JPH0231131A - Method of industrial analysis of coal and infrared heating oven - Google Patents

Method of industrial analysis of coal and infrared heating oven

Info

Publication number
JPH0231131A
JPH0231131A JP17924288A JP17924288A JPH0231131A JP H0231131 A JPH0231131 A JP H0231131A JP 17924288 A JP17924288 A JP 17924288A JP 17924288 A JP17924288 A JP 17924288A JP H0231131 A JPH0231131 A JP H0231131A
Authority
JP
Japan
Prior art keywords
sample
curved surface
crucible
infrared
parabola
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17924288A
Other languages
Japanese (ja)
Inventor
Yoshihiro Takada
義博 高田
Takeki Noguchi
武揮 野口
Shuichi Tatsuta
立田 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Hokuriku Electric Power Co
RIGAKU KEISOKU KK
Original Assignee
Chubu Electric Power Co Inc
Hokuriku Electric Power Co
RIGAKU KEISOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Hokuriku Electric Power Co, RIGAKU KEISOKU KK filed Critical Chubu Electric Power Co Inc
Priority to JP17924288A priority Critical patent/JPH0231131A/en
Publication of JPH0231131A publication Critical patent/JPH0231131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To heat a sample rapidly and uniformly the reflecting the infrared rays from an infrared heater by a reflecting surface formed from a rotary curved surface and irradiating the whole of a crucible with infrared rays. CONSTITUTION:Finely divided coal adjusted to a constant humidity state is received in a crucible 50 to be placed on a sample stand 62 and an upper oven body 10 is placed on a lower oven body 20. Next, the coal sample is heated by an infrared heater 30 to evaporate moisture and the wt. reduction quantity thereof regarded as the water of the sample is measured. Subsequently, the sample is heated in a nitrogen gas atmosphere in the same way and the temp. at this time is held to evaporate volatile components and the wt. reduction quantity regarded as the volatile components of the sample is measured. Next, the sample is returned to an oxygen gas atmosphere to keep the temp. and fixed carbon is burnt while the residual quantity is measured to be set to the ash of the sample. The fixed carbon of the sample is set to the remaining value obtained by subtracting water, the volatile component and ash from the original sample. The nitrogen and oxygen gases are supplied from a gas supply port 46 and discharged to the outside from the upper end 43 of upper protective glass.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、水分、揮発分、灰分を同一試料で順次測定
する形式の石炭の工業分析方法に関し、特にるつぼの加
熱方式に特徴のある工業分析方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an industrial analysis method for coal in which moisture, volatile content, and ash content are sequentially measured in the same sample. Regarding analysis methods.

この発明は、また、環状の赤外線ヒータからの赤外線を
、回転曲面で反射させて試料に照射する形式の赤外線加
熱炉に関する。
The present invention also relates to an infrared heating furnace of a type in which infrared rays from an annular infrared heater are reflected on a rotating curved surface and irradiated onto a sample.

[従来の技術] 石炭の工業分析方法は、JIS  M8812に規定さ
れている。この方法によれば、水分、揮発分、灰分の各
成分毎に、別個の試料を用意してそれぞれ測定を行って
いる。したがって、1種類の石炭試料を各成分について
測定すると、合尉で約6時間の時間がかかる。
[Prior Art] An industrial analysis method for coal is specified in JIS M8812. According to this method, separate samples are prepared and measured for each component of moisture, volatile matter, and ash. Therefore, measuring one type of coal sample for each component takes approximately 6 hours at a time.

そこで、分析時間を短縮するために、熱天秤を用いて、
同一の試料で水分、揮発分、灰分の全項目を順次測定す
る方法(以下、熱天秤法と呼ぶ)が開発されている(特
開昭58−162840@と特開昭62−187239
@を参照)。
Therefore, in order to shorten the analysis time, a thermobalance was used to
A method (hereinafter referred to as the thermobalance method) for sequentially measuring all items of moisture, volatile matter, and ash in the same sample has been developed (Japanese Patent Application Laid-open No. 58-162840@ and Japanese Patent Application Laid-open No. 62-187239).
(see @).

上述した熱天秤法では、加熱炉として抵抗加熱炉を使う
場合と赤外線加熱炉を使う場合とが考えられる。しかし
、抵抗加熱炉では試料の昇温速度をあまり大きくできず
、炉を冷却して試料を取り出すまでにも時間がかかる。
In the thermobalance method described above, a resistance heating furnace and an infrared heating furnace may be used as the heating furnace. However, in a resistance heating furnace, it is not possible to increase the temperature of the sample at a very high rate, and it takes time to cool the furnace and take out the sample.

そのため、分析時間を短くするには赤外線加熱炉を用い
るのが好ましい。ところで、石炭の工業分析用ではない
が、試料を効率的に加熱できる赤外線加熱炉として、環
状の赤外線ヒータからの赤外線を環状の楕円反射面で反
射させる形式の赤外線加熱炉が知られている(特開昭5
6−9999C1)。
Therefore, in order to shorten the analysis time, it is preferable to use an infrared heating furnace. By the way, although it is not used for industrial analysis of coal, an infrared heating furnace that can efficiently heat samples is known as an infrared heating furnace that reflects infrared rays from an annular infrared heater on an annular elliptical reflective surface ( Japanese Patent Application Publication No. 5
6-9999C1).

[発明が解決しようとする課題] 上述の熱天秤法において、加熱炉として、環状の楕円反
射面を有する赤外線加熱炉を利用すれば、試料の昇温が
速くなって、便利であるかのように思える。この場合、
楕円の一方の焦点に配置した赤外線ヒータからの赤外線
は、楕円反射面で反則して、楕円の他方の焦点の位置に
配置した試料に集まる。試料は、るつぼに入れることに
なるが、赤外線はこのるつぼの特定の1点(楕円の他方
の焦点の位置)に集中することになる。すると、るつぼ
の温度分布が不均一となり、試料が一様に昇温しない恐
れがある。このことは、るつぼが比較的大きい場合は特
に顕著である。
[Problems to be Solved by the Invention] In the above-mentioned thermobalance method, if an infrared heating furnace having an annular elliptical reflective surface is used as the heating furnace, the temperature of the sample will increase quickly, which may seem convenient. It seems to me. in this case,
Infrared rays from an infrared heater placed at one focal point of the ellipse are reflected by the elliptical reflecting surface and concentrated on a sample placed at the other focal point of the ellipse. The sample will be placed in a crucible, and the infrared rays will be concentrated at one specific point of the crucible (the position of the other focal point of the ellipse). Then, the temperature distribution in the crucible becomes non-uniform, and there is a possibility that the temperature of the sample will not be raised uniformly. This is especially true when the crucible is relatively large.

そこで、この発明の目的は、試料を速くかつ一様に加熱
できるような石炭の工業分析方法を提供することにある
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an industrial analysis method for coal that allows a sample to be heated quickly and uniformly.

また、この発明の別の目的は、試料を速くかつ一様に加
熱できるような赤外線加熱炉を提供することにある。
Another object of the present invention is to provide an infrared heating furnace that can heat a sample quickly and uniformly.

[課題を解決するための手段] 上記目的を達成するために、この発明に係る石炭の工業
分析方法では、試料の加熱には環状の赤外線ヒータを用
い、この赤外線ヒータからの赤外線を、回転曲面で形成
した反射面で反射させ、かつ、るつぼ全体に赤外線を照
射するようにしている。
[Means for Solving the Problems] In order to achieve the above object, in the industrial coal analysis method according to the present invention, an annular infrared heater is used to heat the sample, and the infrared rays from this infrared heater are transmitted to a rotating curved surface. The infrared rays are reflected by the reflective surface formed by the crucible, and the entire crucible is irradiated with infrared rays.

ここで、「回転曲面」とは、ある平面曲線を、同じ平面
上にある一つの直線を軸として回転したときに生じる曲
面のことをいう。
Here, the term "rotated curved surface" refers to a curved surface that occurs when a certain planar curve is rotated around a straight line on the same plane.

好ましくは、前記回転曲面の少なくとも一部は、放物線
の主軸に対して傾斜した軸の回りに前記放物線を回転さ
せて形成した曲面(以下、放物線回転曲面という)で構
成し、前記赤外線ヒータは前記放物線の焦点の位置に配
置し、前記るつぼは前記放物線の主軸上に配置する。
Preferably, at least a part of the rotational curved surface is formed by rotating the parabola around an axis inclined with respect to the main axis of the parabola (hereinafter referred to as a parabolic rotational curved surface), and the infrared heater The crucible is placed at the focal point of the parabola, and the crucible is placed on the main axis of the parabola.

また、この発明に係る赤外線加熱炉では、環状の赤外線
ヒータからの赤外線を、回転曲面で反射させて試料に照
射する形式の赤外線加熱炉において、前記回転曲面の少
なくとも一部は、放物線回転曲面で構成し、前記赤外線
ヒータは放物線の焦点の位置に配置し、前記試料は放物
線の主軸上に配置している。
Further, in the infrared heating furnace according to the present invention, in the infrared heating furnace of the type in which the infrared rays from the annular infrared heater are reflected on a rotating curved surface and irradiated onto the sample, at least a part of the rotating curved surface is a parabolic rotating curved surface. The infrared heater is arranged at the focal point of the parabola, and the sample is arranged on the main axis of the parabola.

好ましくは、前記回転曲面の一部を前記放物線回転曲面
で構成し、この放物線回転曲面の両側を、楕円の主軸に
対して傾斜した軸の回りに前記楕円を回転させて形成し
た曲面(以下、楕円回転曲面という)で構成することが
できる。
Preferably, a part of the rotational curved surface is formed by the parabolic rotational curved surface, and both sides of the parabolic rotational curved surface are formed by rotating the ellipse around an axis inclined with respect to the main axis of the ellipse (hereinafter referred to as a curved surface). (referred to as an elliptic surface of revolution).

[作用] 石炭の工業分析方法の発明では、環状の赤外線ヒータを
用い、赤外線を回転曲面によって反射させているので、
るつぼに赤外線を集めることができる。ただし、るつぼ
上の一点に赤外線を集中させるのではなく、るつぼ全体
に赤外線を集めることになる。これにより、るつぼは−
様に昇温し、試料の温度分布が均一となる。
[Function] In the invention of the industrial coal analysis method, an annular infrared heater is used and infrared rays are reflected by a rotating curved surface.
Infrared radiation can be collected into a crucible. However, instead of concentrating the infrared rays on one point on the crucible, the infrared rays are concentrated over the entire crucible. This makes the crucible −
The temperature distribution of the sample becomes uniform.

るつぼに対する赤外線の照射を均一にするためには、回
転曲面の少なくとも一部を、放物線回転曲面で構成する
ことができる。そして、放物線の焦点の位置に円環状の
赤外線ヒータを配置し、るつぼは前記放物線の主軸上に
配置する。このようにすると、赤外線ヒータから発射し
た赤外線は、放物線で反射した部分が平行光線となって
、るつぼ全体に当たる。
In order to uniformly irradiate the crucible with infrared rays, at least a portion of the rotating curved surface can be configured as a parabolic rotating curved surface. Then, an annular infrared heater is placed at the focal point of the parabola, and the crucible is placed on the main axis of the parabola. In this way, the part of the infrared rays emitted from the infrared heater is reflected by the parabola and becomes a parallel ray, which hits the entire crucible.

赤外線加熱炉の発明では、環状の赤外線ヒータからの赤
外線は、回転曲面で反射して試料に当たる。その際、放
物線回転曲面で反射した赤外線は、平行光線となって試
料に向かう。したがって、試料は均一に加熱される。
In the invention of the infrared heating furnace, the infrared rays from the annular infrared heater are reflected by the rotating curved surface and hit the sample. At this time, the infrared rays reflected by the parabolic rotation curved surface become parallel rays and head towards the sample. Therefore, the sample is heated uniformly.

ざらに、前記回転曲面の一部を放物線回転曲面で構成し
、この放物線回転曲面の両側を楕円回転曲面で構成する
と、放物線回転曲面で反射した赤外線は平行光線となり
、一方、その外側の楕円回転曲面で反射した赤外線は試
料に集中する。
Roughly speaking, if a part of the rotational surface is made up of a parabolic rotational surface, and both sides of this parabolic rotational surface are made up of elliptical rotational surfaces, the infrared rays reflected by the parabolic rotational surface become parallel rays, while the elliptical rotational surface on the outside Infrared rays reflected by the curved surface are concentrated on the sample.

[実施例〕 次に、図面を参照してこの発明の詳細な説明する。[Example〕 Next, the present invention will be described in detail with reference to the drawings.

第1図は、この発明に係る分析方法を実施するための熱
天秤の加熱炉の一例を示す垂直断面図である。この加熱
炉は、上部炉体10と下部炉体20とに分割できる。上
部炉体10の内壁面は、赤外線を反射するための反射面
12となっている。
FIG. 1 is a vertical sectional view showing an example of a heating furnace of a thermobalance for implementing the analysis method according to the present invention. This heating furnace can be divided into an upper furnace body 10 and a lower furnace body 20. The inner wall surface of the upper furnace body 10 serves as a reflective surface 12 for reflecting infrared rays.

上部炉体10の内部には、冷却水通路14.16を形成
しである。下部炉体20にも同様に、反射面22と、冷
却水通路24.26とを形成しである。上部炉体10と
下部炉体20の反射面12゜22に囲まれた炉至内には
、環状の赤外線ヒータ30を上下に二つ配置しである。
Cooling water passages 14 and 16 are formed inside the upper furnace body 10. Similarly, a reflecting surface 22 and cooling water passages 24 and 26 are formed in the lower furnace body 20. Two annular infrared heaters 30 are arranged one above the other inside the furnace surrounded by the reflective surfaces 12.degree. 22 of the upper furnace body 10 and the lower furnace body 20.

下部炉体20はその下部をフレーム28に固定してあり
、上部炉体10は上下移動可能になっている。
The lower furnace body 20 has its lower part fixed to a frame 28, and the upper furnace body 10 is vertically movable.

下部炉体20の下方には天秤60を配置してあり、この
天秤60からは、試料台ホルダ64が上方に延びている
。試料台ホルダ64の上端には試料台62があり、その
上にるつぼ50を載せるようになっている。るつぼ50
の内部には石炭試料52を収容できる。上部炉体10の
中央部には上部保護ガラス42を固定してあり、これに
より、試料台62とるつぼ50を覆うことができるよう
になっている。下部炉体20の中央部にも下部保護ガラ
ス44を固定してあり、これにより、試料台ホルダ64
を覆うことができるようになっている。上部炉体10が
下降して下部炉体20と組み合わさったときは、上部保
護ガラス42の下端は下部保護ガラス44の平坦な上端
面に極めて接近することになる。
A balance 60 is disposed below the lower furnace body 20, and a sample stage holder 64 extends upward from the balance 60. There is a sample stand 62 at the upper end of the sample stand holder 64, on which the crucible 50 is placed. Crucible 50
A coal sample 52 can be accommodated inside. An upper protective glass 42 is fixed to the center of the upper furnace body 10, so that the sample stage 62 and the crucible 50 can be covered. A lower protective glass 44 is also fixed to the center of the lower furnace body 20, so that the sample stage holder 64
can be covered. When the upper furnace body 10 is lowered and combined with the lower furnace body 20, the lower end of the upper protective glass 42 comes very close to the flat upper end surface of the lower protective glass 44.

下部保護ガラス44の内部にはガス供給口46を配置し
てあり、窒素ガスまたは酸素ガスを、るつぼ50の周囲
に供給できるようになっている。
A gas supply port 46 is arranged inside the lower protective glass 44 so that nitrogen gas or oxygen gas can be supplied around the crucible 50.

上述の環状の赤外線ヒータ30の具体的な構成は次の通
りである。ヒータ全体の外径は85mmである。保護管
32は石英ガラス製であり、その直径は約10mmでお
る。その内部のヒータコイル34はタングステン類であ
り、コイル径は約2mmである。第1図のような加熱炉
にすると、このヒータの定格電力を1.2kWにすれば
、試料を1000℃まで加熱できる。
The specific configuration of the above-described annular infrared heater 30 is as follows. The outer diameter of the entire heater is 85 mm. The protection tube 32 is made of quartz glass and has a diameter of about 10 mm. The internal heater coil 34 is made of tungsten and has a coil diameter of about 2 mm. When a heating furnace is used as shown in FIG. 1, the sample can be heated to 1000° C. by setting the rated power of the heater to 1.2 kW.

また、上述のるつぼ50の具体的な構成は次の通りであ
る。るつぼは、乳白色のセラミック製であり、約7Cm
3の体積があり、その内容積は約3ccである。るつぼ
の上部の内径は2cmであり、従来より大きくしである
。これにより、灰化において試料と酸素ガスとの接触面
積が広くなり、灰分測定の時間が短くできる。るつぼの
重量は約20グラムであり、その内部には、石炭試料と
して、微粉炭1グラムを入れるようになっている。
Moreover, the specific structure of the above-mentioned crucible 50 is as follows. The crucible is made of milky white ceramic and is approximately 7 cm.
There is a volume of 3, and its internal volume is approximately 3 cc. The inner diameter of the upper part of the crucible is 2 cm, which is larger than conventional crucibles. This increases the contact area between the sample and oxygen gas during ashing, and reduces the time required for ash content measurement. The weight of the crucible is approximately 20 grams, and 1 gram of pulverized coal is placed therein as a coal sample.

ところで、通常の熱天秤では、るつぼはもつと小ざく、
10〜100ミリグラムの試料を入れるようになってい
る。したがって、この実施例のように大きいるつぼを使
う場合は、試料温度の均一性がより重要になってくる。
By the way, with a normal thermobalance, the crucible is small and small.
It is designed to hold 10 to 100 milligrams of sample. Therefore, when using a large crucible as in this example, uniformity of sample temperature becomes more important.

次に、第2図を参照して、反射面22の形状を説明する
。なお、上部炉体10の反射面12と、下部炉体20の
反射面22は同じ形状でおる。したがって、以下の説明
では、下部炉体20の反射面22についてだけ説明する
Next, the shape of the reflective surface 22 will be explained with reference to FIG. Note that the reflecting surface 12 of the upper furnace body 10 and the reflecting surface 22 of the lower furnace body 20 have the same shape. Therefore, in the following explanation, only the reflecting surface 22 of the lower furnace body 20 will be explained.

反射面22は、回転曲面で形成しである。ここで、「回
転曲面」とは、上述のように、ある平面曲線を、同じ平
面上にある一つの直線を軸として回転したときに生じる
曲面のことをいう。そしてこの実施例の反射面22では
、上記平面曲線として、放物線と楕円とを組み合わせた
ものを用いている。すなわち、平面曲線の中央部の所定
長さしの部分だけを放物線部分22aとし、その両側を
横内部分22bとしである。そして、この平面曲線を軸
23を中心として回転することにより、反射面22を形
成することができる。放物線部分22aの主軸22Gは
、回転軸23に対して約45度傾斜している。これによ
り、環状の赤外線じ一夕30を収容する空間ができあが
る。
The reflective surface 22 is formed of a rotating curved surface. Here, the term "rotated curved surface" refers to a curved surface that occurs when a certain planar curve is rotated about a straight line on the same plane, as described above. In the reflecting surface 22 of this embodiment, a combination of a parabola and an ellipse is used as the plane curve. That is, only a predetermined length portion at the center of the plane curve is a parabolic portion 22a, and both sides thereof are lateral inner portions 22b. Then, by rotating this plane curve around the axis 23, the reflective surface 22 can be formed. The main axis 22G of the parabolic portion 22a is inclined at approximately 45 degrees with respect to the rotation axis 23. This creates a space that accommodates the annular infrared beam 30.

すなわち、平面形状としての放物線部分22aを、その
主軸22cに対して傾斜した軸23を中心として回転す
れば、放物線回転曲面が1qられる。
That is, if the parabolic portion 22a as a planar shape is rotated about the axis 23 inclined with respect to the main axis 22c, the parabolic rotation curved surface is obtained by 1q.

また、平面形状としての横内部分22bを、その主軸に
対して傾斜した軸23を中心として回転すれば、楕円回
転曲面が得られる。この実施例では、反射面とじての回
転曲面は、中央の放物線回転曲面とその両側の楕円回転
曲面からなる。
Moreover, if the horizontal inner portion 22b as a planar shape is rotated about an axis 23 inclined with respect to its main axis, an elliptical rotation curved surface can be obtained. In this embodiment, the rotating curved surface serving as the reflecting surface consists of a parabolic rotating curved surface at the center and elliptical rotating curved surfaces on both sides thereof.

赤外線ヒータ30は、そのヒータコイルが放物線部分2
2aの焦点Aの位置にくるように配置しである。横内部
分22bの主軸は、放物線部分22aの主軸22Gと一
致させてあり、横内部分22bの一方の焦点は、放物線
部分22aの焦点Aと同じ位置にある。横内部分22b
の他方の焦点Bは、るつぼ50の中心付近にある。
The infrared heater 30 has a heater coil having a parabolic portion 2.
It is arranged so as to be located at the focal point A of 2a. The main axis of the lateral inner portion 22b is aligned with the main axis 22G of the parabolic portion 22a, and one focal point of the lateral inner portion 22b is located at the same position as the focal point A of the parabolic portion 22a. Lateral inner part 22b
The other focal point B is near the center of the crucible 50.

放物線部分22aで反射した赤外線は、平行光線35と
なって、るつぼ50仝体に均一に当たる。
The infrared rays reflected by the parabolic portion 22a become parallel rays 35 and uniformly impinge on the crucible 50.

一方、横内部分22bで反射した赤外線は、集束光線3
6となって、焦点Bに向かう。この実施例の反射面22
では、放物線部分22aの長さしは20mmとしてあり
、るつぼ50の大きざと同じ程度の寸法にしである。こ
れにより、るつぼの大きざと同じ程度の寸法範囲で平行
光線が生じ、るつぼが均一に加熱される。平行光線の範
囲をるつぼの大きさより広くしても、外側の平行光線は
、るつぼの加熱には直接には寄与しない。そこで、放物
線部分22aの外側を横内部分22bとし、長さしより
も外側に来た赤外線をるつぼの方向に向けている。これ
により、赤外線が有効に利用できる。すなわち、反射面
22をこのような形状にすることにより、赤外線をるつ
ぼに向けることと、るつぼ全体に赤外線を当てることと
が、同時に満たされる。
On the other hand, the infrared rays reflected by the lateral inner portion 22b are the focused light beam 3
6 and head towards focal point B. Reflective surface 22 in this embodiment
Here, the length of the parabolic portion 22a is 20 mm, which is about the same size as the crucible 50. As a result, parallel light rays are generated in a size range that is approximately the same as the size of the crucible, and the crucible is heated uniformly. Even if the range of the parallel rays is made wider than the size of the crucible, the outer parallel rays do not directly contribute to the heating of the crucible. Therefore, the outside of the parabolic part 22a is made into a horizontal inner part 22b, and the infrared rays coming outside the length are directed toward the crucible. This allows infrared rays to be used effectively. That is, by forming the reflecting surface 22 in such a shape, it is possible to simultaneously direct infrared rays toward the crucible and to irradiate the entire crucible with infrared rays.

石炭の工業分析において、試料の特定部分だけが加熱さ
れると、たとえば水分測定時に揮発分が蒸発してしまう
などの不都合がある。また、このような極端な場合を除
いても、試料が不均一に加熱されると、分析データの信
頼性が低下する。そこで、この発明では、上述のように
、るつぼ全体をほぼ一様に加熱するようにしてあり、こ
のような不都合が生じないようにしである。
In industrial analysis of coal, if only a specific part of the sample is heated, there are disadvantages such as volatile matter evaporating during moisture measurement, for example. Moreover, even except for such extreme cases, if the sample is heated non-uniformly, the reliability of the analytical data decreases. Therefore, in the present invention, as described above, the entire crucible is heated almost uniformly in order to avoid such inconvenience.

反射面22は、アルミニウム製の基体の上に、銅メツキ
を施し、さらにその上に金メツキを施して形成してあり
、鏡面となっている。
The reflective surface 22 is formed by plating copper on an aluminum base and further plating gold thereon, and has a mirror surface.

なお、反射面22の形状は第2図に示すもの以外にも種
々の変更が可能である。たとえば、外側の横内部分22
bの他方の焦点Bの位置を、るつぼ50の中心付近に配
置せずに、るつぼの手前または後方に来るようにするこ
とができる。こうすれば、横内部分22bで反射した赤
外線も、゛るつぼ全体に当たることになり、るつぼの温
度がより均一になる。
Note that the shape of the reflecting surface 22 can be modified in various ways other than that shown in FIG. For example, the outer lateral inner portion 22
The position of the other focal point B of b can be placed at the front or rear of the crucible 50 instead of being located near the center of the crucible 50. In this way, the infrared rays reflected by the lateral inner portion 22b will also hit the entire crucible, making the temperature of the crucible more uniform.

また、反射面22仝体を放物線部分だけで形成すること
もできる。こうすると、反射面22で反射した赤外線は
すべて平行光線となる。これにより、外側の平行光線は
るつぼに直接光たることはなく、試料の昇温速度が若干
遅くなる。しかし、この外側の平行光線は炉内で何回も
反射して、炉全体の温度を上昇させる役割を果たし、る
つぼ温度の均一化におる程度寄与する。
Further, the reflecting surface 22 can also be formed only from a parabolic portion. In this way, all the infrared rays reflected by the reflective surface 22 become parallel rays. As a result, the outer parallel light rays do not directly hit the crucible, and the rate of temperature rise of the sample becomes slightly slower. However, this outer parallel light beam is reflected many times within the furnace, serves to increase the temperature of the entire furnace, and contributes to some extent to the uniformity of the crucible temperature.

次に、第1図に示す加熱炉を利用して石炭の工業分析を
行う方法を説明する。第3図は、このときの、試料温度
と試料重量の変化を示すグラフである。まず、恒湿化処
理した微粉炭1グラムを、るつぼ50に入れて、試料台
62に載せ、上部炉体10を下部炉体201.:重ねる
。次に、窒素ガス雰囲気中で、昇温レートを30℃/分
として、試料を107℃まで加熱してこの温度を維持し
、水分を蒸発させる。そして、Φ量変化割合が0.2ミ
リグラム/20秒以内になったとぎに、そのときの重量
減m分を測定して、これを試料の水分とする。
Next, a method for industrially analyzing coal using the heating furnace shown in FIG. 1 will be described. FIG. 3 is a graph showing changes in sample temperature and sample weight at this time. First, 1 gram of humidified pulverized coal is placed in the crucible 50 and placed on the sample stage 62, and the upper furnace body 10 is moved to the lower furnace body 201. : Overlap. Next, in a nitrogen gas atmosphere, the sample is heated to 107° C. at a temperature increase rate of 30° C./min and this temperature is maintained to evaporate water. Then, when the Φ amount change rate becomes within 0.2 milligrams/20 seconds, the weight loss in m at that time is measured, and this is taken as the water content of the sample.

次に、同様に窒素ガス雰囲気中で、昇温レートを110
℃/分として、試料を950℃まで加熱してこの温度を
維持し、揮発分を蒸発させる。そして、950℃で3分
保持した後の重量減4分を測定して、これを試料の揮発
分とする。
Next, in the same nitrogen gas atmosphere, the temperature increase rate was increased to 110%.
The sample is heated to 950° C. and maintained at this temperature to evaporate the volatiles. Then, after holding at 950° C. for 3 minutes, the weight loss for 4 minutes is measured, and this is taken as the volatile content of the sample.

次に、酸素ガス雰囲気中で、降温レートを50°C/分
として、試料温度を850℃まで戻してこの温度を維持
し、固定炭素を燃焼させる。そして、@量変化v1合が
0.2ミリグラム/8秒以内になったときに、そのとき
の残重量を測定して、これを試料の灰分とする。試料の
固定炭素は、水分と揮発分と灰分とを元の試料から引い
た残りの値とする。
Next, in an oxygen gas atmosphere, the sample temperature is returned to 850° C. at a cooling rate of 50° C./min, and this temperature is maintained to burn the fixed carbon. Then, when the amount change v1 is within 0.2 milligrams/8 seconds, the remaining weight at that time is measured, and this is taken as the ash content of the sample. The fixed carbon of a sample is the value remaining after moisture, volatile matter, and ash are subtracted from the original sample.

上述の窒素ガスおよび酸素ガスは、いずれも、1.2リ
ットル/分の流量で、ガス供給口46から供給している
。これらのガスは、上部保護ガラス42の上端43から
外部に排出している。
Both the nitrogen gas and oxygen gas mentioned above are supplied from the gas supply port 46 at a flow rate of 1.2 liters/minute. These gases are discharged to the outside from the upper end 43 of the upper protective glass 42.

以上の分析に要する時間は、水分測定に約5分、揮発分
測定に約10分、灰分測定に約15分かかり、合計で約
30分かかる。さらに、炉の冷却に10〜15分程度要
するので、試料を炉から取り出すまでには、40〜45
分かかる。すなわち、一つの試料を分析するサイクル時
間は40〜45分である。
The time required for the above analysis is approximately 5 minutes for moisture measurement, approximately 10 minutes for volatile content measurement, and approximately 15 minutes for ash content measurement, for a total of approximately 30 minutes. Furthermore, since it takes about 10 to 15 minutes to cool down the furnace, it takes about 40 to 45 minutes to remove the sample from the furnace.
It takes minutes. That is, the cycle time for analyzing one sample is 40-45 minutes.

この熱天秤法による分析データは、JIS法によるデー
タに換算するために、必要に応じて所定の補正が施され
る。
The analytical data obtained by the thermobalance method is subjected to predetermined corrections as necessary in order to convert it into data obtained by the JIS method.

[発明の効果] 以上説明したようにこの発明は、るつぼ内の石炭試料を
加熱するのに、環状の赤外線ヒータからの赤外線を回転
曲面によって反射させているので、るつぼに赤外線を集
めることができる。しかも、るつぼ上の一点に赤外線を
集中させるのではなく、るつぼ全体に赤外線を集めてい
るので、るつぼは迅速かつ一様に昇温し、石炭試料の温
度分布が均一となる。
[Effects of the Invention] As explained above, in this invention, in order to heat the coal sample in the crucible, the infrared rays from the annular infrared heater are reflected by the rotating curved surface, so the infrared rays can be collected in the crucible. . Moreover, since the infrared rays are concentrated over the entire crucible instead of being concentrated at one point on the crucible, the temperature of the crucible increases quickly and uniformly, resulting in a uniform temperature distribution in the coal sample.

さらに、請求項2の発明では、るつぼに対する赤外線の
照射を均一にするために、回転曲面の少なくとも一部を
、放物線回転曲面で構成している。
Furthermore, in the invention according to claim 2, in order to uniformly irradiate the crucible with infrared rays, at least a part of the rotating curved surface is configured as a parabolic rotating curved surface.

これにより、放物線回転曲面で反射した赤外線部分が平
行光線となって、るつぼ全体に一様に当たる。
As a result, the infrared portion reflected by the parabolic rotation curved surface becomes a parallel beam of light that uniformly hits the entire crucible.

また、この発明に係る赤外線加熱炉は、反射面としての
回転曲面の少なくとも一部を放物線回転曲面で構成しで
あるので、この放物線回転曲面で反射した赤外線は平行
光線となって試料に当たり、試料を迅速かつ均一に加熱
することができる。
Further, in the infrared heating furnace according to the present invention, at least a part of the rotating curved surface as a reflecting surface is constituted by a parabolic rotating curved surface, so that the infrared rays reflected by the parabolic rotating curved surface become parallel rays and strike the sample. can be heated quickly and uniformly.

ざらに、請求項4に記載の発明では、放物線回転曲面の
両側を楕円回転曲面で構成しであるので、放物線回転曲
面で反射した赤外線は平行光線となり、その外側の楕円
回転曲面で反射した赤外線は試料に集中する。したがっ
て、試料と同程度の寸法の範囲に平行光線を限定して、
その外側の赤外線を効率良く試料に照射することができ
る。
Roughly speaking, in the invention set forth in claim 4, since both sides of the parabolic rotation curved surface are constituted by elliptic rotation curved surfaces, the infrared rays reflected by the parabolic rotation curved surface become parallel rays, and the infrared rays reflected by the elliptic rotation curved surface outside the parabolic rotation curved surface become parallel rays. concentrates on the sample. Therefore, by limiting the parallel rays to a range of dimensions comparable to the sample,
The sample can be efficiently irradiated with the outer infrared rays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る分析方法で使用する熱天秤の加
熱炉の一例の垂直断面図、 第2図はこの加熱炉の反射面の構成とその働きを説明す
る垂直断面図、 第3図はこの加熱炉を使用した分析方法の昇温過程を示
したグラフである。 12.22・・・反  射  面 22a  ・・・放物線部分 22b    ・・・楕  円  部  分22c  
 ・・・放物線部分の主軸 23   ・・・回転曲面の回転軸 30  ・・・赤外線ヒータ 50   ・・・る  つ  ぼ 52    ・・・石  炭  試  料△    ・
・・放物線部分の焦点
Fig. 1 is a vertical cross-sectional view of an example of a heating furnace of a thermobalance used in the analysis method according to the present invention, Fig. 2 is a vertical cross-sectional view illustrating the configuration and function of the reflective surface of this heating furnace, and Fig. 3 is a graph showing the temperature increase process of the analysis method using this heating furnace. 12.22...Reflection surface 22a...Parabolic portion 22b...Ellipse portion 22c
...Principal axis 23 of the parabolic part ...Rotation axis 30 of the rotating curved surface ...Infrared heater 50 ...Crucible 52 ...Coal sample △ ・
...Focus of the parabola

Claims (4)

【特許請求の範囲】[Claims] (1)試料となる石炭をるつぼに入れて加熱し、その重
量変化を測定することによって、水分、揮発分、灰分を
同一試料で順次測定する形式の石炭の工業分析方法にお
いて、 試料の加熱には環状の赤外線ヒータを用い、この赤外線
ヒータからの赤外線を、回転曲面で形成した反射面で反
射させ、かつ、前記るつぼ全体に赤外線を照射するよう
にしたことを特徴とする石炭の工業分析方法。
(1) In an industrial coal analysis method in which moisture, volatile content, and ash content are sequentially measured in the same sample by heating the sample coal in a crucible and measuring the weight change, A method for industrial analysis of coal, characterized in that an annular infrared heater is used, the infrared rays from the infrared heater are reflected by a reflecting surface formed by a rotating curved surface, and the entire crucible is irradiated with infrared rays. .
(2)前記回転曲面の少なくとも一部は、放物線の主軸
に対して傾斜した軸の回りに前記放物線を回転させて形
成した曲面で構成し、前記赤外線ヒータは前記放物線の
焦点の位置に配置し、前記るつぼは前記放物線の主軸上
に配置することを特徴とする請求項1記載の石炭の工業
分析方法。
(2) At least a part of the rotational curved surface is formed by rotating the parabola around an axis inclined with respect to the main axis of the parabola, and the infrared heater is arranged at a focal point of the parabola. 2. The method for industrial analysis of coal according to claim 1, wherein the crucible is placed on the main axis of the parabola.
(3)環状の赤外線ヒータからの赤外線を、回転曲面で
反射させて試料に照射する形式の赤外線加熱炉において
、 前記回転曲面の少なくとも一部は、放物線の主軸に対し
て傾斜した軸の回りに前記放物線を回転させて形成した
曲面(以下、放物線回転曲面という)で構成し、前記赤
外線ヒータは前記放物線の焦点の位置に配置し、前記試
料は前記放物線の主軸上に配置することを特徴とする赤
外線加熱炉。
(3) In an infrared heating furnace in which the infrared rays from an annular infrared heater are reflected on a rotating curved surface and irradiated onto the sample, at least a portion of the rotating curved surface rotates around an axis inclined with respect to the main axis of the parabola. The sample is composed of a curved surface formed by rotating the parabola (hereinafter referred to as a parabolic rotation curved surface), the infrared heater is disposed at a focal point of the parabola, and the sample is disposed on the main axis of the parabola. Infrared heating furnace.
(4)前記回転曲面の一部を前記放物線回転曲面で構成
し、この放物線回転曲面の両側を、楕円の主軸に対して
傾斜した軸の回りに前記楕円を回転させて形成した曲面
で構成したことを特徴とする請求項3記載の赤外線加熱
炉。
(4) A part of the rotational curved surface is composed of the parabolic rotational curved surface, and both sides of the parabolic rotational curved surface are composed of curved surfaces formed by rotating the ellipse around an axis inclined with respect to the main axis of the ellipse. The infrared heating furnace according to claim 3, characterized in that:
JP17924288A 1988-07-20 1988-07-20 Method of industrial analysis of coal and infrared heating oven Pending JPH0231131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17924288A JPH0231131A (en) 1988-07-20 1988-07-20 Method of industrial analysis of coal and infrared heating oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17924288A JPH0231131A (en) 1988-07-20 1988-07-20 Method of industrial analysis of coal and infrared heating oven

Publications (1)

Publication Number Publication Date
JPH0231131A true JPH0231131A (en) 1990-02-01

Family

ID=16062425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17924288A Pending JPH0231131A (en) 1988-07-20 1988-07-20 Method of industrial analysis of coal and infrared heating oven

Country Status (1)

Country Link
JP (1) JPH0231131A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207507A (en) * 1991-03-15 1993-05-04 The Kansai Electric Power Co., Ltd. Method for continuous thermogravimetric analysis of coal
US7211124B2 (en) 1999-11-05 2007-05-01 Donaldson Company, Inc. Filter element, air cleaner, and methods
US7252704B2 (en) 1999-11-10 2007-08-07 Donaldson Company, Inc. Filter arrangement and methods
US7255300B2 (en) 2004-11-03 2007-08-14 Baldwin Filters, Inc. Method and apparatus for winding a filter media pack
US7318851B2 (en) 2004-11-02 2008-01-15 Baldwin Filters, Inc. Filter element
US7491254B2 (en) 2002-04-04 2009-02-17 Donaldson Company, Inc. Filter elements; air cleaner; assembly; and, methods
US8042694B2 (en) 2004-11-02 2011-10-25 Baldwin Filters, Inc. Gathered filter media for an air filter and method of making same
CN103063539A (en) * 2012-12-26 2013-04-24 合肥立华畜禽有限公司 Determination method for energy of bituminous coal
US9610530B2 (en) 2004-03-24 2017-04-04 Donaldson Company, Inc. Filter elements; air cleaner; assembly; and, methods
US9890750B2 (en) 2004-11-02 2018-02-13 Baldwin Filters, Inc. Filter element

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207507A (en) * 1991-03-15 1993-05-04 The Kansai Electric Power Co., Ltd. Method for continuous thermogravimetric analysis of coal
US7211124B2 (en) 1999-11-05 2007-05-01 Donaldson Company, Inc. Filter element, air cleaner, and methods
US7615091B2 (en) 1999-11-05 2009-11-10 Donaldson Company, Inc. Filter element, air cleaner, and methods
US7252704B2 (en) 1999-11-10 2007-08-07 Donaldson Company, Inc. Filter arrangement and methods
US9993763B2 (en) 2002-04-04 2018-06-12 Donaldson Company, Inc. Filter elements; air cleaner; assembly; and, methods
US11161072B2 (en) 2002-04-04 2021-11-02 Donaldson Company, Inc. Filter elements; air cleaner; assembly; and, methods
US7491254B2 (en) 2002-04-04 2009-02-17 Donaldson Company, Inc. Filter elements; air cleaner; assembly; and, methods
US7645310B2 (en) 2002-04-04 2010-01-12 Donaldson Company, Inc. Filter elements; air cleaner; assembly; and, methods
US10500533B2 (en) 2002-04-04 2019-12-10 Donaldson Company, Inc. Filter elements; air cleaner; assembly; and, methods
US11014036B2 (en) 2004-03-24 2021-05-25 Donaldson Company, Inc. Filter elements; air cleaner; assembly; and, methods
US9610530B2 (en) 2004-03-24 2017-04-04 Donaldson Company, Inc. Filter elements; air cleaner; assembly; and, methods
US10335730B2 (en) 2004-03-24 2019-07-02 Donaldson Company, Inc. Filter elements; air cleaner; assembly; and, methods
US7318851B2 (en) 2004-11-02 2008-01-15 Baldwin Filters, Inc. Filter element
US9890750B2 (en) 2004-11-02 2018-02-13 Baldwin Filters, Inc. Filter element
US8042694B2 (en) 2004-11-02 2011-10-25 Baldwin Filters, Inc. Gathered filter media for an air filter and method of making same
US7255300B2 (en) 2004-11-03 2007-08-14 Baldwin Filters, Inc. Method and apparatus for winding a filter media pack
CN103063539A (en) * 2012-12-26 2013-04-24 合肥立华畜禽有限公司 Determination method for energy of bituminous coal

Similar Documents

Publication Publication Date Title
US5561735A (en) Rapid thermal processing apparatus and method
JPH0231131A (en) Method of industrial analysis of coal and infrared heating oven
JP2002203804A (en) Heating apparatus, heat treatment equipment having the heating apparatus, and method for conrolling heat treatment
JPS60198079A (en) Electric infrared ray generator
KR100970013B1 (en) Heat treating device
US5970213A (en) Apparatus for heating a transparent substrate utilizing an incandescent lamp and a heating disk emitting infrared wavelengths
EP0291341B1 (en) Vaporizer system for ion source
JPH11509628A (en) Processing method of work material sample and light and weather resistance inspection device
JPH1197371A (en) Heat treating device
US20020041620A1 (en) Thermal process apparatus for a semiconductor substrate
US3001055A (en) Ellipsoidal radiation image furnace
EP0172635A2 (en) Temperature control in vacuum
US6965093B2 (en) Device for thermally treating substrates
JP2517218B2 (en) Radiant heating device
JPS6297845A (en) Substance treater by ultraviolet ray
JPH04297581A (en) Photochemical vapor growth device
US10823650B2 (en) Direct thermal injection thermal analysis
US7043148B1 (en) Wafer heating using edge-on illumination
JPH0297670A (en) Thin film manufacturing equipment
Markham et al. FT-IR measurements of emissivity and temperature during high flux solar processing
JPS63241923A (en) Apparatus for light irradiation
KR0155889B1 (en) Pyrogenic unit of diffusion furnace
JP3136393B2 (en) Laser annealing equipment
JPH0669148A (en) Heater
JPH0234773A (en) Vapor deposition device