JP4586002B2 - mechanical seal - Google Patents

mechanical seal Download PDF

Info

Publication number
JP4586002B2
JP4586002B2 JP2006256681A JP2006256681A JP4586002B2 JP 4586002 B2 JP4586002 B2 JP 4586002B2 JP 2006256681 A JP2006256681 A JP 2006256681A JP 2006256681 A JP2006256681 A JP 2006256681A JP 4586002 B2 JP4586002 B2 JP 4586002B2
Authority
JP
Japan
Prior art keywords
sliding member
seal ring
sliding
stationary
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006256681A
Other languages
Japanese (ja)
Other versions
JP2008075787A (en
Inventor
敏彦 布施
満 下里
正信 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2006256681A priority Critical patent/JP4586002B2/en
Publication of JP2008075787A publication Critical patent/JP2008075787A/en
Application granted granted Critical
Publication of JP4586002B2 publication Critical patent/JP4586002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、回転側シール輪と、静止側シール輪と、これら両シール輪どうしを押付ける弾性手段とを有して成るメカニカルシールに関するものである。   The present invention relates to a mechanical seal having a rotation side seal ring, a stationary side seal ring, and elastic means for pressing the two seal rings.

この種のメカニカルシールとしては、特許文献1において開示されたもののように、カーボン製シールリングのように摩耗粉が食品や薬品等のシール対象を着色することがないように、回転側シール輪及び静止側シール輪のいずれも合成樹脂製のものとする技術が知られている。   As this type of mechanical seal, like the one disclosed in Patent Document 1, the rotating side seal ring and the sealing ring such that the wear powder does not color the object to be sealed such as food and chemicals like the carbon seal ring. A technique is known in which all of the stationary side seal rings are made of synthetic resin.

しかしながら、この両シール輪を共に合成樹脂材とする技術では、スプリング荷重や機内圧力によって合成樹脂材が変形し、シール性が悪化することが起こり易い。また、合成樹脂材の内部に残留する歪の影響で加工精度を上げることが難しい。このように、コストが高くなる割にはシール性が芳しくないとともに、摩耗した場合には両方のシール輪を取り換える必要がある。また、温度変化による影響を受け易いという熱に弱い不利もある。   However, in the technology in which both the seal rings are made of a synthetic resin material, the synthetic resin material is likely to be deformed by a spring load or an in-machine pressure, and the sealing performance is likely to deteriorate. In addition, it is difficult to increase the processing accuracy due to the strain remaining in the synthetic resin material. As described above, the sealing performance is not good for the high cost, and it is necessary to replace both seal rings when worn. In addition, there is a disadvantage that is susceptible to heat due to temperature changes.

そこで、特許文献2において開示されるように、回転側及び静止側の双方のシール輪を、金属やセラミックス等の硬質部材と、これの表面にコーティングされた樹脂材等による摺動皮膜とから成る複合構造の摺動材に構成することが開発された。これにより、潤滑油や液体の存在しない雰囲気、或いは流体による潤滑の気体できない環境条件において、優れた摺動性及び耐摩耗性が発揮されるメカニカルシールが実現されている。   Therefore, as disclosed in Patent Document 2, both the rotating and stationary seal rings are composed of a hard member such as metal or ceramics and a sliding film made of a resin material or the like coated on the surface thereof. It has been developed to make a composite sliding material. This realizes a mechanical seal that exhibits excellent slidability and wear resistance in an atmosphere where there is no lubricating oil or liquid, or in an environmental condition where fluid cannot be lubricated.

前記特許文献2の開示技術により、優れた潤滑性や耐摩耗性の向上が図れるとのことであり、その技術(複合構造の摺動材)を導入することが検討された。しかしながら、コーティングによる摺動皮膜の厚みには限界があって必要となる厚みを得るのが困難であり、常時駆動回転される箇所等においては耐久性の点で難点がある。また、摺動皮膜の厚さが薄いことから十分な仕上げ代が確保できず、最終仕上げ加工が非常に難しくなるという不利もある。
特開平9−280382号公報 特開2001−26792号公報
According to the technique disclosed in Patent Document 2, it is possible to improve excellent lubricity and wear resistance, and the introduction of the technique (sliding material having a composite structure) was studied. However, there is a limit to the thickness of the sliding film formed by coating, and it is difficult to obtain the required thickness. Moreover, since the thickness of the sliding film is thin, a sufficient finishing allowance cannot be secured, and there is a disadvantage that final finishing is very difficult.
JP-A-9-280382 JP 2001-26792 A

本発明の目的は、硬質材等の剛性基材の表面に摺動部材を積層一体化する複合構造により、シール性や耐摩耗性に優れる利点を持つ手段を踏襲しながら、最終仕上げ加工を容易に行うことができ、実用に耐えるに十分な耐久性も発揮することが可能となるよう、さらに改善されたメカニカルシール用のシール輪、並びにそのシール輪を用いたメカニカルシールを提供する点にある。   The purpose of the present invention is to make the final finishing process easy while following the means with the advantage of excellent sealing performance and wear resistance by the composite structure in which sliding members are laminated and integrated on the surface of rigid base material such as hard material The present invention is to provide a further improved seal ring for a mechanical seal, and a mechanical seal using the seal ring, so that the durability sufficient to withstand practical use can be exhibited. .

請求項1に係る発明は、回転軸1と一体回転する回転側のシール輪2と、ケーシング3に相対固定される静止側のシール輪4と、回転側及び静止側の各前記シール輪2,4の摺動面2a,4aどうしを押付け合う弾性手段5とを有して成るメカニカルシールにおいて、
前記回転側及び前記静止側の何れか一方の前記シール輪4が剛性基材4Bに摺動部材4Aを貼り合せた複合構造体で構成され、かつ、何れか他方の前記シール輪2が硬質部材から構成されており、前記何れか一方のシール輪4の摺動面4aが前記摺動部材4Aで形成され、前記何れか他方のシール輪2の摺動面2aが前記硬質部材で形成され、前記剛性基材4Bがセラミックス、カーボン、金属及び金属とセラミックスの複合材料から選択されるものであり、前記摺動部材4Aが結合剤に固体潤滑材料を配合したものであるとともに、前記摺動部材4Aの厚みが0.5mm〜5mmの範囲に設定されていることを特徴とするものである。
The invention according to claim 1 includes a rotary seal ring 2 that rotates integrally with the rotary shaft 1, a stationary seal ring 4 that is relatively fixed to the casing 3, and each of the rotary and stationary seal rings 2. In the mechanical seal having the elastic means 5 that presses the sliding surfaces 2a and 4a of the four,
The seal ring 4 on either the rotating side or the stationary side is composed of a composite structure in which a sliding member 4A is bonded to a rigid substrate 4B, and the other seal ring 2 is a hard member. The sliding surface 4a of any one of the sealing rings 4 is formed by the sliding member 4A, and the sliding surface 2a of the other sealing ring 2 is formed by the hard member, The rigid base material 4B is selected from ceramics, carbon, metal, and a composite material of metal and ceramics, and the sliding member 4A is obtained by blending a solid lubricant material into a binder, and the sliding member The thickness of 4A is set in the range of 0.5 mm to 5 mm .

請求項2に係る発明は、請求項1に記載のメカニカルシールにおいて、前記摺動部材4Aに、その厚み範囲内の深さを有する周溝18が形成されていることを特徴とするものである。   The invention according to claim 2 is characterized in that, in the mechanical seal according to claim 1, a circumferential groove 18 having a depth within the thickness range is formed in the sliding member 4A. .

請求項3に係る発明は、請求項1又は2に記載のメカニカルシールにおいて、前記摺動部材4Aがフッ素系樹脂によって形成されていることを特徴とするものである。   The invention according to claim 3 is the mechanical seal according to claim 1 or 2, characterized in that the sliding member 4A is made of a fluorine-based resin.

請求項1の発明によれば、回転側と静止側の何れか一方のシール輪を、剛性基材と、その表面に貼り合わされた摺動部材とから成る複合構造の摺動材に構成されているので、潤滑油や液体の存在しない雰囲気、或いは流体による潤滑の期待できない環境条件においても、優れた摺動性及び耐摩耗性を発揮することができるようになる。そして、回転側と静止側の何れか他方のシール輪を硬質部材から構成してあるので、これと摺動部材との摺動による優れたシール性を発揮しながらも、主に摩耗するのは摺動部材を有する側のシール輪であるから、摩耗時には、回転側と静止側とのいずれか一方だけの部品交換で済む利点がある。加えて、摺動部材と剛性基材とが貼り合せによって積層一体化されているので、例えばコーティングによって剛性基材表面に装備される場合に比べて、摺動部材の厚みを容易に十分な厚みとすることができるので、前述の良好な機能をより長期に亘って持続することができて耐久性に優れるものとすることができるとともに、精密切削加工による鏡面仕上げ等の最終仕上げ加工を摺動部材に施すことが可能になり、摺動面を高精度に仕上げてシール性をより向上させることも可能になる。   According to the first aspect of the present invention, the seal ring on either the rotating side or the stationary side is configured as a sliding material having a composite structure including a rigid base material and a sliding member bonded to the surface thereof. Therefore, excellent slidability and wear resistance can be exhibited even in an atmosphere where there is no lubricating oil or liquid, or even in an environmental condition where lubrication with a fluid cannot be expected. And since either the rotating side or the stationary side seal ring is made of a hard member, it is mainly worn out while exhibiting excellent sealing performance by sliding between this and the sliding member. Since it is a seal ring on the side having the sliding member, there is an advantage that at the time of wear, only one of the parts on the rotating side or the stationary side can be replaced. In addition, since the sliding member and the rigid base material are laminated and integrated by bonding, the thickness of the sliding member can be easily and sufficiently increased as compared with the case where the sliding base material is equipped on the surface of the rigid base material by coating, for example. Therefore, it is possible to maintain the above-mentioned good functions for a longer period of time and to have excellent durability, and to slide the final finishing process such as mirror finish by precision cutting. It becomes possible to apply to the member, and it becomes possible to further improve the sealing performance by finishing the sliding surface with high accuracy.

その結果、硬質材等の剛性基材の表面に摺動部材を積層一体化する複合構造により、シール性や耐摩耗性に優れる利点を持つ手段を踏襲しながら、シール性の一層の向上や実用に耐えるに十分な耐久性を発揮することが可能となるよう、さらに改善されたメカニカルシールを提供することができる。この場合、請求項3のように、自己潤滑性に優れ、雰囲気流体による影響を受け難い点からは、摺動部材をフッ素系樹脂で形成するのが好ましい。   As a result, a composite structure in which sliding members are laminated and integrated on the surface of a rigid base material such as a hard material, further improving the sealing performance and practical use while following the means with the advantage of excellent sealing performance and wear resistance It is possible to provide a mechanical seal that is further improved so as to be able to exhibit sufficient durability to withstand. In this case, the sliding member is preferably made of a fluorine-based resin from the viewpoint of excellent self-lubricating property and being hardly affected by the atmospheric fluid.

請求項1の発明によれば、摺動部材の厚みを、コーティングでは為し得ない厚みである0.5mm〜5mmの範囲に設定することにより、種々のメカニカルシールにおいても請求項1による前記効果を実用上において十分に発揮できるようになる。 According to the invention of claim 1, by setting the thickness of the sliding member in the range of 0.5 mm to 5 mm , which is a thickness that cannot be achieved by coating, the effect of claim 1 can be achieved even in various mechanical seals. Can be fully demonstrated in practical use.

請求項2の発明によれば、その厚み範囲内の深さを有する周溝が形成される摺動部材を用いることにより、回転に伴ってその周溝に起因する動圧を発生させることが可能であり、回転側及び静止側の両シール輪どうしが非接触状態でシール機能を発揮する「非接触型メカニカルシール」が構成可能となる利点がある。   According to the invention of claim 2, by using a sliding member in which a circumferential groove having a depth within the thickness range is formed, it is possible to generate dynamic pressure caused by the circumferential groove with rotation. Thus, there is an advantage that a “non-contact type mechanical seal” that exhibits a sealing function in a non-contact state between both rotating and stationary seal rings can be configured.

以下に、本発明によるメカニカルシールの実施の形態を、図面を参照しながら説明する。図1,図2はそれぞれ実施例1,2によるメカニカルシールの断面図、図3は図2のメカニカルシールに用いられる静止側シール輪の正面図である。   Embodiments of a mechanical seal according to the present invention will be described below with reference to the drawings. 1 and 2 are sectional views of mechanical seals according to Examples 1 and 2, respectively. FIG. 3 is a front view of a stationary seal ring used for the mechanical seal of FIG.

〔実施例1〕
メカニカルシールSは、図1に示すように、回転軸1と一体回転する回転側のシール輪2と、ケーシング3に相対固定される静止側のシール輪4と、回転側及び静止側の各シール輪2,4の摺動面2a,4aどうしを押付け合うための巻きバネ(弾性手段の一例)5とを有して構成されている。図1において、静止側のシール輪4よりも右側の部分が缶内側(機内側)であり、左側の部分が大気側である。
[Example 1]
As shown in FIG. 1, the mechanical seal S includes a rotary seal ring 2 that rotates integrally with the rotary shaft 1, a stationary seal ring 4 that is relatively fixed to the casing 3, and rotary and stationary seals. It has a winding spring (an example of elastic means) 5 for pressing the sliding surfaces 2a, 4a of the rings 2, 4 together. In FIG. 1, the portion on the right side of the stationary seal ring 4 is the inside of the can (inner side), and the portion on the left side is the atmosphere side.

静止側のシール輪4は、その外周突起部4gを一対のシールリング6,6を介してケーシング3、及びこれにボルト固定される押えケース部7とによって回転不能に、かつ、回転軸1に対して僅かな間隙を有して外嵌される状態に支持されている。この静止側のシール輪4は、剛性基材4Bに摺動部材4Aを貼り合せた複合構造体で構成されており、具体的には、特殊充填材入りのフッ素樹脂材から形成される環状の静止側シール板である摺動部材4Aと、ステンレス材から形成される環状の静止側支持部材である剛性基材4Bとを、接着剤を用いて接合一体化することで構成されている。ここで、摺動部材4Aの厚みは0.5mm〜5mmの範囲に設定されている。 The stationary seal ring 4 cannot be rotated by the casing 3 via a pair of seal rings 6, 6 and a presser case portion 7 that is bolted to the outer peripheral projection 4 g and is attached to the rotary shaft 1. On the other hand, it is supported so as to be fitted with a slight gap. The stationary-side seal ring 4 is composed of a composite structure in which a sliding member 4A is bonded to a rigid base 4B. Specifically, an annular ring formed of a fluororesin material containing a special filler is used. The sliding member 4A, which is a stationary seal plate, and the rigid base material 4B, which is an annular stationary support member formed of stainless steel, are joined and integrated using an adhesive. Here, the thickness of the sliding member 4A is set in the range of 0.5 mm to 5 mm .

回転側のシール輪2は、これの根元側を内嵌するホルダ10と共に支持ベース9の先端側小径部分9aに、回転軸1の軸心P方向にスライド自在に外嵌されるとともに、ホルダ10に対しては、これに螺着されるストッパボルト11の頭部11aと凹入穴2bとの遊嵌合によって相対回転不能とされている。スクリュー8によって回転軸1に相対固定される支持ベース9は、ホルダ10に螺着される支持ボルト12を、軸心P方向に所定範囲内でスライド自在に挿通させる支持孔13が形成されるとともに、ホルダ10を静止側のシール輪4に向けて押圧付勢するための巻きバネ5を収容するための凹入穴(図示省略)が形成されている。   The rotation-side seal ring 2 is externally fitted to the distal end side small-diameter portion 9a of the support base 9 together with a holder 10 that fits the base side of the rotation side so as to be slidable in the direction of the axis P of the rotation shaft 1, and the holder 10 On the other hand, relative rotation is impossible due to loose fit between the head 11a of the stopper bolt 11 screwed to this and the recessed hole 2b. The support base 9 relatively fixed to the rotating shaft 1 by the screw 8 is formed with a support hole 13 through which a support bolt 12 screwed to the holder 10 is slidably inserted within a predetermined range in the axis P direction. A concave insertion hole (not shown) is formed for accommodating the winding spring 5 for pressing and urging the holder 10 toward the stationary seal ring 4.

回転側のシール輪2は、回転軸1に対しては若干の径方向間隙を有するように遊外嵌されており、かつ、シールリング14によってシールされる状態となるように構成されている。このような構成により、ステンレスやアルミ合金等の硬質部材から形成される回転側のシール輪2は、回転軸1と一体回転状態で、かつ、静止側のシール輪4に向かう状態で押圧付勢される。従って、回転側及び静止側の各シール輪2,4の摺動面2a,4aどうしが互いに押し付け合いながらの相対回転により、缶内側と大気側とに跨ってシールするメカニカルシールSが構成されている。   The rotation-side seal ring 2 is loosely fitted to the rotary shaft 1 so as to have a slight radial gap, and is configured to be sealed by the seal ring 14. With such a configuration, the rotation-side seal ring 2 formed of a hard member such as stainless steel or aluminum alloy is pressed and biased in a state of rotating integrally with the rotation shaft 1 and toward the stationary-side seal ring 4. Is done. Accordingly, a mechanical seal S is formed that seals between the inner side of the can and the atmosphere side by relative rotation while the sliding surfaces 2a, 4a of the rotary and stationary seal rings 2, 4 are pressed against each other. Yes.

ここで、回転側のシール輪2に適用される硬質部材の材質は、超硬合金、SiC、セラミックス等でも良い。静止側のシール輪4の材質として、摺動部材4Aの材質が、フッ素樹脂(PTFE等)、PEEK等でも良く、また、剛性基材4Bの材質は、金属、非鉄金属、比熱熱の低い強度部材でも良い。次に、固定側及び回転側のシール輪2,4の材料やその特性等についてさらに詳しく説明する。   Here, the material of the hard member applied to the rotation-side seal ring 2 may be cemented carbide, SiC, ceramics, or the like. As the material of the stationary seal ring 4, the material of the sliding member 4A may be fluororesin (PTFE, etc.), PEEK, etc. The material of the rigid substrate 4B is metal, non-ferrous metal, low specific heat strength It may be a member. Next, the materials and characteristics of the sealing rings 2 and 4 on the fixed side and the rotating side will be described in more detail.

摺動部材4Aは、結合剤に適量の固体潤滑材料を配合した材質から成るものでも良く、この場合、好ましくは、剛性基材4Bとしては、セラミックス、カーボン、金属及び金属とセラミックスの複合材料から選択され、固体潤滑材料としては、四フッ化エチレン樹脂、二硫化モリブデン、グラファイト、二硫化タングステン、フッ化黒鉛等の自己潤滑物質から一種類以上選択される。   The sliding member 4A may be made of a material in which an appropriate amount of a solid lubricating material is blended in a binder. In this case, the rigid base 4B is preferably made of ceramic, carbon, metal, and a composite material of metal and ceramic. As the solid lubricant material, one or more kinds of self-lubricating materials such as ethylene tetrafluoride resin, molybdenum disulfide, graphite, tungsten disulfide, and graphite fluoride are selected.

摺動部材4Aの基材としての剛性基材4Bに使用されるセラミックスやカーボン、金属、金属とセラミックスの複合材料等は、耐蝕性に優れると共に弾性変形し難く、熱伝導性にも優れ、それ自体も所要の自己潤滑性を有している。接着される摺動部材4Aとの接合界面の腐食による摺動部材4Aの損傷を防止することができ、また、使用雰囲気の圧力等の負荷による変形を受け難くすることができ、従って、摺動部材4Aの初期の表面粗さが維持され易く、摩擦係数の変化を少なくすることができる。熱伝導性が良いことによって、摺動により発生する熱が放熱され易く、摺動部材4Aの熱負荷を軽減できる。さらに、摺動部材4Aが経時的に摩耗して薄くなったとしても、例えば、摺動部材4Aがコーティングによって作成されている場合のように、摩耗によって摺動面に剛性基材が露出してしまうようなことが無く、摺動部材4Aによる良好なシール状態を安定的に供給することができる利点がある。   Ceramics, carbon, metal, composite materials of metal and ceramics, etc. used for the rigid base material 4B as the base material of the sliding member 4A are excellent in corrosion resistance, hardly elastically deformed, and excellent in thermal conductivity. It itself has the required self-lubricating properties. It is possible to prevent damage to the sliding member 4A due to corrosion of the bonding interface with the sliding member 4A to be bonded, and it is possible to prevent deformation due to a load such as pressure in the use atmosphere. The initial surface roughness of the member 4A can be easily maintained, and the change in the friction coefficient can be reduced. Due to the good thermal conductivity, the heat generated by sliding is easily radiated, and the thermal load on the sliding member 4A can be reduced. Further, even if the sliding member 4A is worn and thinned over time, the rigid base material is exposed on the sliding surface due to wear, for example, as in the case where the sliding member 4A is formed by coating. There is an advantage that a good sealing state by the sliding member 4A can be stably supplied.

また、摺動部材4Aを構成する固体潤滑材料及び結合剤は、それぞれ摩擦係数は低いが耐摩耗性に乏しいため、単独では摺動材料としては適さず、通常は潤滑補助材や単なる結合剤としてのみ用いられる。しかしながら、このような固体潤滑材料と結合剤との混合物は、硬質で変形し難く、かつ、熱伝導性の良いセラミックスやカーボン等からなる剛性基材4Bの表面に貼り合わせることにより、著しい耐摩耗性の向上が実現される。即ち、摺動部材4Aを構成する固体潤滑材料及び結合剤が本来有さない硬さや熱伝導性を、剛性基材4Bが補償する結果、耐摩耗性を向上させることが可能になる。   In addition, the solid lubricating material and the binder constituting the sliding member 4A each have a low coefficient of friction but poor wear resistance. Therefore, the solid lubricating material and the binder are not suitable as a sliding material alone. Only used. However, such a mixture of the solid lubricating material and the binder is hard and hardly deformed, and is bonded to the surface of the rigid base material 4B made of ceramics, carbon, or the like having good thermal conductivity, so that it has a remarkable wear resistance. The improvement in performance is realized. That is, as a result of the rigid base material 4B compensating for the hardness and thermal conductivity that the solid lubricant and the binder constituting the sliding member 4A do not originally have, it is possible to improve the wear resistance.

剛性基材4Bには、炭化珪素、アルミナ、窒化珪素、ジルコニア、サイアロン等のセラミックス、あるいはカーボン、更には酸化クロムや炭化クロム、各種サーメト及び金属類が使用可能である。摺動部材4Aが貼り合わされる剛性基材4Bの表面は、その表面粗さにおける微細凸部の突端が平坦になるように、予め微細凹凸を付与すると共にラップ等による研磨を施すことによって平面度を確保するのが好ましい。金属材料から成る剛性基材4Bに表面粗さを付与する方法としては、セラミック砥粒によるサンドブラストが有効であり、表面粗さが粗くならないように注意することが望まれる。   For the rigid substrate 4B, ceramics such as silicon carbide, alumina, silicon nitride, zirconia, and sialon, or carbon, chromium oxide, chromium carbide, various cermets, and metals can be used. The surface of the rigid base material 4B to which the sliding member 4A is bonded is flattened by applying fine irregularities in advance and polishing with a lapping or the like so that the tips of the fine convex portions in the surface roughness are flat. Is preferably ensured. As a method of imparting surface roughness to the rigid base material 4B made of a metal material, sand blasting with ceramic abrasive grains is effective, and it is desirable to pay attention so that the surface roughness does not become rough.

固体潤滑材料としては、典型的には、四フッ化エチレン樹脂、二硫化モリブデン、グラファイト、二硫化タングステン、フッ化黒鉛等など、よく知られた自己潤滑物質から一種類以上選択されるが、自己潤滑性に優れていることや、雰囲気流体による影響を受けにくい点からは、四フッ化エチレン樹脂が最も好ましい。また、固体潤滑材料の粒子を摺動部材4Aとして結合すると共に剛性基材4Bの表面に接着される結合剤には、耐熱性、結合力、造膜性及び耐摩耗性に優れていることが求められる。典型的には、四フッ化エチレン樹脂、エポキシ樹脂、ポリアミドイミド、ポリイミド、ポリアミド、ポリアリレート、ポリエーテルイミド、ポリスルホン、ポリベンゾイミダゾール、ポリエステル樹脂、フェノール樹脂、アセタール樹脂、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、芳香族ポリエステル樹脂、ポリエーテルサルホン、ポリカーボネート、ポリブチレンテレフタレート等の合成樹脂材から選択され、適当な溶剤等の媒体に溶解又は分散して使用する。   The solid lubricating material is typically selected from one or more well-known self-lubricating materials such as ethylene tetrafluoride resin, molybdenum disulfide, graphite, tungsten disulfide, and graphite fluoride. From the viewpoint of excellent lubricity and being hardly affected by the atmospheric fluid, ethylene tetrafluoride resin is most preferable. In addition, the binder that binds the particles of the solid lubricant material as the sliding member 4A and adheres to the surface of the rigid base material 4B has excellent heat resistance, bonding force, film-forming property, and wear resistance. Desired. Typically, tetrafluoroethylene resin, epoxy resin, polyamideimide, polyimide, polyamide, polyarylate, polyetherimide, polysulfone, polybenzimidazole, polyester resin, phenol resin, acetal resin, polyphenylene sulfide, polyether ether ketone , Selected from synthetic resin materials such as aromatic polyester resin, polyethersulfone, polycarbonate, polybutylene terephthalate and the like, dissolved or dispersed in a medium such as an appropriate solvent.

剛性基材4Bの表面に接着される摺動部材4Aは、熱処理等を含む硬化処理によって硬化されるのが望ましい。このような構成のシール輪4は、摺動部材4Aが、優れた自己潤滑性を有すること及び剛性基材4Bによる硬度補償によって優れた耐摩耗性を有するので、例えば撹拌機における撹拌羽根の駆動軸や、一台で固液分離、洗浄、乾燥を行う多機能濾過乾燥機等の軸封部に装着されるメカニカルシールにおいて、その回転側や静止側のシール輪として用いることにより、乾燥潤滑雰囲気中でも著しい耐摩耗性の向上が実現され、摩耗粉の発生を有効に抑制することができる。   The sliding member 4A bonded to the surface of the rigid substrate 4B is preferably cured by a curing process including a heat treatment. In the seal ring 4 having such a configuration, the sliding member 4A has excellent self-lubricating properties and excellent wear resistance due to hardness compensation by the rigid base material 4B. In a mechanical seal mounted on a shaft or a shaft seal part of a multifunction filter dryer that performs solid-liquid separation, washing and drying with a single unit, it can be used as a seal ring on the rotating side or stationary side, thereby providing a dry lubrication atmosphere In particular, a significant improvement in wear resistance is realized, and the generation of wear powder can be effectively suppressed.

結合剤に固体潤滑材料を配合した摺動部材4Aを、硬質で変形し難く熱伝導性の良い剛性基材4Bの表面に貼り合せることにより、液体潤滑膜が形成されない乾燥摺動条件でも優れた潤滑性を発揮すると共に、著しい耐摩耗性の向上が実現できる。しかも、貼り合せによる摺動部材は、その厚みをコーティングされる場合等に比べて十分な厚みのものとすることができるので、上記の良好な効果を長期に亘って持続することができ、耐久性に優れる利点がある。故に、摩耗粉等による異物の発生を極力防止する必要のある機器において、乾燥状態で摺動されるメカニカルシールやそれ用のシール輪として、前述のような優れた効果を提供することができる。   The sliding member 4A, in which a solid lubricant material is blended in a binder, is bonded to the surface of a rigid base material 4B that is hard, hard to deform, and has good thermal conductivity. In addition to exerting lubricity, a significant improvement in wear resistance can be realized. Moreover, the sliding member by bonding can have a sufficient thickness as compared with the case where the thickness is coated, etc., so that the above-mentioned good effect can be sustained over a long period of time. There is an advantage of superiority. Therefore, it is possible to provide the above-described excellent effects as a mechanical seal that slides in a dry state or a seal ring for the device in an apparatus that needs to prevent the generation of foreign matters due to wear powder or the like as much as possible.

〔実施例2〕
実施例2によるメカニカルシールSは、図2に示すように、回転軸1に筒ボス部材15を介して一体回転状態に外嵌される回転側のシール輪2と、ケーシング3に内嵌されるケース部16に回転軸1の軸心P方向にスライド自在に支持される静止側のシール輪4とを有して構成されている。回転側のシール輪2は、筒ボス部材15のリング状凹入部15aに内嵌される状態で収容されている。尚、実施例1のメカニカルシールと機能的に同じ箇所には同じ符号を付すものとし、ここではその説明は割愛する。
[Example 2]
As shown in FIG. 2, the mechanical seal S according to the second embodiment is fitted into a rotary seal ring 2 and a casing 3 that are externally fitted to the rotary shaft 1 via a cylindrical boss member 15. The case portion 16 includes a stationary seal ring 4 that is slidably supported in the direction of the axis P of the rotary shaft 1. The rotation-side seal ring 2 is accommodated in a state of being fitted into the ring-shaped recessed portion 15 a of the cylindrical boss member 15. In addition, the same code | symbol shall be attached | subjected to the location functionally the same as the mechanical seal of Example 1, and the description is omitted here.

実施例2のメカニカルシールSにおいては、静止側のシール輪4が巻きバネ5によって軸心P方向に押圧付勢される構造であり、ケース部16の横向きリング状の凹入部16Aにスライド自在に外嵌されており、巻きバネ5とに間にはリング状の押圧板17が介装されている。静止側のシール輪4は、押圧板17に当接される剛性基材4Bと、剛性基材4Bの軸心P方向の端面に接着される摺動部材4Aとから構成されるとともに、回転側のシール輪2は硬質部材で構成されている。   The mechanical seal S of the second embodiment has a structure in which the stationary seal ring 4 is pressed and urged in the direction of the axis P by the winding spring 5 and is slidable into the lateral ring-shaped recessed portion 16A of the case portion 16. A ring-shaped pressing plate 17 is interposed between the outer periphery and the winding spring 5. The stationary-side seal ring 4 includes a rigid base 4B that is in contact with the pressing plate 17 and a sliding member 4A that is bonded to an end surface of the rigid base 4B in the axis P direction. The seal ring 2 is made of a hard member.

リング状の摺動部材4Aの外径側に寄った箇所には、図3にも示すように、その厚み範囲内の深さを有するリング状の周溝18が形成されている。この周溝18は、軸心Pに沿う内周壁18aと外周壁18bと、軸心Pに直交する側周壁(溝底壁)18cとを有する断面矩形のリング溝に形成されている。尚、図示は省略するが、溝底が剛性基材4Bの表面で形成されるように、周溝18が摺動部材4Aを厚み方向に貫通して形成される構造を有する静止側のシール輪4に構成されても良い。尚、周溝18には、必要に応じて潤滑材を充填しても良い。   As shown in FIG. 3, a ring-shaped circumferential groove 18 having a depth within the thickness range is formed at a location close to the outer diameter side of the ring-shaped sliding member 4 </ b> A. The circumferential groove 18 is formed in a ring groove having a rectangular cross section having an inner circumferential wall 18a and an outer circumferential wall 18b along the axis P, and a side circumferential wall (groove bottom wall) 18c orthogonal to the axis P. Although not shown, the stationary-side seal ring has a structure in which the circumferential groove 18 is formed through the sliding member 4A in the thickness direction so that the groove bottom is formed on the surface of the rigid base 4B. 4 may be configured. The circumferential groove 18 may be filled with a lubricant as necessary.

〔別実施例〕
図示は省略するが、摺動部材4Aに、その厚み範囲内の深さを有する周溝が周方向で不連続な状態に形成されたシール輪が、回転輪のシール輪2や静止側のシール輪4とされる構成のメカニカルシールSとするものでも良い。これは、回転に伴って静止側のシール輪と回転側のシール輪とが周溝が周方向に複数形成されている構成に起因して非接触状態になり得る構造のもの、所謂「非接触型メカニカルシール」を含むものである。また、回転側のシール輪2が、剛性基材と摺動部材との貼り合わせによる複合構造体とされ、かつ、静止側のシール輪4が硬質部材から成る構成、並びにそれら両シール輪を有するメカニカルシールでも良い。
[Another Example]
Although not shown, a seal ring in which a circumferential groove having a depth within the thickness range is formed in the sliding member 4A in a discontinuous state in the circumferential direction is a seal ring 2 of a rotating ring or a seal on the stationary side. A mechanical seal S having a configuration of the ring 4 may be used. This is a structure in which a stationary seal ring and a rotation-side seal ring can be brought into a non-contact state due to a configuration in which a plurality of circumferential grooves are formed in the circumferential direction with rotation, so-called “non-contact” Type mechanical seal ". In addition, the rotation-side seal ring 2 is a composite structure formed by bonding a rigid base material and a sliding member, and the stationary-side seal ring 4 is made of a hard member, and has both the seal rings. A mechanical seal may be used.

実施例1によるメカニカルシールの構造を示す断面図Sectional drawing which shows the structure of the mechanical seal by Example 1 実施例2によるメカニカルシールの構造を示す断面図Sectional drawing which shows the structure of the mechanical seal by Example 2 図2における静止側のシール輪を示す正面図The front view which shows the stationary-side seal ring | wheel in FIG.

1 回転軸
2 回転側のシール輪
2a 摺動面
3 ケーシング
4 静止側のシール輪
4a 摺動面
4A 摺動部材
4B 剛性基材
5 弾性手段
18 周溝
S メカニカルシール
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2 Rotating side sealing ring 2a Sliding surface 3 Casing 4 Static side sealing ring 4a Sliding surface 4A Sliding member 4B Rigid base material 5 Elastic means 18 Circumferential groove S Mechanical seal

Claims (3)

回転軸と一体回転する回転側のシール輪と、ケーシングに相対固定される静止側のシール輪と、回転側及び静止側の各前記シール輪の摺動面どうしを押付け合う弾性手段とを有して成るメカニカルシールであって、
前記回転側及び前記静止側の何れか一方の前記シール輪が剛性基材に摺動部材を貼り合せた複合構造体で構成され、かつ、何れか他方の前記シール輪が硬質部材から構成されており、前記何れか一方のシール輪の摺動面が前記摺動部材で形成され、前記何れか他方のシール輪の摺動面が前記硬質部材で形成され、前記剛性基材がセラミックス、カーボン、金属及び金属とセラミックスの複合材料から選択されるものであり、前記摺動部材が結合剤に固体潤滑材料を配合したものであるとともに、前記摺動部材の厚みが0.5mm〜5mmの範囲に設定されているメカニカルシール。
A rotation-side seal ring that rotates integrally with the rotation shaft; a stationary-side seal ring that is fixed relatively to the casing; and elastic means that presses against the sliding surfaces of the rotation-side and stationary-side seal rings. A mechanical seal consisting of
The seal ring on either the rotating side or the stationary side is composed of a composite structure in which a sliding member is bonded to a rigid substrate, and the other seal ring is composed of a hard member. The sliding surface of any one of the sealing rings is formed by the sliding member, the sliding surface of the other sealing ring is formed by the hard member, and the rigid base material is ceramic, carbon, The sliding member is selected from a metal and a composite material of metal and ceramics, and the sliding member is a mixture of a solid lubricant material in a binder, and the thickness of the sliding member is in the range of 0.5 mm to 5 mm . Mechanical seal set.
前記摺動部材に、その厚み範囲内の深さを有する周溝が形成されている請求項1に記載のメカニカルシール。   The mechanical seal according to claim 1, wherein a circumferential groove having a depth within the thickness range is formed in the sliding member. 前記摺動部材がフッ素系樹脂によって形成されている請求項1又は2に記載のメカニカルシール。   The mechanical seal according to claim 1, wherein the sliding member is formed of a fluorine-based resin.
JP2006256681A 2006-09-22 2006-09-22 mechanical seal Active JP4586002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006256681A JP4586002B2 (en) 2006-09-22 2006-09-22 mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006256681A JP4586002B2 (en) 2006-09-22 2006-09-22 mechanical seal

Publications (2)

Publication Number Publication Date
JP2008075787A JP2008075787A (en) 2008-04-03
JP4586002B2 true JP4586002B2 (en) 2010-11-24

Family

ID=39348070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006256681A Active JP4586002B2 (en) 2006-09-22 2006-09-22 mechanical seal

Country Status (1)

Country Link
JP (1) JP4586002B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101979847B1 (en) * 2018-04-26 2019-05-20 (주)대호하이드로릭 Mechanical seal structure
WO2021015316A1 (en) * 2019-07-22 2021-01-28 (주)대호하이드로릭 Mechanical seal structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004988B2 (en) * 2009-03-26 2012-08-22 日本ピラー工業株式会社 End contact type mechanical seal
JP2011208803A (en) * 2010-03-09 2011-10-20 Sumitomo Electric Fine Polymer Inc Sliding member
JP5728849B2 (en) * 2010-08-12 2015-06-03 株式会社Ihi Gas seal device
CN109723824B (en) * 2019-02-28 2024-01-09 青岛伊克斯达智能装备有限公司 Low-leakage rotary dynamic sealing device for thermal cracking of waste rubber and plastic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026792A (en) * 1999-07-13 2001-01-30 Eagle Ind Co Ltd Sliding material and mechanical seal using the same
JP2004060738A (en) * 2002-07-26 2004-02-26 Eagle Ind Co Ltd Sliding component
JP2004251363A (en) * 2003-02-20 2004-09-09 Daido Metal Co Ltd Sliding member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239083Y2 (en) * 1986-02-27 1990-10-19
JPH08295894A (en) * 1995-04-27 1996-11-12 Hitachi Ltd Solid lubricant and its production and self-lubricating sliding part
JPH10103529A (en) * 1996-09-30 1998-04-21 Aisin Seiki Co Ltd Mechanical seal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026792A (en) * 1999-07-13 2001-01-30 Eagle Ind Co Ltd Sliding material and mechanical seal using the same
JP2004060738A (en) * 2002-07-26 2004-02-26 Eagle Ind Co Ltd Sliding component
JP2004251363A (en) * 2003-02-20 2004-09-09 Daido Metal Co Ltd Sliding member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101979847B1 (en) * 2018-04-26 2019-05-20 (주)대호하이드로릭 Mechanical seal structure
WO2021015316A1 (en) * 2019-07-22 2021-01-28 (주)대호하이드로릭 Mechanical seal structure

Also Published As

Publication number Publication date
JP2008075787A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP4586002B2 (en) mechanical seal
CN109906330B (en) Sliding component
JP5968223B2 (en) Systems, methods and apparatus for bearings and tolerance rings with functional layers
DK2761195T3 (en) HYDRODYNAMIC SHEET RENTAL
JP2011047513A (en) Seal
JPWO2020166589A1 (en) Sliding parts
WO2010004809A1 (en) Mechanical seal device
US20210231217A1 (en) Shaft Seal Arrangement
JP6140179B2 (en) Mechanical seal device
JP2003214541A (en) Seal device
JP2016050653A (en) Mechanical seal for submerged pump
US20160025690A1 (en) Flow path switching valve
JP2010121683A (en) Shaft seal device
JP2019015309A (en) mechanical seal
US20190145520A1 (en) Shaft Seal
JP3196645U (en) Mechanical seal device
JP4094176B2 (en) mechanical seal
JP5302963B2 (en) Sliding member and mechanical seal
JP6317965B2 (en) bearing
JP2001026792A5 (en)
US10495227B2 (en) Dynamic seal
CN111316009A (en) Half-split thrust bearing, bearing device, and internal combustion engine
JP2015183798A (en) bearing
JP4983292B2 (en) Flow path switching valve
WO2021095592A1 (en) Sliding component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4586002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140910

Year of fee payment: 4