JP4588656B2 - Expansion valve with integrated solenoid valve - Google Patents

Expansion valve with integrated solenoid valve Download PDF

Info

Publication number
JP4588656B2
JP4588656B2 JP2006078031A JP2006078031A JP4588656B2 JP 4588656 B2 JP4588656 B2 JP 4588656B2 JP 2006078031 A JP2006078031 A JP 2006078031A JP 2006078031 A JP2006078031 A JP 2006078031A JP 4588656 B2 JP4588656 B2 JP 4588656B2
Authority
JP
Japan
Prior art keywords
valve
valve body
refrigerant
check valve
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006078031A
Other languages
Japanese (ja)
Other versions
JP2006300508A (en
Inventor
宏 林
栄二 福田
繁樹 伊藤
伸 本田
裕嗣 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Denso Corp
Original Assignee
Fujikoki Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp, Denso Corp filed Critical Fujikoki Corp
Priority to JP2006078031A priority Critical patent/JP4588656B2/en
Publication of JP2006300508A publication Critical patent/JP2006300508A/en
Application granted granted Critical
Publication of JP4588656B2 publication Critical patent/JP4588656B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

本発明は、電磁弁一体型膨張弁に関し、例えば車室内のフロント側とリア側に冷凍サイクルを設けた車両用空調装置に用いるのに好適なものである。   The present invention relates to an electromagnetic valve-integrated expansion valve, and is suitable for use in, for example, a vehicle air conditioner in which a refrigeration cycle is provided on the front side and rear side of a vehicle interior.

従来、この種の電磁弁一体型膨張弁として、例えば下記特許文献1に記載されているものが知られている。この電磁弁一体型膨張弁は、高圧側冷媒を減圧膨張させる絞り流路と、この絞り流路の開度調整をする弁体と、この弁体を変位させる弁体作動機構(パワーエレメント)と、絞り流路にて減圧膨張した冷媒を蒸発器に供給する出口冷媒流路とを備え、電磁弁の弁体により出口冷媒流路を開閉するようにするとともに、電磁弁の弁体の閉弁時には、電磁弁の弁体と絞り流路との間の冷媒圧力に基づいて弁体を作動させるダイアフラム作動機構により、絞り流路の弁体を閉弁させるようにしている。
特開平11−182983号公報
2. Description of the Related Art Conventionally, as this type of solenoid valve-integrated expansion valve, for example, the one described in Patent Document 1 below is known. This expansion valve integrated with a solenoid valve includes a throttle channel that decompresses and expands the high-pressure side refrigerant, a valve body that adjusts the opening of the throttle channel, and a valve body operating mechanism (power element) that displaces the valve body. An outlet refrigerant flow path for supplying the refrigerant decompressed and expanded in the throttle flow path to the evaporator, the outlet refrigerant flow path is opened and closed by the valve body of the electromagnetic valve, and the valve body of the electromagnetic valve is closed In some cases, the valve body of the throttle channel is closed by a diaphragm operating mechanism that operates the valve body based on the refrigerant pressure between the valve body of the electromagnetic valve and the throttle channel.
Japanese Patent Application Laid-Open No. 11-182983

上記の特許文献に記載されたものは、電磁弁の閉弁時に、電磁弁の弁体と膨張弁の絞り通路の弁体との間が密閉空間となり、この密閉空間が液冷媒で満たされた場合には、雰囲気の温度上昇とともにこの密閉空間が異常に高圧になってしまうおそれがあり、これを回避するため電磁弁の上流側と膨張弁の上流側とを連通する微小連通路を設けたものである。しかし、この微小連通路は冷媒を微小量だけ逃がすためのものであるが故に極小径であることが要求され、その加工は困難を極めることとなる。
そこで本発明の目的は、微小連通路を加工の容易な径としたままで、要求される微量の冷媒逃がしを可能とする電磁弁一体型膨張弁を提供するものである。
In the above-mentioned patent document, when the solenoid valve is closed, the space between the valve body of the solenoid valve and the valve body of the throttle passage of the expansion valve becomes a sealed space, and this sealed space is filled with the liquid refrigerant. In this case, there is a possibility that this sealed space may become abnormally high pressure as the temperature of the atmosphere rises, and in order to avoid this, a minute communication path that connects the upstream side of the solenoid valve and the upstream side of the expansion valve is provided. Is. However, since this minute communication path is for escaping a small amount of refrigerant, it is required to have a very small diameter, and its processing becomes extremely difficult.
Accordingly, an object of the present invention is to provide an electromagnetic valve-integrated expansion valve that allows a required small amount of refrigerant to escape while maintaining a minute communication path having a diameter that can be easily processed.

本発明の電磁弁一体型膨張弁は、基本的な手段として、高圧側冷媒が導入される弁室該弁室に連通する絞り流路及び該絞り流路にて減圧膨張した冷媒を蒸発器へ供給する出口冷媒流路を有する弁本体と、前記弁室内に配置され前記絞り流路を開閉する弁体と、該弁体変位させるパワーエレメントと、前記弁室と前記出口冷媒流路の間に設けられる冷媒のバイパス通路と、該バイパス通路を開閉する電磁弁と前記弁室と前記バイパス通路とを連通するように設けられ微小連通路とを備え、前記微小連通路は、前記バイパス通路側に設けられた微小オリフィスと、該微小オリフィスと前記弁室との間に設けられるとともに前記微小オリフィスよりも大径の逆止弁体を挿入する弁体挿入部とからなり、前記弁室内の冷媒圧力が前記バイパス通路内の冷媒圧力よりも高い状態では前記逆止弁体が前記微小オリフィスを封止して前記弁室から前記バイパス通路への冷媒の流れを遮断し、前記バイパス通路内の冷媒圧力が前記弁室内の冷媒圧力よりも高い状態では前記逆止弁体が前記微小オリフィスを開放して前記バイパス通路内の冷媒を前記弁室内へ流入させる。 The expansion valve integrated with an electromagnetic valve according to the present invention includes, as basic means, a valve chamber into which a high-pressure side refrigerant is introduced , a throttle passage communicating with the valve chamber , and a refrigerant decompressed and expanded in the throttle passage. A valve body having an outlet refrigerant flow path for supplying to the valve body, a valve body arranged in the valve chamber for opening and closing the throttle flow path, a power element for displacing the valve body , the valve chamber and the outlet refrigerant flow path , a bypass passage of the refrigerant provided between the an electromagnetic valve for opening and closing the bypass passage, and a micro communication passage provided so as to communicate between the bypass passage and the valve chamber, the micro communication passage, A micro orifice provided on the bypass passage side, and a valve body insertion portion that is provided between the micro orifice and the valve chamber and inserts a check valve body having a diameter larger than that of the micro orifice, The refrigerant pressure in the valve chamber In a state higher than the refrigerant pressure in the passage, the check valve body seals the micro-orifice to block the flow of refrigerant from the valve chamber to the bypass passage, and the refrigerant pressure in the bypass passage is reduced to the valve. in higher than the refrigerant pressure in the chamber Ru allowed to flow into the refrigerant of the bypass passage and the check valve body opening the small orifice into the valve chamber.

また、前記逆止弁体は、微小通路の内壁面と前記逆止弁体の外壁面との間に軸方向に延びる通路を形成する凹凸を有し、角柱体又は円柱体とすることもできる。
さらに、逆止弁体はゴム等の軟質材で形成されることもあり、この場合、逆止弁体は、弁室側に開口する袋状の中空部を有する筒状体とされることもある。
逆止弁体をスプリングを介して微小オリフィスに向けて付勢するようにすることも可能である。
さらには、微小連通路の弁室側に逆止弁体を収容する大径部を形成し、この大径部端部をカシメ加工することによって生成されるストッパ片により逆止弁を保持するようにすれば、部品点数を増やすことなく逆止弁体を保持することができる。
さらに、ストッパ片が形成された微小連通路の有効長さ寸法は、逆止弁体の長さ寸法より大なる寸法とすることができる。
さらに、逆止弁体は微小連通路の軸方向に移動自在であるとともにスプリングを介して前記微小オリフィスに向けて付勢することができる。
さらに、逆止弁体は、微小オリフィスに当接するテーパー部と該テーパー部に連続する角柱部とを備えることができる。
Further, the check valve body has an uneven to form a passage extending axially between the inner wall and the outer wall surface of the check valve of the micro communication passage, also be a rectangular column or cylinder it can.
Furthermore, the check valve body may be formed of a soft material such as rubber. In this case, the check valve body may be a cylindrical body having a bag-like hollow portion that opens to the valve chamber side. is there.
It is also possible to urge the check valve body toward the minute orifice through a spring.
Further, a large-diameter portion that accommodates the check valve body is formed on the valve chamber side of the minute communication path, and the check valve is held by a stopper piece that is generated by crimping the end portion of the large-diameter portion. By doing so, the check valve body can be held without increasing the number of parts.
Furthermore, the effective length dimension of the micro communication path in which the stopper piece is formed can be larger than the length dimension of the check valve body.
Further, the check valve body is movable in the axial direction of the minute communication path and can be biased toward the minute orifice via a spring.
Furthermore, the check valve body can include a tapered portion that contacts the minute orifice and a rectangular column portion that is continuous with the tapered portion.

本発明によれば、電磁弁が閉じたときに、冷媒を弁室から電磁弁側へ微小量だけ逃がすための微小連通路を適当な小径としたままで冷媒の微小量逃がしを適切に達成できる。そのため加工が容易となり、また冷媒流動音の発生を効果的に抑制することも可能となる。   According to the present invention, when the solenoid valve is closed, it is possible to appropriately achieve the escape of the minute amount of the refrigerant while keeping the minute communication path for allowing the refrigerant to escape from the valve chamber to the solenoid valve side by an appropriate small diameter. . Therefore, processing becomes easy, and generation of refrigerant flow noise can be effectively suppressed.

図1は本発明に係る電磁弁一体型膨張弁の一実施の形態を示す断面図、図2は要部の拡大図である。
全体を符号1で示す電磁弁一体型膨張弁は、ほぼ角柱形状の弁本体10を有する。弁本体10の下部の内部には、冷凍サイクルの圧縮機側からの高圧冷媒が供給される図示しない入口冷媒通路を有し、入口冷媒通路は弁本体10内部に形成された弁室12に連通される。弁室12内にはボール状の弁体30が、支持部材32を介してスプリング34で支えられる。
FIG. 1 is a sectional view showing an embodiment of an expansion valve integrated with a solenoid valve according to the present invention, and FIG. 2 is an enlarged view of a main part.
An expansion valve integrated with an electromagnetic valve denoted as a whole by reference numeral 1 has a substantially prismatic valve body 10. The lower part of the valve body 10 has an inlet refrigerant passage (not shown) to which high-pressure refrigerant from the compressor side of the refrigeration cycle is supplied, and the inlet refrigerant passage communicates with a valve chamber 12 formed inside the valve body 10. Is done. A ball-shaped valve element 30 is supported in the valve chamber 12 by a spring 34 via a support member 32.

弁室12の開口部にはナット部材40が螺合されて、封止される。ナット部材40をねじ込むことで、スプリング34は予圧され、所定のスプリング力で支持部材32を介して弁体30を支持する。ナット部材40にシール部材を取り付けて弁室12のシールを図る。
弁室12の冷媒は、弁体30と弁座の間の絞り流路14を通って減圧膨張され、出口冷媒流路に流出する。出口冷媒流路からの冷媒は、図示しない蒸発器へ送り出される。
A nut member 40 is screwed into the opening of the valve chamber 12 and sealed. By screwing the nut member 40, the spring 34 is preloaded and the valve body 30 is supported via the support member 32 with a predetermined spring force. A seal member is attached to the nut member 40 to seal the valve chamber 12.
The refrigerant in the valve chamber 12 is decompressed and expanded through the throttle passage 14 between the valve body 30 and the valve seat, and flows out to the outlet refrigerant passage. The refrigerant from the outlet refrigerant channel is sent to an evaporator (not shown).

蒸発器から戻される冷媒は、弁本体10の上部内に設けられた通路18を通り、図示しない圧縮機へ還流される。通路18内の冷媒温度は、感温棒70を介して弁本体10の上部に取り付けられる弁体を駆動させる弁体作動機構となるダイアフラム作動機構であるパワーエレメント50に伝達される。
パワーエレメント50は、弁本体10に対してねじ部54で取り付けられるハウジング52を有する。さらに、ハウジング52に挟み込まれて溶接されているダイアフラム60を有し、ダイアフラム60により上部室62aと下部室62bが区画される。上部室62aには作動流体が封入され、栓体64が封止される。
The refrigerant returned from the evaporator passes through a passage 18 provided in the upper part of the valve body 10 and is returned to a compressor (not shown). The refrigerant temperature in the passage 18 is transmitted via a temperature sensing rod 70 to a power element 50 that is a diaphragm operating mechanism that serves as a valve operating mechanism that drives a valve attached to the upper portion of the valve body 10.
The power element 50 has a housing 52 that is attached to the valve body 10 with a screw portion 54. Furthermore, it has the diaphragm 60 inserted | pinched and welded by the housing 52, and the upper chamber 62a and the lower chamber 62b are divided by the diaphragm 60. FIG. A working fluid is sealed in the upper chamber 62a, and the plug body 64 is sealed.

ダイアフラム60は感温棒70で支持される。感温棒70は中心に冷媒が導入される通路72を有する。
感温棒70の変位は、弁棒80を介して弁体30に伝達される。
The diaphragm 60 is supported by a temperature sensitive rod 70. The temperature sensing rod 70 has a passage 72 through which refrigerant is introduced at the center.
The displacement of the temperature sensing rod 70 is transmitted to the valve body 30 via the valve rod 80.

この膨張弁1は以上のように構成してあるので、蒸発器から流出されて、通路18を通る冷媒の圧力と温度に応じて設定されるダイアフラム60の作動位置により、感温棒70が駆動され、弁体30と弁座の間の絞り流路14の間隙が調整される。   Since the expansion valve 1 is configured as described above, the temperature sensing rod 70 is driven by the operating position of the diaphragm 60 set according to the pressure and temperature of the refrigerant that flows out of the evaporator and passes through the passage 18. Thus, the gap of the throttle channel 14 between the valve body 30 and the valve seat is adjusted.

そこで、蒸発器の熱負荷が大きいときには、弁体30と弁座の間の間隙は大きくなり、大量の冷媒が蒸発器に供給され、反対に熱負荷が小さいときには、冷媒の流量は少なくなる。   Therefore, when the heat load of the evaporator is large, the gap between the valve body 30 and the valve seat is large, a large amount of refrigerant is supplied to the evaporator, and conversely, when the heat load is small, the flow rate of the refrigerant is small.

弁本体10の側面部には電磁弁100が取り付けられる。
電磁弁100は、ケーシング110と、ケーシング110に連結される取付部材160を有し、取付部材160は、ねじ部を介して弁本体10に形成した有底の開口部に取り付けられる。
A solenoid valve 100 is attached to the side surface of the valve body 10.
The electromagnetic valve 100 includes a casing 110 and an attachment member 160 connected to the casing 110, and the attachment member 160 is attached to a bottomed opening formed in the valve body 10 via a screw portion.

電磁弁100は、ケーシング110内にコイル120を有し、コード122を介して給電される。ケーシング110の中心部には、シリンダ124が配設され、プランジャ140が摺動自在に挿入される。シリンダ124の外側には、吸引子130がビス132で固定される。吸引子130とプランジャ140の間に設けられるスプリング142はプランジャ140を吸引子130から離れる方向に付勢する。
プランジャ140の先端には、パイロット弁体150が摺動自在に配設される。このパイロット弁体150は中心部に弁穴152を有する。
The solenoid valve 100 has a coil 120 in a casing 110 and is supplied with power via a cord 122. A cylinder 124 is disposed at the center of the casing 110, and the plunger 140 is slidably inserted therein. A suction element 130 is fixed to the outside of the cylinder 124 with screws 132. A spring 142 provided between the suction element 130 and the plunger 140 urges the plunger 140 in a direction away from the suction element 130.
A pilot valve body 150 is slidably disposed at the tip of the plunger 140. The pilot valve body 150 has a valve hole 152 at the center.

かくの如く構成された電磁弁100においては、電磁弁100のコイル120に通電されると、コイル120の磁力により、プランジャ140が吸引子130側に引き戻される。プランジャ140の先端部144がパイロット弁体150の弁穴152から離れると、弁穴152が開口し、背圧室20aの冷媒が弁穴152を通過して導管24の通路25に導入され、圧力差が減じられる。これによりパイロット弁体150は、導管24の先端から離れ、電磁弁100は開弁時となり、背圧室20a内の冷媒は、出口冷媒流路側へ流れる。   In the solenoid valve 100 configured as described above, when the coil 120 of the solenoid valve 100 is energized, the plunger 140 is pulled back to the attractor 130 side by the magnetic force of the coil 120. When the distal end portion 144 of the plunger 140 is separated from the valve hole 152 of the pilot valve body 150, the valve hole 152 is opened, and the refrigerant in the back pressure chamber 20a passes through the valve hole 152 and is introduced into the passage 25 of the conduit 24. The difference is reduced. Thereby, the pilot valve body 150 is separated from the tip of the conduit 24, the electromagnetic valve 100 is opened, and the refrigerant in the back pressure chamber 20a flows to the outlet refrigerant flow path side.

弁室12の冷媒は、弁体30と弁座の間の絞り流路14を通りバイパス通路21を介して電磁弁100が取付けられる有底穴20の背圧室20aに充填される。   The refrigerant in the valve chamber 12 is charged into the back pressure chamber 20a of the bottomed hole 20 to which the electromagnetic valve 100 is attached through the throttle passage 14 between the valve body 30 and the valve seat and through the bypass passage 21.

逆に、コイル120への通電を遮断し、スプリング142のバネ力によりプランジャ140の先端部144がパイロット弁体150の弁穴152に着座して、この弁穴152を閉じる。すると、弁体30と弁座の間の絞り流路14を通り、バイパス通路21を介して背圧室20aに冷媒が導入される。そのため、プランジャ140の先端部144が弁穴152に着座して弁穴152を閉じるとともに、パイロット弁体150が導管24の端面に着座し、通路25を閉じる。これにより、電磁弁100が閉弁状態に復帰する。   On the contrary, the power supply to the coil 120 is cut off, and the distal end portion 144 of the plunger 140 is seated in the valve hole 152 of the pilot valve body 150 by the spring force of the spring 142 and the valve hole 152 is closed. Then, the refrigerant is introduced into the back pressure chamber 20a through the bypass passage 21 through the throttle channel 14 between the valve body 30 and the valve seat. Therefore, the distal end portion 144 of the plunger 140 is seated on the valve hole 152 to close the valve hole 152, and the pilot valve body 150 is seated on the end surface of the conduit 24 to close the passage 25. Thereby, the solenoid valve 100 returns to the closed state.

図2、図3は、微小オリフィス23を介してバイパス通路21に通ずる微小連通路22内に配置される逆止弁体の詳細を示す。   2 and 3 show details of the check valve body disposed in the minute communication passage 22 that communicates with the bypass passage 21 via the minute orifice 23.

逆止弁体200は、例えばゴム等の軟質材を使用して角柱形状に作られる。そして、この逆止弁体200を円筒穴状の微小連通路22内に挿入し、カシメ部Kにより固定する。微小連通路22の弁室12側の開口部は段付穴22’が形成されており、カシメ部Kの加工代が用意される。 The check valve body 200 is made into a prismatic shape using a soft material such as rubber. Then, insert this check valve body 200 in a cylindrical bore shape of micro communication passage 22, it is fixed by the caulking portion K 1. A stepped hole 22 ′ is formed in the opening on the valve chamber 12 side of the minute communication passage 22, and a machining allowance for the crimping portion K 1 is prepared.

そして、この軟質の逆止弁体200の上面は、微小オリフィス23を塞ぐ表面積を有する。この逆止弁体200は、弁室12側から冷媒の圧力が加えられたときには、その上面が微小オリフィスを閉じて、冷媒の流れを止める逆止弁機能を有する。   The upper surface of the soft check valve body 200 has a surface area that closes the micro orifice 23. When the pressure of the refrigerant is applied from the valve chamber 12 side, the check valve body 200 has a check valve function that closes the micro orifice to stop the flow of the refrigerant.

図4に示すように、電磁弁に通ずるバイパス通路21側の冷媒の圧力Pが過大となると、軟質の逆止弁体200が軸方向に圧縮変形し、隙間Gを形成する。この変形により微小オリフィス23は開き、バイパス通路21側の冷媒は、微小連通路22と角柱形状の逆止弁体200との間を通過して、弁室12側へ逃げ、不具合を防止する。 As shown in FIG. 4, when the pressure P 1 of the refrigerant of the bypass passage 21 side communicating with the solenoid valve becomes excessive, the check valve body 200 of the soft is compressed and deformed in the axial direction to form a gap G 1. Due to this deformation, the micro orifice 23 is opened, and the refrigerant on the bypass passage 21 side passes between the micro communication passage 22 and the prismatic check valve body 200 and escapes to the valve chamber 12 side to prevent problems.

このように、逆止弁体は、微小オリフィス23を開閉するための端面を有する柱状であって、かつその端面に作用する圧力で軸方向に伸縮するように形成される。例えば、角柱状のほか、六角形等の多角形柱あるいは、一部に平面を有する円柱とすることができ、微小連通路22の内壁面との間に軸方向に延びる流路を形成する。   Thus, the check valve body has a columnar shape having an end face for opening and closing the micro-orifice 23, and is formed so as to expand and contract in the axial direction by the pressure acting on the end face. For example, in addition to a prismatic shape, it can be a polygonal column such as a hexagon or a cylinder having a flat surface in part, and a flow path extending in the axial direction is formed between the inner wall surface of the micro communication path 22.

図5は本発明の電磁弁一体型膨張弁の更に他の実施の形態を示す断面図、図6は要部の断面図である。
全体を符号1Aで示す電磁弁一体型膨張弁は、図1、図2で説明した電磁弁一体型膨張弁に対して、微小連通路22aと微小オリフィス23a及び逆止弁体300の構成が異なるが、その他の部材の構成は同様である。そこで、同様の部材に対しては、同じ符号を付して詳細な説明は省略する。
FIG. 5 is a cross-sectional view showing still another embodiment of the expansion valve integrated with a solenoid valve of the present invention, and FIG. 6 is a cross-sectional view of the main part.
The solenoid valve-integrated expansion valve, generally denoted by reference numeral 1A, differs from the solenoid valve-integrated expansion valve described in FIGS. 1 and 2 in the configuration of the minute communication passage 22a, the minute orifice 23a, and the check valve body 300. However, the configuration of other members is the same. Therefore, the same reference numerals are assigned to similar members, and detailed description thereof is omitted.

図7は、微小連通路22aと微小オリフィス23aの構造と微小連通路22a内に配備される逆止弁体300の構成を示す説明図である。
微小連通路22aは、内径寸法Dを有する円筒穴で、微小オリフィス23aを介してバイパス通路21に連通される。微小オリフィス23aの微小連通路22a側の開口部には、円錐面23bを設けることもできる。
FIG. 7 is an explanatory view showing the structure of the minute communication passage 22a and the minute orifice 23a and the configuration of the check valve body 300 provided in the minute communication passage 22a.
Micro communication passage 22a is a cylindrical bore having an inner diameter D 1, it communicates with the bypass passage 21 through the small orifice 23a. A conical surface 23b may be provided at the opening of the minute orifice 23a on the minute communication path 22a side.

微小連通路22a内に配置される逆止弁体300は、外径寸法D、長さ寸法Hを有する円柱体で構成される。円柱体の材料はゴム部材等が適当であるが、シリコン樹脂等の他の軟質ポリマー材料でもよい。微小連通路22aの弁室12側の開口部は大径の穴22bに形成されている。微小連通路22a内に逆止弁体300を挿入した後に、カシメ加工Kを施して、ストッパ片Sを形成し、逆止弁体300を保持する。この実施の形態にあっては、4個のストッパ片Sが設けられるが、このストッパ片Sの形状や個数は適宜に選択される。
ストッパ片Sが形成された後の微小連通路22aの有効長さ寸法はHとなり、この寸法Hは逆支弁体300の長さ寸法Hより大きな寸法に設定される。
The check valve body 300 disposed in the minute communication path 22a is formed of a cylindrical body having an outer diameter dimension D 1 and a length dimension H 2 . A rubber member or the like is appropriate as the material of the cylindrical body, but other soft polymer materials such as silicon resin may be used. The opening on the valve chamber 12 side of the minute communication passage 22a is formed in a large-diameter hole 22b. After inserting the check valve body 300 into the micro communication passage 22a, it is subjected to caulking K 1, to form a stopper S 1, to hold the check valve member 300. In the this embodiment, although four stopper S 1 is provided, the shape and number of the stopper piece S 1 is selected appropriately.
Effective length of the micro communication passage 22a after stopper S 1 is formed is next to H 1, the dimension H 1 is set to a larger size than the length of H 2 check valve body 300.

図7は、弁室12側の冷媒圧力がパイパス通路21側の冷媒圧力より高い状態を示す、弁室12側の圧力Pにより逆支弁体300は、微小オリフィス23aに向けて押圧され、微小オリフィス23aを閉じた閉弁位置となる。逆支弁体300はゴム材等の軟質材料で作られるので、柔軟性を有し、微小オリフィス23aを確実に閉じる。 FIG. 7 shows a state in which the refrigerant pressure on the valve chamber 12 side is higher than the refrigerant pressure on the bypass passage 21 side. The reverse valve body 300 is pressed toward the micro orifice 23a by the pressure P 2 on the valve chamber 12 side. The valve closing position is such that the orifice 23a is closed. Since the reverse valve body 300 is made of a soft material such as a rubber material, it has flexibility and reliably closes the micro orifice 23a.

図8は、弁室12側の冷媒圧力に比べてバイパス通路21側の冷媒圧力が高くなった状態を示す。
逆止弁体300は微小オリフィス23aから離れて微小連通路22a内を移動し、ストッパ片S上に落下する。逆止弁体300の外径寸法Dは微小連通路22aの内径寸法Dより小さな寸法を有するので、その間の間隙Gを通り冷媒はバイパス通路21側から弁室に側へ向けて移動する。冷媒は4個のストッパ片Sの間の間隙Gを通り、弁室12へ向かう。
FIG. 8 shows a state in which the refrigerant pressure on the bypass passage 21 side is higher than the refrigerant pressure on the valve chamber 12 side.
The check valve body 300 away from the small orifice 23a moves within micro communication passage 22a, falls onto the stopper pieces S 1. Since the outer diameter D 2 of the check valve body 300 has a smaller dimension than the inner diameter D 1 of the micro communication passage 22a, passes through the refrigerant therebetween gaps G 1 toward the side into the valve chamber from the bypass passage 21 side moves To do. The refrigerant passes through the gap G 2 between the four stopper pieces S 1 and goes to the valve chamber 12.

本実施の形態にあっては、逆止弁体300は、ゴム材料や軟質材料製の円柱体であって、製作も極めて容易である。また、微小連通路22a、微小オリフィス23a、円錐面23b、大径部22b等も弁室に側から一方向で加工できる。また、ストッパ片Sを形成するカシメ加工Kも弁本体10がアルミ合金等の軟質金属でつくられるので、容易に加工できる。 In the present embodiment, the check valve body 300 is a cylindrical body made of a rubber material or a soft material and can be manufactured very easily. Also, the minute communication passage 22a, the minute orifice 23a, the conical surface 23b, the large diameter portion 22b, and the like can be processed into the valve chamber in one direction from the side. Further, since the caulking K 1 also valve body 10 to form the stopper S 1 is made of a soft metal such as aluminum alloy, it can be easily processed.

図9は、本発明の電磁弁一体型膨張弁の更に他の実施の形態を示す断面図、図10は要部の断面図である。
全体を符号1Bで示す電磁弁一体型膨張弁は、図1,図2で説明した電磁弁一体型膨張弁に対して、微小連通路22eと微小オリフィス23e及び逆止弁体400の構成が異なるが、その他の部材の構成は同様である。そこで、同様の部材に対しては、同じ符号を付して詳細な説明は省略する。
FIG. 9 is a cross-sectional view showing still another embodiment of the expansion valve integrated with a solenoid valve of the present invention, and FIG. 10 is a cross-sectional view of a main part.
The solenoid valve-integrated expansion valve shown as a whole by reference numeral 1B differs from the solenoid valve-integrated expansion valve described in FIGS. 1 and 2 in the configuration of the minute communication passage 22e, the minute orifice 23e, and the check valve body 400. However, the configuration of other members is the same. Therefore, the same reference numerals are assigned to similar members, and detailed description thereof is omitted.

図10は、微小連通路22eと微小オリフィス23eの構造と微小連通路22e内に配備される逆止弁体400の構成を示す説明図である。
微小連通路22eは円筒穴で、微小オリフィス23eを介してバイパス通路21に連通される。
この実施の形態にあっては、円筒穴形状の微小連通路22eの側壁に対して、バイパス通路21に連通する微小オリフィス23eは開口する。バイパス通路21と微小オリフィス23eの連結部には、円錐面23fを設けることもできる。
FIG. 10 is an explanatory diagram showing the structure of the minute communication passage 22e and the minute orifice 23e and the configuration of the check valve body 400 provided in the minute communication passage 22e.
The minute communication passage 22e is a cylindrical hole and communicates with the bypass passage 21 through the minute orifice 23e.
In this embodiment, the micro orifice 23e communicating with the bypass passage 21 opens on the side wall of the cylindrical hole-shaped micro communication passage 22e. A conical surface 23f may be provided at the connecting portion between the bypass passage 21 and the minute orifice 23e.

微小連通路22e内に配置される逆止弁体400は、微小連通路22eの内径寸法に対応した外径寸法を有する円柱体で構成される。円柱体の材料はゴム部材等が適当であるが、樹脂等の他の軟質ポリマー材料でもよい。微小連通路22eの弁室12側の開口部は、大径の穴22fに形成されている。微小連通路22e内に逆止弁体400を挿入した後に、ピールカシメ加工Kを施して、ストッパ片Sを形成し、逆止弁体400を保持する。
この実施の形態にあっては、2個のストッパ片Sが設けられるが、このストッパ片Sの形状や個数は適宜に選択される。
The check valve body 400 disposed in the minute communication path 22e is a cylindrical body having an outer diameter corresponding to the inner diameter of the minute communication path 22e. The cylindrical member is suitably a rubber member or the like, but may be another soft polymer material such as a resin. The opening on the valve chamber 12 side of the minute communication passage 22e is formed in a large-diameter hole 22f. After inserting the check valve body 400 into the micro communication passage 22e, subjected to Pirukashime machining K 2, to form a stopper S 2, it holds the check valve body 400.
In the this embodiment, although two stopper S 2 is provided, the shape and number of the stopper piece S 2 is selected as appropriate.

図10において、弁室12側の冷媒圧力Pがバイパス通路21側の冷媒圧力Pに対して高い状態にあっては、逆止弁体400は軸線方向に圧縮力を受ける。この圧縮力を受けて逆止弁体400は径方向に膨張し、その外周部400aは微小オリフィス23eに密着し、微小オリフィス23eを封止する。
バイパス通路21側の冷媒圧力Pが弁室12側の圧力Pよりも高くなると、微小オリフィス23eの冷媒は、逆止弁体400の外周部400aを内側に弾性変形させ、高圧の冷媒を弁室12側へ逃がす。
10, in the refrigerant pressure P 2 of the valve chamber 12 side to the high state with respect to the refrigerant pressure P 1 of the bypass passage 21 side, check valve body 400 is subjected to compressive forces in the axial direction. Upon receiving this compressive force, the check valve body 400 expands in the radial direction, and its outer peripheral portion 400a is in close contact with the minute orifice 23e to seal the minute orifice 23e.
When the refrigerant pressure P 1 of the bypass passage 21 side becomes higher than the pressure P 2 of the valve chamber 12 side, the refrigerant of the small orifice 23e causes the outer peripheral portion 400a of the check valve member 400 is elastically deformed inward, the high-pressure refrigerant Escape to the valve chamber 12 side.

図11は、図9,図10の実施の形態で説明した電磁弁一体型膨張弁に適用される逆止弁体の変形例を示す。
逆止弁体500は、ゴムや樹脂等の軟質材料でつくられ、円筒形状を有する袋状の中空部510は、弁室12側に開口する。この逆止弁体500は、中空部を有することにより弁室側からの圧力を受けて、容易に径方向に膨張し、微小オリフィス23eを封止する。また、径方向の弾力性が向上するので、微小オリフィス23e側の冷媒圧力により容易に変形し、高圧を弁室側に逃がすことができる。
FIG. 11 shows a modified example of the check valve body applied to the solenoid valve-integrated expansion valve described in the embodiment of FIGS.
The check valve body 500 is made of a soft material such as rubber or resin, and a bag-like hollow portion 510 having a cylindrical shape opens to the valve chamber 12 side. Since the check valve body 500 has a hollow portion, it receives pressure from the valve chamber side and easily expands in the radial direction to seal the minute orifice 23e. Further, since the elasticity in the radial direction is improved, it can be easily deformed by the refrigerant pressure on the micro orifice 23e side, and the high pressure can be released to the valve chamber side.

図12は本発明に係る電磁弁一体型膨張弁の更に他の実施の形態を示す断面図、図13は要部の拡大図である。
全体を符号1Cで示す電磁弁一体型膨張弁は、図1,図2で説明した電磁弁一体型膨張弁に対して、逆止弁体700の構成が異なるが、その他の部材の構成は同様である。そこで、同様の部材に対しては、同じ符号を付して詳細な説明は省略する。
FIG. 12 is a sectional view showing still another embodiment of the expansion valve integrated with a solenoid valve according to the present invention, and FIG. 13 is an enlarged view of a main part.
The solenoid valve-integrated expansion valve shown as a whole by reference numeral 1C is different from the solenoid valve-integrated expansion valve described in FIGS. It is. Therefore, the same reference numerals are assigned to similar members, and detailed description thereof is omitted.

図13,図14は、微小オリフィス23を介してバイパス通路21に通ずる微小連通路22内に配備される逆止弁体の詳細を示す。
逆止弁体700は、例えば樹脂でつくられ、円柱部の本体と、先端のテーパー部702を有する。逆止弁体700はそのテーパー部702の部分で微小オリフィス23を開閉し、逆止弁として機能する。テーパー部702の周面にはカットオフされた平坦面704が形成され、冷媒の通過空間を形成する。
FIGS. 13 and 14 show details of the check valve body provided in the minute communication passage 22 that communicates with the bypass passage 21 through the minute orifice 23.
The check valve body 700 is made of resin, for example, and has a cylindrical body and a tapered portion 702 at the tip. The check valve body 700 opens and closes the micro-orifice 23 at the tapered portion 702 and functions as a check valve. A cut-off flat surface 704 is formed on the peripheral surface of the taper portion 702 to form a refrigerant passage space.

弁本体10の弁室12側には、支持板720が挿入され、室22の開口部に形成されるカシメ加工部Kで固定される。支持板720は中央に穴722を有し、冷媒を通過させる。支持板720と室22の間には、スプリング710が装備される。 A support plate 720 is inserted on the valve chamber 12 side of the valve body 10 and is fixed by a crimping portion K 1 formed in the opening of the chamber 22. The support plate 720 has a hole 722 in the center and allows the refrigerant to pass therethrough. A spring 710 is provided between the support plate 720 and the chamber 22.

この逆止弁は、電磁弁一体型膨張弁の電磁弁を閉じたときに、電磁弁に通ずる冷媒通路21の圧力が弁室12側の冷媒圧力よりも高いとき、逆止弁体700が微小オリフィス23より離れて、圧力差を解消する。圧力差が解消された後は、逆止弁体700が閉じて微小連通路を備えない通常の膨張弁として機能する。この実施例構造の場合は、逆止弁体700は硬質材であってもよい。
以上の構成により、大きな圧力差のあるときには微小連通路22の微小オリフィス23が逆止弁体700によって閉じるため、微小連通路22からの余分な冷媒漏れを防止でき、この余分な冷媒漏れに起因するエネルギー損失を防止することができる。
When the pressure of the refrigerant passage 21 communicating with the solenoid valve is higher than the refrigerant pressure on the valve chamber 12 side when the solenoid valve of the solenoid valve-integrated expansion valve is closed, the check valve body 700 is minute. The pressure difference is eliminated away from the orifice 23. After the pressure difference is eliminated, the check valve body 700 is closed and functions as a normal expansion valve that does not have a minute communication path. In the case of this embodiment structure, the check valve body 700 may be a hard material.
With the above configuration, when there is a large pressure difference, the micro orifice 23 of the micro communication path 22 is closed by the check valve body 700, so that excessive refrigerant leakage from the micro communication path 22 can be prevented. Energy loss can be prevented.

図15は、本発明の逆止弁体の他の実施例を示す説明図である。
逆止弁体800は、四つの平坦面804を有する角柱状の本体と、本体の上部に形成される載頭円錐形状のテーパー面802とを有する。そして、テーパー面802は、微小オリフィス23の間で逆止弁機構を構成する。逆止弁体800の底部には半円弧溝806が設けられる。
FIG. 15 is an explanatory view showing another embodiment of the check valve body of the present invention.
The check valve body 800 includes a prismatic main body having four flat surfaces 804 and a tapered cone-shaped tapered surface 802 formed on the upper portion of the main body. The tapered surface 802 constitutes a check valve mechanism between the micro orifices 23. A semicircular groove 806 is provided at the bottom of the check valve body 800.

この逆止弁体800は微小連通路22内に挿入され、カシメ部Kにより脱落が防止される。逆止弁体800は、樹脂製で小型軽量の部材である。
そこで、弁室12の冷媒圧力が通路21側の圧力よりも高い状態では、逆止弁体800は微小オリフィス23に押圧され、冷媒の通過を防ぐ。
バイパス通路21側の圧力が高い状態では、微小オリフィス23を開き、弁室12側へ冷媒を流す。
The check valve body 800 is inserted into the micro communication passage 22, falling off is prevented by the caulking portion K 1. The check valve body 800 is a resin-made small and lightweight member.
Therefore, in the state where the refrigerant pressure in the valve chamber 12 is higher than the pressure on the passage 21 side, the check valve body 800 is pressed by the minute orifice 23 to prevent the refrigerant from passing therethrough.
In a state where the pressure on the bypass passage 21 side is high, the micro orifice 23 is opened and the refrigerant flows to the valve chamber 12 side.

本発明の電磁弁一体型膨張弁にあっては、電磁弁が作動(閉弁)しているときに、弁室12側の冷媒圧力が高い状態となっても微小連通路から漏れる冷媒の量を最小限に限定し、エネルギー損失を防止することができる。   In the solenoid valve-integrated expansion valve of the present invention, when the solenoid valve is operating (closed), the amount of refrigerant leaking from the minute communication path even when the refrigerant pressure on the valve chamber 12 side becomes high Can be minimized and energy loss can be prevented.

本発明の電磁弁一体型膨張弁の一実施の形態を示す断面図。Sectional drawing which shows one Embodiment of the solenoid valve integrated expansion valve of this invention. 要部の断面図。Sectional drawing of the principal part. 本発明の逆止弁体の取付構造の説明図。Explanatory drawing of the attachment structure of the non-return valve body of this invention. 本発明の作用を示す説明図。Explanatory drawing which shows the effect | action of this invention. 本発明の他の実施の形態を示す断面図。Sectional drawing which shows other embodiment of this invention. 図5の要部の断面図。Sectional drawing of the principal part of FIG. 逆止弁体の説明図。Explanatory drawing of a non-return valve body. 逆止弁体説明図。Check valve body explanatory drawing. 本発明の更に他の実施の形態を示す断面図。Sectional drawing which shows other embodiment of this invention. 図9の要部の断面図。Sectional drawing of the principal part of FIG. 図9,図10の実施の形態で説明した電磁弁一体型膨張弁に適用される逆止弁体の変形例を示す説明図。Explanatory drawing which shows the modification of the non-return valve body applied to the solenoid valve integrated expansion valve demonstrated by embodiment of FIG. 9, FIG. 本発明の電磁弁一体型膨張弁の更に他の実施の形態を示す断面図。Sectional drawing which shows other embodiment of the solenoid valve integrated expansion valve of this invention. 図12の要部の断面図。Sectional drawing of the principal part of FIG. 逆止弁構造の説明図。Explanatory drawing of a check valve structure. 逆止弁体の他の実施の形態を示す説明図。Explanatory drawing which shows other embodiment of a non-return valve body.

符号の説明Explanation of symbols

1 膨張弁
10 弁本体
12 弁室
14 絞り流路
16 出口冷媒流路
20 有底穴
20a 背圧室
21 バイパス通路
22 微小連通路
23 微小オリフィス
24 導管
30 弁体
50 パワーエレメント
60 ダイアフラム
70 感温棒
80 弁棒
100 電磁弁
120 コイル
130 吸引子
140 プランジャ
150 パイロット弁体
200 逆止弁体
DESCRIPTION OF SYMBOLS 1 Expansion valve 10 Valve body 12 Valve chamber 14 Restriction flow path 16 Outlet refrigerant flow path 20 Bottomed hole 20a Back pressure chamber 21 Bypass path 22 Micro communication path 23 Micro orifice 24 Pipe 30 Valve body 50 Power element 60 Diaphragm 70 Temperature sensing rod 80 Valve Rod 100 Solenoid Valve 120 Coil 130 Suction Element 140 Plunger 150 Pilot Valve Body 200 Check Valve Body

Claims (9)

高圧側冷媒が導入される弁室該弁室に連通する絞り流路及び該絞り流路にて減圧膨張した冷媒を蒸発器へ供給する出口冷媒流路を有する弁本体と、前記弁室内に配置され前記絞り流路を開閉する弁体と、該弁体変位させるパワーエレメントと、前記弁室と前記出口冷媒流路の間に設けられる冷媒のバイパス通路と、該バイパス通路を開閉する電磁弁と前記弁室と前記バイパス通路とを連通するように設けられ微小連通路とを備え、前記微小連通路は、前記バイパス通路側に設けられた微小オリフィスと、該微小オリフィスと前記弁室との間に設けられるとともに前記微小オリフィスよりも大径の逆止弁体を挿入する弁体挿入部とからなり、前記弁室内の冷媒圧力が前記バイパス通路内の冷媒圧力よりも高い状態では前記逆止弁体が前記微小オリフィスを封止して前記弁室から前記バイパス通路への冷媒の流れを遮断し、前記バイパス通路内の冷媒圧力が前記弁室内の冷媒圧力よりも高い状態では前記逆止弁体が前記微小オリフィスを開放して前記バイパス通路内の冷媒を前記弁室内へ流入させることを特徴とする電磁弁一体型膨張弁。 A valve body having a valve chamber into which the high-pressure side refrigerant is introduced , a throttle channel communicating with the valve chamber , an outlet refrigerant channel for supplying the refrigerant decompressed and expanded in the throttle channel to the evaporator, and the valve chamber a valve body disposed to open and close the throttle channel, to open and close a power element for displacing the valve body, the bypass passage of the refrigerant is provided between said valve chamber said outlet refrigerant flow path, the bypass path wherein an electromagnetic valve, a micro communication passage provided so as to communicate between the bypass passage and the valve chamber, the micro communication passage, and the minute orifice provided in the bypass passage side, a fine small orifice A valve body insertion portion that is provided between the valve chamber and inserts a check valve body having a diameter larger than that of the minute orifice, and the refrigerant pressure in the valve chamber is higher than the refrigerant pressure in the bypass passage Then, the check valve body is The fine orifice is sealed to block the flow of the refrigerant from the valve chamber to the bypass passage, and the check valve body is in the state where the refrigerant pressure in the bypass passage is higher than the refrigerant pressure in the valve chamber. solenoid valve integral expansion valve, wherein isosamples opening the small orifice to flow into the refrigerant in the bypass passage to the valve chamber. 前記逆止弁体は、前記微小通路の内壁面と前記逆止弁体の外壁面との間に軸方向に延びる通路を形成する凹凸を有することを特徴とする請求項1記載の電磁弁一体型膨張弁。 The check valve body, the solenoid valve according to claim 1, characterized in that it has an uneven to form a passage extending axially between the inner wall and the outer wall surface of the check valve body of the micro communication passage Integrated expansion valve. 前記逆止弁体は、角柱体又は円柱体であることを特徴とする請求項1記載の電磁弁一体型膨張弁。 The check valve body, the solenoid valve integral expansion valve according to claim 1, characterized in that the prismatic body, or cylinder. 前記逆止弁体はゴム等の軟質材料で形成される請求項1乃至3のいずれかに記載の電磁弁一体型膨張弁。   The solenoid valve-integrated expansion valve according to any one of claims 1 to 3, wherein the check valve body is formed of a soft material such as rubber. 前記逆止弁体は、前記弁室側に開口する袋状の中空部を有する筒状体である請求項4記載の電磁弁一体型膨張弁。 The solenoid valve-integrated expansion valve according to claim 4, wherein the check valve body is a cylindrical body having a bag-shaped hollow portion that opens to the valve chamber side. 前記微小連通路の前記弁室側の開口部は大径部に形成され、大径部にカシメ加工により形成されるストッパ片により前記逆止弁体は前記微小連通路内に保持される請求項1乃至5のいずれかに記載の電磁弁一体型膨張弁。 Wherein the valve chamber side of the opening of the micro communication passage is formed in the large diameter portion, the large diameter portion to the crimping process the check valve by a stopper piece formed by body held in the micro communication passage Item 6. The solenoid valve-integrated expansion valve according to any one of Items 1 to 5. 前記ストッパ片が形成された前記微小連通路の有効長さ寸法は、前記逆止弁体の長さ寸法より大なる寸法を有する請求項6記載の電磁弁一体型膨張弁。   The solenoid valve-integrated expansion valve according to claim 6, wherein an effective length dimension of the minute communication path in which the stopper piece is formed is larger than a length dimension of the check valve body. 前記逆止弁体は前記微小連通路の軸方向に移動自在であるとともにスプリングを介して前記微小オリフィスに向けて付勢されている請求項1記載の電磁弁一体型膨張弁。 The solenoid valve-integrated expansion valve according to claim 1, wherein the check valve body is movable in the axial direction of the minute communication path and is biased toward the minute orifice via a spring. 前記逆止弁体は、前記微小オリフィスに当接するテーパー部と該テーパー部に連続する角柱部とを備えている請求項8記載の電磁弁一体型膨張弁。   The solenoid valve-integrated expansion valve according to claim 8, wherein the check valve body includes a tapered portion that abuts on the minute orifice and a rectangular column portion that is continuous with the tapered portion.
JP2006078031A 2005-03-22 2006-03-22 Expansion valve with integrated solenoid valve Expired - Fee Related JP4588656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078031A JP4588656B2 (en) 2005-03-22 2006-03-22 Expansion valve with integrated solenoid valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005082631 2005-03-22
JP2006078031A JP4588656B2 (en) 2005-03-22 2006-03-22 Expansion valve with integrated solenoid valve

Publications (2)

Publication Number Publication Date
JP2006300508A JP2006300508A (en) 2006-11-02
JP4588656B2 true JP4588656B2 (en) 2010-12-01

Family

ID=37468996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078031A Expired - Fee Related JP4588656B2 (en) 2005-03-22 2006-03-22 Expansion valve with integrated solenoid valve

Country Status (1)

Country Link
JP (1) JP4588656B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560439B2 (en) * 2010-04-16 2014-07-30 株式会社テージーケー Control valve and vehicle air conditioner
JP5619526B2 (en) * 2010-08-25 2014-11-05 株式会社不二工機 Expansion valve with integrated solenoid valve
JP5619531B2 (en) * 2010-08-31 2014-11-05 株式会社不二工機 Expansion valve with integrated solenoid valve
JP5643934B2 (en) * 2010-10-06 2014-12-24 株式会社テージーケー Expansion device
JP2012225646A (en) * 2012-08-20 2012-11-15 Fuji Koki Corp Pressure control valve
CN104776655B (en) * 2014-01-11 2018-05-08 苏州恒兆空调节能科技有限公司 A kind of modified transducer air conditioning
CN110732697B (en) * 2018-07-18 2022-11-18 浙江三花汽车零部件有限公司 Expansion valve processing method and expansion valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161653U (en) * 1978-05-02 1979-11-12
JPS6342981U (en) * 1986-09-05 1988-03-22
JPH11182983A (en) * 1997-12-22 1999-07-06 Denso Corp Expansion valve integrated with solenoid valve
JP2004093028A (en) * 2002-08-30 2004-03-25 Fuji Koki Corp Electric expansion valve
JP2004340560A (en) * 2003-04-24 2004-12-02 Fuji Koki Corp Composite valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161653U (en) * 1978-05-02 1979-11-12
JPS6342981U (en) * 1986-09-05 1988-03-22
JPH11182983A (en) * 1997-12-22 1999-07-06 Denso Corp Expansion valve integrated with solenoid valve
JP2004093028A (en) * 2002-08-30 2004-03-25 Fuji Koki Corp Electric expansion valve
JP2004340560A (en) * 2003-04-24 2004-12-02 Fuji Koki Corp Composite valve

Also Published As

Publication number Publication date
JP2006300508A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4588656B2 (en) Expansion valve with integrated solenoid valve
US7299646B2 (en) Expansion valve having solenoid relief valve
JP6368895B2 (en) Control valve
JP2006242413A (en) Constant flow rate expansion valve
JP4865287B2 (en) Pilot type solenoid valve
JP5664873B2 (en) Valve for supplying fluid
EP1382922B1 (en) Constant flow rate expansion valve
JP4848548B2 (en) Expansion valve with solenoid valve
JP2007285159A (en) Control valve for variable displacement compressor
JP2008138812A (en) Differential pressure valve
JP2004076920A (en) Differential pressure control valve
KR101020808B1 (en) Expansion valve integrated with solenoid valve
JP2004270975A (en) Flow rate control valve
JP4503471B2 (en) Expansion valve with integrated solenoid valve
CN111868461A (en) Power element and expansion valve with same
EP1522803B1 (en) Constant differential pressure valve
JP4566150B2 (en) Expansion valve with integrated solenoid valve
JP4576076B2 (en) Expansion valve with integrated solenoid valve
JP4503472B2 (en) Expansion valve with integrated solenoid valve
JP2004068955A (en) Differential pressure control valve
JPH11304298A (en) Expansion valve with solenoid valve
JP2006266543A (en) Expansion valve integrated with solenoid valve
JP2005249273A (en) Thermal expansion valve
JP2019163834A (en) Expansion valve
JP2005331111A (en) Electromagnetic valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Ref document number: 4588656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees