれぞれ設けられる。   The partition wall 13 is provided with communication portions 14 and 15 that allow the heat treatment portion 20 and the air adjustment portion 30 to communicate with each other. The communication unit 14 is an intake communication unit 14 for introducing the air of the heat treatment unit 20 into the air adjustment unit 30, and the communication unit 15 blows the air of the air adjustment unit 30 to the heat treatment unit 20 by a blower 34 described later. This is a communication part 15 for blowing out. Further, the intake communication portion 14 and the blowout communication portion 15 are such that the air in the air adjusting unit 30 is blown from the blowout communication portion 15 toward the heat treatment portion 20, and accordingly, the intake communication portion 14 to the heat treatment portion 20. The air is introduced into the air adjustment unit 30, so that the air circulation flow is formed in the heat insulating furnace 11.

熱処理部20には、ガラス基板等の複数の被処理物(以下、単に「ワーク」と称する。)Wを上下に並んだ状態で保持可能なワーク保持部21が設けられている。このワーク保持部21にワークWが保持されることにより、当該ワークWが熱処理部20内に収納・保持される。   The heat treatment section 20 is provided with a work holding section 21 that can hold a plurality of objects to be processed (hereinafter simply referred to as “workpieces”) W such as a glass substrate in a state where they are lined up and down. When the workpiece W is held by the workpiece holding unit 21, the workpiece W is stored and held in the heat treatment unit 20.

空気調整部30には、昇華物を分解可能な光触媒手段31と外部からの光を断熱炉11内に、より詳細には、空気調整部30内に採光する採光手段32とが配置される。本参考例においては、さらに、断熱炉11内の空気を加熱するための加熱器33と前記空気の循環流を形成するための送風機34とが設けられている。そして、これらは、空気調整部30において、循環する空気の上流側から下流側に向かって、光触媒手段31及び採光手段32、加熱器33、送風機34の順に配置されている。尚、光触媒手段31、採光手段32、加熱器33及び送風機34の配置は、この順に限定される必要はない。 The air adjusting unit 30 is provided with a photocatalyst unit 31 capable of decomposing the sublimate and a daylighting unit 32 for collecting light from the outside in the heat insulating furnace 11, more specifically, in the air adjusting unit 30. In the present reference example , a heater 33 for heating the air in the heat insulation furnace 11 and a blower 34 for forming a circulating flow of the air are further provided. And these are arrange | positioned in order of the photocatalyst means 31, the lighting means 32, the heater 33, and the air blower 34 in the air adjustment part 30 toward the downstream from the upstream of the circulating air. The arrangement of the photocatalyst means 31, the daylighting means 32, the heater 33, and the blower 34 need not be limited in this order.

光触媒手段31は、ワークWを熱処理する際に当該ワークWから発生する揮発性有機化合物(VOC)等の昇華物を分解するためのものである。本参考例では、酸化チタン(TiO)で形成された板状体で構成されているが、これに限定される必要はなく、光を照射されることで前記昇華物が分解されるような素材及び形状であればよい。即ち、光触媒手段31は、酸化亜鉛(ZnO)や酸化タングステン(WO)等の光エネルギーを受けて電荷分離を起こす光伝導性物質で構成されればよい。本参考例に係る光触媒手段31は、光、特に紫外線が照射されることによって触媒活性を示す。この触媒活性は、紫外線が照射されるだけで直ちに生じ、雰囲気の温度には殆ど依存しない。このような光触媒手段31は、空気調整部30内において、断熱炉11内を循環する空気が接触し且つ採光手段32によって採光された光が照射される位置に配置される。より詳細には、光触媒手段31は、空気調整部30内において、断熱炉11の炉壁に設けられた採光手段32と対向する位置、即ち、仕切り壁13の壁面にその表面が採光手段32と対向するように配置されている。 The photocatalyst means 31 is for decomposing sublimates such as a volatile organic compound (VOC) generated from the workpiece W when the workpiece W is heat-treated. In this reference example, it is composed of a plate-like body formed of titanium oxide (TiO 2 ), but it is not necessary to be limited to this, and the sublimate is decomposed when irradiated with light. Any material and shape may be used. That is, the photocatalytic means 31 may be made of a photoconductive material that causes charge separation upon receiving light energy such as zinc oxide (ZnO) or tungsten oxide (WO 3 ). The photocatalytic means 31 according to this reference example exhibits catalytic activity when irradiated with light, particularly ultraviolet rays. This catalytic activity occurs immediately upon irradiation with ultraviolet rays, and hardly depends on the temperature of the atmosphere. Such a photocatalyst means 31 is disposed in the air adjusting unit 30 at a position where the air circulating in the heat insulating furnace 11 comes into contact with the light collected by the daylighting means 32. More specifically, the photocatalyst means 31 has a surface facing the daylighting means 32 at a position facing the daylighting means 32 provided on the furnace wall of the heat insulating furnace 11 in the air adjusting unit 30, that is, the wall surface of the partition wall 13. It arrange | positions so that it may oppose.

採光手段32は、外部から断熱炉11内、具体的には空気調整部30内に光を採光するためのものである。この採光手段32は、断熱炉11の炉壁に形成された開口に耐熱ガラス32aが嵌め込まれることで構成されている。より詳細には、採光手段32は、断熱炉11の炉壁のうち仕切り壁13と対向する炉壁であって、仕切り壁13に配置されている光触媒手段31の表面と対向する位置に設けられる。この採光手段32は、断熱炉11の炉壁にその内と外部とを連通するように前記光触媒手段31に対応した形状の開口を穿設し、この開口を塞ぐように嵌め込まれた板状の耐熱ガラス32aによって構成されている。   The daylighting means 32 is for taking light from the outside into the heat insulating furnace 11, specifically into the air adjusting unit 30. The daylighting means 32 is configured by fitting heat-resistant glass 32 a into an opening formed in the furnace wall of the heat insulating furnace 11. More specifically, the daylighting means 32 is a furnace wall facing the partition wall 13 among the furnace walls of the heat insulating furnace 11, and is provided at a position facing the surface of the photocatalytic means 31 disposed on the partition wall 13. . The daylighting means 32 has a plate-like shape in which an opening having a shape corresponding to the photocatalyst means 31 is formed in the furnace wall of the heat insulation furnace 11 so as to communicate the inside and the outside, and is fitted to close the opening. The heat-resistant glass 32a is used.

尚、本参考例においては、紫外線に弱いワークWの熱処理を行うことができるよう、採光手段32によって空気調整部30内に採光された光(紫外線)に対し、前記仕切り壁13によって熱処理部20内は遮光されている。 In this reference example , the partition wall 13 causes the heat treatment unit 20 to treat the light (ultraviolet rays) collected in the air adjusting unit 30 by the daylighting means 32 so that the heat treatment of the workpiece W sensitive to ultraviolet rays can be performed. The inside is shaded.

採光手段32を構成する前記耐熱ガラス32aは、石英ガラス(特に、溶融石英ガラス)、フッ化カルシウム(CaF)及びフッ化マグネシウム(MgF)等の紫外線透過率の高い耐熱ガラスを用いるのが好適である。また、バイコール(登録商標)やパイレックス(登録商標)等の耐熱ガラス32aが用いられてもよい。 The heat-resistant glass 32a constituting the daylighting means 32 is made of heat-resistant glass having high ultraviolet transmittance such as quartz glass (particularly fused silica glass), calcium fluoride (CaF 2 ), and magnesium fluoride (MgF 2 ). Is preferred. Further, heat resistant glass 32a such as Vycor (registered trademark) or Pyrex (registered trademark) may be used.

光照射手段Lは、本参考例においては、紫外線を照射する紫外線ランプLで構成される。しかし、これに限定される必要はなく、使用する光触媒手段に触媒活性を生じさせる波長の光を含んでいればよい。さらには、他の波長帯の光を幅広く含む光源であってもよい。この紫外線ランプLは、その照射方向Cが採光手段32を構成する耐熱ガラス32aと対向するように、より詳細には、耐熱ガラス32aの表面中央と直交するように配置されている。また、上記のように、前記耐熱ガラス32aと光触媒手段31とが対向していることから、紫外線ランプLは、その照射方向Cと光触媒手段31表面とが対向するように配置されている。即ち、紫外線ランプLは、その照射した紫外線が耐熱ガラス32aを透過して光触媒手段31を照らすように、光触媒手段31と耐熱ガラス32aとを結ぶ直線上に配置される。 In this reference example , the light irradiation means L is constituted by an ultraviolet lamp L that irradiates ultraviolet rays. However, it is not necessary to be limited to this, and it is sufficient that the photocatalyst means to be used includes light having a wavelength that causes catalytic activity. Furthermore, the light source may include a wide range of light in other wavelength bands. The ultraviolet lamp L is arranged so that its irradiation direction C faces the heat-resistant glass 32a constituting the daylighting means 32, more specifically, orthogonal to the center of the surface of the heat-resistant glass 32a. Further, as described above, since the heat-resistant glass 32a and the photocatalyst means 31 are opposed to each other, the ultraviolet lamp L is disposed so that the irradiation direction C and the surface of the photocatalyst means 31 are opposed to each other. That is, the ultraviolet lamp L is arranged on a straight line connecting the photocatalyst means 31 and the heat-resistant glass 32a so that the irradiated ultraviolet rays pass through the heat-resistant glass 32a and illuminate the photocatalyst means 31.

加熱器33は、断熱炉11内、具体的には空気調整部30内の空気を加熱するためのものである。また、送風機34は、空気調整部30の空気を、吹き出し用連通部15を通じて熱処理部20側に送り込むためのものである。さらに、空気調整部30には、断熱炉11の外部から空気を空気調整部30内に供給するための吸気ダクト(導入管)35が接続され、熱処理部20には、この熱処理部20から流出した空気を直接、断熱炉11の外部に排出するための排気ダクト22が接続されている。   The heater 33 is for heating the air in the heat insulation furnace 11, specifically, the air adjusting unit 30. The blower 34 is for sending the air of the air adjusting unit 30 to the heat treatment unit 20 side through the blowing communication unit 15. Further, an intake duct (introduction pipe) 35 for supplying air from the outside of the heat insulation furnace 11 into the air adjustment unit 30 is connected to the air adjustment unit 30, and the heat treatment unit 20 flows out of the heat treatment unit 20. An exhaust duct 22 for exhausting the air directly to the outside of the heat insulation furnace 11 is connected.

参考例に係る熱処理装置10は、以上の構成からなり、次に、この熱処理装置10の動作について説明する。 The heat treatment apparatus 10 according to the present reference example has the above-described configuration. Next, the operation of the heat treatment apparatus 10 will be described.

送風機34によって熱処理部20側に空気調整部30の空気が送り込まれると、熱処理部20の空気は、吸気用連通部14を通じて空気調整部30に戻される。そして、空気調整部30に戻された空気は、加熱器33によって加熱・昇温され、吹き出し用連通部15を通じて熱処理部20側に吹き出される。この空気の循環が繰り返され、所定温度にまで加熱された空気(熱風)に、熱処理部20内に収容されたワークWが晒されることで、熱処理(焼成)が行われる。   When the air of the air conditioning unit 30 is sent to the heat treatment unit 20 side by the blower 34, the air of the heat treatment unit 20 is returned to the air conditioning unit 30 through the intake communication unit 14. The air returned to the air adjusting unit 30 is heated and heated by the heater 33 and blown out to the heat treatment unit 20 through the blowing communication unit 15. This air circulation is repeated, and the work W accommodated in the heat treatment unit 20 is exposed to air (hot air) heated to a predetermined temperature, whereby heat treatment (firing) is performed.

このようにワークWに対する熱処理が行われる際に、紫外線ランプLから耐熱ガラス32aを介して光触媒手段31に紫外線が照射されると、断熱炉11内を循環する(空気調整部30内を流れる)熱風に含まれる昇華物の分解が開始される。   Thus, when the heat processing with respect to the workpiece W is performed, if the photocatalyst means 31 is irradiated with ultraviolet rays from the ultraviolet lamp L through the heat-resistant glass 32a, it circulates in the heat insulating furnace 11 (flows in the air adjusting unit 30). The decomposition of the sublimate contained in the hot air is started.

即ち、所定温度まで昇温された熱風にワークWが晒されると、その表面に塗布された溶液等が気化(昇華)し、揮発性有機化合物(VOC)等の昇華物が発生する。この発生した昇華物は、熱風と共に断熱炉11内を循環する。この昇華物を含んだ熱風は、熱処理部20から、吸気用連通部14を通じて空気調整部30に導入される。この熱風は、空気調整部30内を吹き出し用連通部15に向かって流れる。このとき、空気調整部30において、吸気用連通部14と吹き出し用連通部15との間に光触媒手段31が配置されているため、熱風は光触媒手段31に接触しつつ流れることとなる。その際、光触媒手段31は、紫外線ランプLによって紫外線を照射されることで十分な触媒活性を示している。そのため、この光触媒手段31に接触しつつ流れる熱風に含まれる昇華物は分解される。   That is, when the workpiece W is exposed to hot air heated to a predetermined temperature, the solution applied to the surface of the workpiece W is vaporized (sublimated), and a sublimate such as a volatile organic compound (VOC) is generated. The generated sublimate circulates in the heat insulating furnace 11 together with hot air. The hot air containing the sublimate is introduced from the heat treatment unit 20 into the air adjustment unit 30 through the intake communication unit 14. The hot air flows in the air adjusting unit 30 toward the blowing communication unit 15. At this time, since the photocatalyst means 31 is disposed between the intake communication part 14 and the blowout communication part 15 in the air adjustment part 30, the hot air flows while contacting the photocatalyst means 31. At that time, the photocatalytic means 31 exhibits sufficient catalytic activity when irradiated with ultraviolet rays by the ultraviolet lamp L. Therefore, the sublimate contained in the hot air flowing while contacting the photocatalytic means 31 is decomposed.

そして、吸気ダクト35から吸い込まれた外気が空気調整部30を介して熱処理部20内に送り込まれると共に、熱処理部20内の空気の一部が排気ダクト22内に流出することにより、断熱炉11内を循環する空気の一部が換気される。即ち、断熱炉11内を熱風(空気)が循環してワークWを熱処理しつつ、その一部の換気も同時に行われている。これは、光触媒手段31による昇華物の酸化分解だけでは、循環する空気に含まれる昇華物を全て取り除く(酸化分解する)ことができない場合があり、その場合に残った昇華物を換気によって断熱炉11内から排出することで、前記昇華物によるワークWの品質低下を防ぐためである。   The outside air sucked from the intake duct 35 is sent into the heat treatment unit 20 via the air adjusting unit 30 and a part of the air in the heat treatment unit 20 flows out into the exhaust duct 22, whereby the heat insulating furnace 11. A part of the air circulating inside is ventilated. That is, while the hot air (air) circulates in the heat insulation furnace 11 to heat-treat the workpiece W, a part of the ventilation is performed at the same time. In some cases, the oxidative decomposition of the sublimate by the photocatalyst means 31 may not remove all the sublimate contained in the circulating air (oxidative decomposition), and the sublimate remaining in that case is ventilated by ventilation. It is for discharging | emitting from the inside of 11 and preventing the quality deterioration of the workpiece | work W by the said sublimate.

次に、本参考例に係る熱処理装置10の作用及び効果を説明する。 Next, the operation and effect of the heat treatment apparatus 10 according to this reference example will be described.

断熱炉11(空気調整部30)は、光触媒手段31と採光手段32とを有し、光触媒手段31は、前記採光手段32によって採光された光が照射され且つ循環する空気と接触する位置に配置されている。そのため、光触媒手段31が採光された光を照射されるだけで、断熱炉11内を循環する空気に含まれる昇華物を分解する。即ち、光触媒手段31は、採光手段32によって採光された光が照射されることで瞬時に触媒活性を示し、この状態で前記循環する空気と接触することで、この循環する空気に含まれる昇華物を分解する。   The heat insulation furnace 11 (air adjusting unit 30) includes a photocatalyst unit 31 and a daylighting unit 32, and the photocatalyst unit 31 is arranged at a position where the light collected by the daylighting unit 32 is irradiated and in contact with the circulating air. Has been. Therefore, the sublimate contained in the air circulating in the heat insulation furnace 11 is decomposed only by the photocatalyst means 31 being irradiated with the collected light. That is, the photocatalyst means 31 instantly exhibits catalytic activity when irradiated with the light collected by the daylighting means 32. In this state, the photocatalyst means 31 comes into contact with the circulating air, and the sublimate contained in the circulating air. Disassemble.

このように、光触媒手段31は、雰囲気の温度に依存することなく、光(本参考例においては、紫外線)を照射されるだけで瞬時に触媒活性を示す。そのため、熱触媒が十分な触媒活性を示す温度よりも低い温度で熱処理を行わなければならない場合でも、断熱炉11内を循環する空気に含まれる昇華物の分解が可能である。 As described above, the photocatalytic means 31 exhibits catalytic activity instantaneously only by being irradiated with light (ultraviolet rays in this reference example ) without depending on the temperature of the atmosphere. Therefore, even when the heat treatment must be performed at a temperature lower than the temperature at which the thermal catalyst exhibits sufficient catalytic activity, the sublimate contained in the air circulating in the heat insulating furnace 11 can be decomposed.

また、光触媒手段31における昇華物を分解する処理能力が小さくても、空気に含まれる昇華物は、断熱炉11内を空気と共に循環しつつ光触媒手段31を何度も通過するため、所望の量が分解される。   Further, even if the processing capacity for decomposing the sublimate in the photocatalyst means 31 is small, the sublimate contained in the air passes through the photocatalyst means 31 many times while circulating in the heat insulation furnace 11 with the air. Is disassembled.

また、本参考例において、採光手段32は、空気調整部30内に外部からの光を採光するよう、断熱炉11の空気調整部30側に設けられている。また、採光手段32によって空気調整部30内に採光された光(紫外線)に対し、仕切り壁13によって熱処理部20内は遮光されている。従って、外部から採光された光は、採光手段32によって空気調整部30内にだけ照射され、熱処理部20には、前記採光された光が入射しない。その結果、熱処理部20において、嫌光性のワーク(本参考例においては、紫外線に弱いワーク)Wを熱処理することができる。 Further, in the present reference example , the daylighting means 32 is provided on the air adjustment unit 30 side of the heat insulating furnace 11 so as to collect light from the outside in the air adjustment unit 30. Further, the inside of the heat treatment unit 20 is shielded by the partition wall 13 against the light (ultraviolet rays) collected in the air adjusting unit 30 by the daylighting means 32. Therefore, the light collected from the outside is irradiated only into the air adjusting unit 30 by the lighting unit 32, and the collected light is not incident on the heat treatment unit 20. As a result, in the heat treatment part 20, an anaerobic work (in this reference example , a work weak against ultraviolet rays) W can be heat treated.

また、装置本体12は、光を照射する光線照射手段Lを前記断熱炉の外部にさらに備え、この光照射手段Lは、採光手段32を介して光触媒手段31に光を照射できるように配置されている。そのため、一定光量の光が光触媒手段31に照射される。その結果、光触媒手段31は、当該熱処理装置10の周辺の光量に依存することなく、十分な触媒活性が行われ、昇華物に対する安定した所望の分解性能を発揮できる。   Further, the apparatus main body 12 further includes a light beam irradiation means L for irradiating light outside the heat insulation furnace, and this light irradiation means L is arranged so that light can be irradiated to the photocatalyst means 31 via the daylighting means 32. ing. Therefore, the photocatalytic means 31 is irradiated with a certain amount of light. As a result, the photocatalytic means 31 can perform sufficient catalytic activity without depending on the amount of light around the heat treatment apparatus 10 and can exhibit a desired desired decomposition performance with respect to the sublimate.

さらに、紫外線ランプLは、断熱炉11の外部に配置されればよいため、断熱炉11内の高温に耐えることができるような高価な耐熱性の機材である必要がなく、汎用機材でよい。そのため、熱処理装置10の製造コストの低減化が図られる。   Furthermore, since the ultraviolet lamp L only needs to be disposed outside the heat insulation furnace 11, it is not necessary to be an expensive heat-resistant equipment capable of withstanding the high temperature in the heat insulation furnace 11, and may be general-purpose equipment. Therefore, the manufacturing cost of the heat treatment apparatus 10 can be reduced.

また、特に、本参考例のように、特に紫外線のような特定の波長帯の光に対して触媒活性を示す光触媒手段31を用いた場合、紫外線ランプLのような特定の波長体の光を照射する照射手段Lを用いることで、効率よく昇華物の分解が行える。即ち、このような光源Lを用いることで、紫外線に応答する光触媒手段31は、触媒活性に必要な紫外線だけが十分に照射されるため、種々の波長帯を含む光を照射されるよりもより十分な触媒活性を示し、効率よく昇華物の分解が行える。 Further, in particular, when the photocatalytic means 31 that exhibits catalytic activity for light in a specific wavelength band such as ultraviolet rays is used as in this reference example , light of a specific wavelength body such as the ultraviolet lamp L is emitted. By using the irradiation means L for irradiation, the sublimate can be efficiently decomposed. That is, by using such a light source L, the photocatalyst means 31 that responds to ultraviolet rays is sufficiently irradiated with only ultraviolet rays necessary for catalytic activity, and therefore is more than irradiated with light including various wavelength bands. It exhibits sufficient catalytic activity and can efficiently decompose sublimates.

また、光触媒手段31は、板状体の表面に光触媒機能を有する構成であるため、光触媒機能を備えた表面を所望の方向に向けて断熱炉11内に容易に配置することができる。   Moreover, since the photocatalyst means 31 is a structure which has a photocatalyst function on the surface of a plate-shaped object, the surface provided with the photocatalyst function can be easily arrange | positioned in the heat insulation furnace 11 in a desired direction.

以下、他の参考例、並びに第一実施形態及び第二実施形態について順に説明するが、上述の参考例と同一の構成については同じ符号を用いて詳細な説明は省略し、異なる構成についてのみ詳細に説明する。また、作用及び効果についても同様に上述の参考例と異なるものについてのみ詳細に説明する。 Hereinafter, other reference examples, and the first embodiment and the second embodiment will be described in order, but the same reference numerals are used for the same configurations as the above-described reference examples, and detailed descriptions are omitted, and only different configurations are detailed. Explained. Similarly, only operations and effects different from the above-described reference example will be described in detail.

図2に示されるように、他の参考例に係る熱処理装置10Aは、採光手段32として、上述の参考例における耐熱ガラス32aを用いて、透過した光の照射範囲を広げるような凸レンズ32b又は凹レンズ32cに形成したものを備えている。即ち、断熱炉11の炉壁に形成(穿設)された開口を塞ぐように嵌め込まれた耐熱ガラス製の凸レンズ32b又は凹レンズ32cによって採光手段32が構成されている。 As shown in FIG. 2, the heat treatment apparatus 10A according to another reference example, as a lighting means 32, by using a heat-resistant glass 32a in the above reference example, the convex lens 32b, or concave, such as widening the irradiation range of the transmitted light What is formed in 32c is provided. That is, the daylighting means 32 is constituted by the convex lens 32b or the concave lens 32c made of heat-resistant glass fitted so as to close an opening formed (perforated) in the furnace wall of the heat insulating furnace 11.

凸レンズ32bは、図2(a)に示されるように、対向する位置に配置された光触媒手段31aの表面に対してその光軸cが直交し、且つ焦点距離が対向する光触媒手段31aの表面よりも手前となるような凸レンズである。より詳細には、光軸cが紫外線ランプLの照射方向Cと同一となり、焦点が、凸レンズ32bにおける空気調整部30側の面と光触媒手段31aの表面との中間位置よりも凸レンズ32b側に位置するようなレンズである。   As shown in FIG. 2 (a), the convex lens 32b is formed from the surface of the photocatalyst means 31a whose optical axis c is orthogonal to the surface of the photocatalyst means 31a disposed at the opposite position and whose focal distance is opposite. Is a convex lens in the foreground. More specifically, the optical axis c is the same as the irradiation direction C of the ultraviolet lamp L, and the focal point is positioned closer to the convex lens 32b than the intermediate position between the surface of the convex lens 32b on the air adjusting unit 30 side and the surface of the photocatalytic means 31a. It is a lens that does.

採光手段32がこのような凸レンズ32bで構成されることで、紫外線ランプLによって照射された紫外線(光)は、凸レンズ32bを透過する際に収束する方向に屈折し、凸レンズ32b透過後に、焦点で光軸cに一旦完全に収束したあと発散する。そして、前記紫外線は、光触媒手段31aの表面において、凸レンズ32bの光触媒手段31a表面における投影面積よりも広い範囲を照らす。そのため、空気調整部30に上述の参考例における光触媒手段31よりも大きな光触媒手段31aが配置されることで、光触媒手段における光に照らされる範囲が広がる。その結果、昇華物を分解できる範囲、即ち、光触媒手段の触媒活性を示す範囲が上述の参考例に比べて広がり、分解できる前記昇華物の量も増加する。 Since the daylighting means 32 is constituted by such a convex lens 32b, the ultraviolet light (light) irradiated by the ultraviolet lamp L is refracted in the direction of convergence when passing through the convex lens 32b, and after passing through the convex lens 32b, at the focal point. The light diverges after being completely converged on the optical axis c. The ultraviolet rays illuminate a range wider than the projected area on the surface of the photocatalyst means 31a of the convex lens 32b on the surface of the photocatalyst means 31a. Therefore, by arranging the photocatalyst means 31a larger than the photocatalyst means 31 in the above-described reference example in the air adjusting unit 30, the range illuminated by light in the photocatalyst means is expanded. As a result, the range in which the sublimate can be decomposed, that is, the range showing the catalytic activity of the photocatalytic means is wider than in the above-described reference example , and the amount of the sublimate that can be decomposed also increases.

凹レンズ32cは、図2(b)に示されるように、光軸c’が光触媒手段31aの表面と直交するようなレンズである。採光手段32が凹レンズ32cで構成されることで、紫外線ランプLによって照射された紫外線は、凹レンズ32cを通過する際に発散する方向に屈折し、光触媒手段31aの表面において、凹レンズ32cの光触媒手段31a表面における投影面積よりも広い範囲を照らしている。そのため、上記同様、空気調整部30に上述の参考例における光触媒31よりも大きな光触媒手段31aを配置することで、昇華物を分解できる範囲、即ち、光触媒手段の触媒活性を示す範囲が上述の参考例に比べて広がり、分解できる前記昇華物の量が増加する。 As shown in FIG. 2B, the concave lens 32c is a lens in which the optical axis c ′ is orthogonal to the surface of the photocatalytic means 31a. Since the daylighting means 32 is constituted by the concave lens 32c, the ultraviolet light irradiated by the ultraviolet lamp L is refracted in the direction of divergence when passing through the concave lens 32c, and on the surface of the photocatalytic means 31a, the photocatalytic means 31a of the concave lens 32c. It illuminates a wider area than the projected area on the surface. Therefore, the same, by arranging a large photocatalytic unit 31a than the photocatalyst 31 in the above Reference Example to the air adjustment section 30, the range capable of degrading sublimate, i.e., reference range described above showing the catalytic activity of a photocatalyst means Compared to the example , the amount of the sublimate that can be spread and decomposed increases.

図3(a)に示されるように、第実施形態に係る熱処理装置10Bは、照射された光(紫外線)を採光手段32と異なる位置(所定位置)へ反射するように構成される反射手段31bが配置され、この反射された光に照らされ且つ断熱炉11内を循環する空気と接触するような位置に光触媒手段31cが配置されている。 As shown in FIG. 3A, the heat treatment apparatus 10B according to the first embodiment is configured to reflect the irradiated light (ultraviolet light) to a position (predetermined position) different from the daylighting means 32. 31b is arranged, and the photocatalyst means 31c is arranged at a position that is illuminated by the reflected light and is in contact with the air circulating in the heat insulating furnace 11.

具体的には、反射手段31bは、鏡で構成されている。本実施形態においては、鏡31bは、略円錐形となるように形成されている。この鏡31bは、円錐の中心軸が紫外線ランプLの照射方向Cと同一となるように、採光手段32と対向する位置、即ち、断熱炉11内に設けられた仕切り壁13に配置されている。また、光触媒手段31cは、鏡31bによって反射された紫外線に照らされる位置、本実施形態においては、採光手段32(耐熱ガラス32a)が形成されている断熱炉11の炉壁に穿設された開口を囲むよう、空気調整部30内に配置されている。   Specifically, the reflecting means 31b is configured by a mirror. In the present embodiment, the mirror 31b is formed to have a substantially conical shape. The mirror 31b is disposed at a position facing the daylighting means 32, that is, on the partition wall 13 provided in the heat insulating furnace 11, so that the central axis of the cone is the same as the irradiation direction C of the ultraviolet lamp L. . Further, the photocatalyst means 31c is a position illuminated by the ultraviolet rays reflected by the mirror 31b, in this embodiment, an opening formed in the furnace wall of the heat insulating furnace 11 where the daylighting means 32 (heat-resistant glass 32a) is formed. Is arranged in the air adjusting unit 30 so as to surround the air.

このように構成されることで、光触媒手段31cは、紫外線ランプLから採光手段32を介して直接光を照射される位置に配置されなくてもよい。そのため、配置の自由度、即ち、熱処理装置10の設計の自由度が向上する。   With this configuration, the photocatalyst unit 31 c may not be disposed at a position where light is directly irradiated from the ultraviolet lamp L via the daylighting unit 32. Therefore, the degree of freedom of arrangement, that is, the degree of freedom of design of the heat treatment apparatus 10 is improved.

この場合、反射手段31bに光触媒機能を有するもの、具体的には、光触媒付鏡31bを採用すれば、前記光触媒手段31cと光触媒付鏡31bとが紫外線を受けて昇華物を分解できるため、分解される昇華物の量がより増加する。   In this case, if the reflecting means 31b has a photocatalytic function, specifically, if the photocatalyst-equipped mirror 31b is employed, the photocatalyst means 31c and the photocatalyst-equipped mirror 31b receive ultraviolet rays and can decompose sublimates. The amount of sublimate that is played increases.

即ち、光触媒付鏡(第一光触媒手段)31b及び前記光触媒手段(第二光触媒手段)31cが配置されることで、採光手段32を経た紫外線に照射される第一光触媒手段31bと、この第一光触媒手段31bによって反射された光に照らされる第二光触媒手段31cとが存在するため、光に照らされる光触媒手段の面積がより広くなるため、上述の参考例と比べ、分解される昇華物の量がより増加する。 That is, the first photocatalyst means 31b that is irradiated with the ultraviolet rays that have passed through the daylighting means 32, and the first photocatalyst means (first photocatalyst means) 31b and the photocatalyst means (second photocatalyst means) 31c are disposed. Since there is the second photocatalyst means 31c illuminated by the light reflected by the photocatalyst means 31b, the area of the photocatalyst means illuminated by the light becomes larger, so the amount of sublimate decomposed compared to the above reference example Increases more.

尚、本実施形態において、鏡(又は第一光触媒手段)31bは、略円錐形となるように形成されているが、これに限定される必要もなく、多角錐形状等であってもよい。さらに、図3(b)に示されるように、平板状の鏡31b’を紫外線ランプLの照射方向Cに対して、その表面が直交しないように(本実施形態においては、鏡31b’の表面と紫外線ランプLの照射方向Cとのなす角が45°となるように)配置し、この鏡31b’によって反射された紫外線に照らされる位置に、光触媒手段31c’を配置してもよい。このとき、光触媒手段31c’の形状は、平板状の鏡31b’の反射光に対応するような形に形成される。このようにすることでも、光触媒手段31c’の配置の自由度が向上する。   In the present embodiment, the mirror (or first photocatalyst means) 31b is formed to have a substantially conical shape, but is not limited to this, and may have a polygonal pyramid shape or the like. Further, as shown in FIG. 3B, the surface of the flat mirror 31b ′ is not perpendicular to the irradiation direction C of the ultraviolet lamp L (in this embodiment, the surface of the mirror 31b ′). And the irradiation direction C of the ultraviolet lamp L may be arranged to be 45 °), and the photocatalytic means 31c ′ may be arranged at a position illuminated by the ultraviolet rays reflected by the mirror 31b ′. At this time, the photocatalyst means 31c 'is formed in a shape corresponding to the reflected light of the flat mirror 31b'. This also improves the degree of freedom of arrangement of the photocatalytic means 31c '.

また、鏡31b’を光触媒付鏡とすることで、上記同様、上述の参考例と比べ、紫外線に照らされる光触媒手段の面積がより増加するため、分解される昇華物の量もより増加する。 Further, by using the mirror 31b ′ as a mirror with a photocatalyst, the area of the photocatalyst means illuminated with ultraviolet rays is further increased as compared with the above-described reference example , so that the amount of sublimates to be decomposed is also increased.

図4に示されるように、他の参考例に係る熱処理装置10Cは、採光手段32として、一端が空気調整部30内で他端が断熱炉11の外部となるように配設された耐熱性を有する導光管(本参考例においては、光ファイバ)32dで構成されたものを備えている。より詳細には、光ファイバ32dの一端は、空気調整部30に配置された光触媒手段31と対向し、採光した光(紫外線)の照射方向C’が光触媒手段31の表面と直交するように配置される一方、他端は、断熱炉11の外部に位置し、本参考例においては、紫外線ランプLと対向するように配置されている。即ち、光ファイバ32dは、断熱炉11の炉壁を貫通するように配設されている。このような簡単な構成によっても、外部(本参考例においては外部に配置された紫外線ランプL)から空気調整部30内に光(紫外線)を採光することが可能となる。 As shown in FIG. 4, the heat treatment apparatus 10 </ b> C according to another reference example is provided with heat resistance as the daylighting means 32 so that one end is in the air adjusting unit 30 and the other end is outside the heat insulating furnace 11. A light guide tube (in this reference example , an optical fiber) 32d. More specifically, one end of the optical fiber 32d is opposed to the photocatalyst unit 31 disposed in the air adjusting unit 30, and is arranged so that the irradiation direction C ′ of the collected light (ultraviolet light) is orthogonal to the surface of the photocatalyst unit 31. On the other hand, the other end is located outside the heat insulating furnace 11 and is disposed so as to face the ultraviolet lamp L in this reference example . That is, the optical fiber 32d is disposed so as to penetrate the furnace wall of the heat insulating furnace 11. Even with such a simple configuration, it is possible to extract light (ultraviolet rays) from the outside (ultraviolet lamp L arranged outside in the present reference example ) into the air adjusting unit 30.

さらに、光ファイバ32dは、他端と一端とが離れていても他端から一端まで光を導光することができ、紫外線ランプLを断熱炉11から離れた位置に配置することができるため、熱処理装置10Cの設計の自由度を向上させることができる。また、光ファイバ32dは、容易に入手することができる。   Furthermore, since the optical fiber 32d can guide light from the other end to the one end even if the other end and one end are separated, the ultraviolet lamp L can be disposed at a position away from the heat insulating furnace 11, The degree of freedom in designing the heat treatment apparatus 10C can be improved. The optical fiber 32d can be easily obtained.

尚、本参考例において、導光管32dは、光ファイバで構成されているが、光を入射端から出射端まで導くことができれば、例えば、内周面に鏡が設けられた筒状の導光管等であってもよい。 In this reference example , the light guide tube 32d is formed of an optical fiber. However, if the light can be guided from the incident end to the output end, for example, a cylindrical guide having a mirror on the inner peripheral surface is provided. A light tube or the like may be used.

また、本参考例においては、光ファイバ32dの一端に、さらに凹レンズ32c’(又は凸レンズ32b’)が設けられている(図4(a)(又は図4(b))参照)。この凹レンズ32c’(又は凸レンズ32b’)は、光ファイバ32dの照射範囲を広げるものである。即ち、光ファイバ32は、紫外線ランプLからの紫外線を他端(入射端)から採光し、一端(出射端)から光触媒手段31を照らすように前記採光した紫外線を照射する。しかし、光ファイバ32自体が細い線状の耐熱ガラスで構成されているため、他端から光触媒手段31に対して紫外線を照射する範囲は狭い。そのため、他の参考例と同様に、照射範囲を広げるべく、一端に凹レンズ32c’(又は凸レンズ32b’)が設けられる。 In this reference example , a concave lens 32c ′ (or a convex lens 32b ′) is further provided at one end of the optical fiber 32d (see FIG. 4A (or FIG. 4B)). The concave lens 32c ′ (or convex lens 32b ′) widens the irradiation range of the optical fiber 32d. That is, the optical fiber 32 radiates the ultraviolet rays from the ultraviolet lamp L from the other end (incident end) and irradiates the collected ultraviolet rays so as to illuminate the photocatalyst means 31 from one end (exit end). However, since the optical fiber 32 itself is made of a thin linear heat-resistant glass, the range in which the photocatalyst means 31 is irradiated with ultraviolet rays from the other end is narrow. Therefore, similarly to the other reference examples , a concave lens 32c ′ (or a convex lens 32b ′) is provided at one end to widen the irradiation range.

従って、上述の参考例同様に、凹レンズ32c’は、この凹レンズ32c’を通過した紫外線が発散する方向に屈折し、凹レンズ32c’の光触媒手段31表面における投影面積よりも広い範囲を照らすように位置している。また、凸レンズ32b’は、紫外線がこの凸レンズ32b’を通過後、焦点で一端完全に収束したあと発散し、光触媒手段31の表面において、凸レンズ32b’の光触媒手段31表面における投影面積よりも広い範囲を照らすように位置している。 Accordingly, as in the above-described reference example , the concave lens 32c ′ is refracted in the direction in which the ultraviolet rays that have passed through the concave lens 32c ′ diverge, and is positioned so as to illuminate a wider range than the projected area of the concave lens 32c ′ on the surface of the photocatalyst means 31. is doing. Further, the convex lens 32b ′ diverges after the ultraviolet rays pass through the convex lens 32b ′, after being completely converged at the focal point, and then diverges on the surface of the photocatalyst means 31 and wider than the projected area of the convex lens 32b ′ on the surface of the photocatalyst means 31. Located to illuminate.

図5に示されるように、第実施形態に係る熱処理装置10Dは、吸気ダクト35a内に空気調整部30内に紫外線を照射できるように紫外線ランプLを備えている。そして、吸気ダクト35aの一端(図5において右側端)には、空気調整部30内に外気を供給するための外気送風機50が配置されている。 As shown in FIG. 5, the heat treatment apparatus 10 </ b> D according to the second embodiment includes an ultraviolet lamp L so that the air conditioning unit 30 can be irradiated with ultraviolet rays in the intake duct 35 a. An outside air blower 50 for supplying outside air into the air adjusting unit 30 is disposed at one end (the right end in FIG. 5) of the intake duct 35a.

より詳細には、吸気ダクト35aは、ダクト内部と空気調整部30内とが連通し、内径を紫外線ランプLが配置できる大きさに設定されている。また、吸気ダクト35aは、他端の開口が光触媒手段31と対向するように仕切り壁13と対向する断熱炉11の炉壁に接続されている。このように吸気ダクト35aが断熱炉11(空気調整部30)に接続されることで、内部に配置された紫外線ランプLは、光触媒手段31に紫外線を直接照射することができる。   More specifically, the intake duct 35a communicates with the inside of the duct and the inside of the air adjusting unit 30, and the inner diameter is set to a size that allows the ultraviolet lamp L to be disposed. Further, the intake duct 35 a is connected to the furnace wall of the heat insulating furnace 11 facing the partition wall 13 so that the opening at the other end faces the photocatalyst means 31. Thus, by connecting the intake duct 35a to the heat insulation furnace 11 (the air adjusting unit 30), the ultraviolet lamp L arranged inside can directly irradiate the photocatalyst means 31 with ultraviolet rays.

従って、耐熱ガラス32a等を介することなく、直接、紫外線が光触媒手段31に照射されるため、効率よく到達する。これは、紫外線が耐熱ガラス32a等を透過する際に、この耐熱ガラス32a等の透過率に伴って光量が低減するからである。そのため、光触媒手段31は、耐熱ガラス32a等を介して紫外線を照射されるよりも十分に触媒活性を示し、より多くの昇華物を分解する。また、吸気ダクト35a内に紫外線ランプLが配置されていることから、内部を流通する外気(加熱される前の空気)によって紫外線ランプLの冷却が可能となる。本実施形態において、光を照射する手段は、紫外線ランプLが用いられているが、これに限定される必要はなく、各種光源が用いられてもよい。   Therefore, since the photocatalyst means 31 is directly irradiated without passing through the heat-resistant glass 32a or the like, it efficiently reaches. This is because when the ultraviolet light passes through the heat-resistant glass 32a or the like, the amount of light decreases with the transmittance of the heat-resistant glass 32a or the like. Therefore, the photocatalytic means 31 exhibits a catalytic activity sufficiently higher than that irradiated with ultraviolet rays through the heat-resistant glass 32a and the like, and decomposes more sublimated substances. Further, since the ultraviolet lamp L is arranged in the intake duct 35a, the ultraviolet lamp L can be cooled by the outside air (air before being heated) flowing through the inside. In the present embodiment, the ultraviolet lamp L is used as the means for irradiating light, but it is not necessary to be limited to this, and various light sources may be used.

尚、本発明に係る熱処理装置は、上記参考例、並びに第一及び第二実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 The heat treatment apparatus according to the present invention is not limited to the above-described reference example and the first and second embodiments, and various modifications can be made without departing from the scope of the present invention. .

例えば、上記参考例及び実施形態においては、紫外線ランプ(光照射手段)Lによって、紫外線(光)が採光手段32に照射されることで、採光手段32を透過して(介して)光触媒手段31を照らしているが、これに限定される必要はない。即ち、図6に示されるように、紫外線(光)照射手段Lを備えることなく、太陽光や蛍光灯等の熱処理装置10の周囲の紫外線(光)が採光されるようにしてもよい。このようにしても、光触媒手段31が紫外線(光)に照らされ、触媒活性を示し、昇華物の分解を行う。 For example, in the above reference examples and embodiments, the ultraviolet light (light) is irradiated to the daylighting means 32 by the ultraviolet lamp (light irradiation means) L, so that the photocatalyst means 31 is transmitted through (via) the daylighting means 32. However, the present invention is not limited to this. That is, as shown in FIG. 6, the ultraviolet (light) around the heat treatment apparatus 10 such as sunlight or a fluorescent lamp may be collected without the ultraviolet (light) irradiation means L. Even in this case, the photocatalytic means 31 is illuminated with ultraviolet rays (light), exhibits catalytic activity, and decomposes the sublimate.

また、上記参考例及び実施形態においては、光触媒手段31は板状体で構成されているが、これに限定される必要もない。即ち、図7に示されるように、光触媒手段が綿状光触媒手段(綿状体)50で構成されてもよく、また、メッシュ状光触媒手段(メッシュ状体)50’で構成されてもよい。詳細には、綿状光触媒手段50は、綿状体の表面に光触媒が担持されるように形成されている。また、メッシュ状光触媒手段50’は、メッシュ状体本体の表面に光触媒が担持されるように形成されている。このような形状の光触媒手段50,50’とすることで、光触媒反応を示す表面の面積が増加し、それに伴って循環する空気との接触面積が増加する。また、前記循環する空気が光触媒手段50,50’内部を通過する際、前記内部に乱流が発生して前記循環する空気と前記表面とが接する時間や回数が増加する。そのため、分解される昇華物の量が増加する。 In the reference examples and embodiments described above, the photocatalyst means 31 is formed of a plate-like body, but is not necessarily limited to this. That is, as shown in FIG. 7, the photocatalyst means may be constituted by a cotton-like photocatalyst means (cotton-like body) 50, or may be constituted by a mesh-like photocatalyst means (mesh-like body) 50 ′. Specifically, the cotton-like photocatalyst means 50 is formed so that the photocatalyst is supported on the surface of the cotton-like body. The mesh photocatalyst means 50 'is formed so that the photocatalyst is supported on the surface of the mesh body. By using the photocatalyst means 50 and 50 ′ having such a shape, the surface area showing the photocatalytic reaction increases, and the contact area with the circulating air increases accordingly. Further, when the circulating air passes through the photocatalyst means 50, 50 ', turbulent flow is generated in the interior, and the time and number of times that the circulating air and the surface come into contact with each other increase. Therefore, the amount of sublimates to be decomposed increases.

尚、メッシュ状光触媒手段50’は、所定間隔をおいて複数層となるように配置することが好ましい(図7(b)参照)。このようにすることで、メッシュ状光触媒手段50’内部を通過する循環空気の乱流がより発生し易くなる。   The mesh photocatalyst means 50 ′ is preferably arranged in a plurality of layers at a predetermined interval (see FIG. 7B). By doing so, the turbulent flow of the circulating air passing through the inside of the mesh-like photocatalyst means 50 ′ is more likely to occur.

また、図8に示されるように、複数の紫外線ランプL,L,…と対応する耐熱ガラス32a,32a,…(採光手段32,32,…)を設けることで、異なる方向から綿状光触媒手段50(又はメッシュ状光触媒手段50’)に光を照射するように構成されてもよい。このように構成することで、入り組んだ形状となっている光触媒反応を示す表面に対し、光が照射されない部位、即ち、影になる部位が減少若しくは無くなるため、光触媒反応を示す面積が広くなり、効率よく昇華物が分解される。   Further, as shown in FIG. 8, by providing heat resistant glasses 32a, 32a,... (Lighting means 32, 32,...) Corresponding to a plurality of ultraviolet lamps L, L,. 50 (or mesh photocatalyst means 50 ') may be configured to irradiate light. By comprising in this way, since the part which is not irradiated with light with respect to the surface which shows the photocatalytic reaction which is in an intricate shape, that is, the part which becomes a shadow decreases or disappears, the area which shows a photocatalytic reaction becomes wide, Sublimates are efficiently decomposed.

また、光触媒付鏡(第一光触媒手段)31bや鏡を用いることで、上記同様に光触媒手段に対して複数の方向から光を照射できるように構成し、上記同様の効果を得るようにしてもよい(図8(b)参照)。   Further, by using a mirror with a photocatalyst (first photocatalyst means) 31b or a mirror, the photocatalyst means can be irradiated with light from a plurality of directions as described above, and the same effect as described above can be obtained. Good (see FIG. 8B).

また、紫外線ランプLの光軸の向き、照射する光の拡散度、光触媒付鏡等の光反射手段における光の反射方向等を変更可能に構成することで、光触媒手段の種類や形状等を変更した際に、光触媒反応を示す反応面の大きさが最も広くなるように、又は最も触媒活性を示す状態となるように調節可能としてもよい。   In addition, the type and shape of the photocatalyst means can be changed by changing the direction of the optical axis of the ultraviolet lamp L, the diffusivity of the irradiated light, and the light reflection direction in the light reflection means such as a mirror with a photocatalyst. In this case, the reaction surface showing the photocatalytic reaction may be adjusted so that the size of the reaction surface becomes the largest or the state showing the most catalytic activity.

さらに、上記参考例及び実施形態においては、紫外線ランプ(光照射手段)Lが断熱炉11の外部に配置されているが、これに限定される必要もない。即ち、光触媒手段31に光を照射できる位置であれば、断熱炉11内に配置されてもよい。この場合、断熱炉11内に配置された光照射手段Lによって、光触媒手段31に光が照射されるため、採光手段32が設けられなくてもよい。 Furthermore, in the above reference examples and embodiments, the ultraviolet lamp (light irradiation means) L is arranged outside the heat insulation furnace 11, but it is not necessary to be limited to this. That is, it may be disposed in the heat insulating furnace 11 as long as it can irradiate the photocatalytic means 31 with light. In this case, since the photocatalyst means 31 is irradiated with light by the light irradiation means L disposed in the heat insulation furnace 11, the daylighting means 32 may not be provided.

参考例に係る熱処理装置の概略構成図を示す。The schematic block diagram of the heat processing apparatus which concerns on a reference example is shown. 参考例に係る熱処理装置であって、(a)は、採光手段が凸レンズで構成されている熱処理装置の概略構成図を示し、(b)は、採光手段が凹レンズで構成されている熱処理装置の概略構成図を示している。 It is a heat processing apparatus which concerns on a reference example , Comprising: (a) shows the schematic block diagram of the heat processing apparatus with which the lighting means is comprised with the convex lens, (b) is the heat treatment apparatus with which the lighting means is comprised with the concave lens. The schematic block diagram is shown. 実施形態に係る熱処理装置であって、(a)は、第一光触媒手段が略円錐形に形成されている熱処理装置の概略構成図を示し、(b)は、第一光触媒手段が平板状に形成され、傾斜配置された熱処理装置の概略構成図を示す。FIG. 1 is a heat treatment apparatus according to the first embodiment, wherein (a) shows a schematic configuration diagram of a heat treatment apparatus in which the first photocatalyst means is formed in a substantially conical shape, and (b) shows the first photocatalyst means being a flat plate. The schematic block diagram of the heat processing apparatus formed in the shape and inclined is shown. 参考例に係る熱処理装置であって、(a)は、光ファイバの先端に凹レンズが設けられた熱処理装置の概略構成図を示し、(b)は、光ファイバの先端に凸レンズが設けられた熱処理装置の概略構成図を示す。 It is the heat processing apparatus which concerns on a reference example , (a) shows the schematic block diagram of the heat processing apparatus with which the concave lens was provided in the front-end | tip of an optical fiber, (b) is the heat processing with which the convex lens was provided in the front-end | tip of an optical fiber The schematic block diagram of an apparatus is shown. 実施形態に係る熱処理装置の概略構成図を示す。The schematic block diagram of the heat processing apparatus which concerns on 2nd embodiment is shown. 参考例に係る熱処理装置の概略構成図を示す。The schematic block diagram of the heat processing apparatus which concerns on a reference example is shown. 参考例に係る熱処理装置であって、(a)は、光触媒手段が綿状体で構成されている熱処理装置の部分概略構成図を示し、(b)は、光触媒手段が複数層のメッシュ状体で構成されている熱処理装置の部分概略構成図を示す。 It is the heat processing apparatus which concerns on a reference example , Comprising: (a) shows the partial schematic block diagram of the heat processing apparatus with which the photocatalyst means is comprised with the cotton-like body, (b) is a mesh-like body with a photocatalyst means in multiple layers The partial schematic block diagram of the heat processing apparatus comprised by is shown. 他実施形態に係る熱処理装置であって、(a)は、複数の方向から光触媒手段に対して光を照射できるよう複数の光照射手段及びこれに対応した採光手段を備える熱処理装置の部分概略構成図を示し、(b)は、光反射手段を用いて複数の方向から光触媒手段に対して光を照射できるように構成された熱処理装置の部分概略構成図を示す。It is the heat processing apparatus which concerns on other embodiment, Comprising: (a) is a partial schematic structure of the heat processing apparatus provided with several light irradiation means and the corresponding daylighting means so that light can be irradiated with respect to a photocatalyst means from several directions FIG. 2B is a partial schematic configuration diagram of a heat treatment apparatus configured to be able to irradiate light to the photocatalyst means from a plurality of directions using the light reflection means.

10 熱処理装置
11 断熱炉
20 熱処理部
31 光触媒手段
30 空気調整部
32 採光手段
35 導入管(吸気ダクト)
W 被処理物(ワーク)
DESCRIPTION OF SYMBOLS 10 Heat processing apparatus 11 Heat insulation furnace 20 Heat processing part 31 Photocatalyst means 30 Air adjustment part 32 Daylighting means 35 Introducing pipe (intake duct)
W Workpiece (work)

Claims (14)

被処理物を熱処理する熱処理部と空気を加熱して循環させる空気調整部とで構成される断熱炉を備え、
この断熱炉は、前記被処理物を熱処理する際に発生する昇華物を分解可能な光触媒手段と、外部からの光を前記空気調整部内に採光する採光手段と、前記断熱炉内に配置されて前記採光手段によって採光された光を前記空気調整部内の所定位置に向けて反射する反射手段とを有し、
前記光触媒手段は、少なくとも前記反射手段によって反射された光が照射され且つ前記循環する空気と接触する位置に配置されることを特徴とする熱処理装置。
A heat insulating furnace comprising a heat treatment part for heat-treating the workpiece and an air adjustment part for heating and circulating the air;
The adiabatic reactor, the a degradable photocatalyst means a sublimate generated during the heat treatment of the treatment object is disposed and lighting means for lighting the light from the outside into the air adjusting unit, the adiabatic furnace And reflecting means for reflecting the light collected by the daylighting unit toward a predetermined position in the air adjusting unit ,
The heat treatment apparatus, wherein the photocatalyst means is disposed at a position where at least the light reflected by the reflection means is irradiated and in contact with the circulating air.
前記採光手段は、前記断熱炉の空気調整部側に設けられることを特徴とする請求項1に記載の熱処理装置。 The lighting means, a heat treatment apparatus according to claim 1, characterized in that provided in the air adjusting portion side of the front Symbol adiabatic reactor. 光を照射する光照射手段を前記断熱炉の外部にさらに備え、前記光照射手段は、前記採光手段を介して少なくとも前記反射手段に光を照射できるように配置されることを特徴とする請求項1又は2に記載の熱処理装置。 The light irradiation morphism means for irradiating light further provided outside of the adiabatic reactor, the light irradiation unit, according to claim, characterized in that it is arranged so that it can irradiate the light to at least said reflecting means through said lighting means The heat treatment apparatus according to 1 or 2. 前記採光手段は、前記断熱炉内と外部とを連通するように穿設された開口に嵌め込まれる耐熱ガラスで構成されることを特徴とする請求項1乃至3のいずれかに記載の熱処理装置。   The heat treatment apparatus according to any one of claims 1 to 3, wherein the daylighting means is made of heat-resistant glass fitted in an opening formed so as to communicate the inside of the heat insulation furnace with the outside. 前記耐熱ガラスは、前記採光した光が照射される範囲を広げるようなレンズに形成されることを特徴とする請求項4に記載の熱処理装置。   5. The heat treatment apparatus according to claim 4, wherein the heat-resistant glass is formed in a lens that widens a range in which the collected light is irradiated. 前記採光手段は、一端が前記断熱炉内で他端が外部となるように配設された耐熱性を有する導光管で構成されることを特徴とする請求項1乃至3のいずれかに記載の熱処理装置。   The said daylighting means is comprised by the light guide tube which has a heat resistance arrange | positioned so that one end may be in the said heat insulation furnace and the other end may become the exterior. Heat treatment equipment. 前記導光管の一端にレンズが設けられ、該レンズは、前記導光管の他端で採光した光が照射される範囲を広げるように構成されることを特徴とする請求項6に記載の熱処理装置。   The lens according to claim 6, wherein a lens is provided at one end of the light guide tube, and the lens is configured to widen a range irradiated with light collected at the other end of the light guide tube. Heat treatment equipment. 前記導光管は、光ファイバで構成されることを特徴とする請求項6又は7に記載の熱処理装置。   The heat treatment apparatus according to claim 6 or 7, wherein the light guide tube is formed of an optical fiber. 被処理物を熱処理する熱処理部と空気を加熱して循環させる空気調整部とで構成される断熱炉を備え、
この断熱炉は、前記被処理物を熱処理する際に発生する昇華物を分解可能な光触媒手段と光を照射する光照射手段とを有し、
前記空気調整部には、断熱炉外から空気を導入する導入管が接続され、前記光照射手段は、前記空気調整部内に光を照射するように前記導入管内に配置され、前記光触媒手段は、前記光照射手段によって光が照射され且つ前記循環する空気と接触する位置に配置されることを特徴とする熱処理装置。
A heat insulating furnace comprising a heat treatment part for heat-treating the workpiece and an air adjustment part for heating and circulating the air;
This heat insulation furnace has a photocatalyst means capable of decomposing a sublimate generated when the object to be heat-treated and a light irradiation means for irradiating light,
An introduction pipe for introducing air from outside the heat insulation furnace is connected to the air adjustment section, the light irradiation means is arranged in the introduction pipe so as to irradiate light into the air adjustment section, and the photocatalytic means is A heat treatment apparatus, wherein light is irradiated by the light irradiation means and disposed at a position in contact with the circulating air.
照射された光を所定位置に配置される光触媒手段に向けて反射する反射手段を前記断熱炉内にさらに備えることを特徴とする請求項に記載の熱処理装置。 The heat treatment apparatus according to claim 9 , further comprising a reflection unit that reflects the irradiated light toward the photocatalyst unit disposed at a predetermined position in the heat insulating furnace. 前記反射手段は、光触媒機能も有することを特徴とする請求項1乃至8、10のいずれかに記載の熱処理装置。 It said reflecting means, the heat treatment apparatus according to any one of claims 1 to 8 and 10, characterized in that it has also photocatalytic function. 前記光触媒手段は、板状体の表面に光触媒機能を有することを特徴とする請求項1乃至11のいずれかに記載の熱処理装置。 The heat treatment apparatus according to any one of claims 1 to 11 , wherein the photocatalytic means has a photocatalytic function on a surface of a plate-like body. 前記光触媒手段は、綿状体又はメッシュ状体の表面に光触媒が担持された構成を有し、前記循環する空気がその内部を通過するように配置されることを特徴とする請求項3又は9に記載の熱処理装置。 The photocatalyst means has a configuration in which a photocatalyst on the surface of the cotton-like body or a mesh-like body is carried, the air circulation, characterized in that it is arranged to pass through the inside according to claim 3 or 9 The heat processing apparatus as described in. 前記光照射手段は複数配置され、これら複数の光照射手段は、異なる方向から前記光触媒手段に光を照射するようにそれぞれ配置されることを特徴とする請求項13に記載の熱処理装置。 The heat treatment apparatus according to claim 13 , wherein a plurality of the light irradiation means are arranged, and the plurality of light irradiation means are arranged so as to irradiate the photocatalyst means with light from different directions.
JP2007155064A 2007-06-12 2007-06-12 Heat treatment equipment Expired - Fee Related JP4589943B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007155064A JP4589943B2 (en) 2007-06-12 2007-06-12 Heat treatment equipment
TW097121407A TWI418757B (en) 2007-06-12 2008-06-09 Heat treatment device
KR1020080053983A KR20080109627A (en) 2007-06-12 2008-06-10 Heat treatment apparatus
CN2008101115929A CN101324404B (en) 2007-06-12 2008-06-10 Heat processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007155064A JP4589943B2 (en) 2007-06-12 2007-06-12 Heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2008309354A JP2008309354A (en) 2008-12-25
JP4589943B2 true JP4589943B2 (en) 2010-12-01

Family

ID=40188036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007155064A Expired - Fee Related JP4589943B2 (en) 2007-06-12 2007-06-12 Heat treatment equipment

Country Status (4)

Country Link
JP (1) JP4589943B2 (en)
KR (1) KR20080109627A (en)
CN (1) CN101324404B (en)
TW (1) TWI418757B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019005777A1 (en) * 2017-06-27 2019-01-03 Syzygy Plasmonics Inc. Photocatalytic reactor cell
US11779898B2 (en) 2017-06-27 2023-10-10 Syzygy Plasmonics Inc. Photocatalytic reactor system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074457A (en) * 2010-11-02 2011-05-25 吴江巨丰电子有限公司 Oven for manufacturing integrated circuit (IC)
KR101317849B1 (en) * 2011-12-01 2013-10-15 오성엘에스티(주) in-line type baking appatatus having plasma treatment part
CN103969966B (en) * 2014-05-15 2015-04-15 京东方科技集团股份有限公司 Method for removing photoresist
JP6855687B2 (en) * 2015-07-29 2021-04-07 東京エレクトロン株式会社 Substrate processing equipment, substrate processing method, maintenance method of substrate processing equipment, and storage medium
JP2017058087A (en) * 2015-09-17 2017-03-23 本田技研工業株式会社 Dryer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285623A (en) * 1998-02-02 1999-10-19 Ebara Corp Method and device for purifying gas
JP2001338853A (en) * 2000-03-24 2001-12-07 Ebara Corp Semiconductor manufacturing method
JP2004251534A (en) * 2003-02-20 2004-09-09 Koyo Thermo System Kk Heat treatment device
JP2005071632A (en) * 2003-08-25 2005-03-17 Fujitsu Hitachi Plasma Display Ltd Method and device for manufacturing plasma display panel
JP2006017357A (en) * 2004-06-30 2006-01-19 Espec Corp Heat treatment device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285623A (en) * 1998-02-02 1999-10-19 Ebara Corp Method and device for purifying gas
JP2001338853A (en) * 2000-03-24 2001-12-07 Ebara Corp Semiconductor manufacturing method
JP2004251534A (en) * 2003-02-20 2004-09-09 Koyo Thermo System Kk Heat treatment device
JP2005071632A (en) * 2003-08-25 2005-03-17 Fujitsu Hitachi Plasma Display Ltd Method and device for manufacturing plasma display panel
JP2006017357A (en) * 2004-06-30 2006-01-19 Espec Corp Heat treatment device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019005777A1 (en) * 2017-06-27 2019-01-03 Syzygy Plasmonics Inc. Photocatalytic reactor cell
US11779898B2 (en) 2017-06-27 2023-10-10 Syzygy Plasmonics Inc. Photocatalytic reactor system
IL271702B1 (en) * 2017-06-27 2024-01-01 Syzygy Plasmonics Inc Photocatalytic reactor cell
US11883810B2 (en) 2017-06-27 2024-01-30 Syzygy Plasmonics Inc. Photocatalytic reactor cell
US11890606B2 (en) 2017-06-27 2024-02-06 Syzygy Plasmonics Inc. Photocatalytic reactor having multiple photocatalytic reactor cells
IL271702B2 (en) * 2017-06-27 2024-05-01 Syzygy Plasmonics Inc Photocatalytic reactor cell

Also Published As

Publication number Publication date
JP2008309354A (en) 2008-12-25
TW200907271A (en) 2009-02-16
TWI418757B (en) 2013-12-11
KR20080109627A (en) 2008-12-17
CN101324404B (en) 2011-12-07
CN101324404A (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP4589943B2 (en) Heat treatment equipment
JP6739347B2 (en) System and method for transverse pumping of a laser-sustained plasma
US20150290353A1 (en) Photocatalytic air treatment system and method
EP0798038B1 (en) Ultraviolet irradiation device
KR101380553B1 (en) Heat treatment apparatus
KR20110030455A (en) Compact uv irradiation module
JP5169106B2 (en) Light irradiation type heat treatment equipment
JP2008117892A (en) Semiconductor manufacturing device and manufacturing method of semiconductor device
JP4102862B2 (en) Waste carbonization system
EP1376016B1 (en) Electric heating element
JPH0231131A (en) Method of industrial analysis of coal and infrared heating oven
JP2008130302A (en) Light irradiation device
JP2000136961A (en) Optical apparatus provided with radiation detector
JP4126892B2 (en) Light irradiation device
KR101578747B1 (en) Apparatus of generating infra-red for heat treatment of microporous membrane
JPH07283096A (en) Method and system for processing semiconductor substrate
JP2006332338A (en) Heat treatment apparatus
JP2015103545A (en) Light source device, and desmear treatment device
JP5904063B2 (en) Gas activation device and nitrogen oxide treatment device
IT202100012725A1 (en) Device for purifying the air present in an environment
JP2006228813A (en) Radical formation apparatus, and processor
JP2010177239A (en) Semiconductor wafer treatment apparatus
JP5516239B2 (en) Light source device
JP2000065721A (en) Analyzing device
JP2010199045A (en) Ultraviolet irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100910

R150 Certificate of patent or registration of utility model

Ref document number: 4589943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees