JP2016050653A - Mechanical seal for submerged pump - Google Patents

Mechanical seal for submerged pump Download PDF

Info

Publication number
JP2016050653A
JP2016050653A JP2014177450A JP2014177450A JP2016050653A JP 2016050653 A JP2016050653 A JP 2016050653A JP 2014177450 A JP2014177450 A JP 2014177450A JP 2014177450 A JP2014177450 A JP 2014177450A JP 2016050653 A JP2016050653 A JP 2016050653A
Authority
JP
Japan
Prior art keywords
ring
seal
stationary
sealing
rings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014177450A
Other languages
Japanese (ja)
Inventor
藤永 繁行
Shigeyuki Fujinaga
繁行 藤永
崇人 福本
Takahito Fukumoto
崇人 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2014177450A priority Critical patent/JP2016050653A/en
Publication of JP2016050653A publication Critical patent/JP2016050653A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Mechanical Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To properly seal between a pump chamber and an oil chamber by forming and keeping a lubricant film between sealed end faces in a stable state.SOLUTION: A mechanical seal includes a metallic stationary-side holding ring 12 held on a partitioning wall 3, a ceramics stationary seal ring 13 fitted and fixed to the stationary-side holding ring 12 through O-rings 18, 19 in a non-contact state, a metallic rotary-side holding ring 14 fixed to an impeller shaft 6, a ceramics rotary seal ring 15 fitted and fixed to the rotary-side holding ring 14 through O-rings 23, 24 in a non-contact state, and a spring member for pressing and energizing the stationary seal ring 13 to the rotary seal ring 15, to seal a pump chamber 1 in an outer peripheral-side region and an oil chamber 5 in an inner peripheral-side region of a relative rotary slide-contact part S of both seal rings 13, 15. Inner diameters of both seal rings 13, 15 are the same as each other, and inner peripheral faces of their tip parts 13b, 15b are formed into taper faces 13g, 15g of which diameters are gradually decreased from inner peripheral edges of sealed end faces 13a, 15a.SELECTED DRAWING: Figure 1

Description

本発明は、水中ポンプのポンプ室と油室との間をシールするための水中ポンプ用メカニカルシールに関するものである。   The present invention relates to a mechanical seal for a submersible pump for sealing between a pump chamber and an oil chamber of a submersible pump.

水中ポンプにあっては、特許文献1の図1に開示される如く、ポンプ室とモータ室との間に油室を形成して、ポンプ室と油室との間をメカニカルシールでシールしている。而して、かかるメカニカルシールとしては、例えば特許文献1の図2に開示される如く、ポンプ室と油室とを仕切る隔壁に設けた静止密封環とこの隔壁を貫通してモータ室からポンプ室へと延びるインペラ軸に設けた回転密封環との対向端面である密封端面の相対回転摺接作用によりポンプ室と油室との間を遮蔽シールするように構成された端面接触形のものが周知である。   In the submersible pump, as disclosed in FIG. 1 of Patent Document 1, an oil chamber is formed between the pump chamber and the motor chamber, and the pump chamber and the oil chamber are sealed with a mechanical seal. Yes. Thus, as such a mechanical seal, for example, as disclosed in FIG. 2 of Patent Document 1, a stationary seal ring provided in a partition partitioning the pump chamber and the oil chamber, and penetrating the partition from the motor chamber to the pump chamber An end face contact type configured to shield and seal between the pump chamber and the oil chamber by the relative rotational sliding contact action of the sealing end face which is the end face facing the rotary sealing ring provided on the impeller shaft extending to the well is well known. It is.

このような端面接触形のメカニカルシールは、密封環の構成材上、両密封環の一方をSiC等のセラミックスや超硬合金等の硬質材で構成すると共に他方をカーボン等の軟質材で構成したもの(以下「硬質材/軟質材シール」という)と、両密封環を上記した硬質材で構成したもの(以下「硬質材/硬質材シール」という)とに大別されるが、水中ポンプにあっては、泥水等の固形成分を含むスラリ液を扱うことが多いため、硬質材/軟質材シールを使用した場合には、密封端面がスラリ液により摩耗、損傷し易く耐久性に問題があり、長期に亘って良好なシール機能を発揮できない。したがって、水中ポンプのように泥水等のスラリ液を扱うことの多い回転機器においては、一般に、硬質材/軟質材シールは使用されず、両密封環を耐摩耗性に優れるセラミックスや超硬合金等の硬質材で構成した硬質材/硬質材シールが使用されている。   Such an end-face contact type mechanical seal is composed of a material for the sealing ring, one of the two sealing rings is made of a hard material such as ceramics such as SiC or cemented carbide, and the other is made of a soft material such as carbon. It is roughly divided into one (hereinafter referred to as “hard material / soft material seal”) and one in which both sealing rings are composed of the hard materials described above (hereinafter referred to as “hard material / hard material seal”). In this case, slurry fluid containing solid components such as muddy water is often handled. Therefore, when a hard / soft seal is used, the sealing end surface is easily worn and damaged by the slurry, and there is a problem in durability. The sealing function cannot be exhibited over a long period of time. Therefore, in rotating equipment that often handles slurry liquid such as submersible pumps such as submersible pumps, generally hard / soft seals are not used, and both seal rings are made of ceramics and cemented carbides that have excellent wear resistance. A hard material / hard material seal made of a hard material is used.

特開平8−334098号公報JP-A-8-334098 特開2014−1758号公報JP 2014-1758 A 実公平1−21251号公報No. 1-221251

しかし、セラミックスや超硬合金等の硬質材はカーボン等のような自己潤滑性を有しないものであり、摩擦係数が高いものであることから、硬質材/硬質材シールにあっては、相手密封環との摺接による発熱や摩耗が激しく、長期に亘って良好なシール機能を発揮できない。また、密封端面間には油室に貯留された油により潤滑油膜が形成されるが、セラミックス等の硬質材は親油性に乏しいため、密封端面間に安定した潤滑油膜を形成、維持しておくことができず、相手密封環との摺接による発熱をさほど抑制することができない。そして、かかる発熱により油室の油温が上昇して油の粘度が低下し、密封端面全体に潤滑油膜が形成されなくなり、所謂油切れの半ドライ状態となって、密封端面の摩耗や密封端面間からの漏れを生じる虞れがある。さらには、密封端面間に高温による油の分解物が堆積して、漏れを増大させる虞れがある。かかる問題は、食品衛生上や環境汚染上から油室に封入する油として潤滑性に乏しい流動パラフィン等を使用せざるを得ない場合や油室が小さく貯留油量が少ない場合には、更に顕著に生じることになる。   However, since hard materials such as ceramics and cemented carbides do not have self-lubricating properties such as carbon and have a high coefficient of friction, the hard material / hard material seals must be sealed against each other. Heat generation and wear due to sliding contact with the ring are severe, and a good sealing function cannot be exhibited over a long period of time. Also, a lubricating oil film is formed between the sealed end faces by the oil stored in the oil chamber. However, since hard materials such as ceramics are poor in lipophilicity, a stable lubricating oil film is formed and maintained between the sealed end faces. Heat generation due to sliding contact with the other seal ring cannot be suppressed to a great extent. And, due to such heat generation, the oil temperature in the oil chamber rises and the viscosity of the oil decreases, so that the lubricating oil film is not formed on the entire sealed end face, so that the so-called semi-dry state of running out of oil results in the wear of the sealed end face and the sealed end face There is a risk of leakage from the gap. Furthermore, there is a possibility that oil decomposition products due to high temperature accumulate between the sealed end faces, thereby increasing leakage. Such a problem is even more pronounced when liquid paraffin with poor lubricity must be used as oil to be sealed in the oil chamber for food hygiene and environmental pollution, or when the oil chamber is small and the amount of stored oil is small. Will occur.

ところで、硬質材/硬質材シールでは、セラミックス等の硬質材が加工上単純形状にせざるを得ないところから、密封環を金属製の保持環に連結して、保持環を隔壁やインペラ軸に固定ないし保持するように工夫している。而して、密封環を保持環に連結する手段として、一般には焼嵌めが採用されており、特許文献2の段落番号[0028]又は特許文献3の第1図に記載されるように、密封環を保持環に形成した凹部に焼嵌めにより嵌合一体化している。   By the way, in the hard material / hard material seal, since hard materials such as ceramics have to be processed in a simple shape, the sealing ring is connected to a metal holding ring, and the holding ring is fixed to the partition wall or the impeller shaft. Or devised to hold. Thus, shrink fitting is generally employed as a means for connecting the sealing ring to the holding ring, and as described in paragraph [0028] of Patent Document 2 or FIG. The ring is fitted and integrated into the recess formed in the retaining ring by shrink fitting.

しかし、密封環を保持環に焼嵌めにより一体化させた場合、密封環の外周に作用する圧縮応力により密封端面に経時歪が生じ、両密封端面が適正に接触せず、密封端面の相対回転摺接作用によるシール機能が低下する虞れがあった。   However, when the seal ring is integrated with the retaining ring by shrink fitting, the compressive stress acting on the outer periphery of the seal ring causes strain over time on the sealed end surface, the two sealed end surfaces do not contact properly, and the relative rotation of the sealed end surfaces There is a possibility that the sealing function due to the sliding contact action is lowered.

本発明は、このような点に鑑みてなされたもので、両密封環を硬質材で構成する場合にも、上記した問題を生ずることがなく、密封端面間に適正な潤滑油膜を安定した状態で形成、維持することができ、相手密封環との摺接による発熱や摩耗を可及的に抑制し得て、ポンプ室と油室との間を長期に亘って良好にシールすることができる水中ポンプ用メカニカルシールを提供することを目的とするものである。   The present invention has been made in view of such a point, and even when both sealing rings are made of a hard material, the above-described problem does not occur, and an appropriate lubricating oil film is stable between the sealing end faces. It can be formed and maintained by, and heat generation and wear due to sliding contact with the other sealing ring can be suppressed as much as possible, and the pump chamber and the oil chamber can be well sealed over a long period of time. An object of the present invention is to provide a mechanical seal for a submersible pump.

本発明は、ポンプ室と油室とを仕切る隔壁とこの隔壁を貫通してモータ室から油室を経てポンプ室へと延びるインペラ軸との間に装填された水中ポンプ用メカニカルシールにおいて、上記の目的を達成すべく、特に、前記隔壁にOリングを介して軸線方向移動可能に保持された金属製の静止側保持環と、静止側保持環に固定された硬質材製の静止密封環と、インペラ軸に固定された金属製の回転側保持環と、回転側保持環に固定された硬質材製の回転密封環と、静止密封環を回転密封環へと押圧接触させるべく附勢するスプリング部材とを具備して、両密封環の先端面たる密封端面の相対回転摺接作用によりその相対回転摺接部分の外周側領域であるポンプ室とその内周側領域である油室とを遮蔽シールするように構成されており、静止密封環の基端部分が、静止側保持環の先端部に形成した凹部に、当該凹部内における静止密封環と静止側保持環との対向周面間及び対向端面間に夫々Oリングを介在した状態で嵌合固定されており、回転密封環の基端部分が、回転側保持環の先端部に形成した凹部に、当該凹部内における回転密封環と回転側保持環との対向周面間及び対向端面間に夫々Oリングを介在した状態で嵌合固定されており、両密封環の密封端面の内径を同一とすると共に、各密封環の先端部分の内周面を、その密封端面の内周縁から当該密封環の基端方向へと漸次縮径するテーパ面に形成しておくことを提案するものである。   The present invention provides a mechanical seal for a submersible pump loaded between a partition wall that partitions a pump chamber and an oil chamber, and an impeller shaft that extends through the partition wall and extends from the motor chamber to the pump chamber. In order to achieve the object, in particular, a stationary stationary retaining ring made of metal held axially movable on the partition wall via an O-ring, and a stationary sealing ring made of hard material fixed to the stationary retaining ring, A metal rotating side retaining ring fixed to the impeller shaft, a hard rotating ring made of hard material fixed to the rotating side retaining ring, and a spring member that urges the stationary sealing ring to press and contact the rotating sealing ring. The seal chamber seals the pump chamber which is the outer peripheral side region of the relative rotational sliding contact portion and the oil chamber which is the inner peripheral side region thereof by the relative rotational sliding contact action of the sealing end surfaces which are the front end surfaces of both sealing rings. Constructed to be static sealed In the state where the base end portion of the base plate is formed in the recess formed at the distal end portion of the stationary side holding ring, the O-ring is interposed between the opposed peripheral surfaces of the stationary sealing ring and the stationary side holding ring in the recessed portion and between the opposed end surfaces, respectively. The base end portion of the rotary seal ring is fitted and fixed, and the concave portion formed at the tip of the rotary side holding ring is located between the opposing peripheral surfaces of the rotary seal ring and the rotary side holding ring in the concave portion, and the opposite end surface. They are fitted and fixed with an O-ring interposed between them, and the inner diameters of the sealing end surfaces of both sealing rings are made the same, and the inner peripheral surface of the tip portion of each sealing ring is separated from the inner peripheral edge of the sealing end surface. It is proposed to form a tapered surface that gradually decreases in diameter toward the proximal end of the sealing ring.

かかる水中ポンプ用メカニカルシールの好ましい実施の形態にあっては、バランス径D0が前記相対回転摺接部分の内外径D1,D2に対してD1≦D0≦D2となるように設定されたバランス型メカニカルシールに構成されており、両密封環がセラミックス又は超硬合金で構成されている。また、両密封環を、その断面を前記相対回転摺接部分に対して対称形状をなすものに構成し、両密封環の密封端面の内外径が前記相対回転摺接部分の内外径に一致していることが好ましい。   In a preferred embodiment of the mechanical seal for such a submersible pump, a balance type mechanical device in which the balance diameter D0 is set to satisfy D1 ≦ D0 ≦ D2 with respect to the inner and outer diameters D1 and D2 of the relative rotational sliding contact portion. It is comprised by the seal | sticker and both sealing rings are comprised by the ceramics or the cemented carbide. In addition, both the sealing rings are configured so that the cross section has a symmetrical shape with respect to the relative rotational sliding contact portion, and the inner and outer diameters of the sealing end surfaces of both sealing rings coincide with the inner and outer diameters of the relative rotational sliding contact portion. It is preferable.

本発明の水中ポンプ用メカニカルシールにあっては、両密封環の先端部分の内周面が逆方向に漸次縮径するテーパ面に形成されているから、油室の油が遠心力によりインペラ軸の外周面から回転密封環のテーパ面に沿って相対回転摺接部分へと流動され、更に油が相対回転摺接部分で反転して静止密封環のテーパ面に沿ってインペラ軸の外周面へと流動され、相対回転摺接部分の内周側において油が強制的に循環されることになる。このような油の循環によって相対回転摺接部分が継続して潤滑、冷却されることになり、密封端面間に安定した潤滑油膜が形成、維持されると共に相手密封端面との摺接による発熱が可及的に抑制される。   In the submersible pump mechanical seal of the present invention, since the inner peripheral surface of the tip portion of both seal rings is formed in a tapered surface that gradually decreases in the opposite direction, the oil in the oil chamber is impeller shaft by centrifugal force. The oil flows from the outer peripheral surface of the rotary seal ring to the relative rotational sliding contact portion along the taper surface of the rotary sealing ring, and the oil is reversed at the relative rotational sliding contact portion to the outer peripheral surface of the impeller shaft along the tapered surface of the stationary sealing ring. The oil is forcibly circulated on the inner peripheral side of the relative rotational sliding contact portion. By such oil circulation, the relative rotational sliding contact portion is continuously lubricated and cooled, and a stable lubricating oil film is formed and maintained between the sealed end surfaces, and heat is generated by sliding contact with the mating sealed end surface. Suppressed as much as possible.

また、本発明の水中ポンプ用メカニカルシールにあっては、各密封環がOリングを介して保持環の凹部に嵌合固定されているから、硬質材/硬質材シールにあっても、密封環を焼嵌めにより保持環に連結させた場合のように密封端面に経時的歪が生じることがなく、両密封端面を適正に接触させておくことができる。さらに、密封環に過度の軸方向推力が作用した場合や密封環と保持環とが熱膨張係数の異なる異質材で構成されていることによって両環間に熱変形量差(熱膨張量差又は熱収縮量差)が生じた場合にも、密封環に作用する負荷をこれと保持環との間に介在させたOリングの弾性変形によるクッション作用により吸収、緩和することができ、密封端面に歪が生じたりすることがない。   In the submersible pump mechanical seal of the present invention, each sealing ring is fitted and fixed to the recess of the holding ring via an O-ring. Thus, there is no distortion over time on the sealed end face as in the case of connecting to the holding ring by shrink fitting, and both the sealed end faces can be kept in proper contact. Further, when excessive axial thrust acts on the sealing ring, or when the sealing ring and the holding ring are made of different materials having different thermal expansion coefficients, a difference in thermal deformation (difference in thermal expansion or Even when a difference in heat shrinkage occurs, the load acting on the sealing ring can be absorbed and alleviated by the cushioning action caused by the elastic deformation of the O-ring interposed between the sealing ring and the sealing end face. There is no distortion.

したがって、本発明の水中ポンプ用メカニカルシールによれば、冒頭で述べたような問題を生じることなく、長期に亘って良好なシール機能を発揮させることができる。   Therefore, according to the mechanical seal for submersible pumps of the present invention, a satisfactory sealing function can be exhibited over a long period of time without causing the problems described at the beginning.

図1は本発明に係る水中ポンプ用メカニカルシールの一例を示す断面図である。FIG. 1 is a sectional view showing an example of a mechanical seal for a submersible pump according to the present invention. 図2は図1の要部を拡大して示す詳細図である。FIG. 2 is an enlarged detailed view showing the main part of FIG. 図3は本発明に係る水中ポンプ用メカニカルシールの変形例を示す図2相当の要部の断面図である。FIG. 3 is a cross-sectional view of the main part corresponding to FIG. 2 showing a modification of the mechanical seal for the submersible pump according to the present invention. 図4は本発明に係る水中ポンプ用メカニカルシールの他の変形例を示す図2相当の要部の断面図である。FIG. 4 is a cross-sectional view of the main part corresponding to FIG. 2 showing another modification of the mechanical seal for a submersible pump according to the present invention. 図5は本発明に係る水中ポンプ用メカニカルシールの更に他の変形例を示す図2相当の要部の断面図である。FIG. 5 is a cross-sectional view of the main part corresponding to FIG. 2 showing still another modification of the mechanical seal for submersible pump according to the present invention. 図6は水中ポンプの一般的構成を示す概略断面図である。FIG. 6 is a schematic sectional view showing a general configuration of the submersible pump.

以下、本発明を実施するための形態を図面に基づいて具体的に説明する。   Hereinafter, embodiments for carrying out the present invention will be specifically described with reference to the drawings.

図6は水中ポンプの一般的構成を概略断面図であるが、水中ポンプは、一般に、図6に示す如く、ポンプ室1とモータ室2との間に、ポンプ室1及びモータ室2との間が夫々隔壁3,4により仕切られた油室5を形成して、隔壁3,4を貫通してモータ室1からポンプ室2へと延びるインペラ軸6と隔壁3,4との間に夫々メカニカルシール7,8を配設してなる。なお、モータ室2には、インペラ軸6を回転駆動するためのモータ9及びインペラ軸6の軸受(図示せず)が配置されており、ポンプ室1には、インペラ軸6に取付けたインペラ10が配置されると共に吸込口1a及び吐出口1bが形成されている。   FIG. 6 is a schematic cross-sectional view of the general configuration of the submersible pump. In general, the submersible pump is arranged between the pump chamber 1 and the motor chamber 2 between the pump chamber 1 and the motor chamber 2, as shown in FIG. An oil chamber 5 is formed which is partitioned by partition walls 3 and 4, respectively, and between the impeller shaft 6 extending from the motor chamber 1 to the pump chamber 2 through the partition walls 3 and 4 and the partition walls 3 and 4, respectively. Mechanical seals 7 and 8 are provided. The motor chamber 2 is provided with a motor 9 for rotationally driving the impeller shaft 6 and a bearing (not shown) of the impeller shaft 6. The impeller 10 attached to the impeller shaft 6 is disposed in the pump chamber 1. Are arranged and a suction port 1a and a discharge port 1b are formed.

而して、図1は本発明に係る水中ポンプ用メカニカルシールの一例を示す断面図であり、図2は図1の要部を拡大して示す詳細図であり、ポンプ室1と油室5との間をシールする上記メカニカルシール7は、図1及び図2に示す如く、本発明に従って次のように構成されている。なお、以下の説明において、上下とは図1及び図2における上下を意味するものとする。   FIG. 1 is a sectional view showing an example of a mechanical seal for a submersible pump according to the present invention, and FIG. 2 is a detailed view showing an enlarged main part of FIG. As shown in FIGS. 1 and 2, the mechanical seal 7 that seals between the two is configured as follows according to the present invention. In the following description, “upper and lower” means the upper and lower sides in FIGS.

すなわち、本発明に係る水中ポンプ用メカニカルシール7は、図1に示す如く、ポンプ室1と油室5とを仕切る隔壁3とこれを貫通するインペラ軸6との間に装填されており、隔壁3にOリング11を介して軸線方向移動可能に保持された金属製の静止側保持環12と、静止側保持環12に固定された硬質材製の静止密封環13と、インペラ軸6に固定された金属製の回転側保持環14と、回転側保持環14に固定された硬質材製の回転密封環15と、静止密封環13を回転密封環15へと押圧接触させるべく附勢するスプリング部材16とを具備して、両密封環13,15の先端面たる密封端面13a,15aの相対回転摺接作用によりその相対回転摺接部分Sの外周側領域であるポンプ室1とその内周側領域である油室5とを遮蔽シールするように構成された端面接触形の硬質材/硬質材シールである。この例では、ポンプ室1の流体(被密封流体)が泥水等のスラリ液であり、油室5は加圧されておらず、油が貯留されている。なお、密封端面13a,15aの相対回転摺接部分Sとは、図2に示す如く、両密封端面13a,15aが接触している部分であり、その内径D1は両密封端面13a,15aの内径のうち大きなものであり、その外径D2は両密封端面13a,15aの外径のうち小さなものである。   That is, as shown in FIG. 1, the submersible pump mechanical seal 7 according to the present invention is loaded between the partition wall 3 that partitions the pump chamber 1 and the oil chamber 5 and the impeller shaft 6 that passes through the partition wall 3. 3 is fixed to the impeller shaft 6, a stationary stationary ring 12 made of metal that is held by an O-ring 11 so as to be movable in the axial direction, a stationary stationary ring 13 made of a hard material fixed to the stationary side retaining ring 12, and the impeller shaft 6. The metal rotation side holding ring 14 made of metal, the hard sealing ring 15 made of a hard material fixed to the rotation side holding ring 14, and the spring that urges the stationary sealing ring 13 to press and contact the rotation sealing ring 15. And a pump chamber 1 which is an outer peripheral side region of the relative rotational sliding contact portion S by the relative rotational sliding contact action of the sealing end surfaces 13a and 15a which are the front end surfaces of both sealing rings 13 and 15, and the inner periphery thereof. Shield seal against oil chamber 5 which is side area A hard material / hard material seal end face contact type which is configured to so that. In this example, the fluid (sealed fluid) in the pump chamber 1 is slurry liquid such as muddy water, and the oil chamber 5 is not pressurized and oil is stored. The relative rotational sliding contact portion S of the sealed end surfaces 13a and 15a is a portion where both sealed end surfaces 13a and 15a are in contact with each other as shown in FIG. 2, and its inner diameter D1 is the inner diameter of both sealed end surfaces 13a and 15a. The outer diameter D2 is the smaller of the outer diameters of the sealed end faces 13a and 15a.

隔壁3は、図1に示す如く、インペラ軸6の貫通孔を形成した板状のもので、厚み方向におけるポンプ室側部分(下側部分)3aに形成される貫通孔部分を油室側部分(上側部分)3bに形成される貫通孔部分より大径としている。   As shown in FIG. 1, the partition wall 3 has a plate-like shape in which a through hole of the impeller shaft 6 is formed. The through hole portion formed in the pump chamber side portion (lower portion) 3a in the thickness direction is the oil chamber side portion. (Upper part) The diameter is larger than the through-hole part formed in 3b.

静止側保持環12は、図1に示す如く、円筒状の本体部12aとその先端外周面(下端外周面)から外方に突出する円環状の鍔部12bとその外周部から本体部12aと逆方向(下方向)に突出する円筒状の保持部12cとからなる回転体形状にステンレス鋼等の金属材で一体構成されたものである。この例では、静止側保持環12はステンレス鋼で構成されている。   As shown in FIG. 1, the stationary-side holding ring 12 includes a cylindrical main body 12a, an annular flange 12b protruding outward from the outer peripheral surface of the tip (the outer peripheral surface of the lower end), and the main body 12a from the outer periphery. A rotating body formed of a cylindrical holding portion 12c protruding in the reverse direction (downward) is integrally formed of a metal material such as stainless steel. In this example, the stationary side holding ring 12 is made of stainless steel.

而して、静止側保持環12は、図1に示す如く、その本体部12aを隔壁3のポンプ室側部分3aにOリング11を介して軸線方向(上下方向)に移動可能に嵌合保持させることにより、隔壁3にこれとの間がOリング11でシール(二次シール)された状態で軸線方向移動可能に保持されている。Oリング11は、図1に示す如く、静止側保持環12の本体部12aの外周面に圧接した状態で隔壁3のポンプ室側部分3aの貫通孔部分の内周部に形成したOリング溝3cに係合保持されている。静止側保持環12の本体部12aの先端面(下端面)と鍔部12bの先端面(下端面)とは、図1及び図2に示す如く、面一に連なっており、軸線に直交する円環状平面である受け止め面12dに形成されている。静止側密封環12の保持部12cの内周面は、図1及び図2に示す如く、軸線に平行する円柱面であって受け止め面12dに直交する保持面12eに形成されている。静止側保持環12は、図1に示す如く、その基端面(上端面)から突出するドライブピン17を隔壁3の油室側部分3bに形成した係合孔3dに係合させることにより、軸線方向移動が所定範囲で許容されつつ隔壁3に対する相対回転を阻止されている。   Thus, as shown in FIG. 1, the stationary side holding ring 12 is fitted and held with its main body part 12a movably in the axial direction (vertical direction) via the O-ring 11 to the pump chamber side part 3a of the partition wall 3. As a result, the partition wall 3 is held so as to be movable in the axial direction while being sealed (secondary seal) with the O-ring 11 therebetween. As shown in FIG. 1, the O-ring 11 is formed on the inner peripheral portion of the through hole portion of the pump chamber side portion 3a of the partition wall 3 while being in pressure contact with the outer peripheral surface of the main body portion 12a of the stationary side holding ring 12. 3c is engaged and held. The distal end surface (lower end surface) of the main body portion 12a of the stationary side retaining ring 12 and the distal end surface (lower end surface) of the flange portion 12b are flush with each other and orthogonal to the axis as shown in FIGS. It is formed on the receiving surface 12d which is an annular plane. As shown in FIGS. 1 and 2, the inner peripheral surface of the holding portion 12c of the stationary seal ring 12 is formed on a holding surface 12e that is a cylindrical surface parallel to the axis and orthogonal to the receiving surface 12d. As shown in FIG. 1, the stationary side retaining ring 12 has an axis line by engaging a drive pin 17 protruding from its base end surface (upper end surface) with an engagement hole 3d formed in the oil chamber side portion 3b of the partition wall 3. Relative rotation with respect to the partition 3 is prevented while directional movement is allowed within a predetermined range.

静止密封環13は、図1及び図2に示す如く、先端面(下端面)を軸線に直交する平滑な環状平面である密封端面13aに構成した断面台形状の先端部分13bと断面方形状の基端部分13cとからなる断面台形状の円環状体であり、静止側保持環12の先端部に形成された凹部12fにOリング18,19を介して嵌合固定されている。すなわち、静止側保持環12の先端部には受け止め面12dと保持面12eとで囲繞された凹部12fが形成されており、静止密封環13が、当該凹部12f内における両環12,13の対向端面間つまり静止密封環13の基端面13dと静止側保持環12の受け止め面12dとの間にOリング18を挟圧させると共に当該凹部12f内における両環12,13の対向周面間つまり静止密封環13の外周面13eと静止側保持環12の保持面12eとの間にOリング19を挟圧させた状態で、凹部12fに非接触状態で嵌合固定されている。なお、Oリング18は、静止側保持環12の受け止め面12dに形成したOリング溝に静止密封環13の基端面13dに圧接した状態で係合保持されており、Oリング19は静止側保持環12の保持面12eに形成したOリング溝に静止密封環13の外周面13eに圧接した状態で係合保持されている。   As shown in FIGS. 1 and 2, the stationary sealing ring 13 has a trapezoidal tip end portion 13b having a tip end surface (lower end surface) formed as a sealing end surface 13a that is a smooth annular plane orthogonal to the axis, and a rectangular cross section. It is an annular body having a trapezoidal cross section composed of a base end portion 13 c and is fitted and fixed to a recess 12 f formed at the distal end portion of the stationary holding ring 12 via O rings 18 and 19. That is, a recess 12f surrounded by the receiving surface 12d and the holding surface 12e is formed at the tip of the stationary holding ring 12, and the stationary sealing ring 13 is opposed to both the rings 12 and 13 in the recess 12f. The O-ring 18 is clamped between the end surfaces, that is, the base end surface 13d of the stationary sealing ring 13 and the receiving surface 12d of the stationary holding ring 12, and between the opposed peripheral surfaces of both rings 12, 13 in the recess 12f, that is, stationary. The O-ring 19 is clamped between the outer peripheral surface 13e of the sealing ring 13 and the holding surface 12e of the stationary holding ring 12, and is fitted and fixed to the recess 12f in a non-contact state. The O-ring 18 is engaged and held in an O-ring groove formed on the receiving surface 12d of the stationary side retaining ring 12 while being pressed against the proximal end surface 13d of the stationary sealing ring 13, and the O-ring 19 is retained on the stationary side. The O-ring groove formed on the holding surface 12e of the ring 12 is engaged and held in a state of being pressed against the outer peripheral surface 13e of the stationary sealing ring 13.

ところで、静止密封環13は静止側保持環12の凹部12fにOリング18,19を介在させた状態で圧入させることによって、静止側保持環12に嵌合固定されるものであり、両環12,13の相対回転はOリング18,19との摩擦係合力により阻止されるが、この例では、両環12,13の相対回転をより確実に阻止するために、図1に示す如く、静止側保持環12の受け止め面12dから突出するドライブピン20を静止密封環13の本体部13bに形成した係合凹部13fに係合させてある。   By the way, the stationary seal ring 13 is fitted and fixed to the stationary side retaining ring 12 by being press-fitted into the recess 12f of the stationary side retaining ring 12 with the O-rings 18 and 19 interposed therebetween. , 13 is blocked by the frictional engagement force with the O-rings 18, 19, but in this example, in order to more reliably prevent the relative rotation of both rings 12, 13, as shown in FIG. The drive pin 20 protruding from the receiving surface 12d of the side holding ring 12 is engaged with an engagement recess 13f formed in the main body 13b of the stationary seal ring 13.

静止密封環13の先端部分13bの内周面13gは、図2に示す如く、密封端面13aの内周縁から当該密封環13の基端方向(上方向)へと漸次縮径するテーパ面(截頭円錐面)とされている。このテーパ面13gの密封端面13aに対する傾斜角は15°〜75°の範囲で適宜に設定されている。静止密封環13はセラミックス、超硬合金等の硬質材で構成されており、この例ではセラミックス(例えば炭化珪素焼結材)で構成されている。   As shown in FIG. 2, the inner peripheral surface 13g of the distal end portion 13b of the stationary seal ring 13 has a tapered surface (截) that gradually decreases in diameter from the inner peripheral edge of the seal end surface 13a toward the base end direction (upward direction) of the seal ring 13. Head conical surface). The inclination angle of the tapered surface 13g with respect to the sealed end surface 13a is appropriately set in the range of 15 ° to 75 °. The stationary seal ring 13 is made of a hard material such as ceramics or cemented carbide, and in this example is made of ceramics (for example, silicon carbide sintered material).

回転側保持環14は、図1に示す如く、静止密封環13よりインペラ10側(下側)に配置されており、円筒状の本体部14aとその先端面外周部(上端面外周部)から静止密封環方向(上方向)に突出する円環状の保持部14bと本体部14bの先端面内周部(上端面内周部)から保持部14bと平行に突出する円環状の固定部14cからなる回転体形状にステンレス鋼等の金属材(この例ではステンレス鋼)で一体構成されたものであり、固定部14cとインペラ軸6との間にOリング21を介在した状態で本体部14aに螺合させたセットスクリュー22をインペラ軸6に締め付けることにより、インペラ軸6に嵌合固定されている。回転側保持環14の本体部14aの先端面(上端面)は軸線に直交する受け止め面14dに構成されると共に、保持部14bの内周面は軸線に平行して受け止め面14dに直交する保持面14eに構成されていて、回転側保持環14の先端部には、図2に示す如く、受け止め面14dと保持面14eと保持面14eに平行する固定部14cの外周面とで囲繞された環状の凹部14fが形成されている。なお、保持部14b及び固定部14cの本体部14aからの突出量は同一又は略同一とされている。   As shown in FIG. 1, the rotation-side holding ring 14 is disposed on the impeller 10 side (lower side) from the stationary sealing ring 13, and from the cylindrical main body portion 14 a and the distal end surface outer peripheral portion (upper end surface outer peripheral portion). From an annular holding portion 14b protruding in the stationary sealing ring direction (upward direction) and an annular fixing portion 14c protruding in parallel with the holding portion 14b from the inner peripheral portion (upper end inner peripheral portion) of the front end surface of the main body portion 14b. Is formed integrally with a metal material (stainless steel in this example) such as stainless steel, and the main body portion 14a has an O-ring 21 interposed between the fixed portion 14c and the impeller shaft 6. By tightening the screwed set screw 22 to the impeller shaft 6, the set screw 22 is fitted and fixed to the impeller shaft 6. The front end surface (upper end surface) of the main body portion 14a of the rotation-side holding ring 14 is configured as a receiving surface 14d orthogonal to the axis, and the inner peripheral surface of the holding portion 14b is held in parallel to the axial line and orthogonal to the receiving surface 14d. As shown in FIG. 2, the front end portion of the rotation side holding ring 14 is surrounded by the receiving surface 14d, the holding surface 14e, and the outer peripheral surface of the fixing portion 14c parallel to the holding surface 14e. An annular recess 14f is formed. In addition, the protrusion amount from the main-body part 14a of the holding | maintenance part 14b and the fixing | fixed part 14c is made the same or substantially the same.

回転密封環15は、図1及び図2に示す如く、先端面(上端面)を軸線に直交する平滑な環状平面である密封端面15aに構成した断面台形状の先端部分15bと断面方形状の基端部分15cとからなる断面台形状の円環状体であり、回転側保持環14の先端部に形成された凹部14fにOリング23,24を介して嵌合固定されている。すなわち、回転密封環15は、当該凹部14f内における両環14,15の対向端面間つまり回転密封環15の基端面(下端面)15dと回転側保持環14の受け止め面14dとの間にOリング23を挟圧させると共に当該凹部14f内における両環14,15の対向周面間つまり回転密封環15の外周面15eと回転側保持環14の保持面14eとの間にOリング24を挟圧させた状態で、凹部14fに非接触状態で嵌合固定されている。なお、Oリング23は、回転側保持環14の受け止め面14dに形成したOリング溝に回転密封環15の基端面15dに圧接した状態で係合保持されており、Oリング24は回転側保持環14の保持面14eに形成したOリング溝に回転密封環15の外周面15eに圧接した状態で係合保持されている。   As shown in FIGS. 1 and 2, the rotary seal ring 15 has a trapezoidal tip end portion 15b having a tip end surface (upper end surface) formed as a sealed end surface 15a which is a smooth annular plane orthogonal to the axis, and a rectangular cross section. It is an annular body having a trapezoidal cross section composed of a base end portion 15 c, and is fitted and fixed to a concave portion 14 f formed at the distal end portion of the rotation-side holding ring 14 via O-rings 23 and 24. That is, the rotary seal ring 15 is formed between the opposed end surfaces of the rings 14 and 15 in the concave portion 14 f, that is, between the base end surface (lower end surface) 15 d of the rotary seal ring 15 and the receiving surface 14 d of the rotary side holding ring 14. The ring 23 is clamped and the O-ring 24 is sandwiched between the opposed peripheral surfaces of the rings 14 and 15 in the recess 14 f, that is, between the outer peripheral surface 15 e of the rotary seal ring 15 and the holding surface 14 e of the rotary side holding ring 14. In a pressed state, it is fitted and fixed to the recess 14f in a non-contact state. The O-ring 23 is engaged and held in an O-ring groove formed on the receiving surface 14d of the rotation-side holding ring 14 while being in pressure contact with the base end surface 15d of the rotation sealing ring 15, and the O-ring 24 is held on the rotation-side holding ring. The O ring groove formed on the holding surface 14e of the ring 14 is engaged and held in a state of being pressed against the outer peripheral surface 15e of the rotary sealing ring 15.

ところで、回転密封環15は回転側保持環14の凹部14fにOリング23,24を介在させた状態で圧入させることによって、回転側保持環14に嵌合固定されるものであり、両環14,15の相対回転はOリング23,24との摩擦係合力により阻止されるが、この例では、両環14,15の相対回転をより確実に阻止するために、図1及び図2に示す如く、回転側保持環14の受け止め面14dから突出するドライブピン25を回転密封環15の本体部15bに形成した係合凹部15fに係合させてある。   By the way, the rotary seal ring 15 is fitted and fixed to the rotary side holding ring 14 by press-fitting the rotary side holding ring 14 with the O-rings 23 and 24 interposed in the recess 14f of the rotary side holding ring 14. , 15 is prevented by the frictional engagement force with the O-rings 23, 24. In this example, in order to more reliably prevent the relative rotation of the two rings 14, 15, as shown in FIGS. As described above, the drive pin 25 protruding from the receiving surface 14 d of the rotation side holding ring 14 is engaged with the engagement recess 15 f formed in the main body portion 15 b of the rotation sealing ring 15.

回転密封環15の先端部分15bの内周面15gは、図2に示す如く、密封端面15aの内周縁から当該密封環15の基端方向(下方向)へと漸次縮径するテーパ面(截頭円錐面)とされている。このテーパ面15gの密封端面15aに対する傾斜角は15°〜75°としておくことが好ましく、この範囲で適宜に設定される。回転密封環15はセラミックス、超硬合金等の硬質材で構成されており、この例では静止密封環13と同質のセラミックスで構成されている。なお、回転側保持環14における回転密封環15より内周側の部分(固定部14c)の先端面(上端面)は、軸線方向において、回転密封環15のテーパ面15gの基端(テーパ面15gと回転密封環15の基端部分15cの内周面との境界部分)と同一位置又は当該基端より密封端面15a寄りの位置に位置されている。この例では、図2に示す如く、固定部14cの基端は軸線方向においてテーパ面15gの略中間位置に対応する位置に位置されている。   As shown in FIG. 2, the inner peripheral surface 15g of the distal end portion 15b of the rotary seal ring 15 has a tapered surface (截) that gradually decreases in diameter from the inner peripheral edge of the seal end surface 15a toward the base end direction (downward) of the seal ring 15. Head conical surface). The inclination angle of the tapered surface 15g with respect to the sealing end surface 15a is preferably set to 15 ° to 75 °, and is appropriately set within this range. The rotary seal ring 15 is made of a hard material such as ceramics or cemented carbide. In this example, the rotary seal ring 15 is made of the same ceramic as the stationary seal ring 13. In addition, the distal end surface (upper end surface) of the inner peripheral side portion (fixed portion 14c) of the rotation side holding ring 14 with respect to the rotation sealing ring 15 is the base end (taper surface) of the taper surface 15g of the rotation sealing ring 15 in the axial direction. 15g and the boundary portion between the inner peripheral surface of the base end portion 15c of the rotary sealing ring 15) or the position closer to the sealing end surface 15a than the base end. In this example, as shown in FIG. 2, the base end of the fixing portion 14c is located at a position corresponding to a substantially intermediate position of the tapered surface 15g in the axial direction.

この例では、両密封環13,15が、図2に示す如く、その断面を相対回転摺接部分Sに対して対称形状(上下対称)をなすもの、つまり同材質の同一形状をなす共通部材とされており、両密封環13,15の密封端面13a,15aの内外径は相対回転摺接部分Sの内外径D1,D2に一致している。   In this example, as shown in FIG. 2, both seal rings 13 and 15 have a cross-sectional shape symmetrical with respect to the relative rotational sliding contact portion S (vertical symmetry), that is, a common member having the same shape and the same material. The inner and outer diameters of the sealing end faces 13a and 15a of both the sealing rings 13 and 15 are equal to the inner and outer diameters D1 and D2 of the relative rotational sliding contact portion S.

スプリング部材16は、図1に示す如く、静止側保持環12の本体部12aと隔壁3の油室側部分3bとの間に周方向に等間隔を隔てて装填された複数のコイルスプリングで構成されており、静止密封環13を静止側保持環12を介して回転密封環15に押圧接触させるべく軸線方向に附勢する。   As shown in FIG. 1, the spring member 16 is composed of a plurality of coil springs loaded at equal intervals in the circumferential direction between the main body portion 12 a of the stationary side retaining ring 12 and the oil chamber side portion 3 b of the partition wall 3. The stationary seal ring 13 is urged in the axial direction so as to press and contact the rotary seal ring 15 via the stationary holding ring 12.

また、静止側保持環12におけるOリング11の接触面(静止側保持環12の本体部12aの外周面)の径つまりバランス径D0は、図2に示す如く、密封端面13a,15aの相対回転摺接部分Sの内外径D1,D2に対してD1≦D0≦D2(最適にはD0=(D1+D2)/2)となるように設定されている。すなわち、メカニカルシール7は、バランス比κが1以下となるように設定されていて、静止密封環13(つまりこれを固定する静止側保持環12)にポンプ室5の流体(被密封流体たるスラリ液)の圧力(背圧)による軸線方向推力が可及的に作用しないバランス型メカニカルシールに構成されている。なお、モータ室2と油室5とをシールする第2メカニカルシール8としては、周知のメカニカルシール(例えば、特許文献1〜3に開示されるメカニカルシール)が使用されることから、その詳細は省略する。   Further, the diameter of the contact surface of the O-ring 11 in the stationary side retaining ring 12 (the outer peripheral surface of the main body portion 12a of the stationary side retaining ring 12), that is, the balance diameter D0 is the relative rotation of the sealed end surfaces 13a and 15a as shown in FIG. The inner and outer diameters D1 and D2 of the sliding contact portion S are set to satisfy D1 ≦ D0 ≦ D2 (optimally D0 = (D1 + D2) / 2). That is, the mechanical seal 7 is set so that the balance ratio κ is 1 or less, and the fluid in the pump chamber 5 (slurry as a fluid to be sealed) is placed on the stationary sealing ring 13 (that is, the stationary holding ring 12 that fixes the stationary sealing ring 13). It is configured as a balanced mechanical seal in which axial thrust due to the pressure of liquid (back pressure) does not act as much as possible. As the second mechanical seal 8 that seals the motor chamber 2 and the oil chamber 5, a well-known mechanical seal (for example, a mechanical seal disclosed in Patent Documents 1 to 3) is used. Omitted.

以上のように構成された本発明に係る水中ポンプ用メカニカルシール7にあっては、両密封環13,15の先端部分13b,15bの内周面が密封端面13a,15aの内周縁から逆方向に漸次縮径するテーパ面(截頭円錐面)13g,15gとされていることから、油室5の油が密封端面13a,15aの相対回転摺接部分Sへと積極的に導かれると共に相対回転摺接部分Sの周辺で循環流動することになり、両密封環13,15がセラミックスや超硬合金等のような自己潤滑性を有さず且つ摩擦係数の高い硬質材で構成された硬質材/硬質材シールである場合にも、相対回転摺接部分Sの潤滑及び冷却を継続して効果的に行うことでき、良好なシール機能(メカニカルシール機能)が発揮される。   In the submersible pump mechanical seal 7 according to the present invention configured as described above, the inner peripheral surfaces of the tip end portions 13b and 15b of both the sealing rings 13 and 15 are reverse from the inner peripheral edges of the sealed end surfaces 13a and 15a. Since the tapered surfaces (conical frusto-conical surfaces) 13g and 15g gradually reduce in diameter, the oil in the oil chamber 5 is actively guided to the relative rotational sliding contact portion S of the sealed end surfaces 13a and 15a and is relatively It will circulate and flow around the rotating sliding contact portion S, and both the sealing rings 13 and 15 are made of a hard material that does not have self-lubricating properties such as ceramics or cemented carbide and has a high friction coefficient. Even in the case of the material / hard material seal, the relative rotation sliding contact portion S can be continuously lubricated and cooled effectively, and a good sealing function (mechanical sealing function) is exhibited.

すなわち、油は粘度が高いため、回転部材(インペラ軸6、回転側保持環14及び回転密封環15)における油との接触部分においては油が当該回転部材6,14,15と共に層をなして回転せしめられる。所謂、油層の供回り現象である。そして回転部材6,14,15と供回りする油層には、その回転に伴って遠心力が作用し、その遠心力は外周方向に漸次大きくなる。   That is, since the viscosity of the oil is high, the oil forms a layer together with the rotating members 6, 14, 15 in the portions where the rotating members (the impeller shaft 6, the rotating side holding ring 14, and the rotating seal ring 15) contact with the oil. It can be rotated. This is a so-called oil layer rotation phenomenon. Then, a centrifugal force acts on the oil layer around the rotating members 6, 14, and 15 with the rotation, and the centrifugal force gradually increases in the outer circumferential direction.

したがって、相対回転摺接部分Sの内周側領域においては、図2に矢印Pで示す如く、油は遠心力によりインペラ軸6から回転側保持環14における回転密封環15より内周側の部分(固定部14c)の表面上を外方に流動される。さらに、遠心力により、図2に矢印Qで示す如く、油は回転密封環15のテーパ面15g上を当該密封環15の密封端面15aの内径部分つまり相対回転摺接部分Sの内径部分へと向かって流動され、当該部分Sの潤滑を行う。   Accordingly, in the inner peripheral side region of the relative rotational sliding contact portion S, as indicated by an arrow P in FIG. 2, the oil is a portion on the inner peripheral side from the rotary seal ring 15 in the rotary holding ring 14 from the impeller shaft 6 by centrifugal force. It flows outward on the surface of (fixing part 14c). Further, as indicated by an arrow Q in FIG. 2, the oil flows on the tapered surface 15 g of the rotary sealing ring 15 to the inner diameter portion of the sealing end surface 15 a of the sealing ring 15, that is, the inner diameter portion of the relative rotational sliding contact portion S due to centrifugal force. The part S is lubricated.

そして、両密封端面13a,15aの内径が同一であり、両密封環13,15の先端部分13b,15bの内周面が密封端面13a,15aの内周縁から逆方向に傾斜するテーパ面13g,15gとなっていることから、回転するテーパ面15g上を相対回転摺接部分Sの内径部分に達した油は、図2に矢印Rで示す如く、当該内径部分で反転して静止密封環13のテーパ面13gへと押し出される。このテーパ面13gは静止しており、遠心力が作用していないことから、油が継続して前記内径部分からテーパ面13gへと押し出されることによって、油は、図2に矢印Tで示す如く、テーパ面13gに沿ってインペラ軸6の外周面方向へと流動せしめられる。   The inner diameters of both sealed end faces 13a and 15a are the same, and the inner peripheral surfaces of the tip portions 13b and 15b of both sealed rings 13 and 15 are tapered surfaces 13g inclined in the opposite direction from the inner peripheral edges of the sealed end faces 13a and 15a, Therefore, the oil that has reached the inner diameter portion of the relative rotational sliding contact portion S on the rotating tapered surface 15g is reversed at the inner diameter portion as shown by an arrow R in FIG. It is extruded to the taper surface 13g. Since the tapered surface 13g is stationary and centrifugal force is not acting, the oil is continuously pushed out from the inner diameter portion to the tapered surface 13g, so that the oil is shown by an arrow T in FIG. Then, it is caused to flow in the direction of the outer peripheral surface of the impeller shaft 6 along the tapered surface 13g.

このように、両密封環13,15の内周側においては、図2に矢印Q,R,Tで示すような油の循環流がテーパ面13g,15gに沿って発生し、この循環流によって密封端面13a,15aつまり相対回転摺接部分Sの潤滑、冷却が継続して効果的に行われることになる。。   In this way, on the inner peripheral side of both the sealing rings 13 and 15, a circulating oil flow as shown by arrows Q, R and T in FIG. 2 is generated along the tapered surfaces 13g and 15g. Lubrication and cooling of the sealing end faces 13a and 15a, that is, the relative rotational sliding contact portion S are continued and effectively performed. .

したがって、相対回転摺接部分Sには潤滑油膜が安定して形成、維持されると共に密封端面13a,15aの接触(摺接)による発熱が可及的に抑制されることになり、長期に亘って良好なシール機能が発揮される。   Therefore, the lubricating oil film is stably formed and maintained in the relative rotational sliding contact portion S, and the heat generation due to the contact (sliding contact) of the sealed end faces 13a and 15a is suppressed as much as possible. Good sealing function.

また、静止密封環13及び回転密封環15が静止側保持環12及び回転側保持環14にOリング18,19及び23,24を介して非接触状態で嵌合固定されているから、密封環を保持環に焼嵌めにより固定した場合のように、密封環13,15の外周部に圧縮応力が作用して密封環13,15ないし密封端面13a,15aに経時歪が生じることがない。また、密封環13,15と保持環12,14とは熱膨張係数の異なる異質材で構成されているが、密封環13,15と保持環12,14との間に熱変形量差(熱膨張量差ないし熱収縮量差)が生じるような温度条件下においても、かかる熱変形量差がOリング19,24によって吸収されて、密封環13,15ないし密封端面13a,15aに歪を生じることがない。また、密封環13,15に過度の軸線方向圧縮力が作用した場合、すなわち静止密封環13を回転密封環15へと押し付ける軸方向推力が必要以上に高くなった場合、Oリング18,23の弾性変形により当該軸線方向圧縮力が吸収、緩和される。さらに、上記した構成のメカニカルシール7では、バランス径D0を相対回転摺接部分Sの内外径D1,D2に対してD1≦D0≦D2としてバランス比κが1以下となるバランス型メカニカルシールに構成されているから、静止密封環13の回転密封環16への接触圧がポンプ室1の圧力(背圧)によって加重されることがない。したがって、ポンプ室1の圧力が高い場合にも、密封端面13a,15aの接触圧が過大とならず、密封端面13a,15aの接触による発熱や摩耗が可及的に抑制される。   Further, since the stationary seal ring 13 and the rotary seal ring 15 are fitted and fixed to the stationary side holding ring 12 and the rotation side holding ring 14 through O-rings 18, 19 and 23, 24 in a non-contact state, the sealing ring As in the case where the ring is fixed to the retaining ring by shrink fitting, compressive stress does not act on the outer peripheral portions of the sealing rings 13 and 15, so that distortion with time does not occur in the sealing rings 13 and 15 or the sealing end faces 13 a and 15 a. In addition, the sealing rings 13 and 15 and the holding rings 12 and 14 are made of different materials having different thermal expansion coefficients. However, a difference in thermal deformation (heat) between the sealing rings 13 and 15 and the holding rings 12 and 14 is obtained. Even under temperature conditions where a difference in expansion amount or a difference in heat shrinkage occurs, the difference in thermal deformation amount is absorbed by the O-rings 19 and 24, and distortion occurs in the sealing rings 13 and 15 or the sealing end faces 13a and 15a. There is nothing. Further, when an excessive axial compressive force acts on the seal rings 13 and 15, that is, when the axial thrust for pressing the stationary seal ring 13 against the rotary seal ring 15 becomes higher than necessary, the O-rings 18 and 23 The axial compression force is absorbed and relaxed by elastic deformation. Further, the mechanical seal 7 configured as described above is configured as a balanced mechanical seal in which the balance diameter D0 is D1 ≦ D0 ≦ D2 with respect to the inner and outer diameters D1 and D2 of the relative rotational sliding contact portion S and the balance ratio κ is 1 or less. Therefore, the contact pressure of the stationary seal ring 13 to the rotary seal ring 16 is not applied by the pressure (back pressure) of the pump chamber 1. Therefore, even when the pressure in the pump chamber 1 is high, the contact pressure of the sealed end faces 13a and 15a does not become excessive, and heat generation and wear due to the contact of the sealed end faces 13a and 15a are suppressed as much as possible.

これらのことから、本発明に係る水中ポンプ用メカニカルシール7によれば、密封端面13a,15aの発熱、摩耗、歪の発生を可及的に防止して、ポンプ室1を長期に亘って良好にシールすることができる。   For these reasons, according to the mechanical seal 7 for a submersible pump according to the present invention, heat generation, wear, and distortion of the sealed end faces 13a and 15a are prevented as much as possible, and the pump chamber 1 is excellent over a long period of time. Can be sealed.

なお、本発明に係る水中ポンプ用メカニカルシールの構成は上記した実施の形態に限定されるものではなく、本発明の基本原理を逸脱しない範囲において適宜に改良、変更することができる。   In addition, the structure of the mechanical seal for submersible pumps according to the present invention is not limited to the above-described embodiment, and can be appropriately improved and changed without departing from the basic principle of the present invention.

例えば、回転側保持環14における回転密封環15より内周側の部分(固定部14c)の先端面は、図3に示す如く、軸線方向において、回転密封環15のテーパ面15gの基端(テーパ面15gと回転密封環15の基端部分15cの内周面との境界部分)と同一位置又は略同一位置に位置させておくことができる。この場合、図2に示す場合と同様に、図3に矢印P,Q,R,Tで示すような油の循環流が生じる。また、回転側保持環14を、図4に示す如く、固定部14cを有しないものに構成しておくことができる。この場合、油は、図4に矢印Uで示す如く、インペラ軸6の外周面から回転密封環15のテーパ面15gへと流動し、その後は、図4に矢印Q,R,Tで示すように流動し相対回転摺接部分Sの内周側に図2に示す場合と同様の循環流が発生する。矢印Uで示す油の流動が効果的に行われるためには、図4に示す如く、回転密封環15の基端部分15cの内周面をインペラ軸6の外周面に可及的に近接させておくことが好ましい。また、隔壁3と静止側保持環12との間をシールするOリング11は、図5に示す如く、静止側保持環12の本体部12aの外周部に形成したOリング溝13hに係合保持させるようにしてもよい。この場合、バランス径D0は、図5に示す如く、隔壁3におけるOリング11の外周面が接触する面の径であり、上記同様に、D1≦D0≦D2(最適にはD0=(D1+D2)/2)となるように設定されている。なお、図3〜図5に示すものは、上記した点を除いて図1及び図2に示すメカニカルシール7と同一構造をなすものであるから、これと同一部分については図3〜図5に図1及び図2に示す符号と同一符号を付すことによってその詳細は省略する。   For example, as shown in FIG. 3, the distal end surface of the inner peripheral side (fixed portion 14 c) of the rotation-side holding ring 14 with respect to the rotation sealing ring 15 is the base end of the tapered surface 15 g of the rotation sealing ring 15 in the axial direction ( The taper surface 15g and the inner peripheral surface of the base end portion 15c of the rotary seal ring 15 can be located at the same position or substantially the same position. In this case, similar to the case shown in FIG. 2, a circulating oil flow as shown by arrows P, Q, R, and T in FIG. 3 is generated. Further, as shown in FIG. 4, the rotation-side holding ring 14 can be configured to have no fixed portion 14c. In this case, the oil flows from the outer peripheral surface of the impeller shaft 6 to the tapered surface 15g of the rotary seal ring 15 as indicated by an arrow U in FIG. 4, and thereafter, as indicated by arrows Q, R, and T in FIG. 2 and a circulating flow similar to the case shown in FIG. 2 is generated on the inner peripheral side of the relative rotational sliding contact portion S. In order for the oil flow indicated by the arrow U to be performed effectively, as shown in FIG. 4, the inner peripheral surface of the base end portion 15 c of the rotary seal ring 15 is made as close as possible to the outer peripheral surface of the impeller shaft 6. It is preferable to keep it. Further, the O-ring 11 that seals between the partition wall 3 and the stationary side retaining ring 12 is engaged and retained in an O-ring groove 13h formed on the outer periphery of the main body 12a of the stationary side retaining ring 12, as shown in FIG. You may make it make it. In this case, as shown in FIG. 5, the balance diameter D0 is the diameter of the surface with which the outer peripheral surface of the O-ring 11 contacts in the partition wall 3, and similarly to the above, D1 ≦ D0 ≦ D2 (optimally D0 = (D1 + D2) / 2). 3 to 5 have the same structure as the mechanical seal 7 shown in FIG. 1 and FIG. 2 except for the above points, the same parts are shown in FIG. 3 to FIG. The same reference numerals as those shown in FIG. 1 and FIG.

1 ポンプ室
2 モータ室
3 隔壁
3a ポンプ室側部分
3b 油室側部分
3c Oリング溝
3d 係合孔
4 隔壁
5 油室
6 インペラ軸
7 メカニカルシール(水中ポンプ用メカニカルシール)
8 メカニカルシール
9 モータ
10 インペラ
11 Oリング
12 静止側保持環
12a 本体部
12b 鍔部
12c 保持部
12d 受け止め面
12e 保持面
12f 凹部
13 静止密封環
13a 密封端面
13b 先端部分
13c 基端部分
13d 基端面
13e 外周面
13f 係合凹部
13g テーパ面
13h Oリング溝
14 回転側保持環
14a 本体部
14b 保持部
14c 固定部
14d 受け止め面
14e 保持面
14f 凹部
15 回転密封環
15a 密封端面
15b 先端部分
15c 基端部分
15d 基端面
15e 外周面
15f 係合凹部
15g テーパ面
16 スプリング部材
17 ドライブピン
18 Oリング
19 Oリング
20 ドライブピン
21 Oリング
22 セットスクリュー
23 Oリング
24 Oリング
25 ドライブピン
D0 バランス
D1 相対回転摺接部分の内径
D2 相対回転摺接部分の外径
S 相対回転摺接部分
DESCRIPTION OF SYMBOLS 1 Pump chamber 2 Motor chamber 3 Partition 3a Pump chamber side part 3b Oil chamber side part 3c O ring groove 3d Engagement hole 4 Partition 5 Oil chamber 6 Impeller shaft 7 Mechanical seal (mechanical seal for underwater pump)
DESCRIPTION OF SYMBOLS 8 Mechanical seal 9 Motor 10 Impeller 11 O-ring 12 Static side holding ring 12a Main body part 12b Eaves part 12c Holding part 12d Receiving surface 12e Holding surface 12f Recessed part 13 Static sealing ring 13a Sealing end surface 13b Tip part 13c Base end part 13d Base end face 13e Outer peripheral surface 13f Engaging recess 13g Tapered surface 13h O-ring groove 14 Rotating side retaining ring 14a Body portion 14b Holding portion 14c Fixing portion 14d Receiving surface 14e Holding surface 14f Recessed portion 15 Rotating sealing ring 15a Sealing end surface 15b Tip portion 15c Base end portion 15d Base end surface 15e Outer peripheral surface 15f Engaging recess 15g Tapered surface 16 Spring member 17 Drive pin 18 O-ring 19 O-ring 20 Drive pin 21 O-ring 22 Set screw 23 O-ring 24 O-ring 25 Drive pin 0 Balance D1 outside diameter S relative rotational sliding contact area of the inner diameter D2 relative rotational sliding contact portion of the relative rotational sliding contact portion

Claims (4)

ポンプ室と油室とを仕切る隔壁とこの隔壁を貫通してモータ室から油室を経てポンプ室へと延びるインペラ軸との間に装填された水中ポンプ用メカニカルシールにおいて、
前記隔壁にOリングを介して軸線方向移動可能に保持された金属製の静止側保持環と、静止側保持環に固定された硬質材製の静止密封環と、インペラ軸に固定された金属製の回転側保持環と、回転側保持環に固定された硬質材製の回転密封環と、静止密封環を回転密封環へと押圧接触させるべく附勢するスプリング部材とを具備して、両密封環の先端面たる密封端面の相対回転摺接作用によりその相対回転摺接部分の外周側領域であるポンプ室とその内周側領域である油室とを遮蔽シールするように構成されており、
静止密封環の基端部分が、静止側保持環の先端部に形成した凹部に、当該凹部内における静止密封環と静止側保持環との対向周面間及び対向端面間に夫々Oリングを介在した状態で嵌合固定されており、
回転密封環の基端部分が、回転側保持環の先端部に形成した凹部に、当該凹部内における回転密封環と回転側保持環との対向周面間及び対向端面間に夫々Oリングを介在した状態で嵌合固定されており、
両密封環の密封端面の内径を同一とすると共に、各密封環の先端部分の内周面を、その密封端面の内周縁から当該密封環の基端方向へと漸次縮径するテーパ面に形成してあることを特徴とする水中ポンプ用メカニカルシール。
In a mechanical seal for a submersible pump loaded between a partition wall that partitions the pump chamber and the oil chamber and an impeller shaft that passes through the partition wall and extends from the motor chamber to the pump chamber through the oil chamber,
A stationary stationary ring made of metal held in the partition wall through an O-ring so as to be movable in the axial direction, a stationary stationary ring made of a hard material fixed to the stationary side retaining ring, and made of metal fixed to the impeller shaft A rotating member holding ring, a rotating seal ring made of a hard material fixed to the rotating side retaining ring, and a spring member for urging the stationary sealing ring to press contact with the rotating sealing ring. It is configured to shield and seal the pump chamber which is the outer peripheral side region of the relative rotational sliding contact portion and the oil chamber which is the inner peripheral side region thereof by the relative rotational sliding contact action of the sealing end surface which is the front end surface of the ring,
The base end portion of the stationary seal ring has an O-ring interposed between the opposed peripheral surfaces of the stationary seal ring and the stationary side holding ring and the opposed end surfaces in the recess formed in the distal end of the stationary holding ring. It is fitted and fixed in the
The base end portion of the rotary seal ring has an O-ring interposed between the opposed peripheral surfaces of the rotary seal ring and the rotary side holding ring and the opposed end surfaces in the concave portion formed at the distal end portion of the rotary side holding ring. It is fitted and fixed in the
The inner diameters of the sealing end faces of both sealing rings are made the same, and the inner peripheral surface of the distal end portion of each sealing ring is formed into a tapered surface that gradually decreases in diameter from the inner peripheral edge of the sealing end face toward the proximal end of the sealing ring. A mechanical seal for submersible pumps.
バランス径D0が前記相対回転摺接部分の内外径D1,D2に対してD1≦D0≦D2となるように設定されたバランス型メカニカルシールに構成されていることを特徴とする、請求項1に記載する水中ポンプ用メカニカルシール。   The balance type mechanical seal is configured such that the balance diameter D0 is set to satisfy D1 ≦ D0 ≦ D2 with respect to the inner and outer diameters D1, D2 of the relative rotational sliding contact portion. Mechanical seal for submersible pumps to be described. 両密封環がセラミックス又は超硬合金で構成されていることを特徴とする、請求項1又は請求項2に記載する水中ポンプ用メカニカルシール。   The mechanical seal for a submersible pump according to claim 1 or 2, wherein both seal rings are made of ceramics or cemented carbide. 両密封環が、その断面を前記相対回転摺接部分に対して対称形状をなすものに構成されており、両密封環の密封端面の内外径が前記相対回転摺接部分の内外径に一致していることを特徴とする、請求項1〜3の何れかに記載する水中ポンプ用メカニカルシール。
Both seal rings are configured so that the cross-section is symmetrical with respect to the relative rotational sliding contact portion, and the inner and outer diameters of the sealing end surfaces of both sealing rings coincide with the inner and outer diameters of the relative rotational sliding contact portion. The mechanical seal for submersible pumps according to any one of claims 1 to 3, wherein the mechanical seal is used.
JP2014177450A 2014-09-01 2014-09-01 Mechanical seal for submerged pump Pending JP2016050653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014177450A JP2016050653A (en) 2014-09-01 2014-09-01 Mechanical seal for submerged pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014177450A JP2016050653A (en) 2014-09-01 2014-09-01 Mechanical seal for submerged pump

Publications (1)

Publication Number Publication Date
JP2016050653A true JP2016050653A (en) 2016-04-11

Family

ID=55658305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014177450A Pending JP2016050653A (en) 2014-09-01 2014-09-01 Mechanical seal for submerged pump

Country Status (1)

Country Link
JP (1) JP2016050653A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207147A (en) * 2016-05-19 2017-11-24 日本ピラー工業株式会社 mechanical seal
CN107795693A (en) * 2017-11-02 2018-03-13 中国航空工业集团公司金城南京机电液压工程研究中心 A kind of diaphragm spring compensation type mechanical seal device
JP2018100685A (en) * 2016-12-19 2018-06-28 イーグル工業株式会社 Detent mechanism
CN109372992A (en) * 2018-09-28 2019-02-22 安徽安密机械密封有限公司 A kind of spring mechanical sealing compensation ring assemblies and its processing technology
JP2020029922A (en) * 2018-08-23 2020-02-27 イーグル工業株式会社 Shaft seal device
CN113551037A (en) * 2021-08-19 2021-10-26 江苏金鹰流体机械有限公司 Water-drop type micro-pit texture end face mechanical sealing structure
CN114215919A (en) * 2021-12-17 2022-03-22 中密控股股份有限公司 Can show novel nuclear main pump static pressure bearing seal structure that improves stability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334098A (en) * 1995-06-07 1996-12-17 Ebara Corp Underwater pump device
JP2012117432A (en) * 2010-11-30 2012-06-21 Nippon Pillar Packing Co Ltd Shaft seal device for submerged pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334098A (en) * 1995-06-07 1996-12-17 Ebara Corp Underwater pump device
JP2012117432A (en) * 2010-11-30 2012-06-21 Nippon Pillar Packing Co Ltd Shaft seal device for submerged pump

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207147A (en) * 2016-05-19 2017-11-24 日本ピラー工業株式会社 mechanical seal
JP2018100685A (en) * 2016-12-19 2018-06-28 イーグル工業株式会社 Detent mechanism
CN107795693A (en) * 2017-11-02 2018-03-13 中国航空工业集团公司金城南京机电液压工程研究中心 A kind of diaphragm spring compensation type mechanical seal device
CN107795693B (en) * 2017-11-02 2019-08-23 中国航空工业集团公司金城南京机电液压工程研究中心 A kind of diaphragm spring compensation type mechanical seal device
JP2020029922A (en) * 2018-08-23 2020-02-27 イーグル工業株式会社 Shaft seal device
JP6991947B2 (en) 2018-08-23 2022-01-13 イーグル工業株式会社 Shaft sealing device
CN109372992A (en) * 2018-09-28 2019-02-22 安徽安密机械密封有限公司 A kind of spring mechanical sealing compensation ring assemblies and its processing technology
CN113551037A (en) * 2021-08-19 2021-10-26 江苏金鹰流体机械有限公司 Water-drop type micro-pit texture end face mechanical sealing structure
CN113551037B (en) * 2021-08-19 2024-05-17 江苏金鹰流体机械有限公司 Water drop type micro-pit texture end face mechanical sealing structure
CN114215919A (en) * 2021-12-17 2022-03-22 中密控股股份有限公司 Can show novel nuclear main pump static pressure bearing seal structure that improves stability
CN114215919B (en) * 2021-12-17 2022-12-13 中密控股股份有限公司 Can show novel nuclear main pump static pressure bearing seal structure that improves stability

Similar Documents

Publication Publication Date Title
JP2016050653A (en) Mechanical seal for submerged pump
JP6861730B2 (en) Sliding parts
US11603934B2 (en) Sliding component
JP7210566B2 (en) Seal ring
US11125335B2 (en) Sliding component
JP7242658B2 (en) Seal ring
US8474826B2 (en) Hydrodynamic magnetic seal
US10655736B2 (en) Sliding component
AU2015281104B2 (en) Sliding component
US20180128377A1 (en) Slide component
US9410572B2 (en) Five-axial groove cylindrical journal bearing with pressure dams for bi-directional rotation
JP7210565B2 (en) Seal ring
US20160169389A1 (en) Arch-bound ring seal and ring seal system including an arch-bound ring seal
WO2013176009A1 (en) Sliding component
US6293555B1 (en) Secondary seal for non-contacting face seals
AU2015281105B2 (en) Sliding component
US9488280B2 (en) Seal assembly
US20160377181A1 (en) Split circumferential lift-off seal segment
CN204201082U (en) Mechanical seal for pump part in water
US11300208B2 (en) Seal assembly with anti-rotation and stability features

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180227